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TRANSLATIONAL RELEVANCE 35 

CD8 T lymphocytes bear high potential for destroying human cancers, as demonstrated by 36 

the recent great progress in immunotherapy. Robust T cell responses depend both 37 

on memory cells with long-term survival, self-renewal abilities and high proliferative potential, 38 

and on effector cells successfully migrating to disease sites and performing essential 39 

effector functions. We previously showed that melanoma patients treated with peptide/CpG-40 

B/IFA vaccine mounted strong effector T cell responses. In the present study, we 41 

characterized the kinetics of these responses, and the underlying memory cells, with the aim 42 

to improve our understanding of anti-tumor T cell mediated immunity. We found that the 43 

vaccine-induced T cell responses occurred rapidly, leading to robust and long-lasting 44 

expansion of effector cells, displaying potent functions. In parallel, stem cell-like memory 45 

cells steadily expanded over time along vaccination, forming the basis for strong and long-46 

term T cell responses and supporting the further development of CpG-B based cancer 47 

vaccines.  48 
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ABSTRACT 49 

Purpose: Cancer patients benefit increasingly from T cell-based therapies, such as adoptive 50 

T cell transfer, checkpoint blockade or vaccination. We have previously shown that serial 51 

vaccinations with Melan-AMART-1
26-35 peptide, CpG-B and IFA generated robust tumor-specific 52 

CD8 T cell responses in melanoma patients. Here, we describe the detailed kinetics of early- 53 

and long-term establishment of T cell frequency, differentiation (into memory and effector 54 

cells), poly-functionality and clonotype repertoire induced by vaccination.  55 

Experimental design: Twenty-nine melanoma patients were treated with multiple monthly 56 

subcutaneous vaccinations consisting of CpG-B, and either the native/EAA (n = 13) or the 57 

analog/ELA (n = 16) Melan-AMART-1
26-35 peptide emulsified in IFA. Phenotypes and 58 

functionality of circulating Melan-A-specific CD8 T cells were assessed directly ex vivo by 59 

multiparameter flow cytometry, and TCR clonotypes were determined ex vivo by mRNA 60 

transcript analyses of individually sorted cells. 61 

Results: Our results highlight the determining impact of the initial vaccine injections on the 62 

rapid and strong induction of differentiated effector T cells in both patient cohorts. Moreover, 63 

long-term poly-functional effector T cell responses were associated with expansion of stem 64 

cell-like memory T cells over time along vaccination. Dominant TCR clonotypes emerged 65 

early and persisted throughout the entire period of observation. Interestingly, one highly 66 

dominant clonotype was found shared between memory and effector subsets.   67 

Conclusions: Peptide/CpG-B/IFA vaccination induced powerful long-term T cell responses 68 

with robust effector cells and stem cell-like memory cells. These results support the further 69 

development of CpG-B based cancer vaccines, either alone or as specific component of 70 

combination therapies. 71 

72 
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INTRODUCTION 73 

The overarching goal of cancer immunotherapy is to generate a strong and persistent anti-74 

tumor immune response leading to tumor growth control and elimination, while overcoming 75 

immune tolerance and suppression. Most immunotherapy-induced protective immune 76 

responses against cancer rely on CD8 T cells and their specific recognition, through the T 77 

cell receptor (TCR), of tumor-antigenic peptide presented on the cell surface by major 78 

histocompatibility complex I (MHC-I) molecules. Therapeutic peptide vaccines, in 79 

combinations with potent adjuvants, have been developed to induce CD8 T cell responses 80 

against the tumor by administering peptides mimicking the epitopes presented by MHC-I on 81 

cancer cells (1, 2). Over the last decade, a large number of clinical trials have demonstrated 82 

that this immunotherapeutic approach is feasible and safe, and may lead to increased 83 

frequencies, differentiation and survival of tumor-specific CD8 T cells (3-9) and eventually 84 

clinical efficacy (10). However, the majority of cancer vaccine trials failed (2), highlighting the 85 

strong need for more powerful vaccines and/or combinations with other effective agents 86 

such as immune checkpoint inhibitory antibodies (11, 12).   87 

Antigenic peptides are poorly immunogenic by themselves. Therefore, vaccines containing 88 

synthetic peptides need to be administrated in conjunction to potent adjuvants. First, 89 

effective adjuvants should display a depot effect leading to prolonged antigen exposure 90 

allowing for efficient priming of the antigen-specific T cells (1, 2). Emulsifying agents such as 91 

mineral oils for emulsion formation, also defined as incomplete Freund’s adjuvant 92 

(Montanide ISA-51; hereafter “IFA”) are widely used for that purpose (13-16). Second, 93 

adjuvants should trigger the activation and maturation of dendritic cells (DCs) by innate 94 

immune stimulation e.g. via Toll-like receptors (TLRs) (1, 2). For instance, synthetic CpG 95 

oligodeoxynucleotides (ODNs) favor DCs activation and migration through TLR9 triggering, 96 

promoting the development of strong T helper cell responses, and supporting both antibody 97 

and CD8 T cell responses (17, 18). Previous clinical studies demonstrate that the CpG B-98 

ODN 7909/PF-3512676 could elicit a strong adjuvant effect when combined with IFA and 99 
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HLA-A2 restricted Melan-MART-1
26-35 (19) or NY-ESO-1157-165 (20, 21) peptides, promoting the 100 

expansion of ex vivo detectable tumor-specific CD8 T cells in melanoma patients.  101 

Analysis of the generation, function and long-term persistence of effector and memory CD8 102 

