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A B S T R A C T

Background: Motor functional neurological disorder (mFND) is a clinical diagnosis with reliable features;
however, patients are reluctant to accept the diagnosis and physicians themselves bear doubts on potential
misdiagnoses. The identification of a positive biomarker could help limiting unnecessary costs of multiple re-
ferrals and investigations, thus promoting early diagnosis and allowing early engagement in appropriate
therapy.
Objectives: To test whether resting-state (RS) functional magnetic resonance imaging could discriminate patients
suffering from mFND from healthy controls.
Methods: We classified 23 mFND patients and 25 age- and gender-matched healthy controls based on whole-
brain RS functional connectivity (FC) data, using a support vector machine classifier and the standard
Automated Anatomic Labeling (AAL) atlas, as well as two additional atlases for validation.
Results: Accuracy, specificity and sensitivity were over 68% (p = 0.004) to discriminate between mFND patients
and controls, with consistent findings between the three tested atlases. The most discriminative connections
comprised the right caudate, amygdala, prefrontal and sensorimotor regions. Post-hoc seed connectivity analyses
showed that these regions were hyperconnected in patients compared to controls.
Conclusions: The good accuracy to discriminate patients from controls suggests that RS FC could be used as a
biomarker with high diagnostic value in future clinical practice to identify mFND patients at the individual level.

1. Introduction

Motor functional neurological disorder (mFND) – formerly called
“hysteria” – represents a clinical diagnosis for which positive bedside
signs exist (Daum et al., 2014), and treating clinicians, mostly neurol-
ogists and psychiatrists, can refer to established diagnostic criteria
(Diagnostic and Statistical Manual of Mental Disorders (DSM-5)). Even
though misdiagnosis rates are low (Stone et al., 2009), neurologists still
fear missing an underlying organic pathology (Slater, 1965) and a
majority continue to engage in an exclusionary process involving many
additional investigations (Espay et al., 2009). A misdiagnosis in the
other direction – i.e., diagnosing an organic disease when the actual
diagnosis is mFND – can also have serious consequences for the patients
as this results in unnecessary treatments such as thrombolysis

(Vroomen et al., 2008). Appropriate therapy is then delayed, which
importantly impacts outcome (Gelauff et al., 2014) and societal costs
(Carson et al., 2011).

Besides the fear of misdiagnosis, neurologists avoid discussing the
diagnosis of functional neurological disorder (FND) with their patients
(Kanaan et al., 2009a) because they themselves bear doubts about an
alternate explanation for the symptoms of feigning (Kanaan et al.,
2009b). Patients in turn feel their doctors do not understand them,
which leads to multiple consultations for the same symptoms and
change of general practitioner (Crimlisk et al., 2000). The identification
of a positive biomarker for mFND could strengthen the physician's
clinical diagnosis and reassure the patients, thus limiting unnecessary
costs of multiple referrals and investigations, promoting an early di-
agnosis and allowing early engagement in appropriate therapy.
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A new and promising tool in the search of biomarkers for neu-
ropsychiatric disorders is resting-state (RS) functional magnetic re-
sonance imaging (fMRI) (Woodward and Cascio, 2015) which allows
the study of blood oxygen level dependent (BOLD) signal fluctuations
generated under resting conditions. The temporal correlation between
the time courses of different brain regions is computed to obtain mea-
sures of functional connectivity (FC). Compared to active tasks, the
advantage of RS fMRI is that behavioral differences between patients
and controls have lower impact on the interpretation of the results.

Literature in functional neuroimaging of mFND has been dominated
by task-based studies, all aiming at uncovering the neural correlates of
the disorder. Two RS studies in mFND patients (Maurer et al., 2016;
Baek et al., 2017) have investigated neural correlates of the disorder
but no studies to date have used a multivariate classification approach
to investigate RS FC as a potential positive biomarker. The aim of our
study was therefore to use whole-brain RS FC in a predictive setting to
discriminate mFND patients from healthy controls.

