Suppl. Table 1

of LUD00-0018 cohort
cal characteristics (
y Table 1. Clinic
Supplementar

	╞		Diagn	nostic				Disease at Study entry	Vacc	ine Protoc	0		Outcom	a	
Vaccine Par	ient St	ex Ag	je T	NM E	3reslow	Stage	Status	Previous treatments	Protocol	Duration	t # of vaccine	Relapse	Death	PFS*	oS*
ELA LA	J 205 N	VI 24	4 pT2	aN1bM0	1.40	=	NED	Surgery, immunotherapy (c)	Group IV (ELA+TYR)	25.0	20	yes	yes	25.0	50.0
ΓA	J 321 M	M 60	Tq C	3aN0M0	1.50	≥	ĒD	Surgery, chemotherapy, limb perfusion, immunotherapy (a)	Group I (ELA)	7.0	œ	yes		2.1	75.0
ΓA	J 371 N	M 29	9 pT3;	aN1aM0	2.38	≥	NED	Surgery, immunotherapy (b)	Group I (ELA)	6.0	9	yes	yes	3.0	11.0
ΓA	J 444 F	- 27	7 pT;	3aN0M0	1.90	≥	ĒD	Surgery, radiotherapy, immunotherapy (a)	Group I (ELA)	22.0	20	yes	yes	13.9	30.9
Γ	J 618 F	50	_d 6	T4N0M0	8.00	E	ED	Surgery, radiotherapy, chemotherapy, limb perfusion, immunotherapy (a)	I) Group I (ELA)	12.0	12	yes		1.9	30.9
ΓA	J 627 N	M 45	9 pT3t	bN1aM0	2.23	≥	ED	Surgery	Group I (ELA)	19.0	7	yes	yes	5.0	15.0
ΓA	J 672 N	м 8	4 pT	1aNOM0	0.70	E	ĒD	Surgery, radiotherapy, chemotherapy, limb perfusion, immunotherapy (a)	I) Group I (ELA)	3.0	4	yes	yes	2.0	45.0
ΓA	J 701 F	202	D pT	3bN0M0	2.50	S	NED	Surgery, limb perfusion	Group I (ELA)	8.0	œ	yes		3.0	140.0
Γ	J 818 h	M 55	5 pT	3aN0M0	2.44	E	NED	Surgery	Group I (ELA)	20.0	18	yes		8.0	61.0
ΓA	J 936	22	2 pT.	3aN0M0	2.70	E	NED	Surgery, radiotherapy	Group IV (ELA+TYR)	7.0	7	yes	yes	1.0	15.0
Γ	J 944 F	1 20	_d	T2N0M0	6.80	=	NED	Surgery, radiotherapy	Group I (ELA)	18.0	16	yes		24.0	137.0
LAL	1129 N	M 52	2 b'	T3N0M0	2.50	E	NED	Surgery, chemotherapy	Group IV (ELA+TYR)	9.0	80	yes	yes	9.0	16.0
LAL	1144 N	M 68	8 pT	3aN0M0	0.60	≥	NED	Surgery	Group IV (ELA+TYR)	9.0	80	yes	yes	9.0	29.9
LAL	1164 h	M 52	2 pT.	xNxM1a		≥	NED	none	Group IV (ELA+TYR)	57.0	21			57.0	57.0
LAL	1189	10	8 pT.	3bN2M0	4.00	E	NED	Surgery	Group IV (ELA+TYR)	2.0	e			6.1	6.1
LAU	1264 N	M 46	5 pT.	3bN0M0	4.00	E	NED	Surgery, radiotherapy	Group IV (ELA+TYR)	44.0	26	yes		13.0	89.0
EAA LA	J 392 H	7 26	9 pT:	3aN0M0	2.50	=	ED	Surgery, immunotherapy (a)	Group III (EAA+TYR)	6.0	7	yes	yes	2.9	12.0
Γ	J 648 h	M 40	4 pT.	2aN0M0	1.60	≡	NED	Surgery, radiotherapy, immunotherapy (a)	Group III (EAA+TYR)	20.0	18			125.1	125.1
LA	1 099 L	12	2 pT.	2bN0M0	1.72	≥	Ð	Surgery	Group II (EAA)	2.0	e	yes	yes	2.0	15.0
ΓA	1 706 I	г 2	4 .d	T×N0M0		≡	Ð	Surgery, limb perfusion, immunotherapy (c)	Group III (EAA+TYR)	4.0	4	yes	yes	3.0	44.0
LA	J 972 H	100	0 pT2l	bN1aM0	1.60	=	NED	Surgery	Group II (EAA)	23.1	20			129.0	129.0
LA	J 975 h	M 51	1 pT4	aN1bM0	12.00	IIIB	NED	Surgery	Group III (EAA+TYR)	4.0	4	yes	yes	4.0	7.0
LAU	1013 N	M 55	5 pT	3bN3M0	3.00	⊔	NED	Surgery	Group III (EAA+TYR)	8.0	80	yes	yes	7.0	24.1
LAU	1015 N	M 75	5 pT2	aN0M1a	1.20	≥	NED	Surgery	Group III (EAA+TYR)	25.0	20	yes	yes	8.0	50.0
LAU	1017	т 26	8 pT:	3N2bM0	3.80	IIIB	ED	Surgery	Group III (EAA+TYR)	7.0	80	yes	yes	1.0	21.1
LAL	1022	M 00	9 pT2t	bN2aM0	1.49	E	NED	Surgery	Group II (EAA)	9.9	თ	yes	yes	8.9	19.9
LAU	1034 N	M 47	7 pT28	aN2aM0	1.35	AIII	NED	Surgery	Group II (EAA)	5.0	5	yes		52.0	117.0
LAL	1090	M 66	8 pT3;	aN2bM0	3.10	IIIB	ED	Surgery	Group II (EAA)	16.1	16	yes	yes	3.0	20.0
LAL	1106 P	M 36	6 pT2	aN1aM0	1.35	AIII	NED	Surgery	Group II (EAA)	53.0	30			107.0	107.0

