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Résumé 

Avec	des	données	de	comptage	ou	de	taux	d’incidence,	l’inférence	statistique	tend	à	

manquer	de	fiabilité	lorsque	le	nombre	d’événements	observés	est	trop	faible.	Dans	ce	

contexte,	il	semble	donc	pertinent	de	chercher	à	regrouper	plusieurs	études	afin	

d’augmenter	l’information	disponible.	Malheureusement,	les	méthodes	standards	de	

méta-analyse	ne	sont	plus	valides	en	présence	d’événements	rares.	Dans	cette	thèse	

composée	de	quatre	articles,	nous	nous	sommes	intéressés	à	la	difficulté	de	combiner	le	

manque	d’information.	À	l’aide	de	simulations,	nous	avons	comparé	plusieurs	méthodes	

théoriquement	mieux	adaptées	au	phénomène	d’événements	rares.	Nous	avons	à	la	fois	

considéré	des	méthodes	existantes	et	développé	des	méthodes	innovantes	pour	des	

données	de	comptage	et	de	taux	d’incidences.	Les	résultats	obtenus	nous	ont	permis	de	

tirer	plusieurs	conclusions.	Avec	des	données	de	comptage	et	sous	l’hypothèse	

d’homogénéité	de	l’effet	du	traitement,	la	méthode	Mantel-Haenszel	peut	être	utilisée	

quel	que	soit	le	niveau	de	rareté.	Une	nouvelle	méthode	basée	sur	une	pseudo-

vraisemblance	offre	des	performances	similaires	à	Mantel-Haenszel	tout	en	permettant	

un	gain	de	précision	en	présence	d’études	avec	un	seul	bras	de	traitement.	De	plus,	

contrairement	à	Mantel-Haenszel,	cette	méthode	de	pseudo-vraisemblance	peut	être	

étendue	au	cas	d’effet	hétérogène	du	traitement	et	fournir	une	bonne	estimation	de	

l’effet	moyen	du	traitement	ainsi	que	des	intervalles	de	prédiction	informatifs,	même	en	

cas	d’extrême	rareté.	Pour	ce	qui	concerne	la	méta-analyse	de	taux	d’incidence,	nous	

avons	démontré	que	le	fait	de	tenir	compte	de	la	sur-dispersion	à	l’aide	d’un	modèle	

binomial-négatif	permettait	d’améliorer	la	performance	du	modèle	Poisson,	même	en	

présence	d’études	ne	rapportant	aucun	événement	et/ou	seulement	un	bras	de	

traitement. 	
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Abstract 

For	both	count	and	incidence	rate	data,	it	is	complicated	to	provide	reliable	inference	of	

a	treatment	effect	when	the	number	of	observed	events	is	too	low.	Therefore,	the	idea	of	

regrouping	several	studies	to	increase	the	amount	of	available	information	seems	

particularly	appealing	in	such	settings.	Unfortunately,	standard	meta-analysis	methods	

break	down	with	rare	events.	This	thesis	aimed	at	studying	the	challenge	of	combining	

the	lack	of	information.	Throughout	four	articles,	we	assessed,	via	simulations,	the	

performance	of	several	alternative	meta-analysis	methods	that	better	accommodate	

rare	events.	Not	only	did	we	consider	existing	methods,	but	we	also	designed	innovative	

methods	for	both	count	and	incidence	rate	data.	Based	on	the	results	obtained	in	these	

different	papers,	we	were	able	to	draw	several	recommendations	for	applied	

researchers.	With	count	data,	and	under	the	assumption	of	a	homogeneous	treatment	

effect,	the	Mantel-Haenszel	method	can	be	used	safely,	no	matter	the	scarcity	level	

considered.	A	newly	designed	pseudo-likelihood	approach	performed	as	well	as	the	

Mantel-Haenszel	method	and	allowed	a	gain	of	precision	when	the	meta-analysis	

included	studies	with	missing	treatment	arms.	Moreover,	unlike	Mantel-Haenszel,	this	

pseudo-likelihood	approach	could	be	extended	to	settings	with	treatment	effect	

heterogeneity	and	was	shown	to	provide	good	estimates	of	the	mean	treatment	effect	

and	informative	prediction	intervals,	even	in	extremely	rare	event	settings.		As	for	the	

meta-analysis	of	incidence	rate	data,	we	found	that	accounting	for	over-dispersion	using	

a	negative-binomial	model	allowed	for	improvements	in	the	performance	of	the	classical	

Poisson	model,	even	in	the	presence	of	studies	reporting	zero	event	and/or	only	one	

treatment	arm. 	
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Introduction 

In	Biostatistics,	one	is	often	interested	in	the	effect	of	a	new	treatment	on	a	given	

population	of	patients.	Since	it	is	generally	not	timely,	costly,	and	ethically	feasible	to	

conduct	a	randomized	controlled	trial	(RCT)	on	the	whole	population	of	interest,	

researchers	carry	out	their	investigations	on	a	sample	drawn	from	this	population,	

randomly	allocating	half	of	their	sample	to	the	new	treatment	and	the	other	half	to	the	

usual	treatment	(or	placebo).	An	estimate	of	the	treatment	effect	can	be	obtained	by	

contrasting	the	outcome	obtained	in	the	treated	arm	(i.e.	group	of	patients	receiving	the	

new	treatment)	with	the	one	obtained	in	the	control	arm	(i.e.	group	of	patients	receiving	

the	usual	treatment	or	a	placebo)	using	a	so-called	"effect	size"	(ES).	The	objective	of	

statistical	inference	is,	then,	to	generalize	this	estimate	to	the	population	of	interest.	

Provided	that	the	information	contained	in	the	sample	size	is	sufficient	and	that	the	

appropriate	statistical	techniques	are	applied,	estimates	computed	in	one	given	sample	

should	be	close	to	the	true	population	parameter	value,	and	confidence	intervals	(CIs)	

should	have	nominal	coverage	rates.		

When	analyzing	count	or	incidence	rate	(IR)	data,	one	extracts	the	information	from	the	

number	of	observed	events.	Therefore,	it	is	important	to	observe	a	sufficient	number	of	

events	in	order	to	provide	reliable	inference.	With	rare	events	(i.e.	when	the	probability	

of	experiencing	the	event	in	the	population	of	interest	is	very	low),	it	is	often	not	feasible	

to	conduct	a	study	with	appropriate	sample	size.	A	priori,	running	a	meta-analysis	(MA)	

[1]	in	rare	event	settings	seems,	thus,	particularly	sensible	since	combining	the	results	

of	several	studies	(referred	to	as	"primary	studies"	in	the	context	of	a	MA)	allows	to	

increase	the	overall	sample	size	and,	consequently,	the	number	of	observed	events.	

Unfortunately,	this	is	precisely	in	such	settings	that	the	classic	inverse-variance-

weighting	MA	method	breaks	down	and	statistical	issues	arise	[2].	
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In	practice,	researchers	meta-analyzing	count	data	often	come	across	rare	events	[3-5],	

which	explains	why	many	alternative	MA	methods	that	accommodate	rare	events	in	a	

better	way	have	been	developed.	Most	of	these	methods	rely	on	the	assumption	of	a	

homogeneous	treatment	effect	across	the	primary	studies	(i.e.	fixed-effect	methods).	In	

our	first	paper,	we	ran	extensive	simulations	to	compare	the	performance	of	various	

existing	fixed-effect	(FE)	methods	for	count	data	[6].	Besides	the	classical	inverse-

variance-weighting	methods,	we	considered	the	Mantel-Haenszel	(MH)	method	[7],	the	

Peto	method	[8],	the	continuity	correction	(CC)	method	[9],	the	median	unbiased	

estimator	method	[10],	and	the	binomial	regression	method.	Except	for	the	binomial	

regression	and	Peto	methods,	which	are	restricted	to	the	odds	ratio	(OR),	all	the	other	

methods	were	used	to	estimate	the	OR,	the	relative	risk	(RR),	and	the	risk	difference	

(RD),	which	are	the	three	most	commonly	used	ESs	for	count	data.	Compared	to	

previous	simulations	studies	on	this	subject	[11-12],	our	simulations	covered	several	

additional	scenarios.		

Based	on	the	results	of	our	simulationsi,	we	concluded	our	first	paper	by	warmly	

recommending	the	use	of	the	MH	method	without	CC	for	the	MA	of	count	data	with	rare	

events	and	homogeneous	treatment	effect,	no	matter	the	ES	of	interest.	Nevertheless,	

the	MH	method	suffers	from	theoretical	weaknesses	related	to	the	formulae	used	to	

compute	the	different	ESs’	estimators.	Indeed,	double-zero	(DZ)	studies	(i.e.	studies	

reporting	zero	event	in	both	treatment	arms)	do	not	contribute	to	the	computation	of	

the	MH’s	OR	and	RR	estimators	even	if	they	might	carry	some	useful	pieces	of	

information	regarding	the	treatment	effect.		Similarly,	studies	with	only	one	treatment	

	
i To understand the genesis of our second paper, we provided here a little preview of the results obtained in our 
first paper. Nevertheless, the reader will find all results – from this paper and the three others – in the dedicated 
Results Section and in the articles themselves. 
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arm,	which	we	referred	to	as	"single-arm	(SA)"	studies,	are	not	taken	into	account	by	the	

MH	method	when	computing	the	OR,	the	RR,	or	the	RD.		

To	assess	the	impact	of	these	exclusions	on	the	MH	method’s	performance,	we	needed	a	

benchmark	method	that	performed	as	well	as	the	MH	method	in	scenarios	without	DZ	

and	SA	studies	and	that	was	able	to	include	the	information	contained	in	both	DZ	and	SA	

studies.	The	binomial	regression	method	matches	these	criteria	but	is	restricted	to	the	

OR.	A	naive	way	to	estimate	the	two	other	ESs	using	the	binomial	regression	method	

would	be	to	adapt	the	link	function	to	the	ES	of	interest	(i.e.	log	for	the	RR,	and	identity	

for	the	RD).	However,	it	is	well	known	that	the	maximization	of	the	binomial	likelihood	

function	using	either	the	log	or	identity	links	is	plagued	by	non-convergence	issues	and	

valid	parameter	space	violation	[13-15].	Therefore,	we	designed	a	new	MA	method	

based	on	the	pseudo-likelihood	(PL)	concept,	which	consists	of	using	working	likelihood	

functions	together	with	their	canonical	link	function	(e.g.	the	RR	is	estimated	using	a	

Poisson	likelihood	and	the	log	link	function).		In	our	second	paper,	we	presented	this	

method	and	compared	it	to	the	MH	method,	using	simulations	covering	scenarios	with	

SA	and	DZ	studies	[16].	

As	emphasized	in	their	respective	Conclusions,	our	first	two	papers	were	restricted	to	

the	FE	framework,	which	in	practice	is	not	always	tenable	[17].	In	MA,	the	distinction	

between	FE	and	random-effects	(RE)	frameworks	is	fundamental.	Not	only	does	it	affect	

the	methodology	used,	but	it	also	determines	the	objective	of	the	inference.	Indeed,	with	

a	homogeneous	treatment	effect,	the	inference	targets	one	single	parameter	(i.e.	it	is	

assumed	that	each	primary	study	estimates	the	same	ES),	whereas	with	treatment	effect	

heterogeneity,	the	objective	of	the	MA	is	to	summarize	the	distribution	of	a	population	

of	parameters	(i.e.	each	primary	study	estimates	a	different	ES	drawn	from	the	same	
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population	of	ESs).	Compared	to	the	MH	method,	which	is	restricted	to	settings	with	a	

homogeneous	treatment	effect,	our	PL	approach	can	be	adapted	to	account	for	

heterogeneity	in	the	treatment	effect.	This	was	precisely	the	point	of	our	third	paper	in	

which	we	developed	an	extended	PL	approach	and	evaluated	its	performance	under	

settings	with	rare	events	and	treatment	effect	heterogeneity	[18].		

When	the	treatment	effect	is	assumed	to	be	heterogeneous,	the	investigator	should	

focus	on	the	whole	distribution	of	the	ES	in	order	to	provide	a	thorough	description	of	

the	treatment	effect.	In	this	respect,	a	useful	and	intuitive	measure	that	is	underreported	

in	current	practice	–	despite	clear	recommendations	in	favor	of	its	use	–	is	the	prediction	

interval	(PI)	[19-20].	Conventional	RE	MAs	quantify	the	heterogeneity	using	an	estimate	

of	the	between-study	variance	[21]	but	it	has	been	shown	that	this	parameter	is	often	

underestimated	especially	with	rare	events	and,	thus,	that	it	does	not	always	allow	one	

to	describe	the	treatment	effect	heterogeneity	[22-23].	Therefore,	in	our	third	paper,	we	

assessed	the	performance	of	the	extended	PL	approach,	not	only	according	to	the	

estimation	of	the	mean	treatment	effect	and	the	between-study	variance	parameters,	

but	also	according	to	the	estimation	of	a	PI.	

Our	first	three	papers	were	dedicated	to	the	MA	of	count	data	in	rare	event	settings.	In	

our	fourth	and	last	paper,	we	tackled	the	issue	of	rare	event	MA	of	IR	data	[24].	The	

developments	presented	in	this	paper	were	motivated	by	an	applied	project	on	which	

we	collaborated	with	the	Lausanne	University	Hospital	[25].	In	this	project,	the	

physicians	were	interested	to	study	the	effect	of	the	width	of	surgical	margin	on	the	rate	

of	recurrence	of	phyllodes	tumors	of	the	breast.	The	systematic	review	that	was	

conducted	gathered	both	DZ	and	SA	studies,	making	the	classical	weighting	method	

unusable.	Moreover,	based	on	the	physicians’	contextual	knowledge,	the	treatment	
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effect	was	assumed	to	be	heterogeneous,	which	prevented	us	to	use	the	MH	method	as	

well.	Our	first	idea	to	meta-analyze	these	data	was,	thus,	to	use	the	random-effects	

Poisson	(Re-Poi)	model	in	an	either	univariate	or	bivariate	approach	–	the	latter	being	

more	flexible	since	involving	one	additional	parameter	[26-27].	Indeed,	the	Re-Poi	

model	allows	for	the	inclusion	of	both	DZ	and	SA	studies	and	can	account	for	treatment	

effect	heterogeneity.	However,	it	is	based	on	the	equi-dispersion	assumption	(i.e.	mean	=	

variance),	which	was	likely	to	be	violated	in	the	problem	at-hand	as	the	observational	

nature	of	the	data	increased	the	risk	of	having	unmeasured	individual	characteristics	

differing	within	studies.	Therefore,	the	use	of	a	random-effects	negative	binomial	(Re-

NB)	model	seemed	more	appropriate	since	the	negative	binomial	distribution	allows	for	

over-dispersion.	

Despite	several	investigations	in	MA	literature,	we	did	not	find	any	application	of	the	Re-

NB	model	for	meta-analyzing	IR	data	with	a	heterogeneous	treatment	effect,	let	alone	in	

the	context	of	rare	events	and	SA	studies.	Moreover,	although	the	Re-NB	model	seemed	

more	appropriate	than	the	Re-Poi	model	to	analyze	our	data,	we	were	not	certain	that	it	

would	provide	good	results	in	such	an	adverse	setting	(i.e.	SA	and	DZ	studies).	Indeed,	

the	more	flexible	the	model	is,	the	greater	its	complexity,	and	the	harder	it	is	to	estimate	

it.	Therefore,	we	decided	to	run	simulations	calibrated	on	our	clinical	dataset	to	assess	

the	performance	of	the	univariate	and	bivariate	Re-NB	models	and	to	compare	it	to	the	

performance	of	the	univariate	and	bivariate	Re-Poi	models.	Results	of	our	simulations,	

along	with	the	presentation	of	these	four	models,	were	provided	in	our	fourth	paper.		

In	what	follows,	we	will	start	by	providing	a	brief	summary	of	the	main	results	obtained	

in	our	four	papers.	We	will	then	discuss	these	results,	elaborate	on	their	potential	

contribution	to	the	literature	of	rare	event	MA,	and	make	some	concluding	remarks.	Our	
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four	articles	will	form	the	last	part	of	this	manuscript	and	will	be	provided	after	the	list	

of	references	for	this	introductory	text.	

Results 

Paper 1 

In	our	first	paper	[6],	we	found	that	the	MH	method	without	CC	provided	the	most	

reliable	estimates	and	CIs	under	all	the	scenarios	considered.	These	findings	applied	to	

both	homogeneous	and	heterogeneous	baseline	event	probability	and	no	matter	the	ES	

considered	(i.e.	OR,	RR,	and	RD).	The	binomial	regression	method	performed	as	well	as	

the	MH	without	CC	method	but	was	restricted	to	the	OR.	Performance	of	the	other	

investigated	methods	was	as	follows.	The	classic	inverse-variance-weighting	method	

was	found	to	perform	poorly,	even	in	settings	with	rather	not	so	rare	events.	The	Peto	

method	obtained	reliable	estimates	of	the	OR	and	provided	CIs	for	this	parameter	

achieving	nominal	coverage	rates	only	in	settings	with	balanced	treatment	arms	and	

moderate	treatment	effect.	The	use	of	a	CC	to	include	the	information	contained	in	zero-

event	studies	when	using	the	inverse	variance,	Peto,	or	MH	methods	deteriorated	the	

results	obtained	by	these	methods,	especially	for	the	two	latter.	As	for	the	median	

unbiased	estimator	method,	although	theoretically	appealing	since	it	allows	for	the	

inclusion	of	zero-event	studies	without	using	a	CC,	it	also	failed	to	provide	reliable	

results.	