2. Methods and materials

2.1. Participants

53 subjects (26 mFND patients and 27 controls matched for age and
gender) participated in the study (Table 1). Three patients (1 patient
with movement disorders and 2 patients with weakness) and 2 healthy
controls were excluded from analysis due to excessive movement in the
scanner, resulting in a total sample of 48 subjects. Patients were re-
cruited from the outpatient clinic of a tertiary university hospital
(University Hospitals Geneva, Department of Clinical Neurosciences).
Two board-certified neurologists (SG or SA) confirmed the diagnosis of
FND according to DSM-5 criteria and using motor positive signs (e.g.,
Hoover sign or tremor variability, distractibility and entrainment test).
Healthy control subjects (with a similar sociodemographic background
and individually matched to the patients by age and sex) were recruited
via advertisement. For both groups, the main exclusion criteria were
current neurological disorders, substance dependence and contra-
indications for MRI scanning. The study was approved by the ethics
committee of the University Hospitals of Geneva (CER 14-088). All
participants gave written informed consent in accordance with the
Declaration of Helsinki.

2.2. Data acquisition

2.2.1. Clinical evaluation
Participants completed the State Anxiety Inventory (STAI-S) (CDG

et al., 1983) and the Beck Depression Inventory (BDI) (Beck et al.,
1996) on the day of MRI session. Clinical severity of the motor

symptom was evaluated by the neurologists with a 0–5 Clinical Global
Impression Score (CGI) (0 = no symptom to 5 = very disabling
symptom).

2.2.2. MRI acquisition parameters
MRI was performed using a 3.0 Tesla unit (Siemens, Magnetom

TrioTim). Functional imaging data and one structural image were ac-
quired in one session. fMRI data were acquired using a whole-brain
single shot multi-slice BOLD echo-planar-imaging (EPI) sequence with
the following parameters: TR: 2 s; TE: 20 ms; flip angle 80°; PAT
factor = 2; FOV: 240 mm; matrix size: 64 × 64 × 40; 2.5 mm slice
thickness; interslice gap 1.1125 mm; voxel size
3.00 × 3.00 × 2.50 mm; TA: 5:08 min, 150 functional images.

During the RS fMRI session, the subjects were instructed to lie still,
to think of nothing in particular and to watch a cross symbol projected
on a black screen. The scan protocol for structural MRI consisted of a
T1-weighted MPRAGE sequence with the following parameters: TR:
1.9 s; TE: 2.27 ms; flip angle = 9°; PAT factor = 2, voxel size
1.0 × 1.0 × 1.0 mm; acquisition time: 5:04.

2.3. Data analyses

Demographic and clinical data were compared between the two
groups with two-sample t-tests or Mann-Whitney U tests (depending on
the distribution normality), and the chi2 test when appropriate.

2.3.1. Preprocessing of imaging data
For preprocessing, we relied on a previously used pipeline

(Richiardi et al., 2012) using SPM12 tools (http://www.fil.ion.ucl.ac.
uk/spm/software/spm12/). Functional images were first realigned,
then the mean functional image was co-registered with the structural
image. The latter was segmented into grey matter, white matter, and
cerebrospinal fluid. A customized version of the IBASPM toolbox
(Aleman-Gomez et al., 2006) was used to build an individual structural
brain atlas, based on the AAL atlas (Tzourio-Mazoyer et al., 2002). In
order to check the consistency of the results, two other atlases, the
Hammers probabilistic structural atlas (Hammers et al., 2003), and the
Shirer functional atlas (Shirer et al., 2012), were additionally chosen for
comparison. The atlas was then mapped back onto the native resolution
of the functional data, and region-averaged time series were extracted.
The first 10 time points were discarded to ensure magnetization equi-
librium. Motion parameters, as well as the average signal of a mask of
white matter and cerebrospinal fluid, were regressed out. Time series
were Winsorized to the 95th percentile to increase robustness to out-
liers (e.g., spikes). Time courses were then filtered into frequency
subbands using a wavelet transform (cubic orthogonal B-spline wave-
lets). Five frequency subbands were extracted, respectively with main
bandpass characteristics at 0.5–1 Hz, 0.25–0.5 Hz, 0.125–0.25 Hz,
0.0625–0.125 Hz, and 0.0312–0.0625 Hz. We investigated alterations
of FC in the latter subband (0.0312–0.0625 Hz), as this subband re-
presents typical low-frequency RS fluctuations. Motion-related artefacts
were accounted for as described in Supplemental File Appendix 1.