T lymphocytes is of fundamental importance to our understanding of protective immunity and 103 

to improve T cell-based therapeutic strategies. While the properties of effector CD8 T cells 104 

are well characterized (22), the attributes constituting potent memory T cells remain less well 105 

understood. Recently, a rare subset of CD8 T stem cell-like memory (TSCM) cells was 106 

characterized in pre-clinical models and in cancer patients (23, 24) and showed to possess 107 

enhanced potential of proliferation and persistence/survival as well as the capacity to 108 

produce large numbers of effector cell progeny of various differentiation states (23). 109 

Consequently, adoptive transfer of TSCM cells shows promising results of tumor regression in 110 

mice (23, 25). The in vivo induction of TSCM cells frequently occurs in natural infections such 111 

as Influenza, CMV, EBV, and HIV-1 (23, 26, 27). Furthermore, those vaccines capable of 112 

inducing strong CD8 T cell responses, namely the few existing live attenuated vaccines, may 113 

readily induce TSCM cells, as demonstrated for the Yellow Fever vaccine 17D (26, 28). In 114 

contrast, subunit vaccines and cancer vaccines have not yet been shown to induce TSCM 115 

cells. 116 

Over the years, we studied thoroughly the impact of peptide-based therapeutic vaccination 117 

on the quality of the CD8 T cell responses in melanoma patients. We demonstrated that 118 

repeated vaccinations with peptides, CpG-B and IFA induced tumor-specific CD8 T cells 119 

with high functionality in vivo (29). Moreover, we showed that vaccination with a low dose of 120 

native Melan-AMART-1
26-35 peptide (hereafter “native/EAA”) induced CD8 T cells with stronger 121 

tumor reactivity, increased polyfunctionality and higher TCR-pMHC structural avidity, 122 

compared to vaccination with the analog A27L peptide (hereafter “analog/ELA”) (30-33). 123 

Here, we present a comprehensive and detailed analysis of the kinetics of anti-tumor-124 

specific CD8 T cell responses from the previously published phase I study (29) with 29 125 

melanoma patients vaccinated with low dose of either the native/EAA (n = 13) or the 126 
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analog/ELA (n = 16) Melan-AMART-1
26-35 peptide mixed with CpG-B and IFA. Our data 127 

demonstrate an early and strong effect of this vaccine approach on tumor-specific CD8 T 128 

cells, with increased in vivo frequencies, differentiation to effector-memory cells, and 129 

acquisition of effector functions in nearly all patients of both cohorts, i.e. irrespectively of the 130 

peptide used for vaccination. However, native peptide vaccination predominantly promoted a 131 

stable and persisting dominant TCR clonotype repertoire. Interestingly, the robust and long-132 

term effector T cell responses were associated with stem cell-like memory cells detectable at 133 

baseline and steadily expanding with vaccination. Collectively, our data support the further 134 

development of phase III trials for assessing the clinical efficacy of CpG-based cancer 135 

vaccines and understanding the interdependence of key differentiation subsets of 136 

responding CD8 T cells.   137 
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PATIENTS AND METHODS 138 

Patients, vaccination, and blood cell preparation 139 

HLA-A*0201-positive patients with stage III/IV metastatic melanoma were included in a 140 

phase I prospective trial (ClinicalTrials.gov; Identifier: NCT00112229) (19, 30). Study 141 

protocols were designed, approved and conducted according to the relevant regulatory 142 

standards from (i) the ethical commission of the University of Lausanne (Lausanne, 143 

Switzerland), (ii) the Protocol Review Committee of the Ludwig Institute for Cancer Research 144 

(New-York) and (iii) Swissmedic (Bern, Switzerland). Patient recruitment, study procedures 145 

and blood withdrawal were carried out upon written informed consent prior to study 146 

inclusion. Primary endpoints were safety and tolerability, as well as detailed measurements 147 

of tumor-specific CD8 T cell responses over time.  148 

Eligible patients received monthly low-dose vaccinations injected subcutaneously with 100 149 

µg of either the unmodified native Melan-AMART-1
26-35 peptide (EAAGIGILTV, native/EAA) or 150 

its heteroclitic analog Melan-AMART-1
26-35 (A27L) peptide (ELAGIGILTV, analog/ELA), mixed with 151 

0.5 mg CpG-B 7909 / PF-3512676 (Pfizer and Coley Pharmaceutical Group) and emulsified 152 

in Incomplete Freund’s Adjuvant (IFA) (Montanide ISA-51; Seppic) (19). Half of the patients 153 

also received the Tyrosinase368-376 (YMDGTMSQV) peptide (Supplementary Table S1). The 154 

responses of T cells specific for this peptide remained much lower than the responses to 155 

Melan-A peptide, precluding detailed phenotypic and functional analyses. Moreover, we did 156 

not observe any significant impact of vaccination with the tyrosinase peptide on the 157 

responses of Melan-A specific cells (data not shown). Lymphoprep (Axis-Shieldy) 158 

centrifuged peripheral blood mononuclear cells (PBMC) were cryopreserved in RPMI 1640, 159 

40% fetal calf serum (FCS) and 10% DMSO before transfer into liquid nitrogen until further 160 

use.  161 

Flow cytometry and direct ex vivo cell sorting 162 



Gannon et al., 2016.10.30 

 9

After thawing in a 37˚C water bath, PBMC were enriched immediately using anti-CD8-coated 163 

magnetic microbeads positive selection and a MiniMACS device (Miltenyi Biotech) resulting 164 

in > 90% CD3+/CD8+ cells. Purified CD8 T cells were stained with HLA-A*0201 analog/ELA 165 

Melan-AMART-1
26-35 (A27L) multimers (TCMetrix Sàrl) in FACS sorting buffer composed of PBS, 166 

0.2% BSA, 50 µM EDTA for 45 min at 4˚C and then with appropriate antibodies as described 167 

in the Supplementary Materials and Methods section. Tumor-specific CD8 T cells were 168 

analyzed on a LCRII cytometer (BD Biosciences) or a Gallios flow cytometer (Beckman 169 