Paper 2 

In	our	second	paper	[16],	we	developed	a	PL	approach	to	account	for	SA	and	DZ	studies	

and	found	that	it	performed	very	well	across	all	simulated	scenarios	and	no	matter	the	

ES	considered	(i.e.	OR,	RR,	and	RD).	In	order	to	obtain	a	Wald’s	CI	with	nominal	coverage	

rates	for	the	RD,	we	had	to	compute	a	calibrated	CI	in	the	spirit	of	the	Hartung-Knapp	

method	[28].	Nevertheless,	this	calibrated	interval	turned	out	to	provide	consistently	
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good	results	in	all	the	simulated	scenarios,	as	long	as	the	proportion	of	SA	studies	

remained	below	75%.	Moreover,	by	varying	the	underlying	distribution	of	the	baseline	

probability,	we	found	that	the	PL	approach	was	robust	to	the	choice	of	this	distribution.	

Finally,	whereas	the	deletion	of	DZ	studies	had,	surprisingly,	no	impact	on	the	MH	

method’s	performance,	our	results	showed	that	the	fact	of	not	taking	into	account	SA	

studies	resulted	in	a	loss	of	precision	for	this	method,	as	compared	to	the	PL	approach.	

Paper 3 

In	our	third	paper	[18],	we	extended	the	PL	approach	to	the	setting	of	a	heterogeneous	

treatment	effect	and	found	that	it	provided	good	results	for	the	estimation	of	the	mean	

treatment	effect	and	its	confidence	interval,	even	when	meta-analyzing	extremely	rare	

events.	These	good	results	applied,	no	matter	the	ES	considered	(i.e.	OR,	RR,	and	RD).	

Regarding	the	between-study	variance	parameter,	it	was	largely	underestimated	in	rare	

event	settings.	With	extremely	rare	events,	the	between-study	variance	was	estimated	

to	be	zero	in	almost	all	simulated	scenarios,	even	those	with	a	genuinely	high	level	of	

heterogeneity.	Inversely,	we	found	that	the	PI	was	able	to	better	describe	the	treatment	

effect	heterogeneity.	Indeed,	in	most	of	the	settings,	and	even	in	those	where	the	

between-study	variance	was	estimated	to	be	zero,	the	PIs	were	conservative.	Results	

obtained	by	the	PL	approach	were	robust	to	the	genuine	underlying	distribution	of	the	

ES,	as	long	as	the	latter	was	not	too	asymmetrical.		

Paper 4 

In	our	fourth	paper	[24],	we	found	that	the	Re-NB	model	was	more	performant	than	the	

Re-Poi	model	for	MA	of	over-dispersed	IR	data	with	rare	events	and	SA	studies.	The	

bivariate	version	of	the	Re-NB	model	gave	better	results	than	its	univariate	counterpart,	

though	at	the	cost	of	more	numerical	issues.	Finally,	we	found	that	the	information	

available	in	this	dataset,	on	which	our	simulations	were	calibrated,	was	not	sufficient	
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(i.e.	too	few	studies,	too	rare	events,	and	too	many	SA	studies)	to	provide	reliable	

estimates	of	the	between-study	variance	parameter,	no	matter	the	model	used.	

Discussion 

A	priori,	the	idea	of	meta-analyzing	primary	studies	with	rare	events	seems	particularly	

appealing	since	it	allows	one	to	increase	the	sample	size	and,	thus,	the	number	of	

observed	events.	Yet,	classical	MA	methods	break	down	when	the	number	of	events	

observed	in	each	primary	study	is	small.	Therefore,	running	a	MA	in	the	presence	of	rare	

events	turns	out	to	be	a	particularly	complicated	task.	Our	objective	was	to	tackle	the	

challenge	of	combining	the	lack	of	information	contained	in	several	studies	in	order	to	

provide	new	guidance	to	meta-analysts	dealing	with	rare	events.		

In	this	thesis,	we	started	by	assessing	the	performance	of	several	FE	MA	methods	that	

had	been	developed	so	far	to	accommodate	rare	events.	The	objective	was	to	

understand	their	strengths	and,	more	importantly,	their	limitations.	Then,	we	designed	a	

MA	approached	based	on	the	PL,	which	allows	for	the	MA	of	the	three	most	commonly	

used	ESs	with	count	data	(i.e.	OR,	RR,	and	RD)	in	both	treatment	effect	homogeneity	and	

heterogeneity	settings	while	including	the	information	contained	in	DZ	and	SA	studies.	

In	addition	to	these	developments	for	count	data,	we	also	proposed	a	Re-NB	model	for	

the	MA	of	over-dispersed	IR	data	with	rare	events	and	SA	studies.	

Based	on	the	results	obtained	in	our	first	two	papers	[6,	16],	we	are	able	to	draw	clear	

recommendations	regarding	rare	event	MA	of	count	data	in	the	context	of	treatment	

effect	homogeneity.	When	there	are	no	SA	studies,	the	PL	or	the	MH	without	CC	methods	

can	be	used	interchangeably	to	meta-analyze	the	OR,	the	RR,	and	the	RD,	even	with	very	

low	event	probability.	In	the	presence	of	SA	studies,	the	PL	approach	should	be	favored	

to	obtain	more	precise	estimates.	These	recommendations	are	valid	for	both	rare	event	
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and	common	event	settings	and,	thus,	apply	for	any	meta-analysis	conducted	under	the	

assumption	of	a	homogeneous	treatment	effect.		

We	hope	that	these	clear	recommendations	will	help	improving	current	practices.	

However,	we	know	that	there	is	a	lot	of	inertia	in	research	and	that	bridging	the	gap	

between	theory	and	practice	is	a	long-lasting	process.	For	instance,	using	a	CC	(i.e.	

adding	an	arbitrary	constant	to	each	cell	of	the	zero-event	studies’	contingency	table)	is	

still	the	default	implementation	in	Stata	[29],	despite	several	authors	arguing	against	

its	use	[30-32].	We	corroborated	their	arguments	by	showing	that	using	a	CC	could	

heavily	deteriorate	the	MH	estimators’	performance.	Moreover,	although	the	Peto	

method	is	restricted	to	the	OR	and	provides	only	an	approximation	of	this	parameter	

[33-34],	it	is	still	recommended	by	Cochrane’s	guidelines	to	meta-analyze	rare	events	

[35].	Our	results	supported	the	conclusion	that	the	Peto	method	should	only	be	used	

with	great	caution	since,	unlike	the	MH	method	without	CC	and	the	PL	approach,	it	did	

not	perform	well	in	all	settings	–	as	we	showed.	

When	the	treatment	effect	is	assumed	to	be	heterogeneous,	things	are	more	complicated	

since	inference	is	not	about	one	single	parameter	anymore	but	about	the	whole	

distribution	of	the	treatment	effect.	Therefore,	unlike	what	has	been	done	in	a	recent	

simulation	study	where	the	focus	was	restricted	to	the	mean	treatment	effect	and	its	CI	

only	[36],	performance	assessment	of	a	MA	method	should	include	estimation	of	some	

measure	of	the	heterogeneity.	In	our	third	paper,	we	used	both	the	between-study	

variance	and	the	PI	to	describe	the	heterogeneity	and	evaluate	the	estimates	obtained	

by	our	PL	approach	for	these	two	quantities	[18].		

Two	key	messages	can	be	taken	from	the	results	obtained	in	this	third	paper.	The	first	

one	is	that	a	MA	conducted	with	treatment	effect	heterogeneity	should	always	report	a	
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PI.	Not	only	is	this	measure	very	intuitive,	but,	as	our	simulations	showed,	it	also	

provides	a	better	description	of	the	treatment	effect	than	the	estimation	of	the	between-

study	variance	parameter.	Indeed,	whereas	the	between-study	variance	was	often	

underestimated,	especially	with	rare	events,	the	computed	PIs	were	always	non-null	and	

often	conservative.	This	is	because	the	formula	used	to	compute	these	PIs	involves	both	

the	between	and	within-study	variances,	and	over-estimation	of	the	latter	tended	to	

compensate	under-estimation	of	the	former.	Underestimation	of	the	between-study	

variance	parameter	corroborated	previous	findings.	For	instance,	Engels	and	colleagues	

reanalyzed	125	published	MA	studies	and	found	that	26%	of	them	estimated	a	null	

between-study	variance	[37].	However,	the	good	performance	of	the	PI	was	in	

contradiction	with	what	was	described	in	previous	studies	[38-40].	This	can	be	

explained	by	the	fact	that	these	authors	have	used	a	two-stage	approach,	where	the	ESs	

and	the	variances	components	are	first	estimated	and	then	used	in	further	computations	

of	other	parameters.	By	contrast,	the	PL	is	a	one-stage	approach	in	which	all	parameters	

are	estimated	simultaneously	[41].	Therefore,	the	first	key	message	should	be	

complemented	as	follows:	always	report	the	PI	in	RE	MA	and	use	a	reliable	one-stage	

method	to	conduct	the	analysis.	

The	second	take-home	message	of	our	third	paper	is	that	the	PL	method	is	a	reliable	

one-stage	method	to	run	a	MA	of	rare	events	with	treatment	effect	heterogeneity.	

Indeed,	our	results	showed	that	it	provided	good	estimates	and	CIs	for	the	mean	

treatment	effect	parameter,	even	in	settings	with	extremely	rare	events.	As	for	the	PIs	

computed	with	the	PL	approach,	although	(very)	conservative	with	(very)	rare	events,	

these	intervals	can	still	serve	as	an	interesting	benchmark,	allowing	the	exclusion	of	

unlikely	values	of	the	treatment	effect.	
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Beside	the	results	that	the	Re-NB	model	was	more	appropriate	to	meta-analyze	over-

dispersed	IR	data	than	the	Re-Poi	model	even	in	the	presence	of	DZ	and	SA	studies,	

another	interesting	finding	of	our	fourth	paper	was	the	incapacity	of	all	models	to	

provide	reliable	estimates	of	the	between-study	variance	parameter	[24].	This	

corroborates	one	of	the	findings	of	our	third	paper,	i.e.,	that	estimation	of	this	parameter	

fails	to	provide	a	comprehensive	description	of	the	treatment	effect	heterogeneity	in	

rare	event	settings,	and,	thus,	it	also	speaks	in	favor	of	reporting	the	PI.	Moreover,	the	

high	rate	of	numerical	issues	of	the	bivariate	Re-NB	which	was,	to	a	lesser	extent,	also	

observed	for	the	PL	approach,	indicates	that,	in	practice,	these	models	might	have	to	be	

simplified	in	order	to	achieve	convergence.	

In	conclusion,	we	showed	throughout	our	four	articles	that	solutions	to	obtain	reliable	

results	in	rare	event	MA	existed.	This	was	particularly	true	in	the	context	of	a	

homogeneous	treatment	effect,	where	the	PL	and	MH	methods	obtained	good	

performance	in	all	the	settings	covered	by	our	simulations	(the	MH	being	slightly	less	

precise	with	SA	studies).	When	the	treatment	effect	cannot	be	assumed	to	be	

homogeneous,	meta-analysts	should	use	an	appropriate	one-stage	RE	MA	method,	such	

as	the	PL	approach	for	count	data	or	the	Re-NB	model	for	IR	data,	and	always	report	a	PI	

to	describe	the	heterogeneity.	Nevertheless,	it	is	important	to	keep	in	mind	that	when	

the	events	are	too	rare	the	PI	can	greatly	overestimate	the	genuine	heterogeneity.	

Moreover,	in	practice,	one	might	have	to	simplify	the	estimation	model	because	of	

numerical	issues.	

The	difficulty	of	precisely	describing	the	treatment	effect	heterogeneity	and	of	achieving	

convergence	of	the	model	brings	us	to	the	limit	of	MA	in	rare	event	settings.	Indeed,	

when	the	events	are	too	rare,	the	information	contained	in	primary	studies	might	not	be	
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sufficient	to	provide	reliable	estimates	of	all	the	model’s	parameters	or	even	to	achieve	

convergence.	In	such	settings,	one	solution	to	gain	information	would	be	to	resort	to	

observational	studies,	which	are	usually	based	on	much	larger	samples	than	RCTs	and	

which	can	provide	valid	estimate	of	the	treatment	effect	provided	that	the	appropriate	

causal	methodology	has	been	used	[42].	Nevertheless,	further	investigations	are	

required	in	order	to	better	understand	the	benefits	of	including	causal	observational	

studies	when	meta-analyzing	rare	events.	
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Abstract
We studied the performance of several meta-analysis methods in rare event settings,

when the treatment effect is assumed to be homogeneous and baseline prevalences

are either homogeneous or heterogeneous. We conducted extensive simulations that

included the three most common effect sizes with count data: the odds ratio, the rel-

ative risk, and the risk difference. We investigated several important scenarios by

varying the level of rareness, the value of the trials’ arms unbalance, and the size

of the treatment effect. We found that the Mantel–Haenszel method and the Bino-

mial regression model provided the best results across all the scenarios investigated.

The Peto method performed satisfactorily only when the true effect size was not too

large and the degree of unbalance moderate. Inverse variance was the least reliable

method. The use of a continuity correction factor slightly improved the performance

of the inverse variance method but deteriorated that of the Peto and Mantel–Haenszel

methods. A method based on median unbiased estimators of the probabilities pro-

vided similar results to those obtained when using the inverse variance method with

a continuity correction. Therefore, when the treatment effect can be assumed to be

homogeneous and for either homogeneous or heterogeneous baseline prevalences, we

highly recommend using the Mantel-Haenszel method without continuity correction

(for all the effect sizes) or the Binomial regression model (for the odds ratio only) to

meta-analyze the data.

K E Y W O R D S
fixed-effect methods, homogeneous treatment effect, meta-analysis, rare events, simulation study

1 INTRODUCTION

The objective of a meta-analysis is to combine evidence from related but independent studies in order to improve the knowledge
about a specific research question and to generalize the results (Normand, 1999). When the outcome is continuous, the inves-
tigator either uses a fixed-effect (FE) or a random-effects (RE) model according to his knowledge and the expected effect of
the intervention. However, with count data, the investigator further has to distinguish between the setting of homogeneous and
heterogeneous baseline prevalences, yielding a total of four different frameworks (Table 1).

While a clear distinction is made between the FE and RE models in the meta-analysis’ literature, the question of homoge-
neous versus heterogeneous baseline prevalences is seldomly discussed. Notably, in the three main published simulation studies
assessing the performance of various meta-analysis methods in the context of rare events, the authors assumed a homogeneous
baseline prevalence in all the simulated scenarios (Bradburn, Deeks, Berlin, & Russell Localio, 2007; Kuss, 2015; Sweeting,

Biometrical Journal. 2019;61:1557–1574. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1557www.biometrical-journal.com
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T A B L E 1 Frameworks for the meta-analysis of count data

Homogeneous treatment effect Heterogeneous treatment effects
Homogeneous baseline prevalence Fixed effect (FE) with baseline heterogeneity Random effects (RE) with baseline homogeneity

Heterogeneous baseline prevalences FE with baseline heterogeneity RE with baseline heterogeneity

Sutton, & Lambert, 2004). The goal of this paper was thus to reassess the performance of FE meta-analysis methods with rare
events, considering the two settings of homogeneous versus heterogeneous baseline prevalences.

In practice, a typical setting under which the assumption of a homogeneous treatment effect is likely to hold is that of a
multicenter randomized control trial, where each center has followed exactly the same research protocol. When patients between
centers are comparable in terms of baseline characteristics, then the meta-analyst will likely assume a homogeneous baseline
prevalence. On the contrary, when patients’ baseline characteristics differed markedly, the assumption of heterogeneous baseline
prevalences might be more appropriate.

The classical method to conduct a meta-analysis in the framework of a homogeneous treatment effect is that of the inverse
variance (IV) (Borenstein, Hedges, Higgins, & Rothstein, 2009; Jackson & White, 2018). This method is based on the generalized
least squares technique and provides an estimator corresponding to a weighted average of the primary-studies’ effect sizes
(ESs). This estimator has good asymptotic properties (i.e., convergence, asymptotic normality). In finite samples however, and
especially with rare events, asymptotic theory breaks down and the IV method yields biased estimates and invalid confidence
intervals (CI) (Lane, 2013). Specific to binary data, two other methods are commonly used in FE meta-analyses: Mantel–
Haenszel (MH) (Mantel & Haenszel, 1959) and Peto (Yusuf, Peto, Lewis, Collins, & Sleight, 1985), the latter being applied for
the estimation of the odds ratio (OR) only. While both methods were found to be more robust to rare events than the IV method,
estimates provided by the Peto method were less reliable in settings with unbalanced trials’ arms and/or large ES (Bradburn
et al., 2007).

With very rare events, when some primary studies report zero event in one (single-zero studies; SZ studies) or both (double-
zero studies; DZ studies) arms, the IV method may provide indefinite estimates. Under these circumstances, a straightforward
way to compute the IV estimate is to exclude the problematic studies from the analysis. As for the MH and Peto methods, DZ
studies are automatically excluded from the computation of the OR and the relative risk (RR; for MH), as can be checked by
inspecting their mathematical formulae. However, excluding zero-event studies is suboptimal since they are likely to contain
useful pieces of information, even DZ studies (e.g., no event in a sample of 50 patients is not the same as no event in a sample
of 200 patients).

As discussed by Kuss, Wandrey, and Kunze (2009), meta-analyses with zero-event studies are commonly encountered in
practice. In a random sample of 500 Cochrane reviews, the authors found that 34% of these reviews contained at least one
meta-analysis with a DZ study. To tackle this issue, the classical solution is to use a continuity correction factor (CC) (Sweeting
et al., 2004). The problem with this solution is that the resulting estimates depend on the choice of the CC (Rücker, Schwarzer,
Carpenter, & Olkin, 2009). However, there is another way to include both SZ and DZ studies, without using a CC, which is
based on the median unbiased estimator (MUE) method (Hirji, Tsiatis, & Mehta, 1989; Parzen, Lipsitz, Ibrahim, & Klar, 2002).
This method provides estimates of the OR, RR, and risk difference (RD) that always exist (i.e., even when no event is observed
in both arms). Finally, the last alternative we have investigated to estimate the OR is the Binomial regression model.