2.3.2. RS FC modelling and classification
We computed pairwise Pearson correlation coefficients between all

atlas regions in order to obtain a correlation matrix (number of re-
gions × number of regions) for each subject (see Supplemental File,
Appendix 2). Next, we converted the correlation coefficients to z-scores
using Fisher-Z transformation, and used them as features for the clas-
sifier by reshaping the upper-triangular part of the matrix (excluding
the diagonal) as a vector.

We used a linear Support Vector Machine (SVM) classifier with L2
regularization to learn a discriminant function that would optimally
separate the two groups. The SVM is a supervised learning method that
performs binary classification, by building the largest-margin hyper-
plane allowing for an optimal separation of the training examples. We

Table 1
Demographic values and clinical scores.

mFND patients
(n = 23)

Healthy controls
(n = 25)

P-value

Age, mean (SD), years 42.4 (13.9) 42.4 (13.0) 0.985
Gender (females/males) 21/2 22/3 0.708
Type of symptom 11 weakness

12 tremor/jerks/
dystonia

NA

Disease severity (median
CGI)

2 NA

Disease duration, mean
(SD), months

4.8 (6.3) NA

BDI score, mean (SD) 7.5 (5.2) 1.9 (6.1) < 0.001a

STAI-S score, mean (SD) 34.8 (9.4) 34(8.1) 0.940

STAI-S: Anxiety State value, BDI: Beck Depression Index, CGI: Clinical Global Impression.
SD = standard deviation; NA= not applicable.

a Significantly different between groups.
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used the SVM implementation of the LIBSVM package (http://www.
csie.ntu.edu.tw/~cjlin/libsvm) while setting the C parameter at 1.

In order to estimate the generalization ability of our model, we
chose a leave-one-subject-out cross-validation approach (see
Supplemental File, Appendix 3). Accuracy, specificity and sensitivity
were computed, as well as the area under the receiver operating char-
acteristic curve (AUC). The AUC measures the probability that a
random pair of patients and controls would be correctly identified by
the classifier.

Finally, the statistical significance of the obtained classification
accuracy was assessed using its null distribution under permutation
testing, wherein class labels of all subjects were randomly permuted
1000 times.

2.3.3. Post-hoc analyses

(1) Post-hoc logistic regression analyses assessing the impact of an-
xiety, depression and medication on classification performance: In
order to ensure that our results were not driven by either medica-
tion intake, or anxiety-state and depression scores, we tested whe-
ther the STAI–S and BDI scores as well as the use of CNS-acting
medication (yes or no) could predict which subject was correctly
(yes or no) classified, using logistic regression. We tested the impact
of these confounds individually or taken together, in all subjects
and in patients only. Missing clinical scores were removed from
regression analyses. We chose this procedure over the more
common approach that consists of regressing out these confounds,
because of the risk of removing effects that are inherent to the
disorder (high rate of mood disorder co-morbidity).

(2) Post-hoc identification of regions yielding most discriminative
connections: In order to identify regions that yielded the most
discriminative connections between controls and patients, we used
the weights assigned by the SVM classifier to connections.

(3) Post-hoc assessment of the connectivity differences: We sought to
explore whether the sets of regions exhibiting the most dis-
criminative connections (highest SVM weights) were hypo- or
hyper-connected in patients versus controls. To do so, we calculated
the average connectivity (of each group) between pairs of regions
showing discriminative FC in the classification performance.

(4) Post-hoc seed analysis exploring connectivity of right caudate: As
we consistently found the right caudate as being the most dis-
criminative region for classifying patients versus controls (Fig. 1
and Supplemental Fig. S1), we tested whether this region was dif-
ferentially connected to the rest of the brain in patients versus
controls. To this aim, we computed a seed-based FC analysis using
the right caudate mask of the AAL atlas as the seed (see Supple-
mental File, Appendix 4).

3. Results

3.1. Demographic and clinical characteristics

Data from the 48 subjects (23 mFND patients and 25 controls) in-
cluded in the analysis are presented in Table 1. Two patients and two
controls did not complete the STAI-S and one patient and two controls
did not complete the BDI. Patients did not differ from controls in terms
of demographic data and anxiety scores, but showed significantly
higher depression scores. Out of the 23 patients included, 14 patients
took CNS-acting medication comprising either antidepressants (n = 2),
benzodiazepine (n = 2), antiepileptics (n = 4) or a combined intake of
the latter substances (n = 5).

