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SUMMARY

Seismoelectric signals are generated by electrokinetic coupling from seismic wave prop-

agation in fluid-filled porous media. This process is directly related to the existence of an

electrical double layer at the interface between the pore fluid and minerals composing the

pore walls. The seismoelectric method attracts the interest of researchers in different ar-

eas, from oil and gas reservoir characterization to hydrogeophysics, due to the sensitivity

of the seismoelectric signals to medium and fluid properties. In this work, we propose a

physically-based model for the dynamic streaming potential coupling coefficient (SPCC)

by conceptualizing a porous medium as a bundle of tortuous capillaries characterized

by presenting different pore size distributions (PSD). The results show that the dynamic

streaming potential coupling coefficient is a complex function depending on the prop-

erties of pore fluid, mineral-pore fluid interfaces, microstructural parameters of porous

media and frequency. Parameters influencing the dynamic SPCC are investigated and ex-

plained. In particular, we show that the PSD affects the transition frequency as well as
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the shape of the SPCC response as a function of frequency. The proposed model is then

compared with published data and previous models. It is found that the approach using

the lognormal distribution is in very good agreement with experimental data as well as

with previous models. Conversely, the approach that uses the fractal distribution provides

a good match with published data for sandstone samples but not for sand samples. This

result implies that the fractal PSD may not be pertinent for the considered sand samples,

which exhibit a relatively narrow distribution of pore sizes. Our proposed approach can

work for any PSD, for example, including complex ones such as double porosity or in-

ferred from direct measurements. This makes the proposed models more versatile than

models available in literature.

Keywords: Numerical modelling; Fractals and multifractals; Permeability and porosity
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Symbols Description Units

A Normalizing factor no units

CEK(r, ω) Dynamic streaming potential coupling coefficient V/Pa

for a capillary of radius r

C0
EK Quasi-static streaming potential coupling coefficient V/Pa

CEK(ω) Dynamic streaming potential coupling coefficient V/Pa

CrelEK(ω) Relative dynamic streaming potential coupling coefficient no units

Cw Ionic concentration mol/L

Df Fractal dimension for pore space no units

Lo Length of the representative elementary volume (REV) m

Lτ Length of the capillary m

r Capillary radius m

rm Geometric mean pore radius m

rmin Minimum capillary radius m

rmax Maximum capillary radius m

α Ratio between rmin and rmax no units

∆P ∗ Amplitude of pressure difference Pa

ε Permittivity of the pore water F/m

ε0 Permittivity of vacuum (8.86×10−12) F/m

εr Relative permittivity of water (80.1) no units

ζ Zeta potential V

ηw Water viscosity (≈ 10−3) Pa s

ρw Water density (≈ 1000) kg/m3

s Lognormal standard deviation no units

σw Electrical conductivity of pore water S/m

Σs Surface electrical conductance S

ω Angular frequency rad/s

ωt Transition angular frequency rad/s

1 INTRODUCTION

Seismoelectric signals are generated by electrokinetic coupling from seismic wave propagation in

fluid-filled porous media and are directly related to the existence of an electrical double layer (EDL)



4 L.D.Thanh, D.Jougnot, S.G.Solazzi, N.V.Nghia, P.V.Do

at the interface between pore fluid and mineral surfaces. Minerals composing geological media gen-

erally acquire electrostatic charges at their surfaces when brought into contact with an electrolyte,

such as water. This leads to a charge distribution known as the EDL prevailing at the vicinity of the

water-mineral solid interfaces. The EDL consists of an excess of electrical charges in the pore water to

compensate for the charged mineral surfaces. When a seismic wave propagates in fluid-filled porous

media, it generates relative displacement of water with respect to the pore walls and, thus, relative

movement of the charges in the EDL with respect to the charged pore surface. This process creates

an electrical current and a resulting electrical field that can be measured at the earth surface or within

a geological medium. Given the sensitivity of the seismoelectric signal to medium and fluid proper-

ties, the seismoelectric method attracts the interest of researchers in different areas, from oil and gas

reservoir characterization to hydrogeophysics (e.g., Butler 1996; Mikhailov et al. 2000; Garambois &

Dietrich 2001; Thompson et al. 2007). Additionally, it is indicated that the seismoelectric method is

also feasible in well logging for oil and gas exploration (e.g., Dupuis et al. 2009; Hu et al. 2007; Wang

et al. 2015a).

The seismoelectrical effect was studied by pioneering authors in the 1930′s (e.g., Thompson 1939;

Frenkel 1944) and it remains a highly active research field (e.g., Pride & Garambois 2005; Revil et al.

2015; Jouniaux & Zyserman 2016; Jougnot & Solazzi 2021). To model the seismoelectric effect,

one normally uses the electrokinetic coupling coefficient CEK(ω), which is a frequency dependent

parameter that relates the measured electrical potential difference with the fluid pressure difference

driving the pore fluid flow. Several models have been proposed to describe CEK(ω) in the literature.

The two most used models for CEK(ω) were proposed by (i) Packard (1953) and (ii) Pride (1994).

Packard (1953) proposed a model for CEK(ω) that is valid for capillary tubes. Pride (1994) obtained

CEK(ω) based on first principles and an upscaling approach based on volume averaging. Both of these

models provide a good agreement with respect to measured data of the frequency dependent streaming

potential (e.g., Reppert et al. 2001; Tardif et al. 2011; Glover et al. 2012a; Jouniaux & Ishido 2012;

Wang et al. 2015b, 2016) and the seismoelectric conversion (Zhu et al. 1999; Zhu & Toksoz 2013).

Note that the dependence of CEK(ω) on thickness of the EDL was also presented by Shi et al. (2018).

An alternative approach was proposed for the determination of the streaming potential coupling

coefficient via the excess charge that is effectively dragged by the flow of pore water through the

pore space (e.g., Kormiltsev et al. 1998; Revil & Leroy 2004; Revil et al. 2007; Jougnot et al. 2012,

2020). A similar approach was proposed for the seismoelectric effect using effective excess charge

density (e.g., Revil & Jardani 2010). The effective excess charge density can be determined either by

an empirical expression from permeability of porous media (e.g., Jardani et al. 2007; Revil & Jardani

2013; Cherubini et al. 2018) or by a theoretical expression from macroscopic hydraulic parameters
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and electrokinetic parameters of porous media (e.g., Guarracino & Jougnot 2018; Soldi et al. 2019).

Revil & Mahardika (2013) proposed an empirical expression for the dependence of the effective excess

charge density on frequency by taking into account a relaxation time governing the transition between

the lowfrequency and highfrequency regimes of the Navier-Stokes equations. Very recently, Jougnot

& Solazzi (2021) presented a novel approach to up-scale the frequency-dependent effective excess

charge density from the pore scale by conceptualizing porous media as a bundle of capillaries having

a singular capillary size.

It is well known that porous media usually have complicated and disordered pore structure with

variation of pore sizes. Therefore, conceptualizing a porous medium as a bundle of capillaries with

a unique pore size, as performed in Packard (1953) and Jougnot & Solazzi (2021), does not reflect

the highly complex microstructure of porous media. Additionally, to the best of our knowledge, the

surface electrical conductivity, a parameter that plays an important role in electrokinetics for low fluid

electrical conductivity, has not yet been considered in the available models for CEK(ω). Note that the

surface electrical conductivity is typically taken into account in the streaming potential coupling co-

efficient, that is, the quasistatic coefficient via the modified Helmholtz-Smoluchowski equation (e.g.,

Morgan et al. 1989; Revil et al. 1999; Glover et al. 2012b).