Through extensive simulations, we assessed the performance of these different methods (i.e., IV, MH, Peto, with or without
CC, MUE, and Binomial regression). Except for the Peto and Binomial regression methods that are specific to the OR, all the
other methods were used to estimate the OR, the RR, and the RD. Our simulations covered many important scenarios with
different values of trials’ arms unbalance (from strong unbalance in favor of either trials’ arm to no unbalance), ES (from large
reduction—or increase—in event prevalence to no effect), and baseline prevalences (from extremely rare to common events).
On top of that, all these scenarios were considered with either homogeneous or heterogeneous baseline prevalences.

2 COMBINING TRIALS UNDER THE FIXED-EFFECT FRAMEWORK

Let 𝜋𝑡 and 𝜋𝑐 be the probability of the event in the treated and control populations, respectively. In this paper, we focused on the
three following effect sizes:

𝑂𝑅 = (𝜋𝑡 ∗
(
1 − 𝜋𝑐

)
)∕(𝜋𝑐 ∗

(
1 − 𝜋𝑡

)
) (1)
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T A B L E 2 Scale-dependency of the notion of homogeneity in treatment effect
with heterogeneous baseline prevalences

𝝅𝒄 𝝅𝒕 RD RR OR
0.16 0.26 0.1 1.63 1.84

0.33 0.43 0.1 1.30 1.53

0.03 0.13 0.1 4.45 4.83

0.17 0.27 0.1 1.59 1.81

0.07 0.17 0.1 2.39 2.72

Note. The treatment is assumed to be homogeneous on the RD-scale.

𝑅𝑅 = 𝜋𝑡∕𝜋𝑐 (2)

𝑅𝐷 = 𝜋𝑡 − 𝜋𝑐. (3)

Under the FE model, the ES is assumed homogeneous across the primary studies and the goal of the meta-analysis is to
estimate a single population parameter. Inversely, under the RE model, one assumes that each primary study seeks to estimate
a different population parameter and the focus is on describing these parameters’ distribution. Ideally, the selection of either
framework should be grounded on contextual knowledge and not on statistical arguments. This selection will then determine
the set of methods available to the meta-analyst. In the subsections below, we described six methods that can be used under the
FE framework.

As already mentioned in the Introduction, when meta-analyzing count data in the FE framework, one should further distin-
guish between the settings of homogeneous and heterogeneous baseline prevalences (see Table 1). This subdivision has a direct
implication regarding the notion of treatment effect homogeneity. With homogeneous baseline prevalences, the homogeneity
of the ES holds whatever the metric adopted (OR, RR, or RD). On the contrary, with heterogeneous baseline prevalences,
homogeneity of the ES depends on the scale of measurement. Indeed, assume for instance that the baseline probability 𝜋𝑐 is
heterogeneous and that the RD is homogeneous. Then, if one were to use instead the RR (or the OR), the ES estimate would turn
out be heterogeneous (Table 2). Therefore, under the FE framework with baseline heterogeneity, the investigator has to specify
on which scale the treatment effect is assumed homogeneous.

As this small example illustrates, the selection of the appropriate scale to measure the effect of the treatment is an important
question. Actually, there is a broad debate in the literature on the advantages of absolute measures, such as the RD, versus relative
measures, such as the RR and OR (Papageorgiou, Tsiranidou, Antonoglou, Deschner, & Jäger, 2015; Sinclair & Bracken, 1994).

In what follows, each primary study consists of one control group of size 𝑛𝑐 and one treated group of size 𝑛𝑡. The number of
events occurring in these two groups are denoted 𝑋𝑐 and 𝑋𝑡, respectively.

2.1 The inverse variance method
For 𝑘 = 1,… , 𝐾 , the IV method is based on the following model:

�̂�𝑘 = 𝜃 + 𝜖𝑘, 𝜖𝑘 ∼ 𝑁
(
0, 𝜎2𝑘

)
, (4)

where �̂�𝑘 is the estimator of the parameter of interest 𝜃 (i.e., RD, RR, or OR) obtained from study k and 𝜎2
𝑘

its variance. The RR
and OR’s estimators are usually analyzed on the log scale, as their sampling distribution is more symmetrical on this scale.

The three ES estimators are computed as follows:

𝑂𝑅𝑘 =
�̂�𝑘𝑡 ∗

(
1 − �̂�𝑘𝑐

)
�̂�𝑘𝑐 ∗

(
1 − �̂�𝑘𝑡

) (5)

𝑅𝑅𝑘 =
�̂�𝑘𝑡
�̂�𝑘𝑐

(6)

𝑅𝐷𝑘 = �̂�𝑘𝑡 − �̂�𝑘𝑐 , (7)

where �̂�𝑘𝑡 = 𝑋𝑘𝑡∕𝑛𝑘𝑡 and �̂�𝑘𝑐 = 𝑋𝑘𝑐∕𝑛𝑘𝑐 are the maximum likelihood estimators.
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Variances of these estimators, computed using the delta method for the OR and the RR, are estimated by

�̂�2
𝑙𝑜𝑔𝑂𝑅𝑘

= 1
𝑛𝑘𝑡�̂�𝑘𝑡

(
1 − �̂�𝑘𝑡

) + 1
𝑛𝑘𝑐�̂�𝑘𝑐

(
1 − �̂�𝑘𝑐

) (8)

�̂�2
𝑙𝑜𝑔𝑅𝑅𝑘

=
1 − �̂�𝑘𝑡
𝑛𝑘𝑡�̂�𝑘𝑡

+
1 − �̂�𝑘𝑐
𝑛𝑘𝑐�̂�𝑘𝑐

(9)

�̂�2
𝑅𝐷𝑘

=
�̂�𝑘𝑡

(
1 − �̂�𝑘𝑡

)
𝑛𝑘𝑡

+
�̂�𝑘𝑐

(
1 − �̂�𝑘𝑐

)
𝑛𝑘𝑐

. (10)

The IV estimator is obtained by applying the generalized least squares method, assuming independence between the K primary
studies and the within-study variances 𝜎2

𝑘
known:

�̂�𝐼𝑉 =

𝐾∑
𝑘=1

𝑊𝑘�̂�𝑘

𝐾∑
𝑘=1

𝑊𝑘

, (11)

where𝑊𝑘 = 1∕𝜎2
𝑘
. This estimator is equivalent to the maximum likelihood estimator whenever the assumption of normality (4)

holds. The variance of �̂�𝐼𝑉 is given by

𝑉 𝑎𝑟
(
�̂�𝐼𝑉

)
= 1

𝐾∑
𝑘=1

𝑊𝑘

. (12)

In practice, 𝜎2
𝑘

is not observed and �̂�𝑘 = 1∕�̂�2
𝑘

is used instead.
As discussed in the Introduction section, the good performances of the IV method hold asymptotically. However, in finite

samples, estimates obtained with this method systematically deviate from the true parameter value and observed coverage prob-
abilities of the CI depart from the nominal value. These undesirable properties, which are exacerbated with rare events, can
be explained by several reasons. First, primary-study estimators of the RR and OR are biased (Firth, 1993; Nemes, Jonasson,
Genell, & Steineck, 2009). Therefore, even when 𝜎2

𝑘
is known, one has for RR and OR:

𝐸
(
�̂�𝐼𝑉 |𝜎2𝑘) =

𝐾∑
𝑘=1

𝑊𝑘𝐸
(
�̂�𝑘
)

𝐾∑
𝑘=1

𝑊𝑘

= 𝐸
(
�̂�𝑘
) ≠ 𝜃. (13)

Second, the primary-study estimate �̂�𝑘 is correlated with its estimated variance and this correlation is not taken into account
by the IV method (Berkey, Hoaglin, Mosteller, & Colditz, 1995). Third, the sampling distribution of the IV estimator is not well
approximated by a normal distribution.

In very rare event settings, when some primary studies report zero event, the IV method can lead to indefinite estimates. For
the RR and the OR, this happens whenever𝑋𝑘𝑐 = 0 or𝑋𝑘𝑡 = 0 (or both) for any k. For the RD, �̂�2

𝑘
= 0 and, thus, �̂�𝑘 = ∞ when

𝑋𝑘𝑐 = 𝑋𝑘𝑡 = 0. As a result, to obtain defined IV estimates, one has to exclude DZ studies from the computation of all ES and
SZ studies from the computation of OR and RR.

2.2 The Mantel–Haenszel method
The MH method was first proposed in 1959 to estimate the risk of an exposure by means of an OR while adjusting for confounding
factors (Mantel & Haenszel, 1959). This method has, then, been extended to other ES (Rothman, Greenland, & Lash, 2008) and
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can be applied to conduct meta-analyses of OR, RR, and RD using the following formulae:

𝑂𝑅𝑀𝐻 =

𝐾∑
𝑘=1

𝑋𝑘𝑡
(
𝑛𝑘𝑐 −𝑋𝑘𝑐

)
∕𝑛𝑘

𝐾∑
𝑘=1

𝑋𝑘𝑐
(
𝑛𝑘𝑡 −𝑋𝑘𝑡

)
∕𝑛𝑘

(14)

𝑉 𝑎𝑟
(
log

(
𝑂𝑅𝑀𝐻

))
= 1

2

⎛⎜⎜⎜⎜⎜⎝

𝐾∑
𝑘=1

𝑅𝑘𝑃𝑘

𝑅2 +

𝐾∑
𝑘=1

(
𝑃𝑘𝑆𝑘 +𝑄𝑘𝑅𝑘

)
𝑅𝑆

+

𝐾∑
𝑘=1

𝑆𝑘𝑄𝑘

𝑆2

⎞⎟⎟⎟⎟⎟⎠
(15)

𝑅𝑅𝑀𝐻 =

𝐾∑
𝑘=1

𝑋𝑘𝑡𝑛𝑘𝑐∕𝑛𝑘

𝐾∑
𝑘=1

𝑋𝑘𝑐𝑛𝑘𝑡∕𝑛𝑘

(16)

𝑉 𝑎𝑟
(
log

(
𝑅𝑅𝑀𝐻

))
=

𝐾∑
𝑘=1

[(
𝑋𝑘𝑡 +𝑋𝑘𝑐

)
𝑛𝑘𝑡𝑛𝑘𝑐

𝑛2
𝑘

−
𝑋𝑘𝑡𝑋𝑘𝑐
𝑛𝑘

]
(

𝐾∑
𝑘=1

𝑋𝑘𝑡𝑛𝑘𝑐
𝑛𝑘

)(
𝐾∑
𝑘=1

𝑋𝑘𝑐𝑛𝑘𝑐
𝑛𝑘

) (17)

𝑅𝐷𝑀𝐻 =

𝐾∑
𝑘=1

(
𝑋𝑘𝑡𝑛𝑘𝑐 −𝑋𝑘𝑐𝑛𝑘𝑡

)
∕𝑛𝑘

𝐾∑
𝑘=1

𝑛𝑘𝑡𝑛𝑘𝑐∕𝑛𝑘

(18)

𝑉 𝑎𝑟
(
𝑅𝐷𝑀𝐻

)
=

𝐾∑
𝑘=1

(
𝑛𝑘𝑡𝑛𝑘𝑐
𝑛𝑘

)2
[
𝑋𝑘𝑡

(
𝑛𝑘𝑡 −𝑋𝑘𝑡

)
𝑛2
𝑘𝑡

(
𝑛𝑘𝑡 − 1

) −
𝑋𝑘𝑐

(
𝑛𝑘𝑐 −𝑋𝑘𝑐

)
𝑛2
𝑘𝑐

(
𝑛𝑘𝑐 − 1

) ]
(

𝐾∑
𝑘=1

𝑛𝑘𝑡𝑛𝑘𝑐
𝑛𝑘

)2 , (19)

where 𝑛𝑘 = 𝑛𝑘𝑡 + 𝑛𝑘𝑐 , 𝑃𝑘 = (𝑋𝑘𝑡 + (𝑛𝑘𝑐 −𝑋𝑘𝑐))∕𝑛𝑘, 𝑄𝑘 = (𝑋𝑘𝑐 + (𝑛𝑘𝑡 −𝑋𝑘𝑡))∕𝑛𝑘, 𝑅𝑘 = 𝑋𝑘𝑡(𝑛𝑘𝑐 −𝑋𝑘𝑐)∕𝑛𝑘, 𝑆𝑘 =
𝑋𝑘𝑐(𝑛𝑘𝑡 −𝑋𝑘𝑡)∕𝑛𝑘, 𝑅 =

∑𝐾
𝑘=1𝑅𝑘, 𝑆 =

∑𝐾
𝑘=1 𝑆𝑘.

The MH formulae do not rely on the primary-study ES estimates (only on the counts). As a result, MH estimators are more
robust to zero-event issues than IV’s. For RR and OR it provides indefinite estimate only when all control groups report zero
event (i.e.,𝑋𝑘𝑐 = 0 ∀ 𝑘). The variance estimates of the log (OR) and log (RR) are indefinite when either𝑋𝑘𝑡 = 0 or𝑋𝑘𝑐 = 0 ∀ 𝑘
(or both). Although quite rare, such extreme scenarios are sometimes encountered in practice. For instance, a systematic review
on the occurrence of lactic acidosis with metformin use in type 2 diabetes mellitus gathered 148 studies that were all DZ studies
(Salpeter, Greyber, Pasternak, & Salpeter Posthumous, 2010). From the above formulae, one can see that SZ studies contribute
to the computation of all ESs (i.e., to either the numerator of the denominator for the OR and RR and to both for the RD).
Contrariwise, DZ studies do not contribute to the computation of the OR and RR estimates, whereas these studies do contribute
to the RD estimate (i.e., to the denominator).

Silcocks (2005) showed that the MH estimator for the OR corresponded to the maximum likelihood estimator (based on the
Binomial distribution for the number of events), whenever the probability of event in the control group is homogeneous and the
ratio of sample sizes is constant across the primary studies. Similarly, one can show that the MH estimators of the RR and RD
correspond to their likelihood counterpart, whenever the ratio of sample sizes is constant (whatever the prevalences). For the
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RD, the MH estimator is given by Equation (18). With homogeneous ratios of sample sizes (i.e., 𝑛𝑘𝑐∕𝑛𝑘𝑡 = 𝑅 ∀ 𝑘), we have
𝑛𝑘𝑐 = 𝑛𝑘𝑡 ∗ 𝑅 and 𝑛𝑘 = 𝑛𝑘𝑡 ∗ (1 +𝑅). Substituting these results into the above formula yields:

𝑅𝐷𝑀𝐻 =

𝐾∑
𝑘=1

(
𝑋𝑘𝑡𝑛𝑘𝑡𝑅 −𝑋𝑘𝑐𝑛𝑘𝑡

)
∕(𝑛𝑘𝑡 ∗ (1 +𝑅))

𝐾∑
𝑘=1

𝑛2𝑘𝑡𝑅∕(𝑛𝑘𝑡 ∗ (1 +𝑅))

=

𝐾∑
𝑘=1

𝑋𝑘𝑡𝑅∕ (1 +𝑅) −
𝐾∑
𝑘=1

𝑋𝑘𝑐∕ (1 +𝑅)

𝐾∑
𝑘=1

𝑛𝑘𝑡𝑅∕ (1 +𝑅)

(20)

=

𝐾∑
𝑘=1

𝑋𝑘𝑡

𝐾∑
𝑘=1

𝑛𝑘𝑡

−

𝐾∑
𝑘=1

𝑋𝑘𝑐

𝐾∑
𝑘=1

𝑛𝑘𝑡𝑅

.

Since 𝑛𝑘𝑐 = 𝑛𝑘𝑡 ∗ 𝑅, the equivalence with the maximum likelihood estimator follows. Using similar arguments, one can show
that 𝑅𝑅𝑀𝐻 = 𝑅𝑅𝑀𝐿 when 𝑛𝑘𝑐∕𝑛𝑘𝑡 = 𝑅.

2.3 The Peto method
The Peto method was introduced as a user-friendly solution to estimate the OR in the setting of rare events (Yusuf et al., 1985).
Peto proposed the following estimator for the log(OR):

̂log (𝑂𝑅)𝑃𝑒𝑡𝑜 =

𝐾∑
𝑘=1

(
𝑂𝑘 − 𝐸𝑘

)
𝐾∑
𝑘=1

𝑉𝑘

, (21)

where 𝑂𝑘 = 𝑋𝑘𝑡 is the observed number of events in the treatment group of study 𝑘, 𝐸𝑘 = 𝑋𝑘 ∗
𝑛𝑘𝑡
𝑛𝑘

is the expected number

of events in the treatment group under the null hypothesis of no treatment effect, 𝑋𝑘 = 𝑋𝑘𝑐 +𝑋𝑘𝑡 is the total number of event,
and 𝑉𝑘 = 𝐸𝑘𝑛𝑘𝑐(𝑛𝑘 −𝑋𝑘)∕(𝑛𝑘(𝑛𝑘 − 1)) is the hypergeometric variance of 𝑂𝑖 under the null. The variance of this estimator is
given by:

𝑉 𝑎𝑟
(
̂log (𝑂𝑅)𝑃𝑒𝑡𝑜

)
= 1

𝐾∑
𝑘=1

𝑉𝑘

. (22)

Peto estimator is obtained using exact likelihood theory (Cox, 1977) and corresponds to the estimate of the common log(OR)
obtained in the first step of a Newton–Raphson procedure to maximize the conditional log-likelihood when the starting value
for the log(OR) is zero (McCullagh & Nelder, 1981). Hence its other name: the “one-step estimator.”

DZ studies do not contribute to the Peto log(OR) estimate (i.e., the quantities 𝑂𝑘, 𝐸𝑘 and 𝑉𝑘 are all null), whereas SZ studies
do contribute. The only setting under which the Peto estimator and its variance are undefined is when all included studies are
DZ studies.