Coulter).  170 

Following cell surface marker and dead cell exclusion marker staining, individual or five-cell 171 

aliquots from multimer+ CD8+ T cells were directly sorted ex vivo into defined sub-172 

populations of CD45RA+CCR7+, early-differentiated effector-memory CD28+ (EM28+) and 173 

late-differentiated CD28- (EM28-) using a BD FACSAria cytometer (BD Biosciences) or 174 

Astrios cytometer (Beckman Coulter). 175 

IFNγ Elispot assay 176 

Plates were coated overnight with human IFNγ-specific antibodies (Diaclone, Biotest) and 177 

1.66 x 105 PBMC per well in 200 μl of complete medium and 10 μg/ml peptide were 178 

incubated for 16 h at 37°C (19). Assays were performed in six replicates, without peptide, or 179 

with native/EAA peptides. Cells were removed, and plates developed with a second 180 

(biotinylated) antibody to human IFNγ and streptavidin-alkaline phosphatase (Diaclone, 181 

Biotest, Switzerland). The spots were revealed with BCIP/NBT substrate (Sigma Tablets) 182 

and counted with an automatic reader (Bioreader 2000, BioSys GmbH). Percentage 183 

CD3+/CD8+ cells in PBMC was determined by flow cytometry on the same batch of 184 

cryopreserved cells. Results of both multimer+ T cells and Elispot forming T cells were 185 

calculated and are indicated in percentages of CD8+ T cells. 186 
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Stimulation for intracellular cytokine staining 187 

Functional assays using peptide-pulsed T2 cells were performed as previously described 188 

(29). After thawing in a 37˚C water bath, PBMC were rested overnight in RPMI 189 

supplemented with 10% FCS, 10 mM Hepes, 100 U/ml penicillin, 100 µg/ml streptomycin, 190 

1% non-essential amino acids and 1% Na Pyruvate (Gibco Life Technologies) at a density of 191 

1.5 x106 PBMC/ml. The next day, PBMC were positively enriched using anti-CD8-coated 192 

magnetic microbeads and a MiniMACS device (Miltenyi Biotech) resulting in > 90% 193 

CD3+/CD8+ cells. Cells were stained with PE-labeled analog/ELA multimers (TCMetrix Sàrl) 194 

in FACS sorting buffer composed of PBS, 0.2% BSA, 2 mM EDTA for 30 min at 4˚C. After 195 

washing, 100’000 CD8+ T cells were incubated in a 96-well V-bottom plate with FITC anti-196 

CD107a, 10 µg/ml Brefeldin A (Sigma) and TAP-/- deficient T2 cells (HLA-A*0201+/Melan-A-197 

) previously pulsed with 1 µg/ml of the native/EAA peptide with an effector-to-target ratio of 198 

1:1. A “no peptide” control and stimulation with 1 µg/ml PMA (Sigma) and 0.25 µg/ml 199 

Ionomycin (Sigma) were used as negative and positive controls, respectively. After 4 hr, 200 

cells were harvested, stained with the analog/ELA multimers and subsequently with the 201 

aforementioned surface markers in 50 µl of FACS buffer (PBS, 5 mM EDTA (Gibco), 0.2% 202 

BSA (Merck) and 0.2% NaN3 (Merck)) for 30 min at 4°C, followed by dead cell staining (Life 203 

Technologies) for 30 min. After this step, cells were fixed with 1% paraformaldehyde, 2% 204 

glucose and 5 mM NaN3 in PBS at 4˚C overnight before intracellular staining using Alexa700 205 

anti-IFNγ (Biolegends) at 4˚C during 30 min in FACS buffer and 0.1% saponin (Sigma).  206 

Global cDNA preparation and amplification 207 

Tumor-specific CD8 T cells of defined subsets were sorted directly ex vivo as single or five 208 

cell aliquots in 96-well V-bottom plates containing a “lysis/RT” mix and cDNA preparation 209 

and global cDNA amplification were performed as previously described (32). Briefly, 210 

following RT at 37˚C for 60 min, cDNA was transferred in 600 µl eppendorfs and precipitated 211 

overnight. The precipitated cDNA was resuspended in a homopolymeric 3’-oligo (dA) tailing 212 

reaction mix (Promega), which was followed by global cDNA amplification using oligo-(dT) 213 
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Iscove 61-mer primer. The resulting amplified cDNA was then analyzed by semi-quantitative 214 

PCR for TCR repertoire analyses.  215 

TCR repertoire and clonotype analyses 216 

CDR3 spectratyping, sequencing and clonotyping were performed as described (33, 34). 217 

Briefly, each cDNA sample was subjected to individual PCR using a set of previously 218 

validated fluorescent-labeled forward primers specific for the different known TRBV 219 

subfamilies and one unlabeled reverse primer specific for the corresponding C beta gene 220 

segment. Additionally, we characterized the alpha-chain repertoire by targeting the highly 221 

dominant TRAV12-1 sequence. PCR products visualized after electrophoresis on a 2.5% 222 

agarose gel and PCR products of interest were sequenced from the reverse primer (Fasteris 223 

SA). TRAV and TRBV segments were described according to the Lefranc nomenclature 224 

(35). 225 

Statistical analyses 226 

Data were analyzed using GraphPad Prism (v.6, GraphPad) by non-parametric Wilcoxon 227 

matched-pairs signed rank test, Mann-Whitney U-test and Spearman’s correlations as 228 

indicated throughout the manuscript.  229 

Laboratory Environment 230 

This work was conducted under GLP principles. The laboratory uses qualifies assays and 231 

participates in external Elispot and flow cytometry proficiency panels.  232 
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RESULTS 233 

