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Abstract: Ground-penetrating radar (GPR) is a popular geophysical tool for mapping the under-
ground. High-resolution 3D GPR data carry a large amount of information and can greatly help to 
interpret complex subsurface geometries. However, such data require a dense collection along 
closely spaced parallel survey lines, which is time consuming and costly. In many cases, for the sake 
of efficiency, a choice is made during 3D acquisitions to use a larger spacing between the profile 
lines, resulting in a dense measurement spacing along the lines but a much coarser one in the across-
line direction. Simple interpolation methods are then commonly used to increase the sampling be-
fore interpretation, which can work well when the subsurface structures are already well sampled 
in the across-line direction but can distort such structures when this is not the case. In this work, we 
address the latter problem using a novel multiple-point geostatistical (MPS) simulation methodol-
ogy. For a considered 3D GPR dataset with reduced sampling in the across-line direction, we at-
tempt to reconstruct a more densely spaced, high-resolution dataset using a series of 2D conditional 
stochastic simulations in both the along-line and across-line directions. For these simulations, the 
existing profile data serve as training images from which complex spatial patterns are quantified 
and reproduced. To reduce discontinuities in the generated 3D spatial structures caused by inde-
pendent 2D simulations, the target profile being simulated is chosen randomly, and simulations in 
the along-line and across-line directions are performed alternately. We show the successful appli-
cation of our approach to 100 MHz synthetic and 200 MHz field GPR data under multiple decima-
tion scenarios where survey lines are regularly deleted from a dense 3D reference dataset, and the 
corresponding reconstructions are compared with the original data. 

Keywords: ground-penetrating radar (GPR); multiple-point geostatistics (MPS); 3D; interpolation; 
simulation; reconstruction 
 

1. Introduction 
Ground-penetrating radar (GPR) has gained widespread recognition as a geophysi-

cal tool for capturing high-resolution images of the shallow subsurface [1,2]. Tradition-
ally, GPR measurements are acquired at regular intervals along one or a limited number 
of profile lines, resulting in what are commonly referred to as “2D data”. While this ap-
proach may be sufficient for studying simple subsurface environments, it falls short when 
dealing with complex subsurface geometries. Consequently, there has been a growing de-
mand for three-dimensional (3D) GPR data acquisitions in recent years. These acquisi-
tions typically involve surveying along closely spaced parallel survey lines to gain a more 
comprehensive understanding of near-surface structures [3]. The utilization of 3D GPR 
data has become increasingly common for various applications, including archaeological 
site investigation (e.g., [4,5]), bedrock fracture mapping (e.g., [3,6]), glacier drainage 
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network imaging (e.g., [7,8]), transportation infrastructure characterization (e.g., [9,10]), 
and animal burrow mapping (e.g., [11,12]). 

To acquire what are known as “full-resolution” 3D GPR data, Grasmueck et al. (2005) 
[3] suggest that the spacing between individual GPR measurements should be no greater 
than one quarter of the dominant wavelength of the GPR pulse in the studied medium. 
This ensures that the moveout of diffraction events is properly sampled in the time–space 
domain. While such data are of extremely high quality and permit high-resolution de-
tailed images of subsurface structure in 3D (e.g., [6,13]), the required close line spacing 
makes it impractical in many cases to acquire them [14]. For 100 MHz center-frequency 
data in a soil having a radar velocity of 0.1 m/ns, for example, a sample spacing of 0.25 m 
is required for the full-resolution conditions to be satisfied. Considering a GPR line spac-
ing equal to this value strongly limits the size of domain that can be surveyed. As a con-
sequence, a typical trade-off in 3D data collection is that the line spacing is set to be sig-
nificantly greater than the measurement spacing along the survey lines. This introduces a 
strong acquisition bias to the 3D dataset, which can adversely affect subsequent data pro-
cessing steps such as migration [15], as well as data visualization and interpretation. 

To address the aforementioned challenge, a common strategy in 3D GPR data pro-
cessing is to use rudimentary interpolation methods to fill the gaps between existing par-
allel survey lines. This is typically done in two dimensions along horizontal “time slices” 
through the data, but may also be applied across profiles in the time–space domain. In 
this regard, a variety of interpolation methods have been considered, including linear 
(e.g., [16]), cubic spline (e.g., [17]), inverse distance weighting (e.g., [18]), and kriging in-
terpolation (e.g., [19]). While the results of these methods vary and have been extensively 
investigated in past work (e.g., [20,21]), most methods perform reasonably well when the 
GPR line spacing is sufficiently dense to adequately sample the underlying reflection 
structures. However, in the presence of complex subsurface geometries and spatial alias-
ing in the across-line direction, both of which are common in 3D GPR datasets, these strat-
egies become less effective. Indeed, as the line spacing increases, the quality of the recon-
structed profiles obtained with simple interpolation methods degrades, leading to over-
smoothed patterns that do not accurately represent the GPR reflection structures. 

In the context of 3D archaeological investigations, Booth et al. (2008) [14] performed 
GPR data densification in the across-line direction using a 3D beam-steering technique, 
where the coherency of energy along specified dip trajectories was used to predict the 
GPR traces at the desired locations. Unlike the 2D interpolation methods described above, 
this approach effectively exploits the 3D nature of the data and can at least partly over-
come the effects of aliasing. Other, more sophisticated methods for 3D interpolation have 
been developed in the reflection seismic industry to deal with aliased data. These methods 
typically take advantage of the predictability and/or sparseness of the data, commonly in 
a transformed domain, to estimate the missing traces (e.g., [15,22–24]). With all of such 
approaches, however, there exists the inherent assumption that the data exhibit a rather 
simple structure, typically meaning that they can be represented locally as a sum of linear 
“plane-wave” events. Unfortunately, such an assumption is overly restrictive for many 
3D near-surface GPR datasets, where complex distributions of reflections and diffractions 
are common. Ideally, we seek a data densification methodology for GPR data that (i) takes 
into account the 3D nature of the measurements, (ii) avoids simplistic assumptions about 
the data structure, and (iii) can perform well in the presence of spatial aliasing. 

Over the past two decades, multiple-point statistical (MPS) methods have gained 
popularity in the field of geostatistics due to their ability to capture and reproduce com-
plex and realistic patterns [25]. Training images (TIs), which are assumed to share similar 
characteristics to the region of interest, provide spatial statistical relationships for the tar-
get variable(s), which are used alongside measured data to conditionally simulate sto-
chastic realizations of the variable(s) at unknown locations. Recent research has shown 
the successful application of MPS methods to a wide variety of problems in the geosci-
ences, including simulating complex geological structures (e.g., [26,27]), downscaling 
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digital elevation models (e.g., [28,29]), gap filling incomplete satellite images (e.g., [30,31]), 
and generating rainfall time series (e.g., [32]). Most recently, MPS simulation was applied 
to the problem of reconstructing missing data along 2D GPR profiles [33]. Specifically, gap 
filling, trace-spacing regularization, and trace densification were all carried out using a 
single unified MPS approach with highly promising results. Given that 3D data recon-
struction inherently presents greater challenges compared to 2D reconstruction, primarily 
due to increased computational demands, the lack of an adequate TI in 3D, and the need 
to ensure consistency in the simulated 3D structures, it is important to investigate the po-
tential of MPS techniques for the 3D GPR data reconstruction problem. 