2.4 The continuity correction factor method
As already mentioned in the three previous subsections, the three classical FE methods have difficulties to deal with zero-event
studies. The IV method yields indefinite estimates in the presence of either SZ or DZ studies when pooling ORs or RRs, and
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T A B L E 3 Strategy applied to deal with zero-event studies

IV method MH method Peto method
Without CC With CC Without CC With CC Without CC With CC

OR Discard DZ and SZ
studies

Add 0.5 to DZ and
SZ studies

No action requireda Add 0.5 to DZ
studies

No action requireda Add 0.5 to DZ
studies

RR Discard DZ and SZ
studies

Add 0.5 to DZ and
SZ studies

No action requireda Add 0.5 to DZ
studies

—

RD Discard DZ studies Add 0.5 to DZ
studies

No action requireda No CC requiredb —

aMH and Peto methods provide estimates that are well defined even in the presence of SZ or DZ studies.
bThe MH method provides RD estimates that include the information contained in both SZ and DZ studies.

in the presence of DZ studies when pooling RDs. As for MH and Peto, although these two methods are robust to zero-event
studies, they are based on formulae that discard DZ studies when pooling ORs or RRs (for MH).

A simple remedy to the issue of SZ and DZ studies, which dates back to 1934 and has been adopted by many researchers is
to use a CC. It consists in adding a constant c to each cell of each contingency table containing one or more 0 frequency (Yates,
1934). Plackett (1964) provided a detailed account of this method. In this paper, we used a CC of 0.5, which can be justified by
theoretical arguments (Bhaumik et al., 2012).

In this paper, the motivation of using a CC was to allow all studies to contribute to the combined ES estimate. Therefore, we
additionally evaluated IV, MH, and Peto methods with a CC. Table 3 summarizes the various strategies applied with these three
methods to tackle the issue of zero-event studies:

2.5 The median unbiased estimator method
The MUE method works in two steps. First, one computes in each primary study 𝑘 the MUE of 𝜋𝑘𝑗 , 𝑗 ∈ {𝑐, 𝑡} (Parzen et al.,
2002):

�̂�𝑘𝑗 =

⎧⎪⎪⎨⎪⎪⎩

(
1 − 0.51∕𝑛𝑘𝑗

)
∕2 if 𝑋𝑘𝑗 = 0(

𝑝𝐿
𝑘𝑗

+ 𝑝𝑈
𝑘𝑗

)
∕2 if 0 < 𝑋𝑘𝑗 < 𝑛𝑘𝑗(

0.51∕𝑛𝑘𝑗 + 1
)
∕2 if 𝑋𝑘𝑗 = 𝑛𝑘𝑗

(23)

with 𝑝𝐿
𝑘𝑗

= 𝐹−1(0.5|𝛼 = 𝑋𝑘𝑗, 𝛽 = 𝑛𝑘𝑗 −𝑋𝑘𝑗 + 1) and 𝑝𝑈
𝑘𝑗

= 𝐹−1(0.5|𝛼 = 𝑋𝑘𝑗 + 1, 𝛽 = 𝑛𝑘𝑗 −𝑋𝑘𝑗), where 𝐹−1(𝑄|𝛼, 𝛽) is the

𝑄th quantile of the beta-distribution with parameters 𝛼 and 𝛽. Note that the expression we used for 𝑝𝑈
𝑘𝑗

differed from that
provided in the paper of Parzen and colleagues, which, we believe, contains an error. Mathematical justifications can be found
in the Appendix.

Second, from these two estimated probabilities, one can compute the primary-study ESs using Equations (5) and (7) as well
as their corresponding variance using Equations (8) and (10), and combined them using a weighted average as in Equation (11).
Variance of the MUE combined estimate is then given by Equation (12).

Clearly, the MUE method provides estimators that are always well defined, whatever the degree of sparseness of the events.
Moreover, this method includes the information from DZ studies.

2.6 The Binomial regression model
Another option to deal with zero-event studies is to use the Binomial logistic regression model:

𝑋𝑘𝑐 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙
(
𝑛𝑘𝑐, 𝜋𝑘𝑐

)
(24)

𝑋𝑘𝑡 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙
(
𝑛𝑘𝑡, 𝜋𝑘𝑡

)
(25)

𝑙𝑜𝑔𝑖𝑡
(
𝜋𝑘𝑐

)
= 𝛼𝑘 (26)

𝑙𝑜𝑔𝑖𝑡
(
𝜋𝑘𝑡

)
= 𝛼𝑘 + 𝛿, (27)

where 𝛼𝑘 represents the logit of the control group probability and 𝛿 the log(OR).
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Under the assumption of homogeneous baseline prevalences, 𝛼𝑘 = 𝛼, ∀𝑘, and parameters of model (24)–(27) are estimated
by maximizing the following likelihood function:

𝐿 (𝛼, 𝛿) =
𝐾∏
𝑘=1

(
𝑛𝑘𝑐

𝑋𝑘𝑐

)
𝜋
𝑋𝑘𝑐
𝑐

(
1 − 𝜋𝑐

)𝑛𝑘𝑐−𝑋𝑘𝑐 (𝑛𝑘𝑡
𝑋𝑘𝑡

)
𝜋
𝑋𝑘𝑡
𝑡

(
1 − 𝜋𝑡

)𝑛𝑘𝑡−𝑋𝑘𝑡 . (28)

Note that the estimator obtained when maximizing likelihood Equation (28) corresponds to that obtained when completely
pooling the data (i.e., without stratifying on k).

Under the assumption of baseline heterogeneity, 𝛼𝑘 is treated as a nuisance parameter. One can deal with this nuisance param-
eter by adopting either a fixed-effects or a random-effects approach. The main advantage of a fixed-effects approach is that no
distributional assumption has to be made, whereas the random-effects approach implies the choice of a distribution for 𝛼𝑘. How-
ever, particularly with rare events, it is advantageous to treat 𝛼𝑘 as a random variable to limit as much as possible the number of
parameters to be estimated and allow DZ studies to contribute to the estimation (DZ studies do not contribute to the likelihood
with a fixed-effects model since both logits (26) and (27) are undefined).

We assumed 𝛼𝑘 ∼ 𝑁(𝛼, 𝜎2𝛼) and estimated the parameters by maximizing the following marginal likelihood function:

𝐿 (𝛼, 𝛿) =
𝐾∏
𝑘=1

+∞

∫
−∞

(
𝑛𝑘𝑐

𝑋𝑘𝑐

)
𝜋
𝑋𝑘𝑐
𝑘𝑐

(
1 − 𝜋𝑘𝑐

)𝑛𝑘𝑐−𝑋𝑘𝑐 (𝑛𝑘𝑡
𝑋𝑘𝑡

)
𝜋
𝑋𝑘𝑡
𝑘𝑡

(
1 − 𝜋𝑘𝑡

)𝑛𝑘𝑡−𝑋𝑘𝑡𝑓 (
𝛼𝑘|𝛼, 𝜎2𝛼) 𝑑𝛼𝑘, (29)

where 𝑓 (⋅) is the Normal density.

3 ILLUSTRATIVE EXAMPLE

3.1 Perinatal death in post-term pregnancy
To motivate and illustrate the use of the six methods described in Section 2, we considered the systematic review conducted
by Crowley (2000). In this review, the author compared the number of deaths induced by routine and selective induction of
pregnancies that go beyond term. Data of the 19 randomized control trials included in Crowley’s review are shown in Table 4.

All trials reported at least one arm with zero event and 11 trials were DZ studies. Most of the trials’ arms included between
50 and 150 women. Except for one study where an imbalance of 2:1 in favor of the treatment group was observed, studies’ arms
were mostly balanced.

3.2 Results from the methods when fitted to the illustrative dataset
Results obtained by the different methods applied to the illustrative dataset are displayed in Table 5. All methods found a decrease
of the number of perinatal deaths in the treated women (i.e., those in the group of routine induction). However, the methods dif-
fered markedly in terms of the magnitude of the effect and confidence interval obtained, especially for the OR and RR. Since all
the studies included in this review reported zero event in at least one arm, the IV method without CC was unable to provide finite
estimates for the OR and RR. As expected in such a rare event setting, estimates obtained for these two ES were quite similar. Note
that the estimate obtained using the Binomial model with homogeneous baseline prevalences corresponds to the one resulting
from simply collapsing the data into a single 2 by 2 contingency table (i.e., (9/3803*4121/4122)/(3794/3803*1/4122) ≅ 0.10).
Interestingly, although the Binomial model with heterogeneous baseline prevalences provided a non-zero estimate for the hetero-
geneity in baseline prevalences (i.e., �̂�2𝛼 = 0.37), it provided virtually the same results as the Binomial model with homogeneous
baseline prevalences.

4 SIMULATION STUDY

4.1 Model
We considered various scenarios, which differed according to (a) the level of rareness (extremely rare, very rare, moder-
ately rare, common), (b) the assumption regarding baseline prevalences (homogeneous or heterogeneous), (c) the level of



PIAGET-ROSSEL AND TAFFÉ 1565

T A B L E 4 Illustrative dataset (perinatal death in post-term pregnancy)

Routine induction Selective induction
Trial 𝒏𝒄 𝑿𝒄 (Deaths) 𝒏𝒕 𝑿𝒕 (Deaths)
Henry (1969) 57 2 55 0

Cole (1975) 119 0 118 0

Martin (1978) 134 1 131 0

Tylleskar (1979) 55 0 57 0

Breart (1982) 235 0 481 0

Katz (1983) 78 0 78 1

Suikkari (1983) 53 0 66 0

Sande (1983) 90 0 76 0

Cardozo (1986) 207 1 195 0

Augensen (1987) 195 0 214 0

Dyson (1987) 150 1 152 0

Witter (1987) 97 0 103 0

Bergsjo (1989) 94 1 94 0

Egarter (1989) 168 1 188 0

Martin (1989) 10 0 12 0

Heden (1991) 129 0 109 0

Hannah (1992) 1706 2 1701 0

Herabuyta (1992) 51 0 57 0

NICH (1994) 175 0 235 0

Total 3803 9 4122 1

T A B L E 5 Results of meta-analysis of the illustrative dataset

Effect size 95% Wald CI CI’s width
Odds ratio
IV

IV+CC 0.56 (0.25; 1.27) 1.02

MH 0.11 (0.01; 0.88) 0.87

MH+CC 0.35 (0.14; 0.88) 0.74

Peto 0.20 (0.06; 0.70) 0.64

Peto+CC 0.44 (0.18; 1.03) 0.85

MUE 0.52 (0.20; 1.38) 1.18

BinReg with homogeneous baseline prevalences* 0.10 (0.01; 0.81) 0.80

BinReg with heterogeneous baseline prevalences** 0.10 (0.01; 0.81) 0.80

Relative risk
IV

IV+CC 0.57 (0.25; 1.27) 1.02

MH 0.11 (0.01; 0.88) 0.87

MH+CC 0.35 (0.14; 0.89) 0.75

MUE 0.52 (0.20; 1.38) 1.18

Risk difference (values in %)
IV −0.15 (−0.31; 0.00) 0.31

IV+CC −0.14 (−0.29; 0.00) 0.29

MH −0.20 (−0.36; -0.05) 0.31

MUE −0.11 (−0.27; 0.04) 0.31

*Likelihood Equation (28), **Likelihood Equation (29).
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unbalance between the trials’ arms (strong unbalance in favor of either arms, moderate unbalance in favor of either arms,
no unbalance), (d) the size of the treatment effect (large reduction, moderate reduction, no effect, moderate increase, large
increase). Extremely rare events had a median baseline probability of 𝑀𝜋𝑐

= 0.005. The three other rareness levels corre-
sponded to 𝑀𝜋𝑐

= 0.01, 0.05, 0.1, respectively. With homogeneous baseline prevalences we set 𝜋kc =𝑀𝜋𝑐
∀𝑘. With hetero-

geneous baseline prevalences, we used 𝜋𝑘𝑐 ∼ 𝐿𝑜𝑔𝑖𝑡−𝑛𝑜𝑟𝑚𝑎𝑙(𝑙𝑜𝑔𝑖𝑡(𝑀𝜋𝑐
), 𝜎2

𝑙𝑜𝑔𝑖𝑡
), with 𝜎2

𝑙𝑜𝑔𝑖𝑡
= 0.5. As regards unbalance, the

five scenarios considered were obtained with mean levels 𝑟 = 0.25, 0.5, 1, 2, 4 (𝑟 = 0.25 corresponding to setting with con-
trol groups four times smaller than treatment groups, in average). For the OR, and the RR, the sizes of treatment effect—
measured on the log(OR) and log(RR) scales, respectively—were −1.5, −0.5, 0, 0.5, 1.5. For the RD, we did not con-
sider reduction in event prevalence to avoid cases with negative treatment probability. We used the three following values:
0, 0.05, 0.1.

Combinations of these four characteristics resulted in 200 simulation scenarios for the OR and RR, and 120 for the RD. For
each scenario, 10,000 meta-analyses were generated, each of them consisting of K = 20 primary studies with treatment arms’
sample sizes ranging from 50 to 150 (i.e., 𝑛𝑘𝑡 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(50; 150)). Sample sizes for the control arms were then obtained as
𝑛𝑘𝑐 = 𝑛𝑘𝑡 ∗ 𝑅, where 𝑅 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑟 − 0.1; 𝑟 + 0.1) and 𝑟 controls the degree of arms unbalance. Treatment probabilities 𝜋kt
were derived from the control probabilities and the ES considered (e.g., for RD: 𝜋kt = 𝜋kc +𝑅𝐷). Finally, the number of events
in both arms were generated by two binomial draws with respective sample sizes and event probabilities.

As pointed out by a reviewer, meta-analyses of K = 20 studies might seem an optimistic scenario, as many published meta-
analyses include a smaller number of studies. Nevertheless, for our goal to study the impact of rare events, it was better to have
a large enough K to avoid fluctuation issues related to scarcity of primary studies. Therefore, we set the number of studies at
a somewhat ideal level, but still realistic. For instance, Moher, Tetzlaff, Tricco, Sampson, and Altman (2007) found a median
number of 23 studies out of 88 systematic reviews analyzed.

For each of the generated meta-analyses, we estimated the ES of interest, its standard error, and the 95% Wald CI. Performances
of the different methods were assessed in terms of bias, and coverage rate. We additionally computed CIs’ width and reported
them, along with the coverage rate, in the file containing the detailed simulations results (see Supporting Information). We
decided to compute median instead of mean values for the bias and CIs’ width to avoid the influence of exceedingly large or
small values obtained in some simulations. Both OR and RR were analyzed on the log scale.

4.2 Results
In this section, we presented abridged results focusing on the most interesting findings for each ES in the setting of heterogeneous
baseline prevalences, since results and conclusions obtained with homogeneous and heterogeneous baseline prevalences were
quite similar. Furthermore, we only discussed results for r= 1, 2, 4 and log(ES)= 0,−0.5,−1.5 (ES=RR or OR), which illustrate
well the issues of unbalanced sample sizes and large treatment effects. Detailed results for all the ES, simulated scenarios, and
outcomes can be found in the Supporting Information.

4.2.1 Odds ratio
In terms of bias (Figure 1), the MH and Binomial regression methods provided the best estimates whereas the IV method was
the least robust across almost all settings considered. The use of a CC reduced the bias of the IV estimator but increased that
of MH and Peto. The MUE method can be seen as an improved version of the IV method with performances comparable to
those obtained when using the IV method with CC. The Peto method obtained similar results to those of the MH and Binomial
regression methods for moderate and no treatment effects, particularly under balanced settings. However, it was clearly not
reliable with large treatment effects and even failed to converge for increasing baseline probabilities (whatever the degree of
unbalance). Under the scenario of no treatment effect and balanced trials, all the methods provided unbiased estimates, except
the MH + CC method. Applying the Binomial model with a random intercept yielded some numerical issues, especially with
very rare events (Table B11, detailed simulation results). The smallest proportion of converged runs achieved by this method
was 63.4% for log(OR) = −1.5, r = 0.25 and 𝑀𝜋𝑐

= 0.005 but in most of the scenarios considered, this proportion was above
90%.

In terms of coverage rates (Figure 2), ranking of the different meta-analysis methods was similar to what was obtained in
terms of bias. The following additional observations can be made: (a) MH and Binomial regression were slightly conservative
in extremely rare event settings, (b) coverage rates obtained by the IV (with or without CC) and MUE methods were below 90%
in many scenarios considered, and (c) ranking between these three methods varied depending on the setting.
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F I G U R E 1 Biases obtained by the IV, IV+CC, MH, MH+CC, Peto, Peto+CC, MUE, and Binomial regression methods when estimating the
log(OR). Values were right-truncated at 1.5 to allow a better visual inspection

F I G U R E 2 Coverage rates (in %) obtained by the IV, IV+CC, MH, MH+CC, Peto, Peto+CC, MUE, and Binomial regression methods for the
log(OR). Values were left-truncated at 80 to allow a better visual inspection
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F I G U R E 3 Biases obtained by the IV, IV+CC, MH, MH+CC, and MUE methods when estimating the log(RR). Values were right-truncated
at 1.5 to allow a better visual inspection

4.2.2 Relative risk
In terms of bias (Figure 3), comparisons between the different methods yielded to the same conclusions as those drawn for the
OR: (a) MH estimator was the least biased, (b) the use of a CC increased the bias for MH estimator and reduced it for the IV
estimator, and (c) performances of the MUE method were comparable to those of the IV method with CC.

In terms of coverage rates (Figure 4), results obtained by the six methods investigated to estimate the RR were comparable to
those obtained for the OR.

4.2.3 Risk difference
In terms of bias (Figure 5), the MH estimator of the RD was the least biased across the different settings. Ranking of IV, IV +
CC, and MUE depended on the setting and none of the methods strictly dominated—or was strictly dominated by—the others.
For all the methods, bias values for the RD were much smaller than those obtained for the RR and OR.