Patient characteristics and safety 234 

In this study, 29 HLA-A2-positive patients with metastatic melanoma received serial monthly 235 

vaccines containing CpG-B, IFA and either the unmodified native Melan-AMART-1
26-35 peptide 236 

(native/EAA) or its heteroclitic analog Melan-AMART-1
26-35 A27L peptide (analog/ELA). 237 

Vaccination was done in cycles of 4 monthly injections, with 4-12 weeks intervals between 238 

cycles (Supplementary Fig. S1A). The patient’s characteristics are shown in Supplementary 239 

Table S1 and S2. Vaccinations were well tolerated with side-effects severity comparable to 240 

previous reports on cancer vaccines (Supplementary Table S3). The main adverse effect 241 

being inflammatory granuloma at s.c. injection sites reported in 8 patients (27.6%), which 242 

was expected as IFA is documented to cause local inflammatory depots at the vaccination 243 

site allowing long-term local vaccine persistence and immune stimulation.  244 

 245 

Rapid in vivo expansion of Melan-A-specific CD8 T cell responses following 246 

vaccination 247 

The goal of this study was to characterize the detailed kinetics of the Melan-AMART-1-specific 248 

CD8 T cell response following peptide vaccination with regards to T cell frequency, 249 

differentiation, functionality and composition of the TCR repertoire. From the ex vivo 250 

immuno-monitoring data with multimers, we could observe an important and significant 251 

increase in Melan-A-specific CD8 T cell frequencies following vaccination in all patients (Fig. 252 

1A and B), as previously described on a smaller patient group (30). Prior to vaccination, 253 

tumor-specific CD8 T cells were present at low frequencies (<0.01% to 0.24% of total CD8 T 254 

cells), with the exception of patient LAU444 who had a frequency of 1.37% multimer+ CD8 T 255 

cells at the start of vaccination. The induction of Melan-A-specific CD8 T cells was readily 256 

significant in both cohorts of patients after only two vaccine injections (Supplementary Fig. 257 

S1B and C). There was also a trend for higher maximum multimer frequencies for patients 258 
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vaccinated with the analog/ELA (1.9% ± 2.1) than the native/EAA (1.1% ± 1.6) peptide (p = 259 

0.055, Mann-Whitney U-test, Fig. 1B), which was already observed after two vaccines (p = 260 

0.0176, Mann-Whitney U-test; Supplementary Fig. S1D). 261 

 262 

Strong CD8 T cell differentiation occurs early after the start of vaccination 263 

We characterized the differentiation of Melan-A-specific CD8 T cells based on the 264 

expression of CD45RA and CCR7, to discriminate between “naïve-like” (CD45RA+/CCR7+), 265 

central-memory (CM, CD45RA-/CCR7+), effector-memory (EM, CD45RA-/CCR7-) and 266 

effector-memory CD45RA+ (EMRA, CD45RA+/CCR7-) CD8 T cells (Fig. 1C). Prior to 267 

vaccination, considerable proportions of Melan-A-specific CD8 T cells displayed a naïve-like 268 

phenotype. Following two vaccine injections, the relative percentages of these T cells rapidly 269 

decreased due to the frequency increase of differentiated Melan-A-specific CD8 T cells, 270 

dominated by EM cells (Fig. 1D). We could also observe a continuous increase in 271 

differentiated multimer+/CD28- CD8 T cells. On average, the frequencies of CM and EMRA 272 

cells remained relatively constant throughout the monitoring period, even though some 273 

patients showed considerable changes. Together, these data demonstrate a strong effect of 274 

peptide/CpG/IFA vaccination with increased in vivo frequencies and phenotypic shift to 275 

differentiated EM cells, rapidly following the initiation of treatment, leading to their 276 

persistence for many months. Importantly, this vaccine-induced effect occurred in all 277 

patients, regardless of the peptide used for vaccination.  278 

 279 

Enrichment of Melan-A-specific stem cell-like memory CD8 T cells along vaccination 280 

Stem cell-like memory T cells (TSCM) have been described as T cells possessing enhanced 281 

persistence and renewal capacities, which would endow them with very long-term 282 

therapeutic potential (23, 24, 36). Such cells have been described in infectious disease and 283 

after vaccination with live attenuated replication competent viruses. In contrast, they have 284 
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never been shown to be induced in patients by a cancer vaccine. Consequently, we 285 

analyzed TSCM in subsets of our patients vaccinated with the native/EAA (n = 4) or the 286 

analog/ELA (n = 4) peptide (Fig. 2). Melan-A-specific TSCM were defined as 287 

CD45RA+/CCR7+/CD95+, as characterized previously (36) (Fig. 2A). Prior to vaccination, 288 

the frequencies (Fig. 2B) and total numbers (Fig. 2C) of TSCM cells varied from patient to 289 

patient, but no statistical differences were found between patients vaccinated with 290 

native/EAA and analog/ELA peptides (data not shown). Interestingly, vaccination led to 291 

significant expansion over time of TSCM cells, associated to the enhanced frequencies or 292 

maintenance of Melan-A-specific T cells observed at late time-points (Supplementary Fig. 293 

S2A and S2B). The total numbers of TSCM cells were also significantly enhanced late (> 4 294 

vaccines and > 6 months) but not early (2-4 vaccines and ≤ 3 months) after the start of 295 

vaccination (Fig. 2C). We further stained for CD11a, also shown to be expressed by TSCM 296 

(23), and found a similar increase in TSCM cells upon vaccination (Fig. 2D; Supplementary 297 

Fig. S2C). Collectively, our data show for the first time that a cancer vaccine could expand 298 

tumor-specific CD8 TSCM cells, supporting long-lasting memory T cell responses. 299 