In this paper, we build on the recent work of Zhang et al. (2024) [33] and investigate 
the potential of MPS methods for densifying 3D GPR data in the across-line direction, 
thereby addressing the acquisition bias problem mentioned above. Considering that a 
fully 3D TI is generally not available for such work, our research focuses on the use of 2D 
simulations in the along-line and across-line directions to reconstruct the 3D high-resolu-
tion GPR data volume from its low-resolution counterpart. The structure of this paper is 
as follows. First, we present a brief review of MPS methods and the MPS algorithm used 
in our research. Next, we describe the specific methodology that we employ for 3D GPR 
data reconstruction. Finally, we show and discuss the application of our methodology to 
synthetic and field datasets under multiple decimation scenarios, leading to a discussion 
of the results and future perspectives. 

2. Methodology 
2.1. Multiple-Point Statistical Simulation 

Unlike traditional two-point geostatistical methods, MPS approaches examine rela-
tionships across numerous points in space, thereby enabling the reconstruction of highly 
complex and realistic patterns [25]. TIs, which are assumed to carry information compat-
ible with the target area, are used to derive the higher-order spatial statistics required for 
simulation. The very first MPS simulation program for categorical (value-constrained) 
variables, named extended normal equation simulation (ENESIM), was developed by 
Guardiano and Srivastava (1993) [34]. With ENESIM, missing pixels (or voxels in 3D) are 
sequentially simulated by drawing from a conditional probability distribution that is de-
termined by scanning the TI and counting the occurrences of patterns matching the sur-
rounding informed points. Since ENESIM mandates a re-scan of the entire TI for each 
missing data point, it poses significant computational challenges. Strebelle (2002) [27] ad-
dressed this issue by scanning the TI only once and employing a hierarchical tree archi-
tecture to archive the complete TI statistics before the sequential simulation process. This 
led to the development of the simple normal equations simulation (SNESIM) program. 
However, the storage of such statistical data requires substantial memory, and the appli-
cation of this approach was still limited to categorical variables [35]. Mariethoz et al. (2010) 
[36] pointed out that, in randomly searching a TI, matching patterns, or “data events”, 
should be found with a frequency according to their probability of occurrence. Based on 
this, the direct sampling (DS) technique was introduced, which bypasses the need to com-
pute tables of statistics by directly extracting values from the TI as the matching patterns 
are identified. The latter approach significantly reduces storage demands and can be 
straightforwardly implemented in scenarios involving continuous variables as well as 
multivariate simulations. 

2.2. Quick Sampling (QS) Algorithm 
In this work, a highly efficient implementation of the DS approach called “quick sam-

pling” (QS) [37] is considered for the MPS-based densification of 3D GPR data. The QS 
algorithm markedly speeds up the search process for identifying appropriate matches to 
the configuration of known or simulated data surrounding the point of interest through 
the use of cross-correlations that are carried out with the fast Fourier transform (FFT). 
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Figure 1 presents a general workflow of the QS algorithm in the context of simulating 
missing pixels in a target image. First, a random simulation path is created through the 
target image along which the algorithm will visit all unknown pixels. For each pixel along 
this path, a search pattern or “data event” is defined based on the 𝑁 closest informed 
surrounding pixels, which comprise measured conditioning data and previously simu-
lated values. Next, a “mismatch map” is created by calculating a pixel-wise dissimilarity 
metric between the search pattern and the TI at each spatial location. Using this map, the 
value simulated at the unknown pixel location is chosen at random from the 𝑘 best can-
didates having the smallest dissimilarity measure. The QS algorithm then proceeds to the 
next pixel and repeats this process until all unknown points along the simulation path 
have been populated. Note that, within the realm of GPR reconstruction, the term “pixel” 
refers to a GPR reflection amplitude value associated with a specific position along the 
Earth’s surface and two-way travel time. 

 
Figure 1. Flowchart of the general QS MPS simulation approach. 

Three parameters control the performance of the QS algorithm. The first is 𝑁, which 
is the number of closest informed pixels to consider around the unknown point. A higher 𝑁 value imposes more constraints around the missing point, leading to a better fit to the 
conditioning data. However, this carries the risk of introducing what is known as “verba-
tim copy” into the simulations, meaning that regions of the TI may be copied identically 
into the target image. A lower 𝑁 value, on the other hand, will avoid this issue but may 
result in a reduction in the realism of the simulated structures because not enough multi-
point relationships are taken into account. The second QS parameter requiring definition 
is a weighting coefficient, 𝛼, that determines the importance placed on closer pixels ver-
sus distant pixels in the dissimilarity calculation. A higher 𝛼 value places greater weight 
on pixels nearest to the unknown point, which effectively limits the spatial extent of the 
data event and promotes a focus on local structures. In contrast, a lower 𝛼 value places 
more weight on fitting distant pixels, which may improve the realism of the simulations 
but may also make it more challenging to find a suitable match. Finally, QS parameter 𝑘 
controls the size of the candidate pool from which the simulated values are randomly 
drawn. Consistently selecting the positions in the TI corresponding to the lowest dissimi-
larity metric, meaning setting 𝑘 = 1, is not ideal because it poses the risk of verbatim copy. 
Conversely, having too large a candidate pool may result in the selection of inappropriate 
values and reduce the quality of the results. Note that, in practical applications of GPR 
data reconstruction using the QS algorithm, we have found that there is a relatively broad 
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range of values for 𝑁, 𝛼, and 𝑘 that can yield high-quality simulation results [33]. Thus, 
although the choice of these parameters is important, it is rather straightforward and rapid 
to find acceptable values. For further details on the mathematical development of the QS 
algorithm along with a sensitivity analysis showing the effects of changing 𝑁, 𝛼, and 𝑘, 
we refer the reader to Gravey and Mariethoz (2020) [37]. For guidelines on the choice of 𝑁, 𝛼, and 𝑘 in the context of 2D GPR profile reconstruction, see Zhang et al. (2024) [33]. 