Capillary tube models assume that flow channels are generated within the pore space. The char-

acteristics of these channels are effectively represented employing the capillary tube geometry, using

different tortuosities and pore radii distributions. Models based on this approach have, despite their

simplicity, proven to be a highly effective tool for the realistic description of, for example, the water

content (e.g., Tyler & Wheatcraft 1990), the permeability (e.g., Yu & Cheng 2002; Nghia A et al.

2021), the electrical conductivity (e.g., Niu et al. 2015; Thanh et al. 2019; Rembert et al. 2020), the

thermal conductivity (e.g., Chu et al. 2020), the electrokinetic coupling (e.g., Jackson 2010; Soldi et al.

2019; Vinogradov et al. 2021) and the water flow in frozen soils (e.g., Watanabe & Flury 2008).

This work proposes a physically-based model for theCEK(ω) by conceptualizing porous media as

a bundle of tortuous capillaries. We consider both lognormal and fractal pore size distributions. We also

analyze the effects of the surface electrical conductivity in the proposed model. Parameters influencing

CEK(ω) are investigated and explained. The proposed model is then compared with published data

and previous models.
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2 THEORETICAL DEVELOPMENT

2.1 Pore scale

Let us consider a capillary of radius r (m) and length Lτ (m) that is saturated by water with viscosity

ηw = 10−3 (Pa s) and density ρw = 1000 (kg/m3) at temperature 20oC. This capillary is submitted to

an oscillatory frequency-dependent pressure difference ∆P (Pa) of angular frequency ω (rad/s) which

is given by

∆P (t) = ∆P ∗e−iωt, (1)

where t (s) is the time, ∆P ∗ (Pa) is the amplitude of pressure difference across the capillary tube and

i is the imaginary unit. The superscript ∗ denotes the amplitude of the oscillatory pressure difference

and of other oscillatory variables from now on. Following previous publications (e.g., Reppert et al.

2001; Solazzi et al. 2020; Jougnot & Solazzi 2021), we drop the harmonic term e−iωt to simplify the

notation.

From the Navier-Stokes equations, it is possible to obtain the water velocity profile in the capillary

as a function of the distance from the axis of the capillary x and the angular frequency v∗(x, ω) (m/s)

(e.g., Packard 1953; Reppert et al. 2001). Additionally, the distribution of the excess charges ρe(x)

(C/m3) in the pore water can be attained by solving the Poisson-Boltzmann equation (e.g., Rice &

Whitehead 1965). From v∗(x, ω) and ρe(x), one can find the streaming current in the capillary using

the approach that has been already presented by Packard (1953) or Reppert et al. (2001). Using the

assumptions of Debye-Hückel and a thin EDL (i.e., the thickness of the double layer is small compared

to the pore radius), the frequency dependent streaming current ic(r, ω) in the capillary of radius r (m)

under the pressure difference ∆P ∗ is given by (e.g., Packard 1953; Reppert et al. 2001)

i∗c(r, ω) =
2πεrζ∆P ∗(ω)

ηwLτκ

J1(κr)

J0(κr)
, (2)

where ε = εrε0 (F/m) is the permittivity of the pore water with the permittivity of vacuum ε0 =

8.86× 10−12 F/m and the relative permittivity of water εr=80.1 at temperature 20oC, ζ (V) is the zeta

potential, J0 and J1 are the first kind Bessel functions of the zeroth and first order, respectively, and κ

(m−1) is defined as

κ2 = − iωρw
ηw

. (3)

In this work, we consider the thin EDL assumption, which is satisfied in a wide variety of natural

systems (e.g., seawater) (see the discussion section in Jougnot et al. 2019). However, it is important

to remark that that this assumption may fail when: (i) the pore fluid has a low salinity, such as porous

sediments containing fresh water; (ii) the EDL thickness becomes comparable to the characteristic

pore size, such is the case of clay rocks. In this context, the thick EDL assumption should be used
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instead. For further details regarding the thin/thick EDL assumptions, we refer the readers to the work

of Jackson & Leinov (2012).

The dependence of ζ (V) on the ionic concentration Cw (mol/L) of pore water is given by (e.g.,

Pride & Morgan 1991):

ζ = {a+ b log10(Cw)} × 10−3, (4)

where a and b are fitting parameters. In this work, we use a = -6.43 mV and b = 20.85 mV reported by

Jaafar et al. (2009) for silica-based rocks for modeling.

As a consequence of the streaming current in the capillary, an oscillatory electrical potential dif-

ference called the frequency dependent streaming potential ∆V ∗(ω) is built up between the ends of

the capillary. This streaming potential causes a frequency dependent electric conduction current in the

capillary, which, in turn, can be determined using Ohm′s law. By considering both bulk and surface

electrical conductions in the water saturated capillary, the conduction current is given by (Birdi 2008;

Thanh et al. 2018, 2020a)

i∗c(r, ω) =
∆V ∗(ω)σwπr

2

Lτ
+

∆V ∗(ω)Σs2πr

Lτ
=
π∆V ∗(ω)

Lτ

[
σwr

2 + 2Σsr
]
, (5)

where σw is the electrical conductivity of the fluid and Σs is the specific surface conductance at the

interface between fluid and the solid. Note that, following previous publications (e.g., Packard 1953;

Reppert et al. 2001; Jougnot et al. 2013; Jougnot & Solazzi 2021), we do not take into account the

frequency dependence of the electrical conductivity.

As performed in the DC case (Packard 1953; Reppert et al. 2001; Thanh et al. 2018, 2020a), at

equilibrium, the streaming current is balanced by the conduction current in the capillary. Setting Eq.

(2) equal to Eq. (5) and using the definition of C∗EK(r, ω) as

C∗EK(r, ω) =
∆V ∗(ω)

∆P ∗(ω)
, (6)

the following expression is obtained for a single capillary

C∗EK(r, ω) =
∆V ∗(ω)

∆P ∗(ω)
=

εζ

ηw(σw + 2Σs
r )

2

κr

J1(κr)

J0(κr)
. (7)

If the surface conductivity is negligible (Σs=0), Eq. (7) reduces to the model proposed by Packard

(1953) or Reppert et al. (2001).

C∗EK(r, ω) =
∆V ∗(ω)

∆P ∗(ω)
=

εζ

ηwσw

2

κr

J1(κr)

J0(κr)
. (8)

2.2 REV scale

In order to obtain the upscaled electrical streaming current and conduction, we consider a cubic rep-

resentative elementary volume (REV) of the porous media of side-length Lo and cross-section area
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AREV , the latter being perpendicular to the flow direction. In the presence of a fluid pressure gra-

dient, flow channels are generated within the pore space. The characteristics of these channels are

usually modelled employing the capillary tube analogy. In this context, the REV is conceptualized as

composed by an equivalent bundle of capillary tubes with radii varying from a minimum pore radius

rmin to a maximum pore radius rmax. The pore size distribution f(r) in the REV is such that the

number of capillary tubes with radius in the range from r to r + dr is given by f(r)dr. Note that the

pore size distributions f(r) can be obtained from the hydrodynamic characteristic curves of a porous

medium, using either the capillary pressure-saturation or relative permeability-saturation relationships

(e.g., Jougnot et al. 2012).