 300 

Early induction of effector function following vaccination 301 

We monitored IFNγ spot forming Melan-A specific CD8 T cells triggered with the native/EAA 302 

peptide in a 16h ex vivo assay, in all 29 patients throughout the vaccination period. Again, 303 

we observed an increase early after the start of vaccination in both native/EAA and 304 

analog/ELA vaccinated patients (Fig. 3A and B), which was only significant for the latter 305 

patients (Fig. 3C). There was no significant differences in the maximum fold induction 306 

between the native/EAA and analog/ELA vaccinated cohorts, nor in the kinetics of induction. 307 

We did observe a strong correlation between IFNγ producing and multimer+ Melan-A-308 

specific CD8 T cells frequencies (Fig. 3D), confirming that higher frequencies of antigen-309 

specific CD8 T cells generate more spots.  310 
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Vaccination rapidly promotes functionally matured T cell subpopulations  311 

Next, we analyzed the ex vivo functionality of circulating tumor-specific CD8 T cells by flow 312 

cytometry and intracellular cytokine staining (ICS) after short-term stimulation with T2 cells 313 

pulsed with the native/EAA peptide. We characterized CD107a and IFNγ expression, within 314 

three subsets of effector-memory CD8 T cell differentiation: EM28+, EM28- and EMRAINT 315 

(Fig. 4 with the gating strategy in Supplementary Fig. S3). For all patients analyzed (EAA; n 316 

= 4 and ELA; n = 5), we selected samples from pre-vaccine, early and late time-points. 317 

Strikingly, we found rapid and strong acquisition of effector functions following vaccination 318 

(pre-vacc vs early time-points) in the three characterized CD8 T cell subpopulations of 319 

almost all patients (Fig. 4A). Both native/EAA and analog/ELA peptide vaccination promoted 320 

the differentiation of effector cells expressing CD107a and/or IFNγ early after treatment. At 321 

late time-points, the frequencies of CD107a+, IFNγ+, and dual CD107a+/IFNγ+ Melan-A-322 

specific CD8 T cells either plateaued or decreased. Increasing functional differences 323 

towards the native/EAA vaccinated patients were observed over time when comparing the 324 

Melan-A-specific EMRAINT CD8 T subsets from both cohorts of patients (Fig. 4B). These 325 

results support our previously published work demonstrating that the native/EAA peptide 326 

vaccine favors the differentiation of Melan-A-specific CD8 T cells with increased effector 327 

functions compared to the analog/ELA peptide vaccine (30-33). Importantly, our data 328 

indicate that the quality of effector functions (i.e. polyfunctionality) is rapidly determined after 329 

the initiation of vaccination.  330 

Furthermore, we found that the early-differentiated EM28+ T cells rapidly acquired effector 331 

competence in line to the kinetics observed for the late-differentiated EM28- and EMRAINT T 332 

cells (Fig. 4A). Taking into consideration the expression of CD127 (the cytokine receptor IL-333 

7Rα) in longitudinal analyses, we further observed that vaccination induced the fast 334 

differentiation of EM28+/CD127+ to EM28+/CD127- CD8 T cells (Supplementary Fig. S4A 335 

and B). This was more prominent for the native/EAA peptide vaccinated patients. When 336 

functional differences were evaluated along T cell differentiation, we found that Melan-A-337 
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specific CD8 T cells were progressively capable to express CD107a and IFNγ from 338 

EM28+/CD127+ to EM28+/CD127- to EM28-/CD127- and to EMRAINT (Supplementary Fig. 339 

S4C and D). This was true for both early and late time-points and for both the native/EAA 340 

and analog/ELA peptide vaccinated cohorts, albeit the acquisition of effector functions was 341 

always more pronounced for the native/EAA patients. 342 

 343 

Native peptide vaccination predominantly promotes a stable and persisting dominant 344 

TCR clonotype repertoire 345 

We previously demonstrated minor differences between the clonotype repertoires of 346 

native/EAA and analog/ELA vaccinated patients (34) and similar effector profiles of the non-347 

dominant and dominant clonotypes (31). In this study, our goal was to further understand 348 

whether the choice of peptide used during vaccination impacted the kinetics of the 349 

establishment of a dominant TRBV clonotype repertoire. We performed TRBV spectratyping 350 

at the single cell level on tumor-specific CD8 T cells sorted at early versus late time-points 351 

from four native/EAA- and three analog/ELA-vaccinated patients (Supplementary Fig. S5). 352 

Our single cell data highlighted a relatively high level of plasticity and diversity, which was 353 

patient specific (Fig. 5A and B). Comparable TRBV efficiencies were obtained between 354 

native/EAA and analog/ELA vaccinated cohorts (Fig. 5C). We could detect dominant 355 

clonotypes in all patients and time-points (Fig. 5D). However, these T cells emerged earlier 356 

and were more frequently identified in the native peptide-induced vaccination when 357 

compared to the analog peptide (Fig. 5D, Supplementary Fig. S6). Interestingly, some 358 

dominant clonotypes persisted throughout the vaccination period while others appeared or 359 

disappeared over time. Extended clonotypic studies performed on a large library of in vitro 360 

generated T cell clones (n = 150; (33)) combined to the current single cell identified 361 

clonotype database (n = 479) revealed the predominance of a persisting dominant TCR 362 

clonotype repertoire after vaccination with the native/EAA peptide (Fig. 5E). Finally, one 363 

melanoma patient presented a uniquely strong frequency of one TRAV/TRBV clonotype, 364 