2.3. Application to 3D GPR Data Reconstruction 
Although 3D MPS simulations with the QS approach are possible [37], two main 

challenges emerge when considering a 3D application of QS for the densification of GPR 
data in the across-line direction. First, carrying out 3D MPS simulations necessitates a 
high-resolution 3D TI capturing the statistical characteristics of the target area. As detailed 
information in the across-line direction is missing from the original dataset, and because 
acquiring a supplementary full-resolution dataset having these characteristics is not prac-
tically feasible, such a TI does not generally exist. Second, although GPR reconstructions 
in 2D can be carried out in a highly efficient manner with the QS approach [33], recon-
struction in 3D remains a computationally intensive procedure because the simulation of 
each point requires the exhaustive search of a 3D domain. To address the latter issue in a 
general MPS context, Comunian et al. (2012) [26] developed the “sequential 2D condition-
ing data” (s2Dcd) approach for categorical data, whereby stochastic 3D MPS realizations 
are generated via a series of 2D sequential simulations. The 2D simulations are carried out 
in a pre-defined order along orthogonal planes through the model domain based on two 
or three orthogonal 2D TIs, with the results of each simulation being used as conditioning 
data for the next simulation until the entire 3D domain is populated. With this approach, 
Comunian et al. (2012) [26] showed that highly realistic 3D realizations can be obtained in 
a computationally efficient manner using MPS methods without the need for a 3D TI. 
Gueting et al. (2018) [38] later extended the approach for the simulation of hydrofacies in 
a 3D aquifer based on geophysical measurements, where a series of initial s2Dcd iterations 
were completed by 3D MPS simulations. 

Here, we build on the seminal work of Comunian et al. (2012) [26] and develop a QS-
based approach for the densification of 3D GPR data based on alternating 2D simulations 
in the along-line and across-line directions. In contrast to their study, our end goal is to 
reconstruct the distribution of a continuous, not categorical, variable, which is the GPR 
reflection amplitude as a function of time and spatial position. To address this challenge, 
we proceed in two stages. The first stage focuses on simulating a high-resolution categor-
ical GPR volume representing data having strong negative amplitudes, near-zero ampli-
tudes, and strong positive amplitudes. This is much easier than the continuous amplitude 
simulation and allows us to effectively capture the overall structural characteristics of the 
target region. Once the 3D categorical volume is obtained, it is considered together with 
the low-resolution continuous GPR measurements in a second stage to simulate the final, 
densified, continuous GPR volume. We have found that the use of such a multivariate 
simulation strategy greatly helps us to generate realizations that match the overall polar-
ity characteristics and trends in the data while at the same time fitting the observed am-
plitudes. 

Figure 2 summarizes our algorithm for 3D GPR data reconstruction. First, after basic 
processing, the low-resolution GPR measurements are converted into a three-category 
(ternary) amplitude dataset. This is accomplished using 

𝐴 =                    −1 𝑖𝑓 𝐴 < −𝑇0 𝑖𝑓 −𝑇 ≤ 𝐴 ≤ 𝑇1 𝑖𝑓 𝐴 > 𝑇                 ,  (1)

where 𝐴  represents the categorical data, 𝐴 represents the original data, and 𝑇 is a cho-
sen threshold value that determines the cutoff between what are deemed to be significant 
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positive or negative amplitudes and near-zero amplitudes. Through extensive testing, we 
have found that setting 𝑇 between the 15th and 25th percentiles of the observed absolute 
amplitudes in the dataset tends to produce the best results with our methodology [33], as 
it allows for the reflection trends to be most clearly highlighted in the categorical image. 
Determination of the most appropriate value of 𝑇 within this range, however, should be 
done via visual inspection. Once the low-resolution categorical dataset has been defined, 
2D QS simulations are begun in order to gradually complete the information between the 
survey lines and generate a high-resolution categorical volume. To this end, we begin by 
simulating a small number of profiles in the across-line direction (Figure 2a), which serve 
as “tie-in points” for subsequent along-line simulations and help to ensure continuity in 
the results obtained. For these simulations, the TI can either be derived from existing lines 
in the same direction, if they are available, or, if local isotropy of the structures can be 
assumed, from the along-line profiles. Next, we alternate between simulating randomly 
selected along-line and across-line categorical profiles, treating the results obtained as 
conditioning data for the next simulations (Figure 2b). This process is carried out until a 
complete high-resolution 3D categorical volume is generated (Figure 2c). The latter is then 
paired with the low-resolution continuous GPR measurements to help constrain and 
guide the continuous QS simulations towards realistic structures. These simulations are 
carried out in a similar manner to the categorical ones, first along a small number of 
across-line profiles at regular intervals (Figure 2d), followed by alternating between ran-
domly selected along-line and across-line profiles (Figure 2e). Finally, a single realization 
of the high-resolution densified data cube is obtained (Figure 2f). 

 
Figure 2. Workflow of the QS-based 3D GPR data reconstruction methodology. (a) Categorical GPR 
amplitude dataset derived from the original measurements, where a small number of across-line 
categorical profiles (red) are simulated at regular intervals. (b) Simulation of alternating, randomly 
selected, along-line and across-line categorical profiles conditional to all measured and previously 
simulated data. (c) Final high-resolution 3D categorical volume, which is paired with (d) the corre-
sponding low-resolution continuous GPR measurements. A small number of across-line continuous 
profiles are simulated, guided by the categorical results. (e) Simulation of alternating, randomly 
selected, along-line and across-line continuous profiles. (f) Final high-resolution continuous 3D GPR 
volume. 

Note that the above-described strategy of separating the categorical and continuous 
QS simulations differs from the approach proposed by Zhang et al. (2024) [33] for 2D GPR 
profile reconstruction, where both categorical and continuous GPR variables were 
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simulated concurrently. For 3D GPR data densification, the nature of the problem means 
that we have far fewer conditioning data for the 2D simulations and we thus rely more 
heavily on the reflection structure provided by the full categorical volume. Indeed, simu-
lations in the along-line direction represent entirely new profiles, and those in the across-
line direction are constrained at only a few locations corresponding with the existing sur-
vey lines. Note also that the approach summarized in Figure 2 generates a single stochastic 
realization of the densified GPR volume, which is conditional to the measured data and 
subject to uncertainty. Therefore, if the goal is to obtain a single MPS-based “best esti-
mate” of the densified GPR volume, multiple realizations should be generated and the 
point-wise mean taken. The latter approach was considered by Zhang et al. (2024) [33] for 
2D trace-spacing regularization and densification, and we adopt the same strategy for all 
of the examples presented in this paper. 