In terms of coverage rates (Figure 6), the MH method again obtained the best results. Contrarily to CIs for the OR and RR,
those obtained for the RD tended to have slightly below 95% coverage rates in extremely rare event settings. Coverage rates
provided by IV, IV + CC, and MUE methods did not systematically converge toward 95% as the event prevalence increased.

5 DISCUSSION

Traditionally, in meta-analysis, a clear distinction is made between the FE and the RE models. In the FE model, one assumes
that the treatment effect is homogeneous across the primary studies and the goal of the meta-analysis is to estimate a single
population parameter. In the RE model, one assumes that the treatment effect is heterogeneous across the primary studies (there
is a population of parameters) and focus is on characterizing the distribution of these parameters. The selection of either model
must be based on contextual knowledge, as this choice has implications in terms of target of inference and appropriate statistical
methods to conduct the analysis.
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F I G U R E 4 Coverage rates (in %) obtained by the IV, IV+CC, MH, MH+CC, and MUE methods for the log(RR). Values were left-truncated
at 80 to allow a better visual inspection

F I G U R E 5 Biases (in %) obtained by the IV, IV+CC, MH, and MUE methods when estimating the RD
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F I G U R E 6 Coverage rates (in %) obtained by the IV, IV+CC, MH, and MUE methods for the RD. Values were left-truncated at 80 to allow a
better visual inspection

When considering count data, one must further distinguish between settings where baseline prevalences are expected to be
homogeneous or heterogeneous. Indeed, we have shown that this distinction has a direct implication regarding the notion of
treatment effect homogeneity. Again, the choice between these two settings should be grounded on contextual knowledge. In
the literature, the distinction between homogeneous and heterogeneous baseline prevalences is seldomly discussed. Actually,
we found only one paper where simulations were carried out under the FE framework with heterogeneous baseline prevalences
(Böhning & Sarol, 2000). However, the authors focused on the RD only and did not consider the issue of rare events. In the three
most comprehensive simulation studies that tackled the issue of rare event meta-analysis (Bradburn et al., 2007; Kuss, 2015;
Sweeting et al., 2004), the authors did not consider heterogeneous baseline prevalences. Therefore, the objective of this paper was
to investigate the impact of homogeneous versus heterogeneous baseline prevalences on the performance of FE meta-analysis
methods in the context of rare events and homogeneous treatment effect. Through extensive simulations, we assessed the ability
of the IV, MH, Peto, with or without CC, MUE, and Binomial regression methods to estimate the three most commonly used
effect sizes with count data (RD, RR, and OR) under various settings.

We found that whatever the baseline prevalences (i.e., either homogeneous or heterogeneous), under all the scenarios consid-
ered, and for all the ESs, the most reliable methods were the MH method without CC and the Binomial regression model (for
estimating the OR only). Interestingly, the fact that the MH method discards DZ studies did not seem to introduce a bias. On the
contrary, using a CC to include the information contained in DZ studies deteriorated dramatically this method’s performance.

Under the setting of homogeneity in baseline prevalences, MH and Binomial regression estimates correspond to those of the
simple pooling method. In other words, when assuming a FE model with homogeneous baseline prevalences, one does not need
to apply meta-analysis techniques to compute a combined estimate. This is because, under this particular framework, the OR, RR
and RD are collapsible (Greenland, Robins, & Pearl, 1999; Guo & Geng, 2005; Hernan, Clayton, & Keiding, 2011). However,
when introducing heterogeneity in baseline prevalences, the OR is no more collapsible and simple pooling leads to biased
estimates (this was confirmed by additional simulations; results not shown). As for the RR and RD, they remain collapsible
and, thus, one can obtain unbiased estimates by simply pooling the studies, even in the presence of heterogeneous baseline
prevalences. Nonetheless, our simulations have shown that simple pooling yielded CIs with coverage rates below nominal. The
reason was linked to a failure of the simple pooling method to account for a larger sampling distribution of the ES.
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Consistently with the statistical literature, our simulations ranked IV as the worst method in almost all rare events settings.
Moreover, we found that this method failed to provide valid CIs and unbiased estimates in scenarios with common events (i.e.,
baseline prevalences around 10%). When estimating the RR and OR, the use of a CC improved the performance of the IV method
in terms of bias. However, this was not the case for the RD and coverage rates obtained for the three ESs were not nominal.
As a solution to improve the coverage rates, we additionally considered the modified Hartung–Knapp–Sidik–Jonkman (HKSJ)
method (Röver, Knapp, & Friede, 2015), which involves the use of the Student’s-t distribution and a multiplicative correction
term for the variance (additional simulations; results not shown). By increasing the size of the CI, this method improved the
coverage rates in scenarios where IV’s CIs were below nominal. Most of the time, however, coverage rate of HKSJ’s CIs remained
below 95%. In addition, when coverage rates were nominal, this method provided wider CIs than those obtained using the MH
method. Likewise, HKSJ’s CIs were too conservative in scenarios where IV’s CIs were valid.

The Peto method, which is often recommended in cases of rare events (Higgins & Green, 2008), yielded contrasted results.
Whereas the amount of bias and coverage rates were similar to those obtained by the MH and Binomial regression method
in scenarios with no effect or medium treatment effect, results provided by this method under settings with large treatment
effect critically deteriorated, especially with large unbalance between the trial’s arms. These findings seem to corroborate the
conclusions made by some authors stating that the Peto method should only be applied with great caution (Brockhaus, Grouven,
& Bender, 2016). Moreover, we found that Peto’s estimates did not converge towards the true OR when the baseline probability
increased, which gives additional credits to the argument that Peto’s OR should be viewed as a different ES, and not as an OR’s
estimator (Brockhaus, Bender, & Skipka, 2014). Finally, the use of a CC deteriorated the performance of the Peto method.

The MUE method is an interesting—since less subjective—alternative to the use of a CC. It tackles the issue of zero-event
studies elegantly and does not involve complex computations (i.e., it only requires the computation of Beta quantiles). While
meta-analyses techniques based on MUE of probability have already been discussed by Li and Wang (2019), we innovated here
by combining these estimates using a weighted average. The amount of bias found for the OR and RR were similar to that
obtained with the IV + CC method. On the other hand, results obtained for the RD were more contrasted and the MUE method
sometimes provided the most biased estimates.

Regarding the Binomial regression method, it should be noted that, under the assumption of heterogeneous baseline preva-
lences, the introduction of random effects yields a qualitative change from so-called “contrast-based” to “contrast-based +
baseline” models (Dias & Ades, 2015). Some authors, such as Senn (2010), have argued against these models because they can
yield biased results if the heterogeneity of baseline prevalences is not correctly modeled. In this paper, we circumvented this
issue by assuming that the random model for 𝛼𝑘 was the truth (i.e., in our simulation model, baseline probabilities were gener-
ated according to a Logistic-normal model). Using a fixed-effects model is a distribution-free alternative but it is not ideal with
rare events since it implies more parameters to be estimated and fails to account for the information contained in DZ studies. In
additional simulations, we found that the fixed-effects Binomial model yielded similar values of biases and coverages rates as
its random-effects counterpart, but suffered from a loss of precision in settings of very rare events (i.e., it yielded wider confi-
dence intervals). Finally, it should be noted that modifying the link function to obtain other ESs (i.e., log-link for the RR and
identity-link for the RD) yielded numerical issues because none of these link functions insure the probabilities to be contained
within the 0–1 interval. Marschner and Gillett (2012) proposed to constrain the parameter 𝛼𝑘 during the optimization procedure
but this leaded to biased estimates. An alternative would be to adapt the model to the ES considered. For instance, Böhning,
Mylona, and Kimber (2015) discussed the use of a Poisson modelling to estimate risk ratios.

6 CONCLUSIONS

Based on our findings, we make the following recommendations to applied researchers conducting meta-analyses of count
data, under the framework of a homogeneous treatment effect. First, it is important to clarify the question of heterogeneous
versus homogeneous baseline prevalences. When prevalences are expected to be heterogeneous, the researcher has to decide
on which scale the treatment effect is assumed homogeneous (i.e., OR, RR, or RD). Second, we highly recommend using the
MH method without CC in all circumstances (i.e., whatever the ES of interest, the assumption regarding the heterogeneity in
baseline prevalences, and the scenario considered). To estimate the OR, the Binomial regression method is a sound alternative,
which allows one to adjust for covariates. Third, the use of a CC should be definitively abandoned.

The main limitation to these recommendations is that they only apply to the framework of a homogeneous treatment effect. The
reader must keep in mind that the MH method is valid only when the treatment effect is homogeneous. However, in practice, there
are many situations where this assumption is likely to be violated (Kontopantelis, Springate, & Reeves, 2013). Then, although
quite extensive, our simulations did not cover all the possible settings. For instance, we did not consider the case of study’s



1572 PIAGET-ROSSEL AND TAFFÉ

scarcity (i.e., small K), which can impact the methods’ performance. Moreover, in our simulations, heterogeneity in baseline
prevalences was modeled according a Logit-normal model, which matches the Binomial model described in Equation (29).
Results might change depending on the distribution used to generate the baseline prevalences. Another limitation is that we did
not investigate Bayesian methods. However, this choice was deliberate and motivated by the fact that these methods require the
use of subjective priors, which can have—even non-informative ones—substantial effects on the estimates, especially with rare
events (Lambert, Sutton, Burton, Abrams, & Jones, 2005; Senn, 2007). Future researches should focus on extending the present
work to the setting of heterogeneous treatment effects, with or without baseline heterogeneity.
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APPENDIX: DERIVATION OF 𝒑𝑼
𝒌𝒋

FOR THE MEDIAN UNBIASED ESTIMATOR METHOD

Parzen et al. (2002) showed that 𝑝𝑈
𝑘𝑗

could be obtained by solving

0.5 =
𝑋𝑘𝑗∑
𝑖=0

(
𝑝𝑈𝑘𝑗

)𝑖(
1 − 𝑝𝑈𝑘𝑗

)𝑛𝑘𝑗−𝑖
(A.1)
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Then, one can use the following relationship between the cumulative Beta distribution function and the cumulative Binomial
distribution function (Daly, 1992; Johnson & Kotz, 1969):

𝐹 (𝑝|𝛼, 𝛽) = 𝑛∑
𝑖=𝛼

(
𝑛

𝑖

)
𝑝𝑗(1 − 𝑝)𝑗 (A.2)

where 𝐹 (⋅|𝛼, 𝛽) is the cumulative Beta distribution with integer parameters 𝛼 and 𝛽 = 𝑛 − 𝛼 + 1. Plugging Equation (A.2) into
Equation (A.1) yields

0.5 = 1 − 𝐹
(
𝑝𝑈𝑘𝑗|𝛼 = 𝑋𝑘𝑗 + 1, 𝛽 = 𝑛𝑘𝑗 − 𝛼 + 1

)
(A.3)

where 𝛽 = 𝑛𝑘𝑗 − (𝑋𝑘𝑗 + 1) + 1 = 𝑛𝑘𝑗 −𝑋𝑘𝑗 , and not 𝑛𝑘𝑗 −𝑋𝑘𝑗 + 2 as Parzen and colleagues wrote in their paper on page 425.
Finally, an expression for 𝑝𝑈

𝑘𝑗
is given by

𝑝𝑈𝑘𝑗 = 𝐹
−1 (0.5|𝛼 = 𝑋𝑘𝑗 + 1, 𝛽 = 𝑛𝑘𝑗 −𝑋𝑘𝑗

)
(A.4)

which corresponds to the expression we used in this paper.
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Abstract 

Mantel-Haenszel is a fixed-effect meta-analysis method, which performs quite 
well under the assumption of a homogeneous treatment effect, even in the 
presence of very rare events. However, this method fails to account for the 
information contained in single-arm and double zero studies. In this paper, we 
developed a pseudo-likelihood approach, which allows the inclusion of both 
single-arm and double-zero studies in the combined effect size estimate. Using 
Monte-Carlo simulations, we evaluated the behaviour of these two methods 
when subject to an increasing proportion of single-arm and double-zero studies. 
We found that the exclusion of double-zero studies did not impact the 
performance of the Mantel-Haenszel method, whereas the exclusion of single-
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arm studies reduced its efficiency compared to the pseudo-likelihood approach. 
We thus recommend using the pseudo-likelihood approach when the meta-
analysis includes single-arm studies. With only double-zero studies, the Mantel-
Haenszel can safely be used. 

1. Introduction 

Meta-analysis is concerned with the synthesis of information 
contained in independent but related studies, called “primary studies” 
(Normand [12]). With homogeneous treatment effects (i.e., under the 
“fixed-effect model”), each primary study seeks to estimate the same 
population parameter, commonly referred to as “effect size” (ES), and the 
objective of a meta analysis is to combine all the available evidence into 
one single and more precise estimate. Under this framework, Piaget-
Rossel and Taffé [13] have shown that the Mantel-Haenszel (MH) method 
without continuity correction (CC) performs very well, even in the 
presence of very rare events. However, this method excludes double-zero 
(i.e. studies reporting zero event in both control and treatment arms; DZ) 
and single-arm (i.e., studies that report results for only one arm; SA) 
studies from the computation of the combined ES. 

DZ studies are typically encountered in rare events settings, where 
the probability of the event of interest can be so small that it might be 
unfeasible to design a study with proper sample size, (i.e., so that at least 
a couple of events are observed). Using a CC allows the inclusion of DZ 
studies (Sweeting et al. [15]). However, this method is usually not 
recommended (Efthimiou [4]). Indeed, not only do the resulting estimates 
depend on the choice of correction used (Kuss et al. [7]; Keus et al. [6]), 
but this also introduces a bias in the estimates (Piaget-Rossel and Taffé [13]). 

Although almost never discussed in the literature, the issue of SA 
studies is an important one, especially when considering the meta-
analysis of observational studies. For example, a systematic review on 
the surgical management of phyllodes tumors of the breast found that 3 
out of 11 studies only included patients with a resection margin above or 
equal to 10mm, (i.e., these studies did not have any patients with a 
margin below 10mm) (Toussaint [16]). 
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Intuitively, SA and DZ studies do carry some information regarding 
the probability of the event. Consequently, it is useful to devise statistical 
methods, which allows the inclusion of this information in the 
computation of the ES estimate. In this paper, to tackle this issue, we 
have adopted a pseudo-likelihood (PL) approach, which allows the 
inclusion of SA and DZ studies, without the use of a CC. The basic idea 
was to adopt a working model for the counts in each arm and treat the 
(heterogeneous) baseline prevalences as random nuisance parameters. 
The distribution of the nuisance parameter was not assumed to be 
known, hence the denomination “pseudo-likelihood”. 

In this paper, we investigated the performance of this PL approach, 
which explicitly includes SA and DZ studies, and compared it with the 
MH method. By means of Monte-Carlo simulations, we evaluated the 
behaviour of these two methods when subject to an increasing proportion 
of DZ and SA studies. ES of interest were the odds ratio (OR), the 
relative risk (RR), and the risk difference (RD), which are the three most 
commonly-used ES in meta-analyses of binary data. We focused on the 
specific framework of a homogeneous treatment effect, as the MH method 
can be seen as the gold standard when there are no SA and DZ studies 
(Piaget-Rossel and Taffé [13]). Baseline prevalences were assumed to be 
heterogeneous, as the setting of homogeneous baseline prevalences is 
more restrictive. The remainder of this paper is structured as follows. In 
Section 2, we present the PL approach. Section 3 describes our 
simulation model and presents the results obtained. Section 4 outlines 
the main findings and makes some recommendations regarding the best 
method to use when conducting a FE meta-analysis in the presence of SA 
or DZ studies. 

2. The Pseudo-likelihood Approach 

Under the assumption of heterogeneous baseline prevalences, the 
binomial likelihood writes: 
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where jnk  is the sample size of arm j ( j = c for control and t for 

treatment) in study jxkk,  is the number of events occurring in arm j of 

study jkk π,  ( )kα  is the inverse of the link function (i.e., the probability 

of the event) in arm j of study ,k  and kα  is a nuisance parameter. To 

deal with the nuisance parameters, one can either treat them as fixed or 
random quantities. Particularly with rare events, it is advantageous to 
treat these quantities as random parameters to limit as much as possible 
the number of parameters to be estimated and allow SA and DZ studies 
to contribute to the estimation: 
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where ( )kk απ j  is the probability of event in study k  and treatment arm j 

defined as a function of ,kα  and ( )kαf  is the density function of the 

random variable .kα  Usually, the density function ( )kαf  is unknown 

and to cope with it we have adopted a pseudo-likelihood approach. 

For estimating the OR, the following pseudo-likelihood may be used: 
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with link function ( ( )) ,logit jj Tkkkk β+α=απ  where jTk  is an indicator 

for treatment arm (i.e., 1=jTk  if tj =  and 0 if cj = ), and ( )2, σα⋅φ  

is the normal density with mean α  and variance .2σ  Note that β  

corresponds to the log(OR). This is a pseudo-likelihood since in Equation 

( ) ( )2,,1 σα⋅φ  is not assumed to be the true density function, it is only a 

“working” density function. 
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To estimate the RR, one may adopt the log link function ( ( ))kk απ jlog  

.jTkk β+α=  However, to insure probabilities contained within 0-1, one 

has to constrain the kα  parameter during the optimization procedure 

(Marschner and Gillett [10]). The main drawback of this approach is that 
the imposition of the parameter constraint may lead to biased estimates, 
particularly when the risk level is either low or high. Therefore, to cope 
with this issue, we proposed to approximate the binomial distribution by 
a Poisson distribution with parameter jjj nkkk ∗π=λ  and used the 

pseudo-likelihood function 
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The numerical advantages of this approach are obvious as the log link is 
canonical for the Poisson likelihood. In this model, β  corresponds to the 

log(RR). 