Gannon et al., 2016.10.30 

 17

which was highly dominant in the differentiated EM28- subset and persisted over time during 365 

vaccination. Interestingly, this clonotype could also be detected in the pool of less-366 

differentiated EM28+ cells as well in the CD45RA+CCR7+ subset containing the TSCM cells, 367 

albeit at much lower frequencies (Fig. 5F). In conclusion, while dominant clonotypes were 368 

present early and persisted throughout the entire monitored period, this was favored by the 369 

native peptide vaccination.   370 

 371 

Clinical outcome 372 

We plotted survival curves, even though patient survival was not an endpoint of this phase I 373 

trial. We did not observe statistically significant differences in progression-free survival (Fig 374 

6A) nor overall survival (Fig. 6B) between the patients vaccinated with the native/EAA and 375 

the analog/ELA peptides. In both groups, some patients survived for many years. Overall, 376 

the clinical outcome was favorable when compared to other trials in similar patients (10), but 377 

it remains important to note that comparisons with other trials does not allow to draw firm 378 

conclusions, because of patient selection effects and other potentially confounding factors.379 
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DISCUSSION 380 

To date, there is good evidence that peptide-based vaccines can break immune tolerance 381 

and successfully induce tumor-reactive CD8 T cell responses in cancer patients (1, 2). 382 

However, a major challenge is to generate a robust and targeted immune response. In that 383 

regard, the formulation of CpG B-ODN 7909 with short peptides and IFA represents the 384 

currently most potent synthetic vaccine for the generation of high frequencies of tumor-385 

specific CD8 T cells (19, 20, 30). Importantly, such vaccines can induce in vivo functionally 386 

competent T cells (29), correlating with a favorable clinical outcome (21). However, 387 

prospective phase III trials are necessary to demonstrate clinical benefit. Patients immunized 388 

with this vaccine also provide the unique opportunity to study the effects of early/initial 389 

versus late/sustained rounds of vaccination on (i) the T cell expansion and differentiation into 390 

effector and memory subsets and (ii) the TCR clonotype selection and maintenance over 391 

time. 392 

Extending on previous observations (7, 8, 19, 20, 30), we first demonstrated the fast (after 393 

only 2 vaccine injections) and high magnitude of tumor-specific T cell responses in the large 394 

majority of the twenty-nine patients of the trial. This was associated with robust acquisition of 395 

effector functions detectable directly ex vivo (IFNγ production and CD107a upregulation), 396 

which also occurred rapidly during the first cycle of vaccination (between 2 to 4 vaccines and 397 

≤3 months after the start of immunization). The addition of CpG-B to Montanide/IFA is likely 398 

essential, since CD8 T cell responses from patients vaccinated with Melan-A/peptide and 399 

IFA without CpG-B show much lower frequencies and slower kinetics of T cell responses 400 

(16, 19). In a recent preclinical mouse study, Perret and colleagues showed that CpGs 401 

preferentially amplify effector T cells over regulatory T cells (37). However, more studies are 402 

needed to further understand the precise role of CpGs as powerful adjuvants on the 403 

generation and maintenance of antigen-specific T cell responses. 404 

We next assessed the impact of vaccination with peptide/CpG-B/IFA on the T cell priming 405 

and repertoire selection early after the start of vaccination and its evolution during repeated 406 
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vaccination cycles. We previously found that, at late time-points (i.e. >8 months after the 407 

start of vaccination), Melan-A-specific CD8 T cell responses were generally composed of 408 

highly (i.e. dominant) as well as of less frequent (i.e. non-dominant) T cell clonotypes (31). 409 

Herein, we show that rapid vaccine-induced T cell responses were likewise associated with 410 

the generation of patient-specific co-dominant TCR clonotypes. Strikingly, and despite some 411 

level of plasticity in the repertoire selection, many of the most prevalent TCR clonotypes 412 

appeared early (≤3 months after the start of vaccination) and persisted throughout the entire 413 

monitored period. 414 

In line with these observations, individual T cell clonotypes with high avidity to cognate tumor 415 

antigens could be detected over extended periods of time in melanoma patients with 416 

favorable disease outcome (38, 39) as well as in a patient with a known pre-existing 417 

dominant clonotype, efficiently boosted by Melan-A peptide/CpG/IFA vaccination (40). 418 

Altogether, these data indicate that once established, the clonal composition of tumor-419 

specific T cells can be kept stable along vaccination or in naturally occurring anti-cancer 420 

immune responses. Such long-lasting tumor-specific T cell clonotypes may play an 421 

important role in mediating tumor control and/or regression as exemplified in several 422 

adoptive T cell transfer trials (41-43) or following allogeneic hematopoietic stem cell 423 

transplantation (44, 45). In most studies, objective clinical responses positively correlated 424 

with the degree of persistence of transferred T cell clonotypes (41-43, 45). 425 

A better understanding of the parameters influencing the in vivo selection and persistence of 426 

those dominant tumor-specific CD8 T cell clonotypes remains of the upmost importance. 427 

While this was not directly addressed in this report, preliminary data suggest that the relative 428 

avidity of the TCR-pMHC binding interactions could be involved. Using the new NTAmer-429 

based technology, which quantifies the TCR-pMHC dissociation rates (46), we found that 430 

two of the three analyzed and long-term persisting clonotypes shared the highest binding 431 

avidity (33). Furthermore, the type of peptide (i.e. native/EAA versus analog/ELA) can 432 

induce different T cell responses with enhanced functional competence (31) and stronger 433 
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TCR repertoire avidity (33) at late time-points after vaccination with the native/EAA as 434 

opposed to the analog/ELA peptide. Here, we further report on the differential impact 435 

observed between both peptides with the predominance of a persisting dominant clonotype 436 

repertoire within native/EAA peptide vaccinated patients. Nevertheless, it still remains to be 437 

determined whether vaccination with the native/EAA peptide is also a contributing factor for 438 

the early selection of a superior TCR avidity repertoire. 439 

It will also be important to validate the possibilities of priming with the native/EAA peptide to 440 

fix the CD8 T cell repertoire onto the highest avidity and boosting with the analog/ELA 441 

peptide to efficiently drive the expansion and differentiation of the primed clones (1). 442 