3. Results 
We now evaluate the performance of our 3D reconstruction approach through appli-

cation to both synthetic and field GPR data examples. In all cases, we begin with a high-
resolution 3D dataset having a close spacing between the survey lines, from which profiles 
are regularly removed to create a low-resolution dataset. Reconstruction of the original 
3D volume from the low-resolution dataset is then carried out using the methodology 
described in Section 2.3. Details regarding the decimated and target profile line spacing 
for each example, along with the number of available TIs in each direction, are summa-
rized in Table 1. Note that, in each test, we consider three profiles available in the across-
line direction in order to condition the reconstructions and serve as TIs for the simulations 
conducted in that direction. Such profiles are not typically acquired during 3D GPR sur-
veys, but we have found in our testing that they provide valuable information for the 3D 
reconstructions and that their consideration significantly improves the results. In practice, 
acquiring these three additional profiles represents a minimal amount of effort in the field. 
It is also important to note that, for each of the example cases presented below, 10 stochas-
tic realizations were carried out using multiple runs of the QS procedure described in 
Section 2.3, upon which the element-wise mean was calculated in order to obtain the final 
reconstruction result. In this way, we use the multi-point statistical information contained 
in the low-resolution dataset, along with the available conditioning measurements, to ob-
tain a best estimate of the high-resolution 3D volume. 

Table 1. Decimated and target profile line spacing for each test case, along with the number of avail-
able TIs in each direction. 

Datasets 
Decimated 

Line Spacing [m] 
Target 

Line Spacing [m] 
Number of 

Along-Line TIs 
Number of 

Across-Line TIs 

Herten 
0.8 0.1 13 3 
1.2 0.1 9 3 

BHRS 0.8 0.1 23 3 

In addition to performing a visual comparison of our reconstructed results with the 
original dataset to evaluate the success of our approach, we consider three metrics in our 
analysis: the root mean square error (RMSE), the mean absolute error (MAE), and the 
structural similarity index (SSIM). The RMSE and MAE quantify the average element-
wise misfit between the reconstructed and original volumes, with the MAE having lesser 
sensitivity to high-amplitude values that may represent outliers. The SSIM, on the other 
hand, attempts to evaluate how well the structural and visual characteristics of the origi-
nal dataset are maintained in the reconstruction [39]. This by done by analyzing three 
aspects: luminance, which assesses the average element brightness; contrast, which exam-
ines the standard deviation of element intensities; and structure, which focuses on the 
retention of textural and edge details. The SSIM ranges from 0 to 1, with values closer to 
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1 indicating a higher degree of similarity between the two datasets. For comparison pur-
poses, we also provide values of these three metrics for densification results obtained via 
2D time-slice interpolation, which is a common methodology used for filling in 3D GPR 
measurements between the survey lines (e.g., [17–19]). In this regard, we perform ordi-
nary kriging based on an empirically derived variogram using a spherical model [40]. Ta-
ble 2 summarizes the values of the RMSE, MAE, and SSIM metrics obtained for the differ-
ent example cases, which are described in detail below. The simulation time required to 
create one realization for both QS and kriging methods is also provided. 

Table 2. Assessment of 3D reconstruction results obtained using our QS-based methodology versus 
ordinary kriging along time slices. Evaluation is performed through comparison with the original 
reference volume using the root mean square error (RMSE), mean absolute error (MAE), and struc-
tural similarity (SSIM) metrics. The direct arrival in all cases was muted before calculating these 
metrics. Also shown is the simulation time per realization for both methods using a 3 GHz Intel 
Xeon Gold 6248R CPU with 16 threads. 

Dataset Herten BHRS 
Decimated Line 

Spacing 
0.8 m 1.2 m 0.8 m 

 QS Kriging QS Kriging QS Kriging 
RMSE 0.0619 0.0648 0.0811 0.0857 0.5305 0.5378 
MAE 0.0375 0.0370 0.0493 0.0500 0.3201 0.3153 
SSIM 0.6515 0.6498 0.5356 0.5212 0.5957 0.6166 

Simulation time [h] 1.7 0.4 1.9 0.3 2.7 2.4 

3.1. Synthetic Example: Herten Dataset 
We first consider the application of our approach to a 100 MHz center-frequency syn-

thetic GPR dataset called Herten, which was created via a 3D finite-difference-time-do-
main numerical simulation of Maxwell’s equations across a realistic fluvio-glacial aquifer 
analog model using the gprMax software (e.g., [41–43]). The electrical property distribu-
tion used to generate the synthetic GPR data is 16 m long by 10 m wide by 7 m deep. The 
corresponding high-resolution 3D dataset, which we consider our reference in this exam-
ple, has a 0.1 m measurement spacing in the along-line (X) direction, a 0.1 m measurement 
spacing in the across-line (Y) direction, and a 0.337 ns time discretization. Figure 3 shows 
a 3D cutaway view of the high-resolution Herten volume after basic processing, which 
consisted of time-zero correction, de-wow, application of a smooth and time-varying gain, 
and low-pass filtering. We observe in the figure a complex combination of diffractions as 
well as reflections having different characteristic lengths and dip angles. The lack of hor-
izontal continuity and short range of many of the reflections makes this dataset a chal-
lenging and realistic test case for our 3D reconstruction methodology. 
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Figure 3. Reference high-resolution Herten synthetic dataset. The measurement spacing in the 
along-line (X) and across-line (Y) directions is the same and equal to 0.1 m. 

We consider two decimation cases with the Herten dataset (Table 1). In the first case, 
which we refer to as our moderate decimation example, survey lines were regularly re-
moved from the volume presented in Figure 3 such that the measurement spacing in the 
across-line direction became 0.8 m. This amounts to deleting 87.5% of the total number of 
traces. In the second case, which we refer to as our severe decimation example, survey 
lines were removed such that the across-line spacing became 1.2 m, meaning the removal 
of 91.6% of the total number of traces. The decimated low-resolution datasets then served 
as the basis for our 3D reconstruction methodology, where the aim was to best estimate 
the original high-resolution volume. As mentioned above, three GPR profiles in the 
across-line direction were also considered to be available for the QS procedure and served 
as TIs for simulations conducted in that direction. These were located at along-line posi-
tions of X = 1.25 m, X = 7.75 m, and X = 14.25 m (Figure 4). The time required to generate 
one 3D realization with our QS methodology for the moderate and severe decimation ex-
amples, running on a workstation containing a 3 GHz Intel Xeon Gold 6248R CPU with 
16 threads, was 1.7 h and 1.9 h, respectively (Table 2). For kriging along the time slices, 
the time required was 0.4 h and 0.3 h, respectively.  

 
Figure 4. (a–c) Three high-resolution across-line profiles from the Herten data cube presented in 
Figure 3, corresponding to along-line positions of X = 1.25 m, 7.75 m, and 14.25 m, respectively, 
which were considered TIs for the QS simulations in the across-line direction. 

For each QS simulation for both the moderate and severe decimation examples, the 
parameter 𝑁 was set to 200 for the categorical volume reconstruction and to 50 for the 
final continuous volume reconstruction. These values were found to provide good repli-
cation of the structural reflection patterns and amplitude characteristics observed in the 
corresponding TIs, respectively. Following Zhang et al. (2024) [33], we began our testing 
with a value of 𝑁 = 50 for the categorical simulations but quickly found that the result-
ing profiles lacked realism compared to the TIs for the Herten dataset. As a result, 𝑁 was 
increased to the point where the categorical simulations were similar in character to the 
TIs. The latter was accomplished rapidly, as only a few 2D simulations were required for 
evaluation. Parameters 𝑘 and 𝛼 in the QS algorithm were set to 1.1 and 0.02, respectively, 
as found by Zhang et al. [33] to provide high-quality simulation results with no verbatim 
copy from the TI, with similarly high-quality results here. 