Similarly, for the RD, we used the canonical identity link function 
and approximated the binomial distribution of the counts by a normal 
distribution for the proportions: 
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where ( ) ,, jjjjjj TpEnxp kkkkkkk β+α=≡π=  and ( ) =≡τ jj pkk Var2  

( ) .1 jjj nkkk π−∗π  Given that the variances 2
jkτ  are unknown and 

difficult to estimate (the above model is highly nonlinear and 
computation of the integral with good precision is challenging, 
particularly with rare events), we decided to use instead the robust 
sandwich estimate of the variance-covariance matrix (White [17]). 
Moreover, to achieve appropriate empirical coverage rates, we selected 
the 98.5th quantile of the standard normal distribution to compute the 
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Wald CI for the RD. This yielded a “calibrated” CI in the spirit of that 
obtained by using the modified Hartung-Knapp-Sidik-Jonkman method 
(Röver et al. [14]). 

3. Simulation Study 

3.1. Model 

Given our objective (study the impact of SA and DZ studies), we 
decided to consider large meta-analyses to avoid fluctuations issues 
related to scarcity of primary studies. Therefore, we set the number of 
primary studies at K = 20. Although this scenario might seem optimistic, 
as many published meta-analyses, notably in the Cochrane Library, 
included less primary studies, it is nevertheless a realistic one (see, for 
instance, Moher et al. [11], which found a median number of 23 studies 
out of 88 systematic reviews analyzed). 

In each primary-study, treatment arms’ sample sizes ranged from 50 
to 150 (i.e., ~tnk  discrete-uniform {50; 150}). Control arms’ sample sizes 

were generated as ,rnn tc += kk  with ~r  discrete-uniform {– 15; 15}. 

Baseline prevalences ckπ  were obtained as random draws from a 

continuous uniform distribution with range [p – p/5; p + p/5], p being the 
mean of the distribution. This distribution provided a realistic level of 
heterogeneity in baseline prevalences under the assumption of a 
homogeneous treatment effect. Probabilities in the treated group tkπ  

were derived from the control probabilities and ES considered (i.e.,  

( ) ).;;1 RDRROROR ctctccct +π=π∗π=ππ−+∗π∗π=π kkkkkkkk  Finally, 

the number of events in both arms were generated by two binomial draws 
with respective sample sizes and event probabilities. Notice that our 
simulations models are different from the models described in (2), (3), or 
(4), hence the terminology “pseudo-likelihood”. We investigated the 
impact of both DZ and SA studies on the performance of the proposed 
approaches. To study the impact of DZ studies, we considered four 
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scenarios with different mean values for the baseline prevalences 
{ }.0015.0,0035.0,007.0,1.0=p  Under the null hypothesis of no 

treatment effect, these four probabilities yielded approximately 0, 25, 50, 
and 75% of DZ studies per meta-analysis, respectively. When studying 
the impact of SA studies, we set ,1.0=p  which ensured almost all meta-

analyses to be free of DZ studies. Each primary study was defined as SA 
or not-SA study by means of a Bernoulli draw with probability m. In the 
subset of SA studies, the arm to be removed was then designated by a 
Bernoulli draw with probability 0.5. We considered four different 
scenarios with respective m values { }.75.0,5.0,25.0,0  

The impact of SA and DZ studies was assessed for various values of 
the ES, which are reported in Table 1. Since the RD is an absolute 
measure, we had to derive it from the log(RR) and mean baseline 
prevalence p, to avoid generating probabilities in the treatment group 
below 0. For instance, for %15.0=p  and log(RR) = – 1.5, one obtained 

RD as ( ) .0012.00015.00015.05.1exp −≅−− ∗  

For each scenario considered, 10,000 meta-analyses were generated. 
For each of the generated meta-analyses, we estimated the ES of interest, 
its standard error and the 95% Wald confidence interval (CI). For the RD, 
we computed a calibrated CI using the 98.5th quantile; for the OR and 
RR, the usual 97.5th quantile was used. Performance of the MH and PL 
methods were assessed in terms of bias, coverage rate and width of the 
CI. We decided to compute median instead of mean values for the bias 
and CI’s width to avoid the influence of exceedingly large or small values. 
We also reported the proportion of converged runs. For the MH method, a 
run was reported as non-converged when either of the estimates obtained 
(i.e., the ES or its variance) where undefined. For the OR and the RR, 
this happened when either 0=txk  or kk ∀= ,0cx  (or both); for the RD 

this happened only when both 0=txk  and .,0 kk ∀=cx  Non-converged 

runs were also reported by the MH method when the K primary studies 
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were SA studies. Both OR and RR estimates were analyzed on the log 
scale because the sampling distribution was more symmetrical on this 
scale. 

Table 1. Size of the treatment effect considered in the simulations 

p log(OR)* log(RR)** RD (in %) Description of the effect 

0.0015 − 1.5 (0.22) − 1.5 (0.22) − 0.12 Large negative ES 

0.0035 − 1.5 (0.22) − 1.5 (0.22) − 0.27 Large negative ES 

0.007 − 1.5 (0.22) − 1.5 (0.22) − 0.54 Large negative ES 

0.1 − 1.5 (0.22) − 1.5 (0.22) − 7.77 Large negative ES 

0.0015 − 0.5 (0.61) − 0.5 (0.61) − 0.06 Moderate negative ES 

0.0035 − 0.5 (0.61) − 0.5 (0.61) − 0.14 Moderate negative ES 

0.007 − 0.5 (0.61) − 0.5 (0.61) − 0.28 Moderate negative ES 

0.1 − 0.5 (0.61) − 0.5 (0.61) − 3.93 Moderate negative ES 

0.0015 0 (1) 0 (1) 0 Null ES 

0.0035 0 (1) 0 (1) 0 Null ES 

0.007 0 (1) 0 (1) 0 Null ES 

0.1 0 (1) 0 (1) 0 Null ES 

0.0015 0.5 (1.65) 0.5 (1.65) 0.10 Moderate positive ES 

0.0035 0.5 (1.65) 0.5 (1.65) 0.23 Moderate positive ES 

0.007 0.5 (1.65) 0.5 (1.65) 0.45 Moderate positive ES 

0.1 0.5 (1.65) 0.5 (1.65) 6.49 Moderate positive ES 

0.0015 1.5 (4.48) 1.5 (4.48) 0.52 Large positive ES 

0.0035 1.5 (4.48) 1.5 (4.48) 1.22 Large positive ES 

0.007 1.5 (4.48) 1.5 (4.48) 2.44 Large positive ES 

0.1 1.5 (4.48) 1.5 (4.48) 34.82 Large positive ES 

Note. p = mean baseline prevalence;  
*ORs reported between brackets;  
**RRs reported between brackets. 
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3.2. Results 

3.2.1. Double-zero studies 

Reducing the mean baseline prevalence increased the proportion of 
DZ studies and, thus, the proportion of excluded studies by the MH 
method when computing the OR (Table 2). On the other hand, with the 
PL approach DZ studies are allowed and no study is excluded. We found 
that even when the proportion of discarded studies was very high (75%), 
the MH method still performed very well, and provided unbiased 
estimates and CIs with proper coverage rates. Likewise, the PL approach 
performed very well and provided results quite similar to those produced 
by the MH method. Except in the large negative ES scenario with 
extremely small baseline prevalences (i.e., p = 0.0015), where both 
methods reported large biases (median value > 0.75 for a log(OR) of – 1.5), 
estimates obtained by the two methods were good across all scenarios 
investigated. Both methods provided conservative CIs in case of 
extremely rare events. Finally, the proportion of converged runs 
indicated that PL was more computationally involved and could run into 
numerical issues, especially with very rare events. 

Regarding the RR, results obtained by the MH and PL methods were 
comparable to those obtained for the OR (Table 3). Both methods 
provided unbiased estimates and valid CIs in almost all settings 
investigated. Again, the fact that MH discarded DZ studies did not alter 
the performance of this method. 

For the RD, both methods included DZ studies and, thus, no study 
was excluded (Table 4). Similar to the OR and RR cases, biases obtained 
were small and coverage rates nominal. However, CIs provided by the PL 
approach were wider than those obtained with the MH method. 
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3.2.2. Single-arm studies 

Whatever the ES considered, the MH method excluded SA studies, 
whereas this was not the case with the PL approach. 

Regarding the OR, both methods provided unbiased estimates and 
nominal coverage rates in all scenarios considered (Table 5). However, as 
the proportion of SA studies increased, the MH method became less and 
less efficient and CIs provided by this method were wider than those 
obtained using the PL approach, especially for large negative ES. Finally, 
SA studies created less numerical issues than DZ studies (the proportion 
of converged runs was always above 98%). 

Results obtained for the RR were quite comparable to those obtained 
when estimating the OR (Table 6). In terms of bias, both methods 
provided virtually identical results and all values observed were below 
2% (in absolute terms). Coverage rates were always nominal. Again, the 
MH method was less and less efficient as the proportion of SA studies 
increased and provided CIs much wider than the PL method. 

Table 7 reports the results obtained by the MH and PL methods 
when estimating the RD. Median values of the bias were all below 0.05% 
in absolute terms. Regarding coverage rates, both methods provided valid 
CIs across all the scenarios, except when the proportion of SA studies 
was 75%, in which case the coverage rate of the PL’s CI was below 
nominal. Regarding precision of the estimates, similar to what was 
observed for the OR and RR, the PL approach outperformed the MH 
method for increasing proportions of SA studies. 
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4. Discussion 

The MH method has been shown to perform extremely well under the 
assumption of a homogeneous treatment effect (Bradburn et al. [2]; 
Piaget-Rossel and Taffé [13]). It involves simple computations, can be 
applied to compute the three classical ESs, (i.e., OR, RR, and RD) and is 
readily available in most of the statistical packages. However, DZ and SA 
studies are excluded from the computation of the combined ES estimate. 
In this paper, we have developed a novel approach based on the 
formulation of a PL, which allows one to include both SA and DZ studies 
into the meta-analysis. Using simulations, we compared the performance 
of this PL approach to that of the MH method, in settings with increasing 
proportion of SA and DZ studies. 

Our proposed PL method performed very well for all three ESs. For 
the RD, we found that the calibrated Wald’s CI computed using the 98.5th 
quantile of the standard normal distribution provided nominal coverage 
rates, except in the settings with 75% of SA studies. This shows that 
using the normal distribution as a working distribution for the baseline 
prevalences does not impact the performance of this method. In 
additional simulations, we found that using an asymmetrical beta 
distribution to generate the baseline prevalences – instead of the uniform 
distribution described in Subsection 3.1 – did not alter this conclusion 
(results not shown). This finding challenges Dias and Ades’s statement 
[3] that “unless the baseline model is correctly specified, the relative 
effect estimates will be biased”. 

We found that both the MH and PL methods provided reliable 
results, whatever the proportion of DZ studies. Biases, coverage rates, 
and CIs’ width provided by these two methods were quite similar. The 
only noticeable difference was that the PL’s calibrated CIs for the RD 
were wider than the CIs obtained with the MH method. These results 
suggest that under the assumption of a homogeneous treatment effect, 
DZ studies do not contain relevant information for the meta-analysis. 
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This is quite unexpected given that, for instance, a DZ study of size 150 
does seem to convey more information regarding the low probability of an 
event compared to a DZ study of size 50. Moreover, Friedrich et al. [5] 
argued that deleting DZ studies in balanced trials might bias the 
treatment effect away from the null. Nevertheless, from our results, we 
conclude that MH is a valid FE meta-analysis method, even in the 
presence of DZ studies. The PL method is a good alternative, but it has 
the disadvantage of being more computationally-involved and may run 
into numerical issues, especially when the proportion of DZ studies is 
high. When the meta-analysis includes only DZ studies, none of the 
methods work. 

Regarding SA studies, results suggested that they contained more 
relevant information than DZ studies. Indeed, whereas bias and coverage 
rates obtained by the PL and MH methods were found to be similar, the 
latter provided CIs wider as the proportion of SA studies increased, 
suggesting a loss of precision related to the non-inclusion of the 
information contained in SA studies. Based on these results, PL should 
be favored in the presence of SA studies. With 100% SA studies, the MH 
method breaks down, whereas we found that the PL approach still 
performed very well (additional simulations; results not shown). 

In additional simulations, we compared our PL approach to the beta-
binomial model discussed by Kuss [8], which also allows including SA 
and DZ studies. We found that both methods performed similarly, 
whatever the proportion of SA and DZ studies and the ES considered 
(results not shown). However, the Beta-Binomial model encountered 
more numerical issues (e.g., the number of converged runs when 
estimating the OR was systematically below 90%). 

To sum up, in settings with DZ studies, we recommend using the MH 
method, although this method exclude the information contained in these 
studies. In settings with SA studies, we recommend using the PL 
approach, which was shown to be more efficient. However, when the ES 
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of interest is the RD and the proportion of SA studies is very high (75% or 
more), the meta-analyst should be aware that the CIs computed using the 
PL approach may have coverage rates slightly below nominal. 

The main limitation to these recommendations is that they only 
apply to the framework of homogeneous treatment effects. In practice, 
there are many situations where this assumption is likely to be violated 
(Kontopantelis et al. [9]) and the reader must keep in mind that the MH 
method is not valid when treatment effects are heterogeneous (Kuss [8]). 
As for the PL approach, it can easily be adapted to account for 
heterogeneity in treatment effects by including regressors (meta-
regression). Moreover, our simulations did not cover all the possible 
settings. For instance, we did not consider the case of study’s scarcity 
(i.e., small K), which can impact the methods’ performance. 

In a future research we will focus on adapting the PL approach to the 
framework of heterogeneous treatment effects. It would also be worth 
seeking alternatives to our calibrated CIs for the RD, such as the use of 
the profile likelihood method (Böhning et al. [1]). 
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Abstract

In the presence of rare events and treatment effect heterogeneity, most of the alternative 

meta-analysis methods developed so far have focused on the odds ratio. However, using this 

effect size raises some challenges as it is a non-collapsible measure. In this paper, we have 

extended the pseudo-likelihood approach, previously proposed for homogeneous treatment 

effect, to the setting of treatment effect heterogeneity. This approach allows one not only to 

estimate the odds ratio, but also the relative risk and the risk difference, both collapsible and 

more intuitive effect sizes. Using simulations, we assessed the performance of the extended 

pseudo-likelihood approach in settings with rare events and treatment effect heterogeneity. 

Unlike conventional random-effects meta-analyses, where the focus is usually on the mean 

treatment effect parameter, its confidence interval, and, less frequently, on the heterogeneity 

parameter, we also considered the performance of the prediction interval. Our results showed 

that the extension of the pseudo-likelihood approach provided good estimates of the mean 

treatment effect. Moreover, we found that reporting the prediction interval was advantageous 

since even when the heterogeneity parameter was estimated as zero, the width of the interval 

was always non-null and, in most of the scenarios considered, even conservative.
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1. Introduction

Statistically assessing the effect of a treatment on the incidence of a rare event is a 

challenging task. Indeed, because of monetary and time constraints, it is often not feasible to 

design a study of proper size (i.e. one that allows observing a sufficiently large number of 

events to permit reliable inference). Therefore, in rare event settings, it seems particularly 

relevant to conduct meta-analyses (MAs) to increase the sample size from  to ,  kn
1

K
kk

n
 kn

being the sample size of study k. However, as many researches have now highlighted, the 

classical MA method that consists in weighting each primary study’s effect size (ES) by the 

inverse of its variance plus the between-study heterogeneity (if any) breaks down with rare 

events1,2. This is mostly due to the fact that this method implies assumptions that only hold 

asymptotically3,4. Primary-studies plagued by event scarcity being commonly encountered in 

practice (e.g. in a random sample of 500 Cochrane reviews, Vandermeer et al. found that 

30% of them contained at least one study with no event in either arms5), alternative methods 

that better accommodate rare events have received considerable attention in medical 

research6.

When the treatment effect can be assumed homogeneous across the primary studies, it has 

been shown that the Mantel-Haenszel (MH) method without continuity correction (CC) 

yielded unbiased estimates of the odds ratio (OR), relative risk (RR) and risk difference (RD), 

even in situations of extremely rare events7. However, this method excludes double-zero 

(DZ) and single-arm (SA) studies. To cope with this, the binomial likelihood has been 

recommended and the link function adapted to get the OR (logit), the RR (log), and the RD 

(identity)8. However, it is well known that the maximization of the binomial likelihood 

function using either the log or identity links is plagued by non-convergence issues and valid 

parameter space violation9,10,11. Therefore, many alternative methods have been developed, 
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particularly in the setting of primary studies12. However, in the context of MA, little is known 

regarding the performance of these alternative methods. Very recently, one study investigated 

the performance of a pseudo-likelihood (PL) approach in the context of a homogeneous 

treatment effect13. It was found that this approach performed as well as the MH method when 

both study’s arms were present and was more efficient when there were many SA studies.

When the treatment effect is heterogeneous, although some authors have proposed ways to 

estimate the RR or the RD14,15,16, the main focus with binary data has been on the estimation 

of the OR17,18,19,20,21. However, there are fundamental difficulties with the OR – not to 

mention the problem of interpretation – as it is (generally) a non-collapsible measure7,22. For 

instance, when pooling studies having adopted different sampling design such as pairing or 

matching, one has to distinguish between conditional and marginal ORs. These issues do not 

arise when computing the RR or the RD. Therefore, the goal of this study was to extend the 

pseudo-likelihood approach of Piaget-Rossel and Taffé13 to the setting of a heterogeneous 

treatment effect and assess the performance of this methodology to estimate the OR, RR, and 

RD.