1 in months * FFS: progression-free survival (in months) and OS: overall survival (in months) ED: Evidence of disease NED: No evidence of disease (a) Melan-A_{35.41 ACT}) peptide + FluMa_{35.66} peptide + ASO2 (ref Lienard et al. Cancer Immunology. 2004. 4:4) (b) Melan-A_{35.541 ACT}) peptide + FluMa_{35.66} peptide + ASO2 (ref Ayyoud et al. Cancer Res. 2003. 9:669) (c) Melan-A_{35.541 ACT}) peptide + p40 (ref Lienard et al. J. Immunotherapy. 2009. 32:875)

Supplementary Table 2. Patient characteristics

		Vaccine	e cohort	
	All patients	native/EAA	analog/ELA	<i>p</i> -value [†]
Patients	29	13	16	n.s.
Female (%)	11	5 (39)	6 (37)	n.s.
Male (%)	18	8 (61)	10 (63)	
Age at start of protocol				n.s.
mean ± std.dev.	53.2 ± 16.2	53.2 ± 17.2	53.1 ± 16.2	
Range	(25 - 75)	(25 - 75)	(28 - 74)	
Vaccination duration (mo)				n.s.
mean ± std.dev.	15.6 ± 14.4	14.1 ± 14.0	16.7 ± 15.1	
Range	(2 - 57)	(2 - 53)	(2 - 57)	
# of vaccine	11.9 ± 7.5	11.7 ± 8.3	12.0 ± 7.1	n.s.
Relapse during study (%)	9 (69)	9 (69)	12 (75)	n.s.
Overall relapse (%)	10 (77)	10 (77)	14 (88)	n.s.
Mortality (%)	9 (69)	9 (69)	8 (50)	n.s.
Progression-free survival (mo)		, ,	. ,	n.s.
mean ± std.dev.	21.9 ± 36.8	34.8 ± 50.7	11.4 ± 14.2	
Range	(1.0 - 129)	(1.0 - 129)	(1.0 - 57.0)	
Overall survival (mo)	, , ,	, , ,	· · /	n.s.
mean ± std.dev.	51.7 ± 43.7	53.2 ± 47.7	50.6 ± 41.8	
Range	(6.1 - 140)	(7.0 - 129)	(6.1 - 140)	

