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Abstract

The role of characteristic functions in finance has been strongly amplified by the develop-

ment of the general option pricing formula by Carr and Madan. As these functions are defined

and operating in the complex plane, they potentially encompass a few well known numerical

issues due to ”branching”. A number of elegant publications have emerged tackling these

effects specifically for the Heston model. For the latter however we have two specifications

for the characteristic function as they are the solutions to a Riccati equation. In this article

we put the i’s and cross the t’s by formally pointing out the properties of and relations be-

tween both versions. For the first specification we show that for nearly any parameter choice,

instabilities will occur for large enough maturities. We subsequently establish - under an addi-

tional parameter restriction - the existence of a “threshold” maturity from which the complex

operations become a spoil-sport. For the second specification of the characteristic function it

is proved that stability is guaranteed under the full dimensional and unrestricted parameter

space. We blend the theoretical results with a few examples.
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1 Introduction

Since its inception in 1993, the Heston stochastic volatility model [5] has received a growing at-
tention amongst practitioners and academics. It relaxes the constant volatility assumption in the
classical Black-Scholes model by incorporating an instantaneous short term variance process. As
such, a decent (though not all) number of smile and skew patterns can be built into volatility
surfaces by a relatively restricted number of parameters. Several (extended) Monte-Carlo schemes
and finite-difference techniques are available to perform exotic option pricing. Many interesting
extensions have been proposed recently, e.g. by Bühler [2] within the context of consistent frame-
works for variance modeling.
In its basic form we can rely on a closed formula for the characteristic function, on which the main
part of this story is related to. The latter was originally proposed to be used twice in a numerical
integration scheme. The Fast Fourier approach by Carr & Madan [3] literally speeded up and
extended its practical use by its ability to facilitate the calibration of plain vanilla option prices.

2 Heston Model Revisited

Let us shortly formalise the model, mainly for subsequent notation purposes. The dynamics of the
stock price process S = {St, t ≥ 0} are very similar to the Black-Scholes setting.

dSt

St

= (r − q)dt +
√

vtdWt, S0 ≥ 0;

The instantaneous variance parameter is modeled as a mean-reverting square root stochastic pro-
cess (also called CIR process), described by the following SDE:

dvt = κ(η − vt)dt + λ
√

vtdW̃t, v0 = σ2
0 ≥ 0,

where W = {Wt, t ≥ 0} and W̃ = {W̃t, t ≥ 0} are two correlated standard Brownian motions
such that Cov[dWtdW̃t] = ρdt. The involved parameters are: initial volatility, σ0 > 0, the mean
reversion rate κ > 0, the long run variance η > 0, the volatility of the variance λ > 0 and the
correlation −1 < ρ < 1. The variance process is always positive and cannot reach zero if 2κη > λ2.
The latter is often referred to as the Feller condition. In absence of the stochastic factor, we have
an exponential attraction to long run variance, the equilibrium point being vt = η. Typically, the
correlation ρ is negative, pointing to the fact that a down-move in the stock price is correlated
with an up-move in the volatility. It is worthwhile mentioning that the variance process vt is
Noncentrally Chi-Square distributed and the volatility process

√
vt is Rayleigh distributed ([8]).

For the log-stock price distribution, we return to the characteristic function

φ(u, t) := E[exp(iu log(St))|S0, σ
2
0 ],

where i is the imaginary unit.

3 The Little Trap

Browsing through the literature the attentive reader will notice that there are two formulas for
the Heston characteristic function around. The first one can be found e.g. in the original paper of
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Heston [5] or in Jäckel & Kahl [6] and looks like:

φ1(u, t) = exp(iu(log S0 + (r − q)t))

× exp(ηκλ−2((κ − ρλiu + d)t − 2 log((1 − g1e
dt)/(1 − g1))))

× exp(σ2
0λ−2(κ − ρλiu + d)(1 − edt)/(1 − g1e

dt)), (1)

where:

d =
√

(ρλui − κ)2 + λ2(iu + u2),

g1 = (κ − ρλiu + d)/(κ − ρλiu − d).

The second one is e.g. used in Schoutens-Simons-Tistaert [9] or in Gatheral [4] and is given by:

φ2(u, t) = exp(iu(log S0 + (r − q)t))

× exp(ηκλ−2((κ − ρλiu − d)t − 2 log((1 − g2e
−dt)/(1 − g2))))

× exp(σ2
0λ−2(κ − ρλiu − d)(1 − e−dt)/(1 − g2e

−dt)),

where d is as above and:

g2 = (κ − ρλiu − d)/(κ − ρλiu + d) =
1

g1
. (2)

Looking closely you’ll notice that the minus and plus signs in front of the d are flipped around.
At a first glance one might think that one of them is wrong (a typo), but in fact they are equivalent!
To see this, just observe that:

d t − 2 log
1 − g1e

dt

1 − g1
= d t − 2 d t − 2 log

1 − e−dt/g1

1 − 1/g1
= −d t − 2 log

1 − g2e
dt

1 − g2

and:

(κ − ρλiu + d)
1 − edt

1 − g1edt
=

κ − ρλiu + d

g1

1 − e−dt

1 − e−dt/g1
= (κ − ρλiu − d)

1 − e−dt

1 − g2e−dt
.