Curiously, despite clear recommendations for reporting the prediction interval (PI) in the 

presence of treatment effect heterogeneity, current practice is still to report the mean 

treatment effect parameter  along with its CI, as well as some measure of between-study 

heterogeneity, such as the between-study variance 23. In a recent and often cited simulation 2

study, the author assessed the performance of several MA methods based only on the 

estimation of  along with its CI, without even considering 24. Focusing on the mean  2

treatment effect in settings with between-study heterogeneity is clearly not sufficient since 

one fails to describe the whole range of values that can be taken by the ES. Additionaly 

reporting an estimate of the between-study variance parameter does not always allow one to 

comprehensively describe the treatment effect heterogeneity. Indeed, estimation of this 
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parameter is difficult (especially with rare events) and estimates obtained can be zero despite 

the presence of genuine heterogeneity25. The use of the conventional PI may solve this 

conundrum and offer a better description of the treatment effect heterogeneity. Indeed, its 

computation involving not only the between-study variance, but also the within-study 

variance26, non-null PIs can be obtained even when the estimation of the between-study 

variance parameter is zero. 

Therefore, in this study, the focus was not only on the mean and between-study variance 

parameters, but also on the performance of the conventional prediction interval. Recently, 

many authors have investigated the performance of several alternative PIs and concluded that 

the conventional approach did not always perform well27,28,29. However, they conducted their 

analyses using the two-stage model, where the ESs and their variance are estimated first and 

then used in further computations of other parameters30. In contrast, a one-stage approach 

was used in the present paper.

The remaining of this paper is organized as follows. In Section 2, we proposed an extension 

of the PL approach that accounts for between-study heterogeneity in the treatment effect. We 

described the models underlying this approach for the OR, the RR, and the RD. To illustrate 

the use of the PL approach in rare event settings, we then compared it to the DerSimonian 

and Laird (DL) method using data from a systematic review on the effect of anti-infective-

treated central venous catheters on catheter-related bloodstream infection in the acute care 

setting31. Section 4 was dedicated to Monte-Carlo simulations (model’s description and 

results), which were conducted to assess the performance of the PL method under various 

rare-event scenarios. Finally, we discussed the results obtained and provided 

recommendations in Section 5.
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2 Meta-analysis with between-study heterogeneity in the treatment effect

In MA of binary data, it is common to assume that the number of events  in study k and kjX

treatment arm j follows a binomial distribution

   bin( , ), 1,..., , ,kj kj kjX n k K j C T  :

where  denotes the sample size and  the probability of an event in study k and treatment kjn kj

arm j. To measure the treatment effect,  and  are contrasted using an ES (e.g. RR = kC kT

). When this ES is assumed to vary across the studies, the meta-analyst should use a kT kC 

so-called “random-effects” approach, which simply consists in using a MA method that 

allows for between-study heterogeneity in the treatment effect. Since each study is estimating 

a different ES, inference should target the whole distribution of the ES (and not simply its 

mean) to provide a thorough overview of the treatment effect.

2.1 The pseudo-likelihood approach

The PL approach for the OR is based on the following model:

   Bin( , ) 1,..., ,k j kj kjX n k K j C T  :

logit( )kj k k kjT   

2

2Normal ,k

k



 

 
  

     
             

: (1)

where  is the number of events occurring in arm j of study k,  is the sample size,  is k jX k jn k j

the probability of an event, and  is the treatment dummy, taking value 1 for the treated group kjT

and 0 otherwise. Note that since model (1) allows for a correlation between the two arms, it 

does not impose any restriction on how variability in the two groups compares. The two 
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parameters of interest are the mean  and the between-study variance , both measured  2 2
 

on the log(OR)’s scale. Note that this is a “pseudo-likelihood” approach because we are not 

assuming that the bivariate distribution of  and  is the correct one.k k

Estimates of  and  are obtained by maximizing the following marginal pseudo- 2

likelihood function:

 1 ,

( , ) (1 ( , )) ( , )k j k j kj
K

k j X n X
k j k k k j k k k k k k

k jk j C T

n
L f d d

X
         

 


  

  
   

   
  

where  and  is the bivariate Normal density from  ( , ) invlogitk j k k k k kjT      ( , )k kf  

model (1). 

For the RR, the Binomial distribution is approximated by means of a Poisson distribution 

with parameter  and the following model is used:kj kj kjn  

   Poisson( ) 1,..., ,k j kjX k K j C T  :

log( )kj k k kjT   

2

2Normal ,k

k



 

 
  

     
             

: (2)

Again, the two parameters of interest are the mean treatment effect  and the between-study 

variance , now measured on the log(RR)’s scale. 2 2
 

Estimates of  and  are obtained by maximizing the following marginal pseudo- 2

likelihood function:

   
 1 ,

, exp ,
( , )

!

kjX
K

kj k k kj k k
k k k k

k j C T kj

L f d d
X
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where  and  is the bivariate Normal distribution    , expkj k k kj k k kjn T      ( , )k kf  

from model (2). 

To obtain an estimate for the RD, the PL approach involves the approximation of the 

Binomial distribution by means of a Normal distribution for :kj k j kjp X n

   2Normal( , ) 1,..., ,kj kj kjp k K j C T   :

kj k k kjT   

2

2Normal ,k

k



 

 
  

     
             

: (3)

With this modeling, the mean treatment effect  and the heterogeneity  are  2 2
 

measured on the RD’s scale.

The two parameters of interest  and  are estimated by maximizing the following  2

marginal pseudo-likelihood function:

 
 

22
1 ,

,1 exp ( , )
22

K
kj kj k k

k k k k
k j C T kjkj

p
L f d d

  
   

 

 

  

  
        

  

where ,  and  is  , ( )k j k k k j k k kjE p T       2 ( ) (1 )k j k j k j k j k jVar p n      ( , )k kf  

the bivariate Normal distribution from model (3). Given that the variances  are unknown 2
k j

and difficult to estimate (the above model is highly non-linear and computation of the integral 

with good precision is challenging, particularly with rare events), we decided to use instead 

the robust sandwich estimate of the variance-covariance matrix32. Moreover, to achieve 

appropriate empirical coverage rates, we computed calibrated CIs for the RD using the 98.5th 

quantile of the Standard Normal distribution13.
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2.2 Illustrative example

To illustrate the method described above, we used the data of a MA conducted by Niël-Weise 

et al. (2007) on the effect of anti-infective-treated central venous catheters on catheter-related 

bloodstream infection in the acute care setting (Table 1)31. This MA was based on 18 studies, 

in which catheter-related bloodstream infection was a rare event. There were 5 single-zero 

and 1 double-zero studies, and the average proportion of observed event was about 4.38% 

and 1.26% in the control and treated arms, respectively.

Table 1. Dataset from the study on the efficacy of anti-infective catheters 
Standard catheter (control) Anti-infective catheter (treatment)

Study 
(k)

Nb of infections
( )kCx

Nb of patients
( )kCn

Nb of infections
( )kTx

Nb of patients
( )kTn

1 3 117 0 116
2 3 35 1 44
3 9 195 2 208
4 7 136 0 130
5 6 157 5 151
6 4 139 1 98
7 3 177 1 174
8 2 39 1 74
9 19 103 1 97
10 2 122 1 113
11 7 64 0 66
12 1 58 0 70
13 5 175 3 188
14 11 180 6 187
15 0 105 0 118
16 1 262 0 252
17 3 362 1 345
18 1 69 4 64

Results obtained by applying the DL and PL methods on the illustrative dataset are displayed 

in Table 2. One first thing worth mentioning is that the DL approach cannot handle SZ and 

DZ studies when computing the RR or the OR without adding a CC. However, since the use 
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of a CC has been shown to lead to biased estimates in rare event settings7, we computed 

combined estimates by excluding SZ and DZ studies when using the DL method.

Both PL and DL methods found that, in average, a patient with an anti-infective catheter will 

have less infection than a patient with a standard one. However, estimates obtained by these 

two methods differed widely. The mean OR and RR computed using the DL method were 

around 0.45, whereas those computed using the PL method were below 0.3. When measured 

on the RD scale, the estimates of the mean treatment effect was -1.78% for the DL method 

and -3.11% for the PL approach. Notice that for the PL approach, we had to simplify model 

(3) by assuming  to achieve convergence.0 

Another noticeable difference between the PL and DL approaches was that the latter did not 

detect any heterogeneity when computing the OR and the RR, whereas the former provided 

estimates of 0.71 and 0.62, respectively. This translated into large differences in terms of PIs’ 

width, such that a DL user would conclude that the treatment is beneficial to almost all (i.e. at 

least 95%) the patients, whereas a PL user would conclude that the treatment is not effective 

for all patients (i.e. PI obtained contained the value 1). On the RD scale, inversely, the DL 

method obtained a larger estimate of  and, thus, a larger PI, which contained the value 0. 2

No CI was reported for the heterogeneity when using the DL method because this method 

does not include an estimation of the standard error for this parameter.

Table 2. Meta-analysis of the illustrative dataset
Effect size Method  (CI)  (CI)2 Prediction interval

DL 0.44 (0.27; 0.72) 0 (.) [0.26; 0.75]
OR PL 0.28 (0.13; 0.58) 0.71 (0.12; 4.04) [0.04; 1.97]

DL 0.46 (0.28; 0.74) 0 (.) [0.27; 0.76]
RR PL 0.29 (0.14; 0.59) 0.62 (0.10; 3.94) [0.05; 1.81]

DL -1.78 (-2.84; -0.71) 0.02 (.) [-5.25; 1.70]
RD*

PL -3.11 (-5.35; -0.88) 0.00 (0.00; 0.02) [-5.64; -0.59]
Note:
*Results provided in %.
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3 Simulation study

3.1 Model

We generated meta-analyses of K = 20 primary studies with treatment arms’ sample sizes 

ranging from 50 to 150 (i.e. ). Control arms’ sample sizes were  uniform 50;150kTn :

generated as , with . The event probability in the control kC kTn n r   uniform 15;15r :

group  was assumed to be slightly heterogeneous and, thus, drawn from a uniform kC

distribution with range ,  and ,  where  ;L U
kC kC    5

c c

L
kC M M    5

c c

U
kC M M   

c
M

is the mean event probability in the control group. The treatment group probability  was kT

derived from and the ES considered (i.e. , kC  1kT kC k kC k kCOR OR       

 or ). ESs were generated according to a uniform distribution kT kC kRR   kT kC kRD  

with mean  and variance :ES 2
ES

uniform ;L UES ES ES  :

where both bounds were derived using the uniform distribution’s properties (i.e. 

, ) and ES = log(OR), log(RR) or RD. Finally, the 23L
ES ESES    23U

ES ESES   

number of events in both arms were generated by two binomial draws with respective sample 

sizes and event probabilities. 

To study the issue of rare events, we considered three different values for the mean 

probability of an event in the control group : 10%, 1%, and 0.5%. We also considered 
c

M

different values for the treatment effect and the heterogeneity (measured on the log(OR)’s 

scale), setting  and . Values of   log( ) 1.5; 0.5;0;0.5;1.5OR     2
log( ) 0;0.1;0.5OR  log( )OR

represent situations of large (negative or positive), moderate (negative or positive) and null 
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treatment effect, respectively. As for , we chose these three values to illustrate the 2
log( )OR

impact of null, moderate and large heterogeneity in the treatment effect, respectively. To 

illustrate the impact of the choice of these three parameters’ values on the scarcity level, we 

reported in the Appendix (Table A1) the average proportion of control and treated arms with 

zero event in the 45 scenarios considered.

For the log(OR), values of and  were directly computed as log( )LOR log( )UOR

 and . For the two other ESs, to insure generating 2
log( ) log( )3OR OR  2

log( ) log( )3OR OR 

probabilities within the range , the lower and upper bounds were derived from  0,1

 and , and  and , respectively. More precisely, for , we log( )LOR L
kC log( )UOR L

kC  ,b L U

computed

 
   
exp log( )

log( ) log log
exp log( ) 1

L b
kCb L

kCL b L
kC kC

OR
RR

OR




 

 
  
    

 
 
exp log( )

exp log( ) 1

L b
kCb L

kCL b L
kC kC

OR
RD

OR




 


 

  

Finally, for ,  and  were retrieved from the lower and upper   log ,ES RR RD ES 2
ES

bounds values of the respective ES as  and .  2L U
ES ES ES    22 12U L

ES ES ES  

For each scenario, we made 10 000 iterations. For each of the generated meta-analyses, we 

fitted model (1), (2), or (3), depending on the ES of interest. In order to achieve a sufficiently 

large number of converged runs, we simplified these three models by assuming .0 
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We estimated the mean and the between-study variance of the ES of interest (i.e.  and ˆES

) plus their respective standard error, from which we derived the 95% Wald CI for  2ˆES ES

and , as well as the lower and upper bounds of the 95% PI26: 2
ES

 2
2,1 2

ˆˆ ˆ ˆES K ES ESPI t V      (4)

where  is the (1-α/2)th quantile of the t-student distribution with K-2 degrees of 2,1 2Kt  

freedom and  is the estimated variance of the mean ES’s estimator. ˆ ˆESV 

Performance of the PL approach was assessed in terms of the difference between the median 

value of the estimates and the true value of the parameters  and , coverage rate of the ES 2
ES

Wald CIs obtained for these two parameters, and difference between the median value of the 

estimated lower and upper bounds of the 95% PI and the 0.025th and 0.975th quantiles of the 

uniform distribution. We decided to report median instead of mean values of the estimates to 

avoid the influence of exceedingly large or small values obtained in some simulations.

3.2 Results

3.2.1 Odds ratio

Results obtained by the PL model when estimating the OR are provided in Table 3. Although 

we simplified model (1) by assuming , this model still encountered numerical issues, 0 

even in the scenarios with common events. Overall, the proportion of converged runs varied 

between 45 and 75%. 

In the 15 scenarios with common events (i.e. ), the PL approach obtained good 0.1
c

M 

results. Estimates of the mean treatment effect were virtually unbiased and coverage rates for 

this parameter were nominal in most of the scenarios and never felt below 91%. Regarding 
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the heterogeneity, the model slightly underestimated , especially in scenarios with 2
log( )ˆ OR

large negative mean treatment effect, and CIs obtained for this parameter were too 

conservative (i.e. most of the time above 98%). As for the lower and upper bounds of the PIs, 

they were close to the 0.025th and 97.5th theoretical quantiles and all computed PIs contained 

these two quantiles within their two bounds (i.e. they were conservative).

With rare events (i.e. ), things remained very good regarding the estimation of the 0.01
c

M 

mean treatment effect, except in the scenarios with large heterogeneity where estimates 

tended to have a small positive bias and coverage rates were sligthly below nominal. In all 

scenarios, estimates of the heterogeneity were biased towards zero and CIs computed for this 

parameter were not reliable. However, performance of the PIs was satisfactory, since they 

contained the two theoretical quantiles, except in some scenarios with very large 

heterogeneity.

With extremely rare events (i.e. ), estimates of the mean treatment effect was 0.005
c

M 

unbiased, except in scenarios with large heterogeneity where a small positive bias was 

observed. Coverage rates of this parameter’s CIs were nominal in the 15 scenarios considered 

with extremely rare events. Estimates provided for the heterogeneity parameter was 0, except 

in the scenario with large heterogeneity and large positive treatment effect, and CIs were not 

reliable. As for the PIs, they were larger than under the scenarios with more common events 

but, again, they always contained both theoretical quantiles when the heterogeneity was 

moderate. With large heterogeneity, the lower theoretical quantile was not always contained 

within the PI but the estimated lower bound was rather close to the theoretical one.