Following the approach used in Thanh et al. (2018) for the DC case, the frequency dependent

streaming current I∗s (ω) and conduction current I∗c (ω) through the REV are given by

I∗s (ω) =

∫ rmax

rmin

i∗s(r, ω)f(r)dr =

∫ rmax

rmin

2πεrζ∆P ∗(ω)

ηwLτκ

J1(κr)

J0(κr)
f(r)dr, (9)

and

I∗c (ω) =

∫ rmax

rmin

i∗c(r, ω)f(r)dr =

∫ rmax

rmin

π∆V ∗(ω)

Lτ

[
σwr

2 + 2Σsr
]
f(r)dr. (10)

We apply the similar procedure to get the C∗EK(r, ω) at pore scale, that is, we set Eq. (9) equal to

Eq. (10) and, then, we obtain the following expression for C∗EK(ω) at the macro-scale:

C∗EK(ω) =

∫ rmax

rmin

2εζ
ηwκ

J1(κr)
J0(κr)rf(r)dr∫ rmax

rmin
[σwr2 + 2Σsr] f(r)dr

. (11)

Recall that the transition from viscous to inertia dominated flow occurs at the so-called transition

angular frequency ωt above which the amplitude of fluid flow decreases with frequency, which is given

by (e.g., Solazzi et al. 2020)

ωt =
2ηw
ρwr̃2

, (12)

where r̃ is a characteristic radius representative of the saturated pores.

In this work, we analyze two different PSDs: (i) lognormal and (ii) fractal distributions, for mod-

eling C∗EK(ω) as presented below. However, it is important to remark that Eq. (11) has been built up

for any pore size distribution f(r).
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2.2.1 Lognormal Distribution

The lognormal distribution of capillary tubes is frequently applied to porous media (e.g., Kosugi 1994;

Jougnot et al. 2019; Ghanbarian 2020) and is given by

f(r) =
A√

2πs r
exp

[
−
( ln( r

rm
)

√
2s

)2
]
, rmin ≤ r ≤ rmax (13)

where A is a normalizing prefactor, rm is the geometric mean pore radius, and s is the log-normal

standard deviation. Note that the total number of capillaries Nt following the lognormal distribution

in the REV is given by

Nt =

∫ rmax

rmin

f(r)dr =
A

2

{
erf
( ln( rmax

rm
)

√
2s

)
− erf

( ln( rmin
rm

)
√

2s

)}
(14)

Similarly, substituting Eq. (13) into Eq. (11), we obtain the C∗EK(ω) with the lognormal distribu-

tion as:

C log,∗EK (ω) =
εζ

η

∫ rmax

rmin

{
2
κr

J1(κr)
J0(κr)r exp

[
−
( ln( r

rm
)

√
2s

)2
]}

dr

σw
∫ rmax

rmin
r exp

[
−
( ln( r

rm
)

√
2s

)2
]
dr + 2Σs

∫ rmax

rmin
exp

[
−
( ln( r

rm
)

√
2s

)2
]
dr

. (15)

For sufficiently low frequencies, Eq. (15) reduces to

C log,0EK =
εζ

η

∫ rmax

rmin
r exp

[
−
( ln( r

rm
)

√
2s

)2
]
dr

σw
∫ rmax

rmin
r exp

[
−
( ln( r

rm
)

√
2s

)2
]
dr + 2Σs

∫ rmax

rmin
exp

[
−
( ln( r

rm
)

√
2s

)2
]
dr

, (16)

where∫ rmax

rmin

rexp

[
−
( ln( r

rm
)

√
2s

)2
]
dr = −

√
π√
2
sr2
me

2s2

{
erf

(
2s2 − ln( rmax

rm
)

√
2s

)
− erf

(
2s2 − ln( rmin

rm
)

√
2s

)}
,

(17)

and∫ rmax

rmin

exp

[
−
( ln( r

rm
)

√
2s

)2
]
dr = −

√
π√
2
srme

s2

2

{
erf

(
s2 − ln( rmax

rm
)

√
2s

)
− erf

(
s2 − ln( rmin

rm
)

√
2s

)}
.

(18)

Substituting Eq. (17) and Eq. (18) into Eq. (16), the following is obtained

C log,0EK =
εζ

η

1σw + 2Σse
−3s2

2

rm

{
erf

(
s2−ln( rmax

rm
)

√
2s

)
−erf

(
s2−ln(

rmin
rm

)
√
2s

)}
{

erf
(

2s2−ln( rmax
rm

)
√
2s

)
−erf

(
2s2−ln(

rmin
rm

)
√
2s

)}
 (19)

Following Jougnot & Solazzi (2021), we can write Eq. (15) as

C log,∗EK (ω) = C log,0EK Crel,log,∗EK (ω), (20)
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where Crel,log,∗EK (ω) is the frequency dependent relative streaming potential coefficient for the lognor-

mal distribution with respect to the value at 0 Hz and is given by

Crel,log,∗EK (ω) =

∫ rmax

rmin

{
2
κr

J1(κr)
J0(κr)rexp

[
−
( ln( r

rm
)

√
2s

)2
]}

dr

∫ rmax

rmin
rexp

[
−
( ln( r

rm
)

√
2s

)2
] . (21)

2.2.2 Fractal Distribution

Fractal distribution has been already applied for porous media in many publications (e.g., Yu & Cheng

2002; Guarracino & Jougnot 2018; Soldi et al. 2019; Thanh et al. 2020b,c). The fractal distribution of

capillary tubes is given by (e.g., Tyler & Wheatcraft 1990; Yu & Cheng 2002; Thanh et al. 2020b)

f(r) = Dfr
Df
maxr

−Df−1, (22)

where Df is the fractal dimension for pore space that is between 1 and 2 in two-dimensional spaces

and between 2 and 3 in three dimensional spaces. Note that the total number of capillariesNt following

the fractal distribution in the REV is given by

Nt =

∫ rmax

rmin

f(r)dr =

(
rmax
rmin

)Df

− 1 ≈
(
rmax
rmin

)Df

. (23)

Here, we consider that rmax >> rmin, that is,
(
rmax
rmin

)Df

is much larger than 1, which is normally

valid in porous media (e.g., Yu & Cheng 2002; Thanh et al. 2020b).

Substituting Eq. (22) into Eq. (11), we obtain the C∗EK(ω) with the fractal distribution as:

Cfra,∗EK (ω) =
εζ

η
[
σw + 2Σs

rmax

2−Df

1−Df

1−α1−Df

1−α2−Df

] 2−Df

(1− α2−Df )r
2−Df
max

∫ rmax

rmin

2

κr

J1(κr)

J0(κr)
r1−Dfdr, (24)

where α = rmin/rmax.