The origin of the two representations for the Heston characteristic function lies in the fact that
the complex root d has two possible values and the second value is exactly minus the first value.
The function z2 maps each complex number z to a well-defined number z2. Its inverse function
however,

√
z maps e.g. the value −9 to 3i and −3i. While a unique principal value can be chosen for

such functions (in this case, the principal square root 3i), the choices cannot be made continuous
over the whole complex plane. Instead, lines of discontinuity occur. A branch cut is a curve in
the complex plane across which a function is discontinuous. Its ends can be possibly open, closed,
or half-open. The principal square root of a number is returned by most software packages. Not
only the square root function has branch cuts, but many more other functions, like the logarithmic
function. It is precisely the branch cut of this logarithmic function which is the axis of evil in this
story.
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Figure 1: Branch cut: square root function (left) and logarithmic function (right)

Figure 1 represents Im (
√

x + yi) (left) and Im (log(x + yi)) (right). The imaginary part of
the complex square root function has, just like the imaginary part of the logarithmic function, a
branch cut along the negative real axis.

Note that because of this discontinuous nature of the square root function in the complex plane,
the law

√
z1z2 =

√
z1
√

z2 for complex numbers z1 and z2 is in general not true. Wrongly assuming
this law underlies several faulty ”proofs”, for instance the following one showing that −1 = 1:

−1 = i · i =
√
−1

√
−1 =

√
(−1) · (−1) =

√
1 = 1

Projecting this intermezzo back to the Heston situation, we want to highlight the relevance
of the distinction between φ1 and φ2. It has been reported recently by Kahl & Jäckel [6] that
numerical problems occur when doing vanilla pricing using Fourier techniques with characteristic
function φ1(u, t) (and this is the form usually employed in practice), whereas our practical experi-
ence showed us that using φ2(u, t) always seemed to lead to a stable procedure. This observation
is based on the fact that the main value of the complex square root is taken (slicing the com-
plex plane at the negative real axis, this means halving the argument of d). Unfortunately, by
using that main value φ1(u, t) crosses the negative real axis when increasing u and hence leads to
a discontinuous function causing all the numerical trouble, including potential mispricings. One
could choose the second root of d in equation (11) of [6] for the particular solution of the Riccati
equation, eventually leading to φ2 instead of φ1. A posteriori one can of course argue directly that
choosing the second root of d in φ1 gives φ2.
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The resulting mispricings under φ1(u, t) are not that obvious to notice. If one prices and back
tests on short or middle term maturities only, one might not detect the problem and would be
tempted to blindly use the technique at longer maturities. However - as we will prove later on
- using the representation φ2 together with the main value of the square root leads to a stable
procedure, as these discontinuities do not occur. Intuitively, changing the sign of both the real and
imaginary part of d does the job and the representation φ2 takes care that the overall value of φ
is not modified by this operation. Note that choosing the second instead of the main root of the
complex value d in φ1 is equivalent to choosing the main value of the root d in φ2. In particular,
in this way one can circumvent counting the number of crossings of the half-axis as proposed by
Jäckel & Kahl [6].

In Section 4, we will illustrate by real world examples the numerical problems and correspond-
ing “mispricings” when applying φ1 together with the main value of d in the Carr-Madan formula
for option pricing. We will show that for nearly any choice of parameters in the Heston model,
these instabilities occur for large enough maturity. Under an additional restriction on the param-
eter space, we calculate the “threshold” maturity on from which numerical problems occur and
underpin the result by a numerical illustration.
In Section 5, we prove that - under the full dimensional and unrestricted parameter space - these
problems do not occur at all when using φ2.
Finally, we would like to note that in independent parallel research, Lord and Kahl [7] recently
used a different technique to prove the stability of φ2 under certain parameter restrictions.

4 Threshold maturity for φ1(u, t)

We start with a given market situation and take as first example market prices of 41 European
vanilla calls on the Eurostoxx 50 on the 5th of April 2005. We deliberately only took the short
maturities into account. The prices are given by the o-signs in Figure 2 and correspond to matu-
rities of T = 0.200, 0.449, 0.699, 1.696 years. We price vanillas using the Carr-Madan FFT pricing
technique [3].