3.2. Classification performance

Using whole-brain FC, we were able to distinguish mFND patients
from controls with a significant accuracy (62.5 to 68.8%, Table 2).

Importantly, the individual classification performance was significant
across all three atlases.

3.3. Post-hoc analyses

3.3.1. Analyses of connectivity
The most discriminative connections (i.e., those yielding the higher

SVM weights) included increased connectivity in patients between: 1)
subcortical (right caudate) and limbic (left amygdala) as well as parietal
regions (bilateral postcentral gyri), 2) the paracentral lobule with
frontal regions (bilateral mid orbital gyri) and decreased connectivity in
patients between 3) parietal regions (right temporo-parietal region in-
cluding the inferior parietal lobule) and frontal regions (right superior
orbito-frontal gyrus), (Fig. 1).

Mean functional connectivity in controls and patients between pairs
of regions showing discriminative functional connectivity
(Supplemental Table S3). Discriminative connections of the other two
atlases used can be found in Supplemental Fig. S1.

3.3.2. Regression analyses assessing impact of anxiety, depression and
medication use

Whether subjects (either all subjects or patients only) were correctly
classified or not was not predicted by depression scores or medication
intake, either taken individually or altogether (Supplemental Table S2).
Anxiety, however, had an impact on accuracy (when taking all subjects,
but not within patients only); indeed, subjects who were more anxious
were more prone to be misclassified (beta = −0.02, p = 0.0495; see
Supplemental Table S2).

3.3.3. Seed connectivity of the right caudate
In patients, the right caudate was hyper-connected to the right in-

ferior frontal gyrus, the right and left middle orbitofrontal gyrus, the
right middle cingulate cortex, the left superior parietal lobule, the left
angular gyrus and the bilateral cerebellum (cf. Fig. 2/Table 3).

When contrasted to the patient group, the control group showed
hyperconnectivity between the right caudate and the left hippocampus
(Table 3).

4. Discussion

4.1. Classification as potential clinical diagnostic biomarker

Based on a five-minute resting-state fMRI protocol, a classification
approach using the standard AAL atlas was able to discriminate mFND
patients from healthy controls with almost 70% accuracy, specificity
and sensitivity. Validation with two additional atlases confirmed good
accuracies, i.e., 62.5–68%. Moreover, classification results were not
driven by differences in depression, anxiety or psychotropic medication
use.

This is the first study using a classification approach in FND. In
contrast to previous fMRI studies on FND that focused on inference at
the group level, the present study allows for inference at a single-sub-
ject level suited for future clinical decision-making. In recent years,
classification algorithms have been applied in preclinical efforts to
complement clinical diagnosis with the aim to identify neurological and
psychiatric disorders using imaging-based markers (for review,
(Wolfers et al., 2015)). Particularly, models based on multivariate
pattern analyses of fMRI data have been proposed for several mental
disorders mainly focusing on schizophrenia and mood disorders. When
comparing our present findings with previous RS FC classification stu-
dies that discriminate patients from healthy controls using the same
classifier (i.e., SVM), our classification accuracy and sample size range
within reported values (Wolfers et al., 2015). These findings suggest
that RS FC may represent a promising positive biomarker for the dis-
order that could be useful in future clinical practice, providing addi-
tional validation steps are followed. In particular, our findings should
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be replicated in independent and larger datasets and its reliability
across different centres should be determined. It will indeed be im-
portant to verify that, when using similar acquisition parameters, the
classification algorithm can be applied in another hospital. Then, a
comparison not only to healthy controls but also to patients presenting
the same symptom (comparing organic weakness to functional weak-
ness for instance) should be carried out. Finally, improving specificity
and sensitivity will be sought for by adding pre-test probability clinical
scores and by applying feature selection (Pereira et al., 2009) and fo-
cusing on regions of interest.

4.2. Connectivity patterns to understand FND mechanisms

The primary aim of our study was to determine the value of RS FC in
discriminating patients from controls at an individual level, but our

data also provide important information on a group-level to understand
the underlying mechanisms of FND. Two connectivity patterns are
particularly important to discuss: 1) one showing increased con-
nectivity in patients compared to controls between the right caudate
and the left amygdala and bilateral postcentral gyri and 2) one showing
decreased connectivity in patients between the right inferior parietal
cortex (part of the right temporo-parietal junction TPJ) and frontal
regions.