3.1.1. Moderate Decimation Example 
Figures 5 through 7 display the reconstruction results obtained for the decimated 

Herten dataset with an across-line measurement spacing of 0.8 m. In Figure 5, we examine 
the results for four selected across-line profiles, which are located at along-line positions 
of X = 0.25 m, 5.15 m, 10.15 m, and 15.65 m. The locations of these lines in the data cube 
are shown on the left, whereas the left, center, and right columns of the adjacent matrix 
display the original high-resolution data, the low-resolution decimated data, and the 
pixel-wise mean of 10 stochastic QS realizations, respectively. We see that when 



Remote Sens. 2024, 16, 2084 10 of 22 
 

 

decimating the data by keeping only one of every eight traces, strong spatial aliasing is 
introduced. Indeed, many steeply dipping features such as diffraction tails seem to disap-
pear, and the decimated across-line profiles show only a faint resemblance to the originals. 
In the reconstructed results, we observe that our proposed algorithm has done an impres-
sive job of recovering most of the key reflection patterns. For instance, the strong, undu-
lating reflection in the upper part of the domain from 30–70 ns, which is often difficult to 
follow in the decimated results, is accurately recovered in all four selected profiles. The 
same is true for two other variable reflecting interfaces located around 100 ns and 150 ns. 
There are some smaller-scale features in the original dataset, however, that our approach 
was not able to recover due to a complete lack of coherence of these features in the deci-
mated dataset. Examples include the numerous diffraction hyperbolae appearing in Fig-
ure 5j between 100 and 150 ns, highlighted by the yellow box, and the deeper diffraction 
hyperbola occurring between 150 and 200 ns at a position of approximately y = 7.5 m in 
Figure 5a, outlined with the green box. Indeed, parts of these features remaining in the 
decimated dataset were reconstructed as shallowly dipping reflecting interfaces, which 
are predominant in the three across-line TIs shown in Figure 4.  

 
Figure 5. (a,d,g,j) High-resolution across-line profiles from the Herten data cube presented in Figure 
3 at along-line positions of X = 0.25 m, 5.15 m, 10.15 m, and 15.65 m, respectively. The positions of 
the profiles in the cube are shown in the left column, and the spatial sampling interval is equal to 
0.1 m. (b,e,h,k) Corresponding decimated across-line profiles, where the spatial sampling interval 
has been reduced to 0.8 m. (c,f,i,l) Corresponding profiles from the reconstructed data cube, ob-
tained via the mean of 10 stochastic QS realizations, where the reconstructed spatial sampling inter-
val is 0.1 m. 

In Figure 6, we examine the reconstruction results along three selected along-line 
profiles, which are located at across-line positions of Y = 1.2 m, 5.2 m, and 8.4 m. Note that 
these profiles were entirely removed from the original high-resolution dataset and find 
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themselves mid-way between the profile lines that were retained in the decimated vol-
ume. In this way, they represent reconstructions performed with a minimum number of 
conditioning data. As before, the locations of the lines in the data cube are shown on the 
left, whereas the left and right columns of the adjacent matrix contain the reference data 
and the pixel-wise mean of 10 stochastic QS realizations, respectively. We see in Figure 6 
that the reconstructions show a remarkable degree of similarity with the corresponding 
reference profiles, which underscores the effectiveness of our proposed approach. All of 
the large-scale reflection structures have been accurately captured, and most of the 
shorter-length-scale dipping reflections, such as the cross-bedding present between 50 
and 100 ns, are also well modeled. As was seen previously, some diffraction hyperbolae 
present in the original volume are missing in the reconstruction results, most notably on 
the left side of Figure 6e between 50 and 80 ns, as highlighted by the yellow box, but this 
is not surprising given the fact that the only conditioning information utilized to simulate 
these profiles was that coming from the across-line QS simulations.  

 
Figure 6. (a,c,e) High-resolution along-line profiles from the Herten data cube presented in Figure 
3 at across-line positions of Y = 1.2 m, 5.2 m, and 8.4 m, respectively. The positions of the profiles in 
the cube are shown in the left column, and the spatial sampling interval is equal to 0.1 m. (b,d,f) 
Corresponding profiles from the reconstructed data cube, obtained via the mean of 10 stochastic QS 
realizations, where the reconstructed spatial sampling interval is 0.1 m. Note that in this case, the 
decimated along-line profiles do not exist. 

Finally, Figure 7 shows the reconstruction results obtained along four selected time 
slices located at t = 33.41 ns, 50.26 ns, 100.82 ns, and 134.52 ns. The positions of these slices 
in the data cube are again shown on the left side of the figure, whereas the adjacent matrix 
presents, from left to right, the original high-resolution data, the decimated data, the pixel-
wise mean of 10 stochastic QS realizations, and the results of 2D time-slice interpolation 
using kriging. Again, the latter represents a common approach to densify 3D GPR datasets 
in the across-line direction. We see that each time-slice reconstruction obtained using our 
QS-based method is highly similar to the corresponding reference image, despite clear 
evidence of spatial aliasing in the decimated data. Most impressive are the accurate recon-
structions of the multi-legged structures near the bottoms of Figure 7a,e, which are barely 
visible in the decimated images, and the strong and highly variable channel-like event in 
Figure 7i. The corresponding kriging interpolation results, on the other hand, are not 
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nearly as impressive. The images are overall less sharp than the QS estimates, and the 
multi-legged structures in Figure 7a,e are not well captured. With regard to the channel-
like event in Figure 7i, the general form is properly represented in the kriging result, but 
“staircasing” can be observed around Y = 7 m, where the feature slopes strongly in the 
across-line direction and is thus spatially aliased after decimation (Figure 7j). Finally, over 
all of the time slices, the kriged images exhibit many more localized point-like artifacts 
than the QS results, which may result from the nearest conditioning data having too 
strong an influence on these minimum-error-variance estimates and the fact that only two-
point relationships have been taken into account. 

 

Figure 7. (a,e,i,m) High-resolution time slices from the Herten data cube presented in Figure 3 at t 
= 33.41 ns, 50.26 ns, 100.82 ns, and 134.52 ns, respectively. The positions of the profiles in the cube 
are shown in the left column, and the spatial sampling interval is equal to 0.1 m in both directions. 
(b,f,j,n) Corresponding decimated time slices, where the spatial sampling in the across-line (Y) di-
rection has been reduced to 0.8 m. (c,g,k,o) Corresponding time slices from the reconstructed data 
cube, obtained via the mean of 10 stochastic QS realizations, where the reconstructed spatial sam-
pling interval is 0.1 m in both directions. (d,h,l,p) Corresponding time slices from the reconstructed 
data cube obtained via kriging interpolation along the time slices. 