The basic formula for the price C(K,T ) of a European call option with strike K and time to
maturity T is given by:

C(K,T ) =
exp(−α log(K))

π

∫ +∞

0

exp(−iv log(K))̺(v)dv, (3)

where:

̺(v) =
exp(−rT )E[exp(i(v − (α + 1)i) log(ST ))]

α2 + α − v2 + i(2α + 1)v
(4)

=
exp(−rT )φ(v − (α + 1)i, T )

α2 + α − v2 + i(2α + 1)v
, (5)

where α is a positive constant such that the (1 + α)th moment of the stock price exists and φ is
the characteristic function of the log stock price (at time T ). Using Fast Fourier Transforms, one
can compute within a second the complete option surface on an ordinary computer.
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Figure 2: Heston calibration

Alternatively, one could also use the generic formula on the basis quote in the original Heston
paper:

C(K,T ) =
1

2
(S0 − exp(−rT )K) +

1

π

∫
∞

0

(exp(rT )f1 − Kf2)du,

where f1 and f2 are:

f1 = Re

(
exp(−iu log K)φ(u − i;T )

iu exp(rT )

)
and f2 = Re

(
exp(−iu log K)φ(u;T )

iu

)
, (6)

and φ(u;T ) is the characteristic function of the logarithm of the stock price process at time T .
Calibrating, by minimizing the difference between market and model implied vol in a least

squared sense gives for both φ1 and φ2 the following set of optimal parameters: v0 = 0.0175,
κ = 1.5768, η = 0.0398, λ = 0.5751 and ρ = −0.5711. We remark that the Feller condition is not
satisfied in this example.

Suppose we now price ATM call options with maturities ranging from 1 to 15 years (with
steps of 1 year). This leads to a serious price difference as can be seen from Figure 3, where the
corresponding call prices are given. Also in Figure 3 the implied volatilities for all these ATM
options are graphed for φ1(u, t) (red curve) and φ2(u, t) (blue curve).

The ATM prices (as percentages of the spot) for maturities up to 15 years are given in Table
1 (r = 2.5% and q = 0).

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H1 7.27 11.73 15.48 18.77 21.70 23.90 25.76 27.49 28.83 29.83 30.68 31.36 31.57 31.85 32.57
H2 7.27 11.73 15.48 18.77 21.75 24.50 27.05 29.44 31.70 33.84 35.88 37.82 39.68 41.46 43.17
MC 7.30 11.79 15.54 18.84 21.83 24.58 27.13 29.52 31.79 33.93 35.98 37.91 39.77 41.56 43.28

Table 1: ATM prices

Which one to trust? In order to get a first rough idea, we calculated the Monte-Carlo estimate
of the ATM prices using a million simulation paths based on a Milstein scheme with an absorbing
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Figure 3: Heston ATM prices and implied volatilities 1 ≤ T ≤ 15.

variance barrier. As the Feller condition in this example is not satisfied, one should apply the exact
procedure by Broadie and Kaya ([1]) to improve the accuracy. Pricing with φ2(u, t) gives almost
no error; in Figure 4 the error for φ1(u, t) is visualised.

As already mentioned above, the numerical problem when using φ1(u;T ) arises from the dis-
continuity of ̺(v) in (4) or correspondingly from f1 and f2 in (6). Following the same approach
as [6], Figure 5 depicts f1 and f2, where the red curve corresponds to φ1(u;T ) and the blue one
φ2(u;T ). This discontinuity is caused by the discontinuity of φ1(u;T ) as a function of u. From (1)
one detects easily that the problem occurs in the function:

G1(u) =
1 − g1(u)ed(u)t

1 − g1(u)
, (7)

which repeatedly crosses the negative real axis as opposed to the function:

G2(u) =
1 − g2(u)e−d(u)t

1 − g2(u)
(8)

occurring in φ2(u; t). In the characteristic functions, the logarithm is taken and recall that the
imaginary part of the logarithmic function of a complex number has the negative real axis as a
branch cut. To illustrate the problem of crossing this branch cut, consider the trajectory in the
complex plane of:

γ(u) = Gj(u)
log log |Gj(u)|

|Gj(u)|
It has the structural shape of a spiral in case of j = 1, but has no cycle for φ2(u;T ), see Figure 6.

The cause of the numerical problems stems from the fact that ed(u)t is a spiral with exponentially
growing radius, if Im (d(u)) 6= 0. This implies that for t sufficiently large the dominant term in
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Figure 4: Heston ATM pricing error 1 ≤ T ≤ 15.

G1(u) is:

−ed(u)t g1(u)

1 − g1(u)

and since only ed(u)t depends on t one sees that for all u > 0 with Im (d(u)) 6= 0 there exists a
minimum value t such that:

∣∣∣∣ Im (d(u)) t + arg

(
g1(u)

1 − g1(u)

)∣∣∣∣ > π.