4.2.1. Role of the right temporo-parietal junction (TPJ)
This latter finding of decreased connectivity between the right in-

ferior parietal cortex and frontal regions (right superior frontal gyrus) is
consistent with a recent resting state data analysis from a cohort of 25
mFND patients compared to 24 healthy controls which found decreased
connectivity between the right inferior parietal cortex (taken as a seed
region) and prefrontal regions (right dorsolateral prefrontal cortex/
anterior cingulate) (Baek et al., 2017). Another seed-based RS FC study
focused on the right TPJ in 35 mFND patients compared to 35 controls
(Maurer et al., 2016) and found decreased connectivity with bilateral
sensorimotor cortex, cerebellum, and right insula. The TPJ is a large
region encompassing posterior inferior parietal lobule and angular
gyrus (Bzdok et al., 2013). Given the role of the right TPJ in motor
intention awareness and self-agency perception (Desmurget et al.,
2009), aberrant connectivity involving this region might explain FND
patients' inability to initiate movement and to recognize themselves as

Fig. 1. Discriminative connections based on the AAL atlas.
Thicker lines correspond to connections that have higher
weights in classification performance. Colours of spheres corre-
spond to different AAL lobes (blue = frontal; or-
ange = subcortical; turquoise = limbic; yellow = parietal;
red = temporal; green = occipital). (For interpretation of the
references to colour in this figure legend, the reader is referred to
the web version of this article.)

Table 2
Individual classification performance for all atlases.

Atlas Accuracy (%) Specificity (%) Sensitivity (%) AUC p-value

AAL 68.8 68.0 69.6 0.72 0.004
Shirer 68.8 72.0 65.2 0.68 0.011
Hammers 62.5 68.0 56.5 0.73 0.049

AUC: area under the receiver operating characteristic (ROC) curve. The ROC curve for the
individual classification obtained with each atlas can be found in Supplemental Fig. S2.
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the authors of their actions (Voon et al., 2010a). Our results also point
to its connectivity within the executive network possibly engaged in
social processing of behavior (Carter and Huettel, 2013), action
awareness (Farrer et al., 2008) and top-down regulation of affects.

4.2.2. Role of the right caudate
The implication of the caudate in mFND has been previously shown

in a PET experiment (Vuilleumier et al., 2001) revealing increased
caudate activity during mFND with functional weakness, which re-
turned to normal in patients who recovered from their functional
weakness in a longitudinal follow-up experiment. A form of principal
component analysis of these data (CY, 2011) identified a network in-
cluding the thalamus and caudate (together with inferior frontal and
orbitofrontal regions), which was found to exhibit selective increase in
coupling in the hemisphere contralateral to the motor symptom. An-
other PET experiment (Schrag et al., 2013) in mFND patients with
psychogenic dystonia showed abnormally increased blood flow in the
basal ganglia (including the right caudate) as compared to healthy
controls. The caudate, as part of the dorsal/sensorimotor striatum
structure, receives many convergent excitatory projection inputs from
the sensorimotor cortex, thalamus, prefrontal cortex, insula and the
amygdala (Voorn et al., 2004). A proposed function of the dorsal
striatum is to encode short motor programs to be linked together in
order to increase complexity of motor output (Yin, 2010) thereby pre-
venting excessive computational demands on cortical structures
(Graybiel, 1998). When dysfunctional, no efficient selection and as-
sembly of motor actions can take place, possibly resulting in abnormal