To summarize, consideration of the 3D nature of the underlying reflection structures 
along with multiple-point patterns in our approach results in highly realistic results hav-
ing strong advantages over kriging. To further explore this point, we consider the values 
of the RMSE, MAE, and SSIM metrics presented in Table 2, which again are global 
measures of how well the reconstructions compare with the original high-resolution ref-
erence data. The QS estimate exhibits a lower RMSE of 0.0619, compared to 0.0648 for 
kriging, whereas the MAE value for QS is marginally higher at 0.0375, compared to 0.0370 
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for kriging. This indicates that the use of the QS approach resulted in a slightly greater 
average error per point but a superior fit to the reference data in a least-squares sense, the 
latter most likely occurring because high-amplitude events, which may be related to im-
portant structures of interest, are better reconstructed. Concerning the SSIM metric, the 
QS approach outperforms kriging with a score of 0.6515 versus 0.6498, aligning with the 
previously noted observations from Figure 7 that the QS method more effectively captures 
the inherent structures and patterns of the original dataset. 

3.1.2. Severe Decimation Example 
Figures 8 through 10 show the reconstruction results obtained for the decimated 

Herten dataset with an across-line measurement spacing of 1.2 m. Figure 8 presents the 
same across-line profiles considered in Figure 5, located at along-line positions of X = 0.25 
m, 5.15 m, 10.15 m, and 15.65 m. Compared to our previous example, the greater degree 
of decimation in this case results in strong spatial aliasing. Not only do steeply dipping 
features such as diffraction tails seem to disappear, but many important reflection hori-
zons also cannot be followed from one trace to another. Using the QS methodology, how-
ever, we are able to successfully recover the majority of the essential structures, albeit to 
a slightly lesser extent than in our moderate decimation example. Most notably, the un-
dulating reflector in Figure 8j, occurring in the upper part of the profile from 30 to 50 ns, 
is remarkably well captured in the simulation results in Figure 8l, considering that it can-
not be followed visually in the decimated results in Figure 8k. Similar to what we ob-
served previously, many diffraction hyperbolae with steeply dipping tails, such as those 
highlighted by the yellow box in Figure 8j, are not reconstructed in the QS estimates but 
rather incorporated into reflecting interfaces, which are predominant in the three across-
line TIs (Figure 4). Given the available measurements that were used to condition the sim-
ulations (e.g., Figure 8k), the proper recreation of such diffraction features is unlikely. 
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Figure 8. (a,d,g,j) High-resolution across-line profiles from the Herten data cube presented in Figure 
3 at along-line positions of X = 0.25 m, 5.15 m, 10.15 m, and 15.65 m, respectively. The positions of 
the profiles in the cube are shown in the left column, and the spatial sampling interval is equal to 
0.1 m. (b,e,h,k) Corresponding decimated across-line profiles, where the spatial sampling interval 
has been reduced to 1.2 m. (c,f,i,l) Corresponding profiles from the reconstructed data cube, ob-
tained via the mean of 10 stochastic QS realizations, where the reconstructed spatial sampling inter-
val is 0.1 m. 

Figure 9 displays the reconstruction results for three selected along-line profiles, sit-
uated mid-way between profiles in the decimated volume at positions Y = 1.8 m, 5.4 m, 
and 7.8 m. We see that the QS estimates exhibit a high level of consistency with the refer-
ence profiles despite the fact that the only conditioning data for simulating these profiles 
were derived from QS simulations in the across-line direction. Indeed, all of the major 
reflection structures are well represented in the QS results, and numerous sets of short 
cross-bedding reflections, occurring between 50 and 90 ns, are also properly recon-
structed. Some reconstruction challenges, however, are also observed that were not en-
countered in our moderate decimation case (Figure 6). For instance, the amplitudes in 
many parts of the reconstructed profiles are weaker than those in the reference volume 
(e.g., green box in Figure 9c), and the highly complex reflection structures observed in the 
lower-right region of all profiles are simplified (e.g., yellow boxes in Figure 9a,e). Infor-
mation regarding the latter may be already lost through the across-line simulations and 
exacerbated by the lack of conditioning data for these simulations because of the greater 
spacing between the survey lines. Further, the averaging performed over 10 stochastic 
realizations to obtain our QS results, which again represent an MPS-based “best estimate” 
of the high-resolution dataset, has the effect of smoothing poorly constrained regions of 
the subsurface. 

 

Figure 9. (a,c,e) High-resolution along-line profiles from the Herten data cube presented in Figure 
3 at across-line positions of Y = 1.8 m, 5.4 m, and 7.8 m, respectively. The positions of the profiles in 
the cube are shown in the left column, and the spatial sampling interval is equal to 0.1 m. (b,d,f) 
Corresponding profiles from the reconstructed data cube, obtained via the mean of 10 stochastic QS 
realizations, where the reconstructed spatial sampling interval is 0.1 m. Note that in this case, the 
decimated along-line profiles do not exist. 
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In Figure 10, we show the reconstruction results for the same four time slices consid-
ered in Figure 7, located at t = 33.41 ns, 50.26 ns, 100.82 ns, and 134.52 ns. As could be 
expected, significantly more spatial aliasing is observed in the decimated data for this ex-
ample, which complicates considerably the time-slice reconstruction problem. Little cor-
relation can be observed between the survey lines, and most of the structure seen in the 
original high-resolution images appears to be lost. Despite this, our developed QS proce-
dure allows for a remarkable recovery of most of the key features in the reference slices, 
albeit slightly more smoothed for the reasons described above. For instance, the multi-
legged structures near the bottoms of Figure 10a,e are reasonably well captured in Figure 
10c,g, and the channel-like event in Figure 10i is recovered accurately in Figure 10k, with 
the exception of a discontinuity at around Y = 7 m. The same cannot be said for the results 
of kriging interpolation between the time slices. The kriging estimates are much smoother 
than those obtained in our moderate decimation example (Figure 7), and most of the struc-
tures in the images fail to be accurately recovered.  

 

Figure 10. (a,e,i,m) High-resolution time slices from the Herten data cube presented in Figure 3 at t 
= 33.41 ns, 50.26 ns, 100.82 ns, and 134.52 ns, respectively. The positions of the profiles in the cube 
are shown in the left column, and the spatial sampling interval is equal to 0.1 m in both directions. 
(b,f,j,n) Corresponding decimated time slices, where the spatial sampling in the across-line (Y) di-
rection has been reduced to 1.2 m. (c,g,k,o) Corresponding time slices from the reconstructed data 
cube, obtained via the mean of 10 stochastic QS realizations, where the reconstructed spatial sam-
pling interval is 0.1 m in both directions. (d,h,l,p) Corresponding time slices from the reconstructed 
data cube obtained via kriging interpolation along the time slices. 