Eq. (15) and Eq. (24) indicate that the dynamic streaming potential coupling coefficient is a com-

plex function depending on the properties of water (η, σw, ε), mineral-water interfaces (ζ, Σs), mi-

crostructural parameters of porous media (Df , rmin, rmax for the fractal distribution and rm, s, rmin,

rmax for the lognormal distribution) and frequency (ω).

When ω → 0, the pressure difference tends to a steady-state condition across the REV and, thus,

the parameter κ approaches zero as indicated by Eq. (3). The limit of
{

2
κr

J1(κr)
J0(κr)

}
becomes (e.g.,

Packard 1953; Reppert et al. 2001)

lim
κ→0

{
2

κr

J1(κr)

J0(κr)

}
= 1. (25)
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Therefore, the integral term in Eq. (24) reduces to

lim
κ→0

{∫ rmax

rmin

2

κr

J1(κr)

J0(κr)
r1−Dfdr

}
=

r
2−Df
max

2−Df
(1− α2−Df ), (26)

and Eq. (24) becomes

Cfra,0EK =
εζ

η
[
σw + 2Σs

rmax

2−Df

1−Df

1−α1−Df

1−α2−Df

] . (27)

Note that, in Eq. (27), the proposed model reduces to that of Thanh et al. (2018), which was proposed

and validated for DC conditions.

If the surface conductivity can be neglected (Σs = 0), Eq. (19) and Eq. (27) reduce to the widely

used Helmholtz-Smoluchowski (HS) equation which does not include information about the medium

geometrical properties and has been proven to be useful in a large range of natural geological media

Smoluchowski (1903). Namely, the HS equation is given by

CHSEK =
εζ

ησw
. (28)

It is also shown that the PSD does not have effect on the quasi-static streaming potential coupling

coefficient as long as the surface conductivity is negligible, which is in agreement with the result

reported in Jougnot et al. (2019).

Similarly, the frequency dependent relative streaming potential coupling coefficient for the fractal

PSD with respect to the zero frequency is given by

Crel,fra,∗EK (ω) =
2−Df

(1− α2−Df )r
2−Df
max

∫ rmax

rmin

2

κr

J1(κr)

J0(κr)
r1−Dfdr. (29)

Eq. (29) can be solved numerically once the parameters Df , rmin and rmax of porous media are

defined.

3 RESULTS AND DISCUSSION

3.1 Sensitivity of the model

3.1.1 Dynamic streaming potential coupling coefficient in a single capillary

Figure 1 shows the dynamic relative streaming potential coupling coefficient C∗EK(r, ω) as a function

of frequency for a single capillary predicted Eq. (7): (a) real component and (b) imaginary component

of C∗EK(r, ω). In Eq. (7), we use representative values of r = 10 µm, Cw = 10−3 mol/L (from Eq. (4),

ζ is obtained) and three representative values Σs (0, 5×10−9 and 10×10−9 S). Note that we consider

Cw = 10−3 mol/L as it has been proven to be a pertinent value in the context of groundwater studies

(e.g., Jackson et al. 2012). The range of Σs between 0 and 10×10−9 S is commonly reported for
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[a]

[b]

Figure 1. Dynamic relative streaming potential coupling coefficient C∗
EK(r, ω) as a function of frequency for a

single capillary predicted Eq. (7) for representative values of r = 10 µm, Cw = 10−3 mol/L (from Eq. (4), ζ is

obtained) and three values Σs (0, 5×10−9 and 10×10−9S): (a) real component and (b) imaginary component

of C∗
EK(r, ω).

silica-based samples saturated by water (e.g., Revil & Glover 1998; Glover & Dery 2010). The case

with Σs = 0 S corresponds to the hypothesis of the model from Packard (1953). It is seen that the

surface conductivity has an influence on real and imaginary part of C∗EK(r, ω). When ignoring the

surface conductivity, one may overestimate the C∗EK(r, ω), especially for small capillaries and low

ionic concentration.

3.1.2 Quasi-static streaming potential coupling coefficient in porous media

As previously mentioned, we employ fractal and lognormal PSDs (see Figure 2) for pore sizes ranging

from rmin = 1 µm to rmax = 100 µm. In particular, we consider the following characteristics for the

PSD: (a) fractal with Df = 1.4; (d) fractal with Df = 1.8; (b) lognormal with rm = rmax/3 and

s = 0.1; (e) lognormal with rm = rmax/20 and s = 0.1; (c) lognormal with rm = rmax/3 and s = 0.1;

(f) lognormal with rm = rmax/3 and s = 0.4. Note that Df , rm, rmin, rmax and s can be selected with

different values.

Figure 3 shows the variation of the quasi-static streaming potential coupling coefficient C0
EK with

ionic concentration. Fig. 3 (a) is predicted from Eq. (27) for the fractal distribution with three values

of Df (1.4, 1.6, 1.8). Fig. 3 (b), (c) are predicted Eq. (19) for the lognormal distribution with three

values of rm (rmax/3, rmax/10, rmax/20 while fixing s = 0.1) and three values of s (0.1, 0.25, 04 while
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Figure 2. PSDs used in this work. We consider rmin = 1 µm and rmax = 100 µm, and illustrate: (a) fractal PSD

with Df = 1.4; (d) fractal PSD with Df = 1.8; (b) lognormal PSD with rm = rmax/3 and s = 0.1; (e) lognormal

PSD with rm = rmax/20 and s = 0.1; (c) lognormal PSD with rm = rmax/3, s = 0.1; (f) lognormal PSD with

rm = rmax/3 and s = 0.4.

fixing rm = rmax/10), respectively. The surface conductance Σs is taken as 5 × 10−9 S. Fig. 3 (a)

shows that the C0
EK from the fractal distribution is sensitive to Df and decreases with an increase of

Df at low ionic concentration Cw. When Cw is larger than a certain value, that means, the surface

conductivity is negligible, C0
EK approaches CHSEK (see black solid line) irrespective of the geometrical

properties (Df ) of the medium. The reason for the decrease of C0
EK with increasing Df is that, when

Df increases, the number of capillaries characterized by relatively small radii increases, as shown by

the shift from Fig. 2 (a) to (d). Consequently, the surface conductivity of the REV increases and, thus,

C0
EK decreases. Note that the surface conductivity of porous media is dominated by the contribution

from the smaller capillaries for the same surface conductance and electrical conductivity of water. Fig.

3 (b) shows that the C0
EK predicted from the lognormal distribution is sensitive to rm and decreases

with a decrease of rm at low ionic concentration Cw. When Cw is larger than a certain value, C0
EK

approaches CHSEK irrespective of the rm values, as discussed above (see black solid line). The decrease

of C0
EK with decreasing rm is explained in the similar way to that of Fig. 3 (a). Namely, when rm

decreases, the number of smaller radius capillaries increases as shown by the shift from Fig. 2 (b) to

(e). Consequently, the surface conductivity of the REV increases and C0
EK decreases. Fig. 3 (c) shows

that the C0
EK is much less sensitive to the lognormal standard deviation s at low ionic concentration

Cw. When Cw is larger than a certain value, C0
EK also reduces to CHSEK (see black solid line). These

results are consistent with previously published studies (e.g., Jougnot et al. 2019).
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[a]

[b]

[c]

Figure 3. Variation of the quasi-static streaming potential coupling coefficient C0
EK with ionic concentration:

(a) is predicted from Eq. (27) for the fractal distribution with three values of Df (1.4, 1.6, 1.8); (b), (c) are

predicted from Eq. (19) for the lognormal distribution with three values of rm (rmax/3, rmax/10, rmax/20 while

fixing s = 0.1) and three values of s (0.1, 0.25, 04 while fixing rm = rmax/10), respectively.