Hence all the above leads to:

Proposition 1 Whenever the parameters of the Heston model are such that Im (d(u)) 6= 0 and
2κη 6= λ2n (where n ∈ N), then using φ1(u; t) with the main value of the square root d(u) leads to
numerical instabilities for some sufficiently large maturity t.

Remark:

The second condition in the above proposition is in particular violated if the Feller condition
is exactly fulfilled (n = 1). The mathematical reason why there is no problem for both φ1 and
φ2 in this case is that the power of the function G1 is then an integer so that we do not have a
branching effect when crossing the negative halfline.

In some cases the minimum value t for which numerical problems occur can be calculated
analytically. In the following we give an example, the proof of which can be found in the appendix.
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Proposition 2 Let ρ < 0 and λ2(2α + 1) + 2ρλ
(
κ− ρλ(α + 1)

)
< 0. Then using φ1(u; t) with the

main value of the square root d(u) leads to numerical instabilities for all maturities larger than

t∗ =

2
√

1 − ρ2

(
π − arctan

(
−ρ√
1+ρ2

))

−2ρ
(
κ − ρλ(α + 1)

)
− λ(2α + 1)

.

Note that the assumptions of Proposition 2 are fulfilled for the parameter setting of Figure 4
and indeed t∗ = 4.32, in accordance with the corresponding plot.

The proposition above gives the threshold value on from which problems occur. The size of
the resulting pricing error will of course depend on the specific parameter setting. Assume for
instance a stock price at 100, strikes ranging from 50 to 150, r = 2.5% and q = 0. We first look for
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a combination of ρ, λ and κ such that t∗ is relatively low. We then play around with η to obtain
large differences between the call prices generated by φ1 and φ2. The values v0 = 0.04, κ = 1.5,
η = 0.04, λ = 0.3 and ρ = −0.9 provide us with such a parameter set (the Feller condition is
satisfied in this case and t∗ = 0.79 with α = 0.75). The ATM prices (as percentages of the spot)
for maturities up to 15 years are given in Table 2 and are graphed in Figure 7 together with the
corresponding error.

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H1 8.8950 12.94 16.37 19.47 22.17 24.24 25.93 27.18 28.01 28.42 28.92 28.79 28.93 27.91 27.54
H2 8.8948 13.20 16.79 19.96 22.84 25.50 27.99 30.32 32.52 34.61 36.60 38.51 40.33 42.08 43.75
MC 8.8929 13.20 16.79 19.96 22.84 25.50 27.98 30.32 32.52 34.62 36.61 38.51 40.33 42.08 43.75

Table 2: ATM prices

To get an idea of the price differences over maturities and strikes, we plotted the deviations
of call prices between φ1(u, t) and φ2(u, t) in Figure 8. Notice that although individual price
differences can be enormous, the average deviation across maturities and strikes is relatively low.
This explains why one might encounter real-life examples where the parameters resulting from a
calibration under φ1(u, t) or φ2(u, t) will not differ much. Moreover, the remark after Proposition
1 also indicates that under φ1 your optimizer might find a calibration solution which exactly
satisfies the Feller condition. As a consequence of the remark after proposition 1, the performance
differences between φ1 and φ2 will diminish as the parameters approach to satisfy 2κη = λ2.
Based only on numerical examples so far, we tend to believe more in the accuracy of φ2. The next
section provides the proof.

5 Stability of φ2(u, t)

We continue by focusing on φ2 and prove its stability under the unrestricted and full dimensional
parameter space. Recall that d(u) =

√
(κ − ρλui)2 + λ2u2 + λ2ui, where now the dependence on
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Figure 7: Heston ATM prices and error

u is pronounced. Due to the slicing of the complex plane at the negative real axis, we always have
Re (d(u)) > 0. In the Carr-Madan Fast Fourier approach for the calculation of option prices one
has to evaluate φ(u− (α+1)i) for positive u. While this causes numerical problems when the main
value of the square root is taken, we will prove here that these problems can be circumvented by
using the second (and not the main) value of the complex square root d(u) (equivalently, using φ2

with the main value of the complex root, cf. Section 3).

For ease of notation, denote:

d̃(u) := −d(u − (α + 1)i)

= −
√

(κ − ρλ(u − (α + 1)i)i)2 + λ2(u − (α + 1)i)2 + λ2(u − (α + 1)i)i

for u > 0. To avoid a discontinuity of d̃(u) at u = 0, choose d̃(0) := limu→0 d̃(u). (Depending on
the set of parameters the corresponding sign of the imaginary part is either that of +d(−(α + 1)i)
or of −d(−(α + 1)i)).

Theorem 3 As u increases from 0 to ∞, G2(u − (α + 1)i) does not cross the negative real axis.

Proof.