Alternatively, it is possible that priming with the analog/ELA peptide followed by boosting 443 

with the native/EAA peptide may be preferable, as the former is more likely to recruit large 444 

numbers of naïve precursor cells. However, the success of this approach may depend on 445 

subsequent avidity maturation, i.e. that the native/EAA peptide can selectively boost the high 446 

avidity clonotypes despite that the priming with the analog/ELA peptide had previously 447 

recruited and activated also many lower avidity tumor-specific T cells. 448 

Finally, our results show for the first time that a subunit vaccine can lead to increased 449 

frequencies of stem cell-like memory T cells. As mentioned above, the vaccine formulation 450 

used in our study also induced strong and long lasting effector T cell responses, unlike most 451 

other cancer vaccines. Using the TCR as a clonotypic marker, we were further able to follow, 452 

along T cell differentiation, one individual tumor-specific CD8 T cell clonotype from 453 

melanoma patient LAU944. Remarkably, this particular clonotype dominated the 454 

differentiated effector-memory (EM28-) subset, and could readily be detected, though at 455 

much lower frequencies, in the CD45RA+CCR7+ compartment, known to include the TSCM 456 

cells. These results are in line with our previous observations showing the co-existence of 457 

identical Melan-MART-1
26-35 (31, 33) and NY-ESO-1157-165 (39) -specific CD8 T cell clonotypes 458 

in early-differentiated EM28+ and late-differentiated EM28- subsets.  459 
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At present, it would be interesting to determine whether other identified clonotypes were 460 

present within the TSCM cells. However, such studies are likely only possible in those rare 461 

patients with strong and almost monoclonal T cell responses. Moreover it would require 462 

improving the efficiency of our single cell approach as well as much larger blood volumes 463 

due to the very low frequencies of TSCM cells. This last limitation also forced us to reduce our 464 

TSCM cell analysis to only a subset of the 29 patients of this trial, unfortunately precluding any 465 

conclusions on the potential clinical benefits of TSCM cells. Nevertheless, it seems not 466 

surprising that strong effector cell responses were associated with relatively high (i.e. 467 

detectable) TSCM cell frequencies, likely because the latter may contribute to continued 468 

effector cell production. Altogether, our current data support the notion that only a fraction of 469 

the diverse pool of less differentiated EM28+ memory cells are selected to populate the 470 

often-larger pool of differentiated EM28- T cell clonotypes. Whether those are the ones that 471 

preferentially depend on TSCM cells remains to be determined. In any case, our data 472 

demonstrate that TSCM cells are amplified by vaccination with CpG-B/peptide/IFA. Monitoring 473 

TSCM cells becomes increasingly important in the assessment of human immune responses 474 

and evaluation of novel immunotherapy approaches (47).  475 
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FIGURE LEGENDS 498 

Figure 1. Frequencies and cell differentiation of circulating Melan-A-specific CD8 T 499 

cells following peptide vaccination detected directly ex vivo. (A, B) Blood samples of 500 

vaccinated melanoma patients were harvested before (0) and at regular time-points 501 

following vaccination. Melan-A-specific CD8 T cell frequencies were quantified ex vivo by 502 

multimer staining following CD8 enrichment. (A) Tumor-specific T cells for native/EAA (red, 503 

n = 13) and analog/ELA (blue, n = 16) vaccinated patients according to the vaccination 504 

cycle. Lines link samples from the same patient. (B) Maximum Melan-A-specific CD8 T cell 505 

frequencies reached during the study compared with pre-vaccination levels (native/EAA 506 

patient with red squares and analog/ELA patients with blue circles). p-values by Wilcoxon 507 

matched-pairs signed rank test. (C, D) Characterization of CD8 T cell differentiation by 508 

CCR7, CD45RA and CD28 expression: Naïve (CD45RA+/CCR7+), Central Memory (CM, 509 

CD45RA-/CCR7+), Effector Memory (EM, CD45RA-/CCR7-), Effector Memory CD45RA+ 510 

(EMRA, CD45RA+/CCR7-) and CD28- (Melan-A+/CD8+/CD28-). (C) Lines link samples 511 

from the same patient according to vaccination cycles. (D) Comparison of the Melan-A-512 

specific CD8 T cell frequencies highlighting differences during the initial vaccine injections 513 

between native/EAA- and analog/ELA-vaccinated patients (red and blue bars, respectively). 514 

p-values by Mann-Whitney U-test.  515 

 516 

Figure 2. Peptide vaccination promotes the in vivo differentiation and expansion of 517 

CD8 stem cell-like memory T cells over time. (A) Gating strategy for one patient at three 518 

time-points (pre-vaccination, early and late) for the characterization of tumor-specific CD8 519 

TSCM cells within enriched CD8 T cells (live cells, multimer+/CD3+, CD45RA+/CCR7+, and 520 

CD95+). (B) Frequencies according to the gated CD45RA+/CCR7+ subpopulation. (C) 521 

Counts according to 10E6 CD3+ T cells of CD8+multimer+ TSCM cells. Comparisons 522 

between pre-vaccination and early (2-4 vaccines and ≤ 3 months; left panel) or late time-523 

points (> 4 vaccines and > 6 months after the start of vaccination; right panel) are shown. (B, 524 
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C) p-values by Wilcoxon matched-pairs signed rank test. Native/EAA-vaccinated patients (n 525 