Recently, Vinogradov et al. (2021) proposed to use a rock-specific PSD directly extracted from

the petrophysical characterization of a sample. This PSD is non-monotonic and follows a form given

by three intervals:

f(r) =


B1

(
r−rmin

rmax−rmin

)m1

, for rmin ≤ r ≤ r1

constant, for r1 < r < r2

B2

(
r−rmax

rmin−rmax

)m2

, for r2 < r ≤ rmax

(30)

where B1 and B2 represent the normalisation factors of the first and third interval, respectively; 0 <

m1,m2 < ∞ (constant, unitless) are the respective skewing constants and r1 and r2 are limits of

the second interval. The limits of each interval are determined by experimental data for the PSD. For

example, for a sample of Berea sandstone reported in literature, Vinogradov et al. (2021) obtained rmin
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[a]

[b]

Figure 4. (a) A new PSD proposed by Vinogradov et al. (2021), fractal PSD (Df = 1.5) and lognormal PSD

(rm = 11 µm and s = 0.15) in the same range of radii from rmin = 5 µm to rmax = 100 µm; (b) Variation of

the quasi-static streaming potential coupling coefficient C0
EK with ionic concentration for different PSDs (Σs =

5× 10−9 S).

= 5 µm, rmin = 100 µm, B1 = 119,990, B2 = 1131, m1 = 2 and m2 = 16 and shown the corresponding

PSD by the dashed line in Fig. 4 (a). The representative PSDs for fractal (Df = 1.5) and lognormal (rm

= 11 µm and s = 0.15) in the same range of radii from rmin = 5 µm to rmax = 100 µm are also shown

in Fig. 4 (a). With three different PSDs shown in Fig. 4 (a), we can predict the variation of C0
EK with

ionic concentration using the same approach as previously mentioned (see Fig. 4 (b) with Σs = 5×10−9

S). Note that we obtained C0
EK numerically for a new PSD proposed by Vinogradov et al. (2021). The

HS equation is also used for comparison in Fig. 4 (b). It is seen that the non-monotonic PSD proposed

by Vinogradov et al. (2021) is quite relevant to the lognormal PSD that is later shown to be pertinent

for both consolidated samples (e.g., rocks) or unconsolidated ones (e.g., sand packs). Therefore, the

non-monotonic PSD proposed by Vinogradov et al. (2021) can provide realistic description of porous

rocks and can be applied to study transport phenomena in porous media.

3.1.3 Dynamic streaming potential coupling coefficient in porous media

Figure 5 shows the dynamic relative streaming potential coupling coefficient as a function of frequency

predicted from the lognormal distribution, given by Eq. (21) taking rmin = 1 µm, rmax = 100 µm, and
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considering three representative values of rm (rmax/3, rmax/10, rmax/20) and s = 0.1. We illustrate

the (a) real component, (b) imaginary component and (c) phase of Crel,∗EK (ω). For comparison, the

black line represents Packard (1953) prediction given by Eq. (8) for a single capillary of radius r =

10 µm. It is observed that the general behavior of Crel,∗EK (ω) predicted from Eq. (21) for porous media

and that predicted from Eq. (8) for a single capillary are similar. The noticeable characteristic of the

curves is that the transition frequency shifts to higher frequency when rm decreases. This relationship

is explained based on Eq. (12) for the transition frequency ωt. Namely, when rm decreases, the number

of capillaries with smaller radii increases, as mentioned earlier. Consequently, the characteristic radius

r̃ decreases and the transition frequency ωt increases with decreasing rm. It is seen that the magnitude

of the Crel,∗EK (ω) is stable at low frequencies and decrease for frequencies greater than the transition

frequency. The reason is that when the frequency increases, the inertia regime starts to prevail and the

fluid movement starts to be increasingly out of phase with the applied oscillatory pressure, thus reduc-

ing the fluid velocity within the pore (e.g., Zhou & Sheng 1989). Therefore, the Crel,∗EK (ω) decreases.

Fig. 5 (a) and (b) shows that the real and imaginary parts of Crel,∗EK (ω) follow the similar behaviors for

different values of rm and decrease at the same rate at high frequencies. This explains the 45o phase

angle found at high frequencies as shown in Fig. 5 (c) and that is in agreement with Reppert et al.

(2001).

Figure 6 shows the dynamic relative streaming potential coupling coefficient as a function of

frequency predicted from the lognormal distribution with rmin = 1 µm, rmax = 100 µm for three

different values of s (0.1, 0.25, 0.4) and a representative of rm = rmax/10: (a) real component and

(b) imaginary component of Crel,∗EK (ω). Again, the black solid line is predicted from Packard (1953)

given by Eq. (8) for a single capillary of radius r = rmax/10 = 10 µm for comparison. We note that

the observed behaviors in Fig. 6 are similar to Fig. 5. The coefficient Crel,∗EK (ω) is sensitive to s and

ωt decreases with an increase of s for a given value of rm. The reason is that when s increases, r̃

increases (see shift from Fig. 2 (c) to (f)). Consequently, ωt decreases with increasing s.

Figure 7 shows the dynamic relative streaming potential coupling coefficient as a function of

frequency predicted from the fractal distribution, given by Eq. (29) taking rmin = 1 µm, rmax =

100 µm for three representative values of Df (1.4, 1.6, 1.8): (a) real component and (b) imaginary

component of Crel,∗EK (ω). The black solid line is predicted from Packard (1953) given by Eq. (8) for

a single capillary of radius r = 10 µm for comparison. It is observed that, regardless of Df , the real

component of the Crel,∗EK (ω) is rather stable at low frequencies and decrease for frequencies greater

than a given threshold value. It is seen that Eq. (29) can reproduce the main trend predicted by the

model of Packard (1953) that is valid for a single capillary at low frequency. However, the behavior

diverges for higher frequencies. We also observe that the transition frequency ωt for porous media
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[a]

[b]

[c]

Figure 5. The dynamic relative streaming potential coupling coefficient as a function of frequency predicted

from the lognormal distribution - Eq. (21) with rmin = 1 µm, rmax = 100 µm for three representative values of

rm (rmax/3, rmax/10, rmax/20) and a representative of s = 0.1: (a) real component, (b) imaginary component

and (c) phase (in degree) of Crel,∗
EK (ω). The black line is predicted from Packard (1953) given by Eq. (8) for a

single capillary of radius r = 10 µm for comparison.

moves to higher frequencies with an increase ofDf . The reason for this is that whenDf increases, the

number of capillaries with small radius increases. Consequently, the characteristic radius r̃ decreases

and the transition frequency ωt increases with increasing Df .