In the sequel we will write arg(z) for the argument, Im (z) for the imaginary part and Re (z)
for the real part of a complex number z.
First note that for u > 0:

d̃(u) = −
√

λ2u2(1 − ρ2) +
(
κ − ρλ(α + 1)

)2 − λ2(α + 1)α − ui
(
λ2(2α + 1) + 2ρλ(κ − ρλ(α + 1))

)
.

For simplicity of notation, define:

G̃2(u) := 2G2(u − (α + 1)i)

12
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and observe that G̃2(u) and G2(u− (α + 1)i) cross the negative real axis for the same values of u.

In order to show that G̃2(u) does not cross the negative real axis we distinguish five cases with
respect to the signs of the three quantities κ− ρλ(α + 1), λ2(2α + 1) + 2ρλ

(
κ− ρλ(α + 1)

)
and ρ.

First we consider the cases with ρ ≤ 0, which immediately implies κ − ρλ(α + 1) ≥ 0.

Case 1:
(
ρ ≤ 0

)
∧
(
λ2(2α + 1) + 2ρλ

(
κ − ρλ(α + 1)

)
≤ 0
)

Here it is convenient to write G̃2(u) as follows:

G̃2(u) =

(
κ − ρλ(α + 1) − ρλui

−d̃(u)
+ 1

)
−
(

κ − ρλ(α + 1) − ρλui

−d̃(u)
− 1

)
ed̃(u)t (9)

As Re (d̃(u)) < 0 and Im (d̃(u)) < 0, the real part of κ−ρλ(α+1)−ρλui

−d̃(u)
is non-negative. Hence:

∣∣∣∣
κ − ρλ(α + 1) − ρλui

−d̃(u)
+ 1

∣∣∣∣ ≥
∣∣∣∣
κ − ρλ(α + 1) − ρλui

−d̃(u)
− 1

∣∣∣∣ e
−a.

and since Re
(

κ−ρλ(α+1)−ρλui
−d̃(u)

+ 1
)

> 0 only the positive real axis can be crossed.

Case 2:
(
ρ ≤ 0

)
∧
(
λ2(2α + 1) + 2ρλ

(
κ − ρλ(α + 1)

)
> 0
)

13



In this case Re (d̃(u)) < 0 and Im (d̃(u)) > 0 holds. As the main value of a square root can be
written as:

√
α + iβ =

√
α +

√
α2 + β2

2
+ i sgnβ

√
−α +

√
α2 + β2

2

we find:

d̃(u) = −



√√

(Au2 − C)2 + B2u2 − (C − Au2)

2
−

√√
(Au2 − C)2 + B2u2 + (C − Au2)

2
i


 ,

where:

A = λ2(1 − ρ2) > 0

B = λ2(2α + 1) + 2ρλ
(
κ − ρλ(α + 1)

)
> 0

C = λ2(α + 1)α − (κ − ρλ(α + 1))2.

We want to show that:

0 ≤ arg

(
κ − ρλ(α + 1) − ρλui

−d̃(u)

)
≤ π

2
. (10)

Recalling that the numerator lies in the first quadrant and the denominator lies in the fourth
quadrant the left inequality is trivially fulfilled. Note that for ρ = 0 (10) clearly holds. For ρ < 0
consider the right inequality:
For u = 0:

arg

(
κ − ρλ(α + 1) − ρλui

−d̃(u)

)
=

{
π/2 for C > 0
0 for C ≤ 0.

Thus let u > 0 and observe that:

arg

(
1

−d̃(u)

)
= arctan




√√
(Au2

−C)2+B2u2+(C−Au2)

2√√
(Au2

−C)2+B2u2
−(C−Au2)

2




= arctan


C − Au2 +

√
B2u2 + (C − Au2)

2

Bu


 .

Hence in this case the right inequality in (10) is equivalent to:

arctan


C − Au2 +

√
B2u2 + (C − Au2)

2

Bu


 ≤ π

2
− arctan

( −ρλu

κ − ρλ(α + 1)

)
. (11)

Note that both sides lie between 0 and π/2. Hence applying tan(·) on both sides retains the
inequality and from tan(π/2 − x) = cot(x) for 0 ≤ x ≤ π/2 we obtain:

C − Au2 +

√
B2u2 + (C − Au2)

2

Bu
≤ κ − ρλ(α + 1)

−ρλu
,
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which is equivalent to:

B(κ − ρλ(α + 1)) + Cρλ − Au2ρλ ≥ −ρλ

√
B2u2 + (C − Au2)

2
.

The right hand side is trivially positive, and:

B(κ − ρλ(α + 1)) + Cρλ = κB − ρλ((α + 1)B − C)

≥ −ρλ
(
(α + 1)2λ2(1 − ρ2) + κ2

)
> 0,

so the left hand side is positive too. Hence we can square the inequality:

(
B
(
κ − ρλ(α + 1)

)
+ ρλ(C − Au2)

)2

≥ ρ2λ2
(
B2u2 + (C − Au2)2

)
,

which further gives:

−ρλu2B
(
2A
(
κ − ρλ(α + 1)

)
+ Bρλ

)
+ B

(
κ − ρλ(α + 1)

)(
B
(
κ − ρλ(α + 1)

)
+ 2ρλC

)
≥ 0.