 † p value by Mann-Whitney comparing the native/EAA vs the analog/ELA cohorts n.s.: not statistically significant; mo: months

Supplementary Table 3. Adverse events

	# of events	# of patients	% of patients
Gralunoma (inflammatory)	28	8	27.6%
Fatigue	13	3	10.3%
Gralunoma (residual)	12	3	10.3%
Myalgia	12	5	17.2%
Head Ache	10	3	10.3%
Arthralgia	9	3	10.3%
Nausea	4	2	6.9%
Pain	4	4	13.8%
Anti-nuclear antibodies	3	2	6.9%
Chills	3	1	3.4%
Common Cold	3	2	6.9%
Diminution Karnofsky	3	1	3.4%
Erythma	3	2	6.9%
Malaise	3	2	6.9%
Pain (joint)	2	2	6.9%
Anxiety	1	1	3.4%
Bronchitis	1	1	3.4%
Diarrhea	1	1	3.4%
Fever	1	1	3.4%
Gastroenteritis	1	1	3.4%
Gout	1	1	3.4%
Lost of appetite	1	1	3.4%
Pain (muscular)	1	1	3.4%
Pressure	1	1	3.4%
Sweating	1	1	3.4%
Weight Gain	1	1	3.4%

Supplementary Figure 1: *Ex vivo* frequencies of circulating Melan-A-specific CD8 T cell following peptide vaccination. (A) Blood samples of melanoma patients receiving monthly Melan-A peptide, IFA and CpG vaccinations were harvested before vaccination (0 or pre-vacc) and at regular time points following vaccination. Melan-A-specific CD8 T cell frequencies were quantified *ex vivo* by multimer staining following CD8 enrichment. (B) Tumor-specific T cells for native/EAA (red, n = 13) and analog/ ELA (blue, n = 16) vaccinated patients according to the number of vaccines. (C) Comparisons of Melan-A-specific CD8 T cell frequencies at pre-vaccination and after two (2) vaccine injections in native/EAA (left panel) or analog/ELA (right panel) vaccinated patients. *p*-values by Wilcoxon matched-pairs signed rank test. (D) Comparison of the Melan-A-specific T cell frequencies at pre-vaccination and after two vaccination and after two vaccinated patients between native/EAA- and analog/ELA-vaccinated patients (red and blue bars, respectively). *p*-values are by Mann-Whitney U-test.

Supplementary Figure 2: *Ex vivo* characterization of tumor-specific CD8 stem cell-like memory T cells before and after peptide vaccination. (A) Comparisons of the frequencies of circulating Melan-A-specific CD8 T cells before vaccination (pre-vacc) and at early (between 2 to 4 vaccines; left panel) or late (>4 vaccines and >6 months; right panel) time-points after vaccination. *p* values by Wilcoxon matched-pairs signed rank test. (B) Impact of the number of vaccination cycles on the stability of tumor-specific T cell frequencies over time. Three patients who received only one cycle (4 vaccines) and four patients receiving > 2 cycles (> 8 vaccines) were immune monitored after more than 1 year during which they received no further vaccination. (C) Gating strategy for the analysis of tumor-specific CD8 T_{SCM} cells (CD8+/multimer+, CD45RA+/CCR7+, CD95+/CD11a+) for one analog/ELA and three native/EAA peptide vaccinated patients. Mo; months post vaccination.