3.1.4 Comparison with published data

Figure 8 shows the variation of the magnitude of C∗EK(ω) as a function of frequency measured by

Zhu & Toksoz (2013) for a Berea sandstone sample (permeability k = 450×10−15 m2 and porosity

φ = 0.23) saturated by different pore water conductivities. The proposed model with lognormal and

fractal distributions is used to explain the experimental data (see solid lines in Fig. 8 (a) and (b),

respectively). As reported by Zhu & Toksoz (2013), we consider the values of C0
EK are 0.3×10−6,
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[a]

[b]

Figure 6. The dynamic relative streaming potential coupling coefficient as a function of frequency predicted

from the lognormal distribution with rmin = 1 µm, rmax = 100 µm for three different values of s (0.1, 0.25,

0.4) and a representative of rm = rmax/10: (a) real component and (b) imaginary component of Crel,∗
EK (ω). The

black line is predicted from Packard (1953) given by Eq. (8) for a single capillary of radius r = rmax/10 for

comparison.

0.15×10−6, 0.065×10−6, 0.035×10−6 and 0.024×10−6 V/Pa for 0.012, 0.048, 0.095, 0.18 and 0.32

S/m, respectively. From Eq. (21) and Eq. (29), we can obtain Crel,∗EK (ω) with fitting parameters and

therefore C∗EK(ω). Note that, due to numerical constraints associated with the integrations indicated

by Eq. (21) and Eq. (29), we do not intent here to perform an exhaustive inversion of the parameters of

the proposed model from experimental datasets. Our intention is to show that the proposed approach

is capable of reproducing experimental results and, thus, we empirically search for the parameters that

provide a relatively good fit. For the lognormal PSD, we found that the parameters rm = 5.8 µm, s =

0.1, rmin = 0.13 µm and rmax = 27 µm provide a good fit. For the fractal PSD, a good fit is obtained

for Df = 1.5, rmin = 0.13 µm and rmax = 27 µm. It is seen that the proposed model using both

distributions predicts very well the experimental data. The root mean square deviation (RMSD) for

the lognormal and fractal distributions are 1.15×10−9 and 2.23×10−9 V/Pa. Therefore, the lognormal

distribution provides a slightly better result than the fractal distribution.

Figure 9 shows the variation of the magnitude ofCrel,∗EK (ω) as a function of frequency measured by

Peng et al. (2020) for a sandstone sample with φ = 0.0390 and k = 10.1 mD. The proposed model with

the lognormal and fractal distributions is also used to reproduce experimental data. For the lognormal

PSD, the data is fitted by taking rm = 1.4 µm, s = 0.1, rmin = 24 nm and rmax = 4.7 µm. For the
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[a]

[b]

Figure 7. The dynamic relative streaming potential coupling coefficient as a function of frequency predicted

from the fractal distribution - Eq. (29) for rmin = 1 µm, rmax = 100 µm and three values of Df (1.4, 1.6,

1.8): (a) real component and (b) imaginary component of the Crel,∗
EK (ω). The black solid line is predicted from

Packard (1953) given by Eq. (8) for a single capillary of radius r = rmax/10 for comparison.

fractal PSD, we takeDf = 1.6, rmin = 24 nm and rmax = 4.7 µm. We observe that the proposed model

using the lognormal and fractal PSDs can reproduce experimental data reported by Peng et al. (2020).

It seems that, in this case, the fractal PSD provides a slightly better prediction than the lognormal PSD

(RMSD values for the lognormal and fractal PSDs are 0.022 and 0.003). At high frequency, as seen

in Fig. 9 and later figure, the magnitude of Crel,∗EK for the lognormal PSD decreases with increasing

frequency at a higher rate than that for the fractal PSD.

Note that rmax of porous media can be predicted from permeability using an expression suggested

by Cai & Yu (2010)

rmax =
1

2

√
32τk

(4−Df )(1− φ)

(2−Df )φ
, (31)

where τ is the tortuousity of porous media which can be estimated using τ =
√

1− 2.02ln(φ) given

by Peng et al. (2020). From Eq. (31), rmax is estimated to be 15 µm and 5.7 µm for the samples

reported by Zhu & Toksoz (2013) and Peng et al. (2020), respectively. Those values are reasonably

good agreement with ones we obtained when fitting the data with our models (27 µm and 4.7 µm,

respectively).

Figure 10 shows the variation of the magnitude of Crel,∗EK (ω) as a function of frequency measured

by Wang et al. (2015b) for a sandstone sample (φ = 0.302 and k = 1435 mD) with an error bar of
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[a]

[b]

Figure 8. Comparison between the amplitude of C∗
EK as a function of frequency (symbols) measured by Zhu

& Toksoz (2013) and the model predictions (solid lines): (a) lognormal PSD with the best parameters of rm =

5.8 µm, s = 0.1, rmin = 0.13 µm and rmax = 27 µm; (b) fractal PSD with the fitting parameters of Df = 1.5,

rmin = 0.13 µm and rmax = 27 µm.

Figure 9. Comparison between the amplitude of Crel,∗
EK as a function of frequency for a sandstone sample

measured by Peng et al. (2020) and the model predictions: (a) lognormal PSD with fitting parameters of rm =

1.4 µm, s = 0.1, rmin = 24 nm and rmax = 4.7 µm; (b) fractal PSD with fitting parameters of Df = 1.6, rmin =

24 nm and rmax = 4.7 µm.



Dynamic streaming potential coupling coefficient in porous media with different pore size distributions 21

Figure 10. Comparison between the amplitude of Crel,∗
EK as a function of frequency for a sandstone sample

measured by Wang et al. (2015b) and the model prediction using the lognormal PSD with fitting parameters of

rm = 127 µm, s = 0.1, rmin = 5 µm and rmax = 700 µm.

approximately ±10% that is deduced from Fig. 4 of Wang et al. (2015b). The proposed model with

the lognormal PSD is used to reproduce experimental data by taking fitting parameters of rm = 127

µm, s = 0.1, rmin = 5 µm and rmax = 700 µm. It is seen that the proposed model using the lognormal

PSD can reproduce the main trend of experimental data. For simplicity, we do not show the prediction

from the fractal PSD, as it can not match the behavior of measured data. Note that rm = 127 µm is

comparable to the effective pore radius of 358 µm of the sample as reported by Wang et al. (2015b).

Figure 11 shows the variation of Crel,∗EK (ω) as a function of the frequency ω measured by Glover

et al. (2012a) for Ottawa sand with modal grain radius of 235 µm saturated by 10−3 mol/L NaCl

electrolyte as shown by symbols: (a) magnitude, (b) real part, and (c) imaginary part of Crel,∗EK (ω). The

proposed model with the lognormal and fractal distributions is used to reproduce the experimental

data. For the lognormal distribution, the fitting parameters are rm = 55 µm, s = 0.1, rmin = 1.05 µm

and rmax = 105 µm. For the fractal distribution, the fitting parameters are Df = 1.1, rmin = 1.05

µm and rmax = 105 µm. Note that rm = 55 µm is quite close to the effective pore radius rp = 67

µm reported by Glover et al. (2012a) for the Ottawa sand. It is seen that the proposed model with

the lognormal PSD provides a very good match with experimental data. However, the proposed model

with the fractal PSD is only in good agreement with data at low frequencies. It indicates that the fractal

PSD may not be not pertinent for the Ottawa sand, which exhibits a narrow PSD.