= 4; open squares) and analog/ELA-vaccinated patients (n = 4; black circles). (D) 526 

Characterization of tumor-specific CD8 TSCM cells for one patient at three time-points (pre-527 

vaccination, early and late) according to a second gating strategy (live cells, 528 

multimer+/CD8+, CD45RA+/CCR7+, and CD95+/CD11a+). 529 

 530 

Figure 3. Quantification of IFNγ production by circulating Melan-A-specific CD8 T cell 531 

following peptide vaccination detected directly ex vivo. Mean IFNγ production quantified 532 

by Elispot following 16h incubation with the native/EAA peptide as described in Materials 533 

and Methods. Frequencies of IFNγ+ within Melan-A-specific CD8 T cells for native/EAA (red, 534 

left panel) and analog/ELA (blue, right panels) vaccinated patients according to (A) the 535 

vaccination cycle or (B) the number of vaccine injections. (A) Lines link samples from the 536 

same patient. (B) Mean (black line) frequencies of IFNγ+ Melan-A-specific CD8 T cells with 537 

each dot representing an individual patient. (C) Maximum IFNγ production reached during 538 

the study compared with pre-vaccination levels. Left panel; EAA patients, right panel; ELA 539 

patients. p values by Wilcoxon matched-pairs signed rank test. (D) Correlation between 540 

maximum IFNγ production (x-axis) and maximum Melan-A-specific CD8 T cell frequencies 541 

(y-axis) quantified during the study period. r and p-value by Spearman correlation. 542 

Native/EAA (red squares) and analog/ELA (blue circles) vaccinated patients.  543 

 544 

Figure 4. Acquisition of effector functions occurs early following the start of peptide 545 

vaccination. (A) Kinetics of the acquisition of effector functions by flow cytometry data from 546 

ex vivo enriched CD8 T cells stimulated by T2 cells pulsed with the native/EAA peptide for 4 547 

hr at 37˚C. The analysis is depicted for multimer+/CD8+ T cells in the EM28+, EM28- and 548 

EMRAINT subsets with regards to the expression of CD107a at the surface (left panels), 549 

intracellular IFNγ expression (middle panels) and dual CD107a+/IFNγ+ (right panels). 550 
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Native/EAA patients (n = 4, red lines) and analog/ELA patients (n = 5, blue lines). (B) 551 

Quantitative comparison of T cells from patients vaccinated with native/EAA peptide (n = 4, 552 

red bars) and analog/ELA (n = 5, blue bars) peptide, showing CD107a, IFNγ and dual 553 

CD107a/IFNγ expression found within the EMRAINT T cell subset at different time-points. 554 

Pre-vaccine; prior to vaccination, early; between 2 to 4 vaccines after the start of 555 

vaccination, and late time-points; >4 vaccines and >6 months after the start of vaccination.  556 

p-values by Mann-Whitney U-test. Of note, a significant increase in IFNγ and dual CD107a/ 557 

IFNγ was observed at pre-vaccine time-points in the patients who received the analog/ELA 558 

peptide vaccine, which could eventually be explained by the fact that those patients did have 559 

more treatments prior to the start of vaccination than patients vaccinated with the native/EAA 560 

peptide (see Supplementary Table 1).  561 

 562 

Figure 5. Early establishment and long-term persistence of dominant TRBV 563 

clonotypes following peptide vaccination. (A, B) Pie charts for three native/EAA (A) and 564 

three analog/ELA (B) vaccinated patients illustrating the specific PCR reactions performed 565 

against defined TRBV families and sequencing data obtained from ex vivo individual tumor-566 

specific CD8 T cell samples at early (between 2 to 4 vaccines; n = 753) versus late (>8 567 

months after the start of vaccination; n= 512) time-points. Dominant TRBV clonotypes are 568 

defined by identical BV-CDR3-BC and TRAV12-1 sequences and those found at >1 time-569 

point are expanded from the main pie chart and described by a distinct color code. Single 570 

non-dominant clonotypes are depicted as dark gray. Un-identified TRBV clonotypes 571 

(depicted as light gray) represent single cell samples for which no positive TRBV sequence 572 

was found based on the selection of performed TRBV family PCRs. (C) Ratio of identified 573 

TRBV clonotypes versus total single cell samples analyzed and compared between tumor-574 

specific CD8 T cells from native/EAA (red bar) and analog/ELA (blue bar) vaccinated 575 

patients. (D) Ex vivo quantification of the dominant TRBV clonotypes found within single cell 576 

samples of tumor-specific CD8 T cells in total (pooled early and late time-points), at early 577 
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and at late time-points. Native/EAA patients (n = 4, red bars) and analog/ELA patients (n = 578 

3, blue bars). (E) Quantification of the persistence of dominant TRBV clonotypes found at 579 

early (between 2 to 4 vaccines) and late (>6 months after the start of vaccination) time-580 

points and compared between native/EAA (n = 5) and analog/ELA (n = 6) vaccinated 581 

patients. p values by Mann-Whitney U-test. (F) Quantification of a dominant TRAV/BV 582 

clonotype from patient LAU944 among memory (i.e. CD45RA+CCR7+ or EM28+) and 583 

effector (EM28-) Melan-A-specific CD8 T cell subsets and over time following 584 

peptide/CpG/IFA vaccination, based on calculations from five-cell pools analyzed directly ex 585 

vivo.  586 

 587 

Figure 6. Clinical outcome of the twenty-nine melanoma patients vaccinated with 588 

CpG-B and the native/EAA or the analog/ELA peptide, emulsified in IFA. (A, B) Kaplan-589 

Meier analyses of (A) progression-free and (B) overall patient survival. Native/EAA patients 590 

(n = 13, red line) and analog/ELA patients (n = 16, blue line).  591 
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