The latter is true since:

2A
(
κ − ρλ(α + 1)

)
+ Bρλ = λ2(2κ − ρλ) ≥ 0

and:
B
(
κ − ρλ(α + 1)

)
+ 2ρλC = λ2

(
κ(2α + 1) − ρλ(α + 1)

)
≥ 0.

Hence inequality (10) holds and therefore Re
(

κ−ρλ(α+1)−ρλui

−d̃(u)

)
≥ 0. Following the lines of Case

1, G̃2(u) can again not cross the negative real axis.

Case 3:
(
ρ > 0

)
∧
(
κ − ρλ(α + 1) ≥ 0

)

The condition (κ − ρλ(α + 1)) ≥ 0 implies λ2(2α + 1) + 2ρλ
(
κ − ρλ(α + 1)

)
≥ 0 and hence the

case can be proven along the lines of Case 1 noting that also here the real part of κ−ρλ(α+1)−ρλui
−d̃(u)

is non-negative, together with Re (d̃(u)) < 0 and Im (d̃(u)) > 0.

Case 4:
(
ρ > 0

)
∧
(
(κ − ρλ(α + 1)) < 0

)
∧
(
λ2(2α + 1) + 2ρλ

(
κ − ρλ(α + 1)

)
> 0
)

λ2(2α + 1) + 2ρλ
(
κ − ρλ(α + 1)

)
> 0 implies d̃(u) = −a + bi with a > 0, b > 0 ∀u ∈ R. We prove

that G̃2(u) cannot be in the second quadrant. Observe that:

G̃2(u) =
(
κ − ρλ(α + 1)

)1 − ed̃(u)t

−d̃(u)
− ρλu

1 − ed̃(u)t

−d̃(u)
i + 1 + ed̃(u)t (12)

and:

arg

(
1 − ed̃(u)t

−d̃(u)

)
= arctan

(
b

a

)
− arctan

(
sin bt

eat − cos bt

)

15



and hence trivially arg
(

1−ed̃(u)t

−d̃(u)

)
≤ π. Since:

b

a
− sin bt

eat − cos bt
≥ 0,

it is clear that 0 ≤ arg
(

1−ed̃(u)t

−d̃(u)

)
≤ π holds.

If arg
(

1−ed̃(u)t

−d̃(u)

)
≥ π

2 then:

Re

(
(
κ − ρλ(α + 1) − ρλui

)1 + ed̃(u)t

−d̃(u)

)
≥ 0

and since Re
(
1 − ed̃(u)

)
≥ 0, the real part of G̃2(u) is non-negative. Therefore G̃2(u) can in

particular not be in the second quadrant.

If on the other hand arg
(

1−edt

−d

)
< π

2 , then −ρλu 1−ed̃(u)t

−d̃(u)
i is in the fourth quadrant and it suffices

to show that
(
κ − ρλ(α + 1)

)
1−ed̃(u)t

−d̃(u)
+ 1 + ed̃(u)t cannot be in the second quadrant.

Setting κ − ρλ(α + 1) := −C < 0:

−C
1 − ed̃(u)t

−d̃(u)
+ 1 + ed̃(u)t = −C

1 − e−at cos bt − ie−at sin bt

a − bi
+ 1 + e−at cos bt + ie−at sin bt

=
(a2 + b2)(eat + cos bt) − C(aeat − a cos bt + b sin bt)

eat(a2 + b2)

+
(a2 + b2) sin bt − C(beat − b cos bt − a sin bt)

eat(a2 + b2)
i. (13)

Thus Im (G̃2(u)) > 0 implies:

(a2 + b2) sin bt > C(beat − b cos bt − a sin bt)

and since the right hand side of this inequality is positive, sin bt has to be positive as well, implying:

a2 + b2 >
C(beat − b cos bt − a sin bt)

sin bt
.

Therefore:

sgn(Re (G̃2(u))) = sgn
(
(a2 + b2)(eat + cos bt) − C(aeat − a cos bt + b sin bt)

)

≥ sgn
{C(beat − b cos bt − a sin bt)

sin bt
(eat + cos bt) − C(aeat − a cos bt + b sin bt)

}

= sgn(be2at − 2aeat sin bt − b)

≥ sgn
(
b(e2at − 2eatat − 1)

)
= 1.