Previous works in the literature provide with models for the dynamic streaming potential coupling

coefficient in porous media. For example, in its pioneering work, Pride (1994) provided a model for

the dynamic streaming potential coupling coefficient in porous media as

Crel,∗EK (ω) =

[
1− im

∗

4

ω

ωt

{
1− λd

Λ

}2{
1− i3/2λd

√
ωρw
ηw

}2
]−1/2

(32)
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[a]

[b]

[c]

Figure 11. The dynamic streaming potential coefficient as a function of frequency. Experimental data is obtained

from Glover et al. (2012a) for Ottawa sand (φ = 0.32, k = 1.19×10−10m2) and the predictions are from the

proposed model, the models by Pride (1994) and Walker & Glover (2010): (a) Magnitude of the Crel
EK(ω), (b)

real component Crel
EK(ω), and (c) imaginary component of Crel

EK(ω).

where

ωt =
φηw
τkρw

(33)

and

m∗ =
φΛ2

τk
. (34)

From Eq. (32) to Eq. (34), λd (m) is the Debye length and Λ is the characteristic length scale.
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The parameter ωt (rad/s) is the transition frequency. In most geological media, the condition that λd is

much smaller than Λ is normally satisfied (Jougnot et al. 2019). Therefore, a significant simplification

can be made on Eq. (32) as performed by Walker & Glover (2010):

Crel,∗EK (ω) =

[
1− im

∗

4

ω

ωt

]−1/2

. (35)

As reported by Glover et al. (2012a) for the Ottawa sand, we have τ = 1.52, φ = 0.32, k =

1.19×10−10m2. The Debye length is calculated to be λd = 9.66 nm for 10−3 mol/L NaCl electrolyte.

The characteristic length scale Λ is found to be 62 µm by fitting. It is seen that the models given by

Pride (1994) and Walker & Glover (2010) also provide a very good match with experimental data

with the suitable fitting parameter Λ. However, it is important to remark that our proposed approach is

designed to allow for virtually any PSD. We only analyze two cases (fractal and lognormal PSDs) in

this work. However, our approach permits to compute the response for the double-lognormal PSD, for

example, a case that can not be explored using the models given by Pride (1994) or Walker & Glover

(2010), which are restricted to only one characteristic length scale Λ.

4 CONCLUSIONS

We have proposed a physically-based model for the frequency dependence of the streaming potential

coupling coefficient CEK(ω) by conceptualizing a porous medium as a bundle of tortuous capillar-

ies and using the lognormal and fractal PSDs. The surface electrical conductivity was also taken into

account in the proposed approach. It is seen that CEK(ω) is a complex function depending on the

properties of water (η, σw, ε), mineral-water interfaces (ζ, Σs), microstructural parameters of porous

media (Df , rmin, rmax for the fractal PSD and rm, s, rmin, rmax for the lognormal PSD) and fre-

quency. The results also show that the PSD does not have effect on the quasi-static streaming potential

coupling coefficient as reported in the literature when the surface conductivity is negligible. Parame-

ters influencing CEK(ω) are investigated and explained based on the PSD and the transition angular

frequency. The proposed model is then compared with published data and other published models. We

found that the proposed model using the lognormal PSD is in very good agreement with the experi-

mental data and previous models in the literature. The proposed model using the fractal PSD provide

a good match with published data for sandstone samples but not for the sand samples. The reason

may be that the fractal PSD is not pertinent for samples with narrow PSDs. Our results suggest that

the PSD of porous media plays an crucial role in the dynamic behaviour of CEK(ω). Finally, we

remark that the proposed approach works for virtually any PSD, including ones that can be directly

measured from rock characterization. This particular feature makes this model more versatile than
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previous models available in literature. A model for CEK(ω) under unsaturated conditions using the

proposed technique will be performed in our future work.

ACKNOWLEDGMENTS

This research is funded by Vietnam National Foundation for Science and Technology Development

(NAFOSTED) under grant number 103.99-2019.316.

Data Availability Statement

The data underlying this article will be shared on reasonable request to the corresponding author.

REFERENCES

Birdi, K. S., 2008. Handbook of Surface and Colloid Chemistry, Third Edition, CRC Press.

Butler, K. E., 1996. Seismoelectric effects of electrokinetic origin, PhD thesis, University of British Columbia.

Cai, J. & Yu, B., 2010. Prediction of maximum pore size of porous media based on fractal geometry, Fractals,

18, 417–423.

Cherubini, A., Garcia, B., Cerepi, A., & Revil, A., 2018. Streaming potential coupling coefficient and transport

properties of unsaturated carbonate rocks, Vadose Zone Journal, 17(1), 180030.

Chu, Z., Zhou, G., & Li, R., 2020. Enhanced fractal capillary bundle model for effective thermal conductivity

of composite-porous geomaterials, International Communications in Heat and Mass Transfer, 113, 104527.

Dupuis, J. C., Butler, K. E., Kepic, A. W., & Harris, B. D., 2009. Anatomy of a seismoelectric conversion:

Measurements and conceptual modeling in boreholes penetrating a sandy aquifer, Journal of Geophysical

Research: Solid Earth, 114(B10).

Frenkel, J., 1944. On the theory of seismic and seismoelectric phenomena in a moist soil, Journal of Physics

(in Russian, pp. 230–241.

Garambois, S. & Dietrich, M., 2001. Seismoelectric wave conversions in porous media: field measurements

and transfer function analysis, Geophysics, 66(2), 1417–1430.

Ghanbarian, B., 2020. Applications of critical path analysis to uniform grain packings with narrow conduc-

tance distributions: Ii. water relative permeability, Advances in Water Resources, 137, 103524.

Glover, P., Walker, E., Ruel, J., & Tardif, E., 2012a. Frequency-dependent streaming potential of porous

media-part 2: Experimental measurement of unconsolidated materials, International Journal of Geophysics,

2012.

Glover, P. W. J. & Dery, N., 2010. Streaming potential coupling coefficient of quartz glass bead packs: Depen-

dence on grain diameter, pore size, and pore throat radius, Geophysics, 75(6), F225–F241.

Glover, P. W. J., Walker, E., & Jackson, M., 2012b. Streaming-potential coefficient of reservoir rock: A

theoretical model, Geophysics, 77(2)(2), D17–D43.



Dynamic streaming potential coupling coefficient in porous media with different pore size distributions 25

Guarracino, L. & Jougnot, D., 2018. A physically based analytical model to describe effective excess charge

for streaming potential generation in water saturated porous media, Journal of Geophysical Research: Solid

Earth, 123(1), 52–65.

Hu, H., Guan, W., & Harris, J. M., 2007. Theoretical simulation of electroacoustic borehole logging in a

fluid-saturated porous formation, The Journal of the Acoustical Society of America, 122(1), 135–145.

Jaafar, M. Z., Vinogradov, J., & Jackson, M. D., 2009. Measurement of streaming potential coupling co-

efficient in sandstones saturated with high salinity nacl brine, Geophysical Research Letters, 36(L21306),

doi:10.1029/2009GL040549.

Jackson, M. & Leinov, E., 2012. On the validity of the thin and thick double-layer assumptions when calcu-

lating streaming currents in porous media, International Journal of Geophysics, 2012.