Table 3. Pseudo-likelihood performance for the meta-analysis of the odds ratio

c
M

2
log( )OR log( )OR  0.025 0.975;q q Conv. 

runs* log( )ˆ OR
Co. rate 

*
log( )OR 2

og( )l̂ OR
Co. rate 

*2
log( )OR log( )PI OR

0.1 0 -1.5 [.] 67.31 -1.52 95.80 - - -
0.1 0 -0.5 [.] 69.77 -0.51 95.40 - - -
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0.1 0 0 [.] 70.75 -0.01 94.73 - - -
0.1 0 0.5 [.] 72.10 0.50 95.56 - - -
0.1 0 1.5 [.] 76.56 1.50 95.04 - - -
0.1 0.1 -1.5 [-2.02; -0.98] 63.42 -1.50 93.83 0.02 95.48 [-2.03; -0.95]
0.1 0.1 -0.5 [-1.02; 0.02] 63.92 -0.49 93.73 0.06 98.27 [-1.03; 0.08]
0.1 0.1 0 [-0.52; 0.52] 64.45 0.01 93.05 0.07 98.99 [-0.56; 0.59]
0.1 0.1 0.5 [-0.02; 1.02] 66.03 0.51 92.75 0.07 98.91 [-0.09; 1.10]
0.1 0.1 1.5 [0.98; 2.02] 66.80 1.51 93.29 0.08 99.52 [0.90; 2.11]
0.1 0.5 -1.5 [-2.66; -0.34] 57.97 -1.46 91.19 0.38 99.43 [-2.78; -0.12]
0.1 0.5 -0.5 [-1.66; 0.66] 58.99 -0.48 91.80 0.43 99.54 [-1.87; 0.92]
0.1 0.5 0 [-1.16; 1.16] 58.22 0.02 92.63 0.45 98.88 [-1.40; 1.44]
0.1 0.5 0.5 [-0.66; 1.66] 58.94 0.51 93.18 0.46 98.44 [-0.92; 1.94]
0.1 0.5 1.5 [0.34; 2.66] 59.37 1.50 92.82 0.46 98.33 [0.08; 2.93]
0.01 0 -1.5 [.] 52.33 -1.58 97.47 - - -
0.01 0 -0.5 [.] 53.58 -0.54 96.45 - - -
0.01 0 0 [.] 54.33 -0.01 96.30 - - -
0.01 0 0.5 [.] 54.11 0.48 96.05 - - -
0.01 0 1.5 [.] 55.39 1.50 95.56 - - -
0.01 0.1 -1.5 [-2.02; -0.98] 51.21 -1.56 97.10 0.00 85.55 [-2.77; -0.33]
0.01 0.1 -0.5 [-1.02; 0.02] 52.36 -0.50 95.95 0.00 89.85 [-1.33; 0.41]
0.01 0.1 0 [-0.52; 0.52] 52.31 0.01 95.55 0.00 94.74 [-0.71; 0.79]
0.01 0.1 0.5 [-0.02; 1.02] 51.49 0.53 95.47 0.00 97.23 [-0.13; 1.23]
0.01 0.1 1.5 [0.98; 2.02] 52.38 1.54 95.23 0.00 99.28 [0.94; 2.17]
0.01 0.5 -1.5 [-2.66; -0.34] 51.28 -1.42 93.82 0.00 98.77 [-2.68; -0.13]
0.01 0.5 -0.5 [-1.66; 0.66] 47.98 -0.38 92.48 0.00 99.69 [-1.37; 0.74]
0.01 0.5 0 [-1.16; 1.16] 46.49 0.11 92.30 0.12 99.82 [-0.91; 1.24]
0.01 0.5 0.5 [-0.66; 1.66] 44.66 0.60 91.85 0.21 99.88 [-0.49; 1.79]
0.01 0.5 1.5 [0.34; 2.66] 46.27 1.58 92.09 0.29 99.90 [0.34; 2.85]
0.005 0 -1.5 [.] 47.25 -1.61 97.60 - - -
0.005 0 -0.5 [.] 51.05 -0.55 96.90 - - -
0.005 0 0 [.] 51.38 -0.01 96.71 - - -
0.005 0 0.5 [.] 53.09 0.49 96.53 - - -
0.005 0 1.5 [.] 52.70 1.51 96.02 - - -
0.005 0.1 -1.5 [-2.02; -0.98] 48.35 -1.54 96.93 0.00 80.41 [-3.03; 0.17]
0.005 0.1 -0.5 [-1.02; 0.02] 50.21 -0.52 96.87 0.00 89.34 [-1.68; 0.73]
0.005 0.1 0 [-0.52; 0.52] 50.40 -0.00 95.91 0.00 91.38 [-1.00; 1.08]
0.005 0.1 0.5 [-0.02; 1.02] 50.35 0.52 96.15 0.00 95.09 [-0.35; 1.47]
0.005 0.1 1.5 [0.98; 2.02] 50.26 1.53 96.18 0.00 98.50 [0.77; 2.34]
0.005 0.5 -1.5 [-2.66; -0.34] 47.29 -1.40 94.46 0.00 99.43 [-2.90; 0.24]
0.005 0.5 -0.5 [-1.66; 0.66] 47.66 -0.38 94.06 0.00 99.60 [-1.59; 0.97]
0.005 0.5 0 [-1.16; 1.16] 47.21 0.15 93.69 0.00 99.83 [-0.96; 1.39]
0.005 0.5 0.5 [-0.66; 1.66] 47.31 0.67 94.23 0.00 99.67 [-0.36; 1.83]
0.005 0.5 1.5 [0.34; 2.66] 46.04 1.64 94.07 0.15 99.81 [0.53; 2.84]

Note: = 0.025th quantile of the uniform distribution. = 0.975th quantile of the uniform distribution. 0.025q 0.975q
Conv. runs = proportion of converged runs. Co. rate  = Coverage rate of the Wald CI interval for the 
parameter . 
*Values reported in %
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3.2.2 Relative risk

Results obtained by the PL approach when meta-analyzing the RR are displayed in Table 4. 

Overall, they were similar to those obtained when estimating the OR. Estimates of the mean 

treatment effect were close to the true parameter’s values, even with extremely rare events, 

and the largest biases were observed in scenarios with large negative mean treatment effect. 

Coverage rates of the CIs computed for this parameter were close to nominal, with most of 

the values contained between 93 and 97%. For the heterogeneity parameter, estimates were 

biased towards zero, especially in rare-event scenarios, and CIs were either invalid (i.e. 

coverage rates largely below 95%) or too conservative (i.e. coverage rates close to 100%). 

Nevertheless, performance of the PIs were much better with bounds close to the theoretical 

quantiles in many scenarios. When PIs were too wide, which was especially the case in 

scenarios with extremely rare events and large negative treatment effect, they at least 

contained the two theoretical quantiles.

Table 4. Pseudo-likelihood performance for the meta-analysis of the relative risk

c
M

2
log( )RR log( )RR  0.025 0.975;q q Conv. 

runs* log( )ˆ RR
Co. rate 

*
log( )RR 2

og( )l̂ RR
Co. rate 

*2
log( )RR log( )PI RR

0.1 0 -1.44 [.] 54.92 -1.45 95.94 - - -
0.1 0 -0.47 [.] 61.37 -0.47 96.09 - - -
0.1 0 0.00 [.] 65.74 -0.00 96.32 - - -
0.1 0 0.45 [.] 72.11 0.45 96.64 - - -
0.1 0 1.25 [.] 81.42 1.26 96.68 - - -
0.1 0.01 -1.44 [-1.60; -1.27] 54.14 -1.45 96.16 0.00 72.29 [-1.84; -1.04]
0.1 0.01 -0.47 [-0.62; -0.31] 58.96 -0.47 95.62 0.00 85.27 [-0.74; -0.19]
0.1 0.01 -0.00 [-0.15; 0.15] 64.36 0.00 95.70 0.00 90.28 [-0.23; 0.24]
0.1 0.01 0.45 [0.30; 0.59] 70.08 0.45 96.39 0.00 94.64 [0.24; 0.66]
0.1 0.01 1.25 [1.13; 1.37] 80.29 1.25 96.38 0.00 97.87 [1.08; 1.43]
0.1 0.24 -1.44 [-2.25; -0.64] 48.71 -1.41 92.24 0.14 99.28 [-2.24; -0.56]
0.1 0.22 -0.49 [-1.26; 0.29] 50.80 -0.47 92.70 0.16 99.73 [-1.33; 0.42]
0.1 0.21 -0.03 [-0.78; 0.72] 51.62 -0.01 92.64 0.16 99.80 [-0.86; 0.85]
0.1 0.19 0.41 [-0.30; 1.12] 53.90 0.43 92.56 0.15 99.78 [-0.38; 1.25]
0.1 0.13 1.18 [0.60; 1.76] 58.19 1.19 93.44 0.09 99.90 [0.54; 1.85]
0.01 0 -1.49 [.] 41.31 -1.63 97.75 - - -
0.01 0 -0.50 [.] 39.32 -0.55 96.72 - - -
0.01 0 0.00 [.] 39.25 -0.02 96.56 - - -
0.01 0 0.49 [.] 39.73 0.47 96.07 - - -
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0.01 0 1.47 [.] 45.20 1.48 95.82 - - -
0.01 0.01 -1.49 [-1.66; -1.33] 41.07 -1.60 97.59 0.00 53.61 [-2.89; -0.31]
0.01 0.01 -0.50 [-0.66; -0.33] 39.75 -0.54 97.08 0.00 62.67 [-1.37; 0.37]
0.01 0.01 -0.00 [-0.16; 0.16] 38.20 -0.02 96.47 0.00 71.48 [-0.73; 0.74]
0.01 0.01 0.49 [0.33; 0.66] 40.87 0.49 95.86 0.00 80.72 [-0.14; 1.14]
0.01 0.01 1.47 [1.31; 1.63] 46.36 1.48 95.41 0.00 92.24 [0.96; 2.02]
0.01 0.25 -1.49 [-2.32; -0.67] 41.42 -1.54 96.45 0.00 94.70 [-2.85; -0.22]
0.01 0.25 -0.50 [-1.32; 0.32] 40.35 -0.47 95.19 0.00 97.82 [-1.40; 0.56]
0.01 0.25 -0.00 [-0.82; 0.81] 40.56 0.06 94.72 0.00 99.05 [-0.75; 0.96]
0.01 0.24 0.49 [-0.32; 1.30] 43.39 0.55 94.22 0.00 99.44 [-0.21; 1.39]
0.01 0.23 1.46 [0.67; 2.25] 47.70 1.53 93.06 0.07 99.78 [0.78; 2.35]
0.005 0 -1.50 [.] 39.49 -1.62 98.02 - - -
0.005 0 -0.50 [.] 37.99 -0.60 97.34 - - -
0.005 0 0.00 [.] 37.67 -0.04 96.84 - - -
0.005 0 0.50 [.] 36.84 0.47 96.55 - - -
0.005 0 1.49 [.] 40.98 1.48 96.56 - - -
0.005 0.01 -1.50 [-1.66; -1.33] 38.50 -1.64 97.87 0.00 48.89 [-3.34; 0.19]
0.005 0.01 -0.50 [-0.66; -0.33] 38.99 -0.57 97.00 0.00 61.60 [-1.76; 0.72]
0.005 0.01 -0.00 [-0.16; 0.16] 38.07 -0.03 97.03 0.00 67.49 [-1.05; 1.06]
0.005 0.01 0.50 [0.33; 0.66] 37.67 0.48 95.78 0.00 73.56 [-0.41; 1.44]
0.005 0.01 1.49 [1.32; 1.65] 40.17 1.50 96.51 0.00 86.68 [0.75; 2.25]
0.005 0.25 -1.50 [-2.32; -0.68] 39.44 -1.59 96.50 0.00 90.79 [-3.24; 0.24]
0.005 0.25 -0.50 [-1.32; 0.32] 38.22 -0.46 96.08 0.00 96.91 [-1.68; 0.88]
0.005 0.25 -0.00 [-0.82; 0.82] 38.56 0.05 95.59 0.00 98.45 [-1.00; 1.24]
0.005 0.25 0.49 [-0.32; 1.31] 39.47 0.58 95.92 0.00 98.78 [-0.36; 1.63]
0.005 0.24 1.48 [0.67; 2.29] 44.93 1.59 95.08 0.00 99.75 [0.74; 2.50]

Note: = 0.025th quantile of the uniform distribution. = 0.975th quantile of the uniform distribution. 0.025q 0.975q
Conv. runs = proportion of converged runs. Co. rate  = Coverage rate of the Wald CI interval for the 
parameter . 
*Values reported in %

3.2.3 Risk difference

Results regarding the estimation of the RD using the PL approach are provided in Table 5. As 

for the OR and RR, estimation of model (3) was difficult and the proportion of converged 

runs was never above 80%. More numerical issues were observed in scenarios with large 

heterogeneity and extremely rare events, especially with large positive mean treatment effect.

Estimates of the mean treatment effect parameter were satisfactory in all scenarios 

considered, with virtually unbiased estimates and nominal coverage rates of the CIs, even in 

scenarios with extremely rare events. Conversely, estimates of the heterogeneity parameter 

were most of the times biased and CIs invalid, with coverage rates largely below 95%. Notice 
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however that the true parameter’s value was quite low in most of the scenarios simulated (i.e. 

results are provided in ‰), meaning that in absolute terms, biases were not so large. 

Moreover, the performance of the PIs, which are also used to quantify the heterogeneity in 

the treatment effect, was much better. Although the median PIs tended to be too conservative 

(i.e. larger than the theoretical inter-quantile range), they contained  and  within 0.025q 0.975q

their lower and upper bounds in the 15 scenarios simulated. 

Table 5. Pseudo-likelihood performance for the meta-analysis of the risk difference

c
M **2

RD *
RD  0.025 0.975;q q Conv. 

runs* *ˆRD
Co. rate 

*
RD **2ˆRD

Co. rate 
*2

RD PIRD

0.1 0 -6.10 [.] 78.81 -6.11 95.11 - - -
0.1 0 -2.99 [.] 74.52 -2.98 94.57 - - -
0.1 0 0.00 [.] 70.96 0.01 94.74 - - -
0.1 0 4.54 [.] 67.83 4.54 95.00 - - -
0.1 0 20.04 [.] 60.89 20.03 95.20 - - -
0.1 0.00 -6.07 [-6.38; -5.76] 78.92 -6.07 94.84 0.00 7.04 [-7.75; -4.42]
0.1 0.02 -2.93 [-3.71; -2.14] 73.81 -2.94 95.23 0.00 20.27 [-5.13; -0.88]
0.1 0.05 0.09 [-1.12; 1.31] 70.05 0.10 94.62 0.03 32.20 [-2.87; 2.89]
0.1 0.12 4.66 [2.85; 6.47] 66.06 4.67 94.46 0.44 40.56 [0.07; 9.31]
0.1 0.41 20.18 [16.86; 23.49] 58.33 20.14 94.55 1.47 39.12 [12.03; 28.28]
0.1 0.11 -5.39 [-7.10; -3.68] 74.97 -5.41 94.66 0.00 17.84 [-7.31; -3.59]
0.1 0.67 -1.34 [-5.61; 2.92] 66.53 -1.37 94.77 0.47 75.54 [-6.12; 3.43]
0.1 1.54 2.33 [-4.13; 8.79] 57.36 2.29 94.67 1.51 93.87 [-5.93; 10.48]
0.1 3.24 7.55 [-1.82; 16.93] 40.88 7.46 93.69 3.06 97.58 [-4.20; 19.10]
0.1 9.64 23.09 [6.93; 39.24] 5.01 22.57 90.42 6.95 86.43 [5.08; 40.04]
0.01 0 -0.62 [.] 53.58 -0.62 93.75 - - -
0.01 0 -0.31 [.] 52.82 -0.32 94.62 - - -
0.01 0 0.00 [.] 52.00 -0.00 94.54 - - -
0.01 0 0.51 [.] 50.39 0.49 94.42 - - -
0.01 0 2.69 [.] 36.11 2.58 93.22 - - -
0.01 0.00 -0.62 [-0.65; -0.59] 53.05 -0.61 94.14 0.00 6.28 [-1.12; -0.11]
0.01 0.00 -0.31 [-0.39; -0.23] 53.06 -0.31 94.80 0.00 12.17 [-0.99; 0.26]
0.01 0.00 0.01 [-0.12; 0.14] 52.36 0.01 94.16 0.00 17.60 [-0.92; 0.79]
0.01 0.00 0.53 [0.32; 0.75] 49.39 0.51 94.35 0.05 18.38 [-0.98; 2.03]
0.01 0.01 2.74 [2.18; 3.29] 34.93 2.63 93.82 0.22 7.17 [-0.45; 5.73]
0.01 0.00 -0.55 [-0.72; -0.38] 53.08 -0.55 94.89 0.00 9.50 [-1.09; -0.04]
0.01 0.01 -0.12 [-0.57; 0.33] 51.93 -0.14 93.90 0.00 31.46 [-1.01; 0.58]
0.01 0.02 0.31 [-0.42; 1.04] 49.74 0.29 93.91 0.04 45.67 [-1.13; 1.71]
0.01 0.05 1.01 [-0.18; 2.20] 44.22 0.95 93.92 0.12 54.86 [-1.35; 3.30]
0.01 0.34 3.91 [0.86; 6.95] 11.01 3.55 88.83 0.43 91.01 [-0.83; 7.91]
0.005 0 -0.31 [.] 48.83 -0.31 94.29 - - -
0.005 0 -0.16 [.] 48.51 -0.15 94.50 - - -
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0.005 0 0.00 [.] 48.84 -0.01 94.49 - - -
0.005 0 0.26 [.] 45.94 0.23 94.65 - - -
0.005 0 1.37 [.] 33.47 1.25 93.82 - - -
0.005 0.00 -0.31 [-0.32; -0.29] 48.89 -0.31 93.58 0.00 7.05 [-0.68; 0.03]
0.005 0.00 -0.15 [-0.19; -0.11] 49.02 -0.16 93.82 0.00 10.93 [-0.65; 0.23]
0.005 0.00 0.01 [-0.06; 0.07] 48.64 0.00 95.05 0.00 14.73 [-0.67; 0.54]
0.005 0.00 0.27 [0.16; 0.38] 46.98 0.25 94.74 0.02 14.91 [-0.78; 1.29]
0.005 0.00 1.39 [1.11; 1.68] 31.07 1.28 92.82 0.10 5.85 [-0.86; 3.45]
0.005 0.00 -0.27 [-0.36; -0.19] 48.71 -0.28 93.74 0.00 10.96 [-0.67; 0.07]
0.005 0.00 -0.06 [-0.29; 0.16] 48.09 -0.06 94.86 0.00 24.82 [-0.67; 0.40]
0.005 0.01 0.16 [-0.21; 0.53] 47.70 0.14 94.40 0.01 34.34 [-0.77; 1.01]
0.005 0.01 0.51 [-0.09; 1.12] 42.06 0.47 93.94 0.05 38.62 [-1.02; 2.00]
0.005 0.09 2.03 [0.44; 3.62] 14.66 1.77 88.20 0.18 62.14 [-1.05; 4.60]

Note: = 0.025th quantile of the uniform distribution. = 0.975th quantile of the uniform distribution. 0.025q 0.975q
Conv. runs = proportion of converged runs. Co. rate  = Coverage rate of the Wald CI interval for the 
parameter . 
*Values reported in %.
**Values reported in ‰.

4 Discussion

In this paper, we proposed an extension of the PL approach to the frameworks of treatment 

effect heterogeneity. This approach has been shown to perform very well for meta-analyzing 

a homogeneous treatment effect, providing unbiased estimates and nominal coverage rates, 

even in scenarios with extremely rare events13. However, the assumption of a homogeneous 

treatment effect is often too restrictive33. Therefore, the objective of this paper was to assess 

the performance of the extended PL approach in settings with treatment effect heterogeneity 

and rare events.

Overall, we found that the extended PL approach provided good results (i.e. low biases and 

nominal coverage rates) for the estimation of the mean OR, RR, and RD, even when meta-

analyzing extremely rare events. Moreover, the use of a PI to quantify the degree of between-

study heterogeneity was found