Supplementary Figure 3: Gating strategy for functional analyses following recognition of T2 target cells pulsed with native/EAA peptide. Following dead cell (a) and doublet exclusions (b), we gated on multimer+ and multimer- (c) live enriched CD8+CD3+ T cells. On the multimer- gate, the various subsets gates were established (d), which included naïve (CD45RA+/CCR7+), central memory (CM, CD45RA-/CCR7+), effector memory (EM, CD45RA-/CCR7-), effector memory CD45RA^{INT} (EMRA^{INT}, CD45RA-/CCR7-) and effector memory CD45RA+ (EMRA, CD45RA+/CCR7-). Subsets gates were then applied to the multimer+ CD3+ T cells (e). Using histogram plots, positive and negative gates were established using pre-determined control subsets for the following markers: CD28 (f), CD127 (g), CD107a (h) and IFNγ (i). These gates were then applied to the relevant subsets (j, k, I and m). For combinatorial gating, the histogram gates were added sequentially. For example, to quantify the frequency of CD107a+ T cells within the EM28+/CD127-, the gating strategy was multimer+ -> EM gate (CD45RA-/CCR7-) -> CD28+ gate -> CD107a+ gate. All gates were adapted for every patient and time point.

Supplementary Figure 4: Impact of peptide vaccination on tumor antigen-specific CD8 T cell differentiation. (A) Kinetics of the differentiation of effector-memory (EM, CD45RA-/CCR7-) multimer+ CD8+ T cells in terms of the expression of CD127 (IL-7R α). Frequencies of EM28+/CD127+ or EM28+/ CD127- within total EM28+ T cell subset. Native/EAA patients (n = 4, red lines) and analog/ELA patients (n = 5, blue lines). (B) Quantification of the ratio of CD127 expression within the EM28+ subset in terms of pre-vaccine (prior to vaccination), early (after 2 to 4 vaccine and <3 months after the start of vaccination) and late time-points (>4 vaccines and >3 months after the start of vaccination). *p* values by Kruskal-Wallis. (C-D) Increased acquisition of surface CD107a (C) and intracellular IFN γ (D) expression with regards to the progressive differentiation from EM28+/CD127+, EM28+/CD127-, EM28- and EMRA^{INT}. Native/EAA patients (n = 4, red bars) and analog/ELA patients (n = 5, blue bars). Means with standard errors are depicted.

Supplementary Figure 5: Gating strategy for single cell sorting of tumor-specific CD8 T cells following early and late native/EAA or analog/ELA peptide vaccination time-points. Following gating on live (a), CD3+ (b), CD8+ (c) T cells and doublet exclusions (d), we gated on multimer+ and multimer- (e) CD8+CD3+ T cells. On the multimer- gate, the various subsets gates were established (f), which included naïve (CD45RA+/CCR7+), central memory (CM, CD45RA-/CCR7+), effector memory (EM, CD45RA-/CCR7-), and effector memory CD45RA+ (EMRA, CD45RA+/CCR7-). Subsets gates were then applied to the multimer+ CD8+ T cells (h). Using histogram plots, CD28positive and CD28negative gates were established using pre-determined control subsets for the CD28 marker (g). These gates were then applied to the effector-memory (EM) subset (i).

Supplementary Figure 6: *Ex vivo* TRBV repertoire diversity and clonotype frequency of Melan-Aspecific CD8 T cell subsets at early time-points after peptide vaccination. (A, B) TRBV spectratyping and sequencing was performed on cDNA obtained from individually sorted 5-cell samples of EM28^{pos} (upper panel) and EM28^{neg} (lower panel) T cells isolated from blood samples at early time-points (< 3 months) after native/EAA (A) or analog/ELA (B) peptide vaccination. Dominant TCR clonotypes are defined by identical BV-CDR3-BC sequences found at least twice, and non-dominant single TCR clonotypes by their unique TCR BV/CDR3 size length and/or BV-CDR3-BC sequence. Data are represented as total number (y-axis) of dominant (filled area) and single (grey area) clonotypes of defined TRBV family (x-axis) versus defined CDR3 size length (z-axis).