Jackson, M., Butler, A., & Vinogradov, J., 2012. Measurements of spontaneous potential in chalk with applica-

tion to aquifer characterization in the southern uk, Quarterly Journal of Engineering Geology Hydrogeology,

45(4), 457–471.

Jackson, M. D., 2010. Multiphase electrokinetic coupling: Insights into the impact of fluid and charge dis-

tribution at the pore scale from a bundle of capillary tubes model, Journal of Geophysical Research: Solid

Earth, 115(B7).

Jardani, A., Revil, A., Boleve, A., Crespy, A., Dupont, J.-P., Barrash, W., & Malama, B., 2007. Tomography

of the darcy velocity from self-potential measurements, Geophysical Research Letters, 34(24).

Jougnot, D. & Solazzi, S. G., 2021. Predicting the frequency-dependent effective excess charge density: A

new up-scaling approach for seismoelectric modelling, Geophysics, 86(3), 1–10.

Jougnot, D., Linde, N., Revil, A., & Doussan, C., 2012. Derivation of soil-specific streaming potential electrical

parameters from hydrodynamic characteristics of partially saturated soils, Vadose Zone Journal, 11(1), 272–

286.

Jougnot, D., Rubino, J. G., Carbajal, M. R., Linde, N., & Holliger, K., 2013. Seismoelectric effects due to

mesoscopic heterogeneities, Geophysical Research Letters, 40(10), 2033–2037.

Jougnot, D., Mendieta, A., Leroy, P., & Maineult, A., 2019. Exploring the effect of the pore size distribution on

the streaming potential generation in saturated porous media, insight from pore network simulations, Journal

of Geophysical Research: Solid Earth, 124(6), 5315–5335.

Jougnot, D., Roubinet, D., Guarracino, L., & Maineult, A., 2020. Modeling Streaming Potential in Porous and

Fractured Media, Description and Benefits of the Effective Excess Charge Density Approach, In: Biswas A.,

Sharma S. (eds) Advances in Modeling and Interpretation in Near Surface Geophysics. Springer Geophysics.

Springer, Cham.

Jouniaux, L. & Ishido, T., 2012. Electrokinetics in earth sciences: A tutorial, International Journal of Geo-

physics, 2012, Article ID 286107, 16 pages, doi:10.1155/2012/286107.

Jouniaux, L. & Zyserman, F., 2016. A review on electrokinetically induced seismo-electrics, electro-seismics,

and seismo-magnetics for earth sciences, Solid Earth, 7(1), 249–284.

Kormiltsev, V. V., Ratushnyak, A. N., & Shapiro, V. A., 1998. Three-dimensional modeling of electric and



26 L.D.Thanh, D.Jougnot, S.G.Solazzi, N.V.Nghia, P.V.Do

magnetic fields induced by the fluid flow movement in porous media, Physics of the Earth and Planetary

Interiors, 105(3), 109 – 118.

Kosugi, K., 1994. Three-parameter lognormal distribution model for soil water retention, Water Resources

Research, 30(4), 891–901.

Mikhailov, O. V., Queen, J., & Toksz, M. N., 2000. Using borehole electroseismic measurements to detect and

characterize fractured (permeable) zones, GEOPHYSICS, 65(4), 1098–1112.

Morgan, F. D., Williams, E. R., & Madden, T. R., 1989. Streaming potential properties of westerly granite

with applications, Journal of Geophysical Research, 94(B9), 12.449–12.461.

Nghia A, N. V., Jougnot, D., Thanh, L. D., Van Do, P., Thuy, T. T. C., Hue, D. T., & Hung, N. M., 2021.

Predicting water flow in fully and partially saturated porous media: a new fractal-based permeability model,

Hydrogeology Journal, 29, 20172031.

Niu, Q., Fratta, D., & Wang, Y.-H., 2015. The use of electrical conductivity measurements in the prediction of

hydraulic conductivity of unsaturated soils, Journal of Hydrology, 522, 475 – 487.

Packard, R. G., 1953. Streaming potentials across glass capillaries for sinusoidal pressure, The Journal of

Chemical Physics, 21(2), 303–307.

Peng, R., Di, B., Glover, P. W. J., Wei, J., Lorinczi, P., Liu, Z., & Li, H., 2020. Seismo-electric conversion in

shale: experiment and analytical modelling, Geophysical Journal International, 223(2), 725–745.

Pride, S., 1994. Governing equations for the coupled electromagnetics and acoustics of porous media, Physical

Review B, 50(21), 15678–15696.

Pride, S. R. & Garambois, S., 2005. Electroseismic wave theory of frenkel and more recent developments,

Journal of Engineering Mechanics, 131(9), 898–907.

Pride, S. R. & Morgan, F. D., 1991. Electrokinetic dissipation induced by seismic waves, Geophysics, 56(7),

914–925.

Rembert, F., Jougnot, D., & Guarracino, L., 2020. A fractal model for the electrical conductivity of water-

saturated porous media during mineral precipitation-dissolution processes, Advances in Water Resources,

145, 103742.

Reppert, P. M., Morgan, F. D., Lesmes, D. P., & Jouniaux, L., 2001. Frequency-dependent streaming potentials,

Journal of Colloid and Interface Science, 234(1), 194 – 203.

Revil, A. & Glover, P. W. J., 1998. Nature of surface electrical conductivity in natural sands, sandstones, and

clays, Geophysical Research Letters, 25(5), 691–694.

Revil, A. & Jardani, A., 2010. Stochastic inversion of permeability and dispersivities from time lapse self-

potential measurements: A controlled sandbox study, Geophysical Research Letters, 37(11).

Revil, A. & Jardani, A., 2013. The Self-Potential Method: Theory and Applications in Environmental Geo-

sciences, Cambridge University Press.

Revil, A. & Leroy, P., 2004. Constitutive equations for ionic transport in porous shales, Journal of Geophysical

Research: Solid Earth, 109(B3), B03208.

Revil, A. & Mahardika, H., 2013. Coupled hydromechanical and electromagnetic disturbances in unsaturated



Dynamic streaming potential coupling coefficient in porous media with different pore size distributions 27

porous materials, Water Resources Research, 49, 744–766.

Revil, A., Pezard, P. A., & Glover, P. W. J., 1999. Streaming potential in porous media 1. theory of the zeta

potential, Journal of Geophysical Research, 104(B9), 20021–20031.

Revil, A., Linde, N., Cerepi, A., Jougnot, D., Matthi, S., & Finsterle, S., 2007. Electrokinetic coupling in

unsaturated porous media, Journal of Colloid and Interface Science, 313(1), 315 – 327.

Revil, A., Jardani, A., Sava, P., & Haas, A., 2015. The Seismoelectric Method: Theory and Applications, John

Wiley and Sons.

Rice, C. & Whitehead, R., 1965. Electrokinetic flow in a narrow cylindrical capillary, J. Phys. Chem., 69(11),

4017–4024.

Shi, P., Guan, W., & Hu, H., 2018. Dependence of dynamic electrokinetic-coupling-coefficient on the electric

double layer thickness of fluid-filled porous formations, Annals of Geophysics, 61(3), SE340.
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