In summary, based on the visual inspection of Figures 8 through 10, our proposed 
MPS-based 3D reconstruction approach proves highly effective in reconstructing the high-
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resolution reference volume, in particular compared to kriging, despite the fact that the 
severe degree of decimation in this case not only leads to a reduction in the number of 
conditioning data but also the number of available TIs. These observations are confirmed 
by the evaluation metrics presented in Table 2, which reveal that the QS estimate exhibits 
a lower RMSE of 0.0811 compared to 0.0857 for kriging interpolation, a marginally lower 
MAE of 0.0493 compared to 0.0500, and a higher SSIM index of 0.5356 compared to 0.5212. 

3.2. Field Data Example: BHRS Dataset 
As a final example, we apply our 3D reconstruction approach to a 200 MHz field 

dataset acquired at the Boise Hydrogeophysical Research Site (BHRS) located adjacent to 
the Boise River, Idaho, USA [44]. The full high-resolution data volume considered in this 
work, which represents the target for our reconstructions, is 30 m long by 18 m wide and 
covers a two-way travel time of 180 ns. The corresponding trace spacing in the along-line 
(X) and across-line (Y) directions is the same and equal to 0.1 m, and the time sampling 
interval is equal to 0.6 ns. Figure 11 presents a 3D cutaway view of the BHRS data cube 
following the same basic processing used in our synthetic example. Similar to before, we 
observe a mix of long- and short-range reflections at various orientations, along with nu-
merous diffraction hyperbolae, which make this dataset an interesting and challenging 
test case for our 3D densification methodology.  

 
Figure 11. Reference high-resolution BHRS field dataset. The measurement spacing in the along-
line (X) and across-line (Y) directions is the same and equal to 0.1 m. 

For this reconstruction test, survey lines were regularly removed from the BHRS vol-
ume, leading to an across-line measurement spacing of 0.8 m. This represents the deletion 
of 87.5% of the total number of traces. The time required to generate one QS-based reali-
zation was approximately 2.7 h on the same workstation described previously, whereas 
kriging along time slices required 2.4 h. Similar to the Herten example, three GPR profiles 
in the across-line direction were also considered TIs for the QS simulations in that direc-
tion. These are located at along-line positions of X = 1 m, X = 15 m, and X = 29 m and 
presented in Figure 12. For both the categorical and continuous amplitude BHRS recon-
structions, our initial value of 𝑁 = 50 was found to provide a good replication of the 
structural reflection patterns and amplitude characteristics of the TIs. Parameters 𝑘 and 𝛼 were set to 1.1 and 0.02, respectively, which are the same values used with the Herten 
dataset. 
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Figure 12. (a,b,c) Three high-resolution across-line profiles from the BHRS data cube presented in 
Figure 11, corresponding to along-line positions of X = 1 m, 15 m, and 29 m, respectively, which 
were considered TIs for the QS simulations in the across-line direction. 

Figure 13 shows the BHRS reconstruction results for four selected across-line profiles, 
located at along-line positions of X = 0 m, 10 m, 20 m, and 30 m. The decimated images, 
particularly the dipping reflections in the upper part of Figure 13b, are strongly spatially 
aliased, but much of this is resolved in the corresponding QS estimates (e.g., Figure 13c). 
Indeed, most of the QS results show an excellent match with the reference profiles, with 
the exception of some zones containing multiple small-scale diffraction hyperbolae, for 
instance around 130 ns in Figure 13a, as highlighted by the yellow box, and between 60 
and 120 ns in Figure 13j, as highlighted by the green box, which become more laterally 
smoothed in the corresponding reconstructions in Figure 13c,l. Again, the latter results in 
part from the fact that the presented QS reconstructions represent the mean of 10 stochas-
tic realizations rather than a single realization of our 3D reconstruction procedure, which 
has the tendency to smooth features in zones that are less well constrained by the available 
data.  

 

Figure 13. (a,d,g,j) High-resolution across-line profiles from the BHRS data cube presented in Figure 
11 at along-line positions of X = 0 m, 10 m, 20 m, and 30 m, respectively. The positions of the profiles 
in the cube are shown in the left column, and the spatial sampling interval is equal to 0.1 m. (b,e,h,k) 
Corresponding decimated across-line profiles, where the spatial sampling interval has been reduced 
to 0.8 m. (c,f,i,l) Corresponding profiles from the reconstructed data cube, obtained via the mean of 
10 stochastic QS realizations, where the reconstructed spatial sampling interval is 0.1 m. 

Figure 14 presents the BHRS reconstruction results for three selected along-line pro-
files, which are located mid-way between survey lines in the decimated dataset at across-
line positions of Y = 1.2 m, 9.2 m, and 17.2 m. Similar to what was observed in Figure 13, 
all of the QS estimates can be seen to display a close match with the high-resolution refer-
ence profiles. For example, the dipping reflections at various angles in the left part of the 
three profiles, between approximately 60 and 120 ns, have been successfully captured, and 
larger diffraction hyperbolae, such as those present below 120 ns, are also well modeled. 
Again, however, some zones containing multiple superimposed small-scale diffraction 
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features, as highlighted by the yellow and green boxes in Figure 14e, are laterally 
smoothed in the reconstruction results.  

 

Figure 14. (a,c,e) High-resolution along-line profiles from the BHRS data cube presented in Figure 
11 at across-line positions of Y = 1.2 m, 9.2 m, and 17.2 m, respectively. The positions of the profiles 
in the cube are shown in the left column, and the spatial sampling interval is equal to 0.1 m. (b,d,f) 
Corresponding profiles from the reconstructed data cube, obtained via the mean of 10 stochastic QS 
realizations, where the reconstructed spatial sampling interval is 0.1 m. Note that in this case, the 
decimated along-line profiles do not exist. 