Hence if Im (G̃2(u)) > 0 then also Re (G̃2(u)) > 0 implying G̃2(u) cannot be in the second quad-
rant.
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Case 5:
(
ρ > 0

)
∧
(
κ − ρλ(α + 1) < 0

)
∧
(
λ2(2α + 1) + 2ρλ

(
κ − ρλ(α + 1)

)
≤ 0
)

Here d̃(u) = −a − bi, where a ≥ 0, b ≥ 0 ∀u ∈ R.
Note that if λ2(2α + 1) + 2ρλ

(
κ − ρλ(α + 1)

)
< 0 then:

(
κ − ρλ(α + 1)

)2 − λ2(α + 1)α > 0.

Therefore a > b holds. Observe that the imaginary part of G̃2(u) is given by:

Im

(
1 + ed̃ +

κ − ρλ(α + 1) − ρλui

−d̃
(1 − ed̃)

)
=

− sin(bt)
(
a2 + b2 + aK + ρλub

)
− (aρλu − Kb) (eat − cos(bt))

(a2 + b2) eat
,

where K = ρλ(α + 1) − κ > 0. We will prove that the expression above is non-positive. The
denominator is positive and we can restrict the attention to the numerator:

− sin(bt)
(
a2 + b2 + aK + ρλub

)
− (aρλu − Kb)

(
eat − cos(bt)

)
. (14)

First note that:

(aK + ρλbu)(− sin(bt)) − at(aρλu − bK) ≤ bt(aK + ρλbu) − at(ρλau − bK)

= t
(
abK + ρλb2u − ρλa2u + abK

)

= t
(
ρλ(b2 − a2)u + 2abK

)
. (15)

Similarly to Case 2 we use:

d̃(u) = −




√√√√
√

(Ãu2 + C̃)2 + B̃2u2 + (C̃ + Ãu2)

2
+

√√√√
√

(Ãu2 + C̃)2 + B̃2u2 − (C̃ + Ãu2)

2
i


 ,

where:

Ã = λ2(1 − ρ2) > 0

B̃ = 2ρλ
(
ρλ(α + 1) − κ

)
− λ2(2α + 1) > 0

C̃ = (ρλ(α + 1) − κ)2 − λ2(α + 1)α > 0.

With this parametrisation the right-hand side of (15) can be written as:

tu
(
B̃K − ρλ(Ãu2 + C̃)

)
.
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Note that B̃ − ρλC̃ < 0:

B̃K − ρλC̃ = ρλ
(
ρλ(α + 1) − κ

)2
+ ρλ3(α2 + α) − λ2(2α + 1)

(
ρλ(α + 1) − κ

)

= λ2ακ(1 − ρ2) − ρλκ(ρλ − κ) − λ2(α + 1)(1 − ρ2)
(
ρλ(α + 1) − κ

)

= −λ2(1 − ρ2)α
(
ρλ(α + 1) − 2κ

)
− ρλκ(ρλ − κ) − λ2(1 − ρ2)

(
ρλ(α + 1) − κ

)

and since B̃ > 0, ρλ − 2κ > 0. Thus of course (15) is non-positive.
Hence to prove that (14) is non-positive it suffices to show that:

(
a2 + b2

)
(− sin(bt)) −

(
eat − at − cos(bt)

)
(aρλu − bK) ≤ 0.

The above is certainly true for bt ≤ π and as a ≥ b we can assume at > π in the following. This
implies that eat − at − cos(bt) > 2at and:

(
a2 + b2

)
(− sin(bt)) −

(
eat − at − cos(bt)

)
(aρλu − bK)

≤ bt
(
a2 + b2

)
− b

B̃
2at
(
ρλ
√

(Au2 + C)2 + B2u2 + ρλ(Ãu2 + C̃) − B̃K
)

≤ bt

B̃

√
(Au2 + C)2 + B2u2

(
B̃ − 2ρλa

)
.

Observe that a2 > C̃ and hence:

4C̃ρ2λ2 ≥ B̃2 ⇒ 4ρ2λ2a2 ≥ B̃2 ⇔ 2ρλa ≥ B̃.

Using the fact that ρλ
(
ρλ(α + 1) − κ

)
> λ2(2α+1)

2 we finally find:

4C̃ρ2λ2 − B̃ ≥ 4
λ2(2α + 1)

2
λ2(2α + 1) − 4ρ2λ2(α2 + α) − λ4(2α + 1)2

= λ4(2α + 1)2 − 4λ2ρ2(α2 + α)

= 4(α2 + α)λ4(1 − ρ2) + λ4 > 0,

which completes the proof.

6 Conclusion

In this paper we investigated in detail the properties of and relations between both specifications
of the Heston characteristic function. Regarding their properties we provided full blown proofs
that φ1 is unstable under certain conditions and φ2 is stable under the full parameter space.
Moreover, we established a threshold maturity from which φ1 suffers from instability. When the
Feller condition is exactly satisfied, we encounter no problems in any of both versions. The upshot
of all this above leaves no doubt on the usage of φ2 from a computational point of view, at least
for the Heston model in its basic form.
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Appendix A: Proof of Proposition 2:

Define:
G̃1(u) = 2G1(u − (α + 1)i) and d̂(u) = d(u − (α + 1)i).