behavioral patterns, as observed in mFND. Also the caudate plays a role
in favoring habitual implicit well-learned movement (McNamee et al.,
2015) rather than goal-directed explicit controlled movement, a pattern
observed in mFND (Parees et al., 2013). The hyperconnectivity we
found between caudate and amygdala is of particular interest, as there
is evidence that the amygdala plays a role in shifting goal-directed
movement to habitual movement through interaction with the caudate,
in order to promote well-learned defense in behavior in cases of threat
(Schwabe et al., 2010). The amygdala has consistently shown increased
activity in mFND (Voon et al., 2010a; Aybek et al., 2014; Voon et al.,
2010b; Voon et al., 2011) as well as a lack of habituation to negative
stimuli (Aybek et al., 2015). One could thus postulate that hyperarousal
in mFND expressed by hyperactivity of the amygdala has an influence
on motor program selection via the caudate. Our seed-based analysis on
the caudate also confirms limbic-motor interaction in mFND, as it re-
vealed hyperconnectivity with the mid-cingulate. The mid-cingulate is
considered as the motor-limbic region and is thought to play a role in
willed action by participating in a “choice network” (Brass et al., 2013).
This region has been proposed to be a hub linking emotion (value and
affects signals) to cortical and subcortical motor control (Madlon-Kay
et al., 2013).

Altogether, RS FC data from our study and previous literature
confirm findings from task-based fMRI experiments involving nodes of
motor control (self-agency, motor intention and motor action selection)
with limbic system key regions (amygdala, motor mid-cingulate
cortex).

4.3. Limitations

Our study has several limitations. One is the homogenous sample of
adult subjects suffering from mFND, not including other FND pre-
sentation such as non-epileptic seizure and not including children,
which limits the generalizability of our findings to FND in general. Also,
the fact that our patients had similar anxiety scores to controls suggests
that our cohort may not be representative of FND in general, who tend
to be more anxious. A future design should aim to include all con-
secutive patients and monitor drop-outs (rate and reason) in order to
ensure the studied population is representative of the general FND
population.

Another limitation is the fact that our sample included both positive
(movements) and negative (weakness), which may confound the re-
sults. This may be overcome in future validation steps by including
larger number of patients and stratifying them according to symptom
type.

Another limitation is that we included patients with psychotropic
medication. Although we verified with post-hoc analyses that classifi-
cation results were not driven by medication, we cannot be certain that
drug intake did not affect our results. Similarly, we verified that de-
pression scores did not predict the classification - future studies should

Fig. 2. Contrast patients > control in axial plane.
Hyperconnectivity of clusters (listed in Supplemental Table S3) showing the right inferior frontal/orbitofrontal gyrus (A), the left parietal lobule and right mid cingulate cortex (B + C)
and the bilateral cerebellum (D).

Table 3
Seed connectivity analysis of the right caudate.

p-Value k T x y z Region

Contrast patients > controls
0.000 83 5.33 45 41 −19 R inferior frontal (orbitalis)

4.59 33 62 −13 R mid orbitofrontal
4.10 27 65 −7 R superior orbitofrontal

0.042 18 4.45 9 −31 38 R mid cingulate
4.33 6 −37 32 R mid cingulate

0.000 61 4.26 −27 −61 32 L mid occipital
4.25 −18 −61 41 L sup parietal lobule
3.52 −36 −67 38 L angular gyrus

0.000 65 4.12 9 −58 −10 R cerebellum
4.03 −3 −61 −7 L cerebellum
2.91 −12 −58 −13 L cerebellum

Contrast controls > patients
0.015 26 3.87 −33 −31 −4 L hippocampus

3.15 −36 −46 −1 L fusiform

p < 0.005 uncorrected at the peak level, p < 0.05 FDR-corrected at the cluster level,
minimum cluster size = 10 voxels. K= cluster voxel size; T = t-value; x,y,z: MNI co-
ordinates. L= left, R= right hemisphere.
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exclude that this variable is not a confounding factor. Another limita-
tion of our study is the rather small sample size (total of 48 subjects)
that could directly affect classifier performance and lead to unstable
predictive models. However, in a large comprehensive review of studies
using classifiers in neuropsychiatry, sample sizes were mostly below
100 with a majority of sample sizes around 50 participants (Wolfers
et al., 2015).

4.4. Conclusions

Classification using resting state fMRI allowed for discrimination of
mFND patients from healthy controls with almost 70% accuracy, spe-
cificity and sensitivity.

This constitutes an important first step towards clinical application
of such a non-invasive technique, not to replace the clinical diagnosis
but to ascertain its value and to provide additional rule-in tests to make
the diagnosis of mFND. Future validation steps are now needed in se-
parate samples and other MRI scanners, as well as in combination with
clinical scores (pre-test probability) to confirm that this classification
tool can be utilized in clinics worldwide.
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