Three selected time-slice reconstructions for the BHRS dataset are presented in Fig-
ure 15, corresponding to t = 59.4 ns, 89.4 ns, and 119.4 ns. Similar to the Herten synthetic 
example, the QS results are compared to those obtained using 2D kriging interpolation 
along the time slices. The decimated time slices exhibit a high degree of spatial aliasing in 
some locations, most notably in the upper part of Figure 15b between X = 0 m and 10 m, 
where the reflection structures are hard to trace laterally from one line to another. The 
corresponding QS estimates manage to recover much of this structure and match well 
with the reference images (e.g., Figure 15c). However, some features at steep angles to the 
across-line direction are not reproduced, as illustrated by the yellow box in Figure 15a, 
and the results are noticeably smoother than the reference high-resolution data. Regard-
ing the kriging interpolation results, more artifacts can be observed compared to the QS 
reconstructions. Most evident is the strong staircasing of steeply inclined features and the 
greater abundance of punctual anomalies. This being said, the differences between the 
kriging and QS results appear to be less severe for this example than for the Herten syn-
thetic dataset. 
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Figure 15. (a,e,i) High-resolution time slices from the BHRS data cube presented in Figure 11 at t = 
59.4 ns, 89.4 ns, and 119.4 ns, respectively. The positions of the profiles in the cube are shown in the 
left column, and the spatial sampling interval is equal to 0.1 m in both directions. (b,f,j) Correspond-
ing decimated time slices, where the spatial sampling in the across-line (Y) direction has been re-
duced to 0.8 m. (c,g,k) Corresponding time slices from the reconstructed data cube, obtained via the 
mean of 10 stochastic QS realizations, where the reconstructed spatial sampling interval is 0.1 m in 
both directions. (d,h,l) Corresponding time slices from the reconstructed data cube obtained via 
kriging interpolation along the time slices. 

Examining the metrics in Table 2 for the BHRS data, we observe a lower RMSE value 
of 0.5305 for the QS estimates compared to 0.5378 for kriging but a higher MAE value of 
0.3201 compared 0.3153. Interestingly, the SSIM index value for the QS results is lower at 
0.5957, compared to 0.6166 for kriging, which is puzzling given the moderately better vis-
ual fit observed in Figure 15. Again, this may result from the fact that the QS results rep-
resent the mean of 10 stochastic realizations, which has the effect of smoothing the recon-
structed volume in regions less well constrained by the data. 

4. Discussion and Conclusions 
The primary objective of this work is to present a novel methodology for reconstruct-

ing a high-resolution 3D GPR data volume from measurements acquired along a set of 
sparsely spaced parallel profile lines. The reconstruction process is based on a series of 2D 
QS simulations, whereby randomly selected profiles are simulated along orthogonal ori-
entations in an alternating manner. Such an approach, which was originally proposed by 
Comunian et al. [26] for MPS-based simulations of geological heterogeneity, helps to en-
force 3D structural consistency in the output results while at the same time avoiding the 
need for a fully 3D simulation and a corresponding 3D TI, the latter of which is generally 
unavailable in the case of GPR data. One particular and important element of our ap-
proach, which greatly helps in generating more realistic structures, is the initial simulation 
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of a high-resolution 3D categorical amplitude volume, which is then used as a secondary 
variable to guide the simulation of the continuous amplitude images. Our experience so 
far indicates that a value of 𝑁 = 50 represents a good starting point for this categorical 
simulation, after which a small number of simulated profiles can be compared with the 
categorical TIs to determine if an increase in 𝑁 is necessary. Once the overall reflection 
patterns were defined by the initial categorical simulation, we found that a value of 𝑁 =50 for the final continuous amplitude simulations provided consistently excellent results. 
Setting parameters 𝑘 and 𝛼 to 1.1 and 0.02, respectively, which was done for all of our 
examples and based on the work of Zhang et al. (2024) [33], was also found to produce 
high-quality reconstructions. Our methodology was successfully applied to both synthetic 
and field 3D GPR data under various decimation scenarios. 

Computational efficiency is a crucial factor when considering the reconstruction of 
3D data volumes. A key advantage of our algorithm is its operation entirely along 2D 
planes, thus avoiding the need for expensive 3D simulations and allowing for easy execu-
tion on a standard desktop computer. For all of the examples presented in this paper, 
which were carried out on a workstation containing an Intel Xeon Gold 6248R CPU with 
16 threads, a single 3D stochastic realization was obtained in between 1.7 and 2.7 h. The 
proposed reconstruction procedure may be repeated multiple times to generate different 
realizations, which can then be used to assess the uncertainty of the reconstructed zones, 
especially in locations where constraints are weak. These realizations can also be aver-
aged, as was done in this paper, to obtain an MPS-based best estimate of the high-resolu-
tion 3D volume. It should be noted that, for all of the examples presented here, differences 
between the 10 calculated stochastic realizations were found to be rather minor and lim-
ited to small-scale details. Clearly, however, these differences would be more significant 
in the case of further increases in the decimation rate. 

For the synthetic Herten dataset, the MPS-based estimates of the high-resolution 3D 
GPR volume were shown both visually and via metrics to provide a generally superior 
result over standard 2D kriging interpolation along time slices for both our moderate and 
severe decimation examples. However, in the case of the BHRS field dataset, kriging was 
found to perform better in two of the three considered metrics (Table 2). Nevertheless, the 
results for the corresponding time slices (Figure 15) provided by our QS methodology 
show more realistic-looking outcomes. In all of our examples, the QS procedure took ap-
proximately one to six times longer to generate a single realization compared to kriging, 
and 10 of such realizations were averaged to obtain our final presented results. Despite 
the significantly increased computational expense of our method, we feel that the superior 
visual quality and realism shown by the QS results makes it worthwhile. However, more 
research and testing on a wide variety of other 3D GPR datasets is needed before any 
general conclusions can be made. 

Another advantage of our proposed method is its ease of implementation. The QS 
simulation is typically controlled by three main parameters: 𝑁, 𝛼, and 𝑘. In our tests 
based on the Herten and BHRS datasets, selecting an appropriate value for 𝑁 requires 
some trial and error but is relatively straightforward and can be evaluated by comparing 
the simulated structures with the patterns in the TI. As for parameters 𝑘 and 𝛼, we main-
tained them at fixed values throughout our experiments and observed good results that 
were similar to the reference profiles. 

One limitation in applying our proposed algorithm is having appropriate TIs in the 
across-line direction. In practice, multiple TIs exist for the along-line direction from the 
acquired GPR profiles, but either TIs for the across-line direction must be measured inde-
pendently or it must be assumed that isotropy applies, allowing the use of along-line TIs 
for both directions. In the work presented in this paper, three additional crossline TIs were 
assumed to be available for QS simulations in this direction. These profiles, which require 
minimal effort in the field to acquire, were found to help the approach to generate highly 
realistic structures. In practice, however, most already existing 3D GPR datasets would 
not contain such profiles. 
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We are currently exploring the use of deep-learning-based tools for 3D GPR trace 
reconstruction, which have gained increasing popularity in recent years for both GPR and 
seismic applications. After proper training of the corresponding convolutional neural net-
work, these tools could offer a highly computationally efficient means of simulating data 
in the along-line and across-line directions, thereby permitting the application of the ap-
proach considered here to larger 3D GPR datasets, such as those recently acquired by 
drones over glaciers [45]. Part of this work involves investigating whether, by considering 
a rich training database consisting not only of the available along-line profiles but also 
synthetically generated datasets, we can reduce the dependency on the additional collec-
tion of across-line TIs. This could further improve the reconstruction performance of ex-
isting 3D GPR datasets where such profiles are unavailable. 
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