Note that:

G̃1(u) =

(
1 − κ − ρλ(α + 1) − ρλui

d̂(u)

)
+

(
1 +

κ − ρλ(α + 1) − ρλui

d̂(u)

)
ed(u)t

and

d̂(u) =

√√√√
√

(Ãu2 + C̃)2 + B̃2u2 + (C̃ + Ãu2)

2
+

√√√√
√

(Ãu2 + C)2 + B̃2u2 − (C̃ + Ãu2)

2
i

= a(u) + b(u)i,

where

Ã = λ2(1 − ρ2) > 0

B̃ = 2ρλ
(
ρλ(α + 1) − κ

)
− λ2(2α + 1) > 0

C̃ = (ρλ(α + 1) − κ)2 − λ2(α + 1)α > 0

and a(u) > 0 and b(u) > 0 (cf. Case 5 of Theorem 3).

The only possibility for G̃1(u) to cross the negative real axis is that arg(G̃1(u)) crosses π (this

follows directly from b(u) ≥ 0). Hence G̃1(u) crosses the negative real axis exactly when

f̃(u) = − Im

(
κ − ρλ(α + 1) − ρλui

d̂(u)

)
+

(
1 +

κ − ρλ(α + 1) − ρλui

d̂(u)

)
ed(u)t

does, i.e. when arg(f̃(u)) ≥ π. We will show that:

arg(f̃(u)) ≤ lim
u→∞

arg(f̃(u)) = t
B̃

2
√

Ã
+ arctan

(
−ρλ√

Ã

)

and hence attains its maximum for u → ∞. Denoting

I1 := Im

(
κ − ρλ(α + 1) − ρλui

d̂(u)

)
and R1 := Re

(
κ − ρλ(α + 1) − ρλui

d̂(u)

)
,

f̃(u) can be written as:

arg(f̃(u)) = b(u)t + arctan

(
I1 − e−a(u)tI1 cos b(u)t

R1 − e−a(u)tI1 sin b(u)t

)
. (16)
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b(u) is increasing in u, since differentiating yields:

sgn(b′(u)) = sgn

(
2Ã
(
Ãu2 + C̃

)
+ B̃2 − 2Ã

√
(Ãu2 + C̃)2 + B̃2u2

)

= sgn
(
4ÃC̃B̃2 + B̃4

)

and C̃ ≥ 0 (cf. Case 5 of Theorem 3).

Thus to show that arg(f̃(u)) takes its maximum for u → ∞ it suffices to prove that I1−e−a(u)tI1 cos b(u)t
R1−e−a(u)tI1 sin b(u)t

attains its maximum for u → ∞. Plugging in the definitions of I1 and R1 yields:

I1 − I1 cos b(u)t
ea(u)t

R1 − I1 sin b(u)t
ea(u)t

=
(−ρλua(u) − (κ − ρλ(α + 1))) (1 − e−a(u)t cos(b(u)t))

a(u)2 + b(u)2 + (κ − ρλ(α + 1))a(u)
(
1 + b(u) sin(b(u)t)

ea(u)ta(u)

)
− ρλua(u)

(
b(u)
a(u) −

sin(b(u)t)
ea(u)t

)

≤
−ρλu

(
1 − cos(b(u)t)

ea(u)t

)

a(u) + b(u)2

a(u)

≤ −ρλu

a(u)
,

where the last inequality holds due to

sgn


−ρλu

a(u)
−

−ρλu
(
1 − cos(b(u)t)

ea(u)t

)

a + b2

a


 =

= sgn

(
b2

a
+

a cos(b(u)t)

ea(u)t

)

≥ sgn

(
a(u)t

ea(u)t

)
= 1,

and for the last inequality:

cos(b(u)t) ≥ 1 − b(u)2t2/2 and ea(u)t ≥ a(u)2t2/2.

was used. Hence:

arg(f̃(u)) ≤ b(u)t + arctan

(−ρλu

a(u)

)

and because −ρλu
a(u) is increasing in u, we finally conclude:

arg(f̃(u)) ≤ lim
u→∞

(
b(u)t + arctan

(−ρλu

a(u)

))
= t

B̃

2
√

Ã
+ arctan

(
−ρλ√

Ã

)
= lim

u→∞

arg(f̃(u)).

Thus the first maturity for which the original Heston formula causes numerical problems is given
by:

t =

π − arctan

(
−ρλ√

Ã

)

B̃

2
√

Ã

=

2
√

1 − ρ2

(
π − arctan

(
−ρ√
1+ρ2

))

−2ρ
(
κ − ρλ(α + 1)

)
− λ(2α + 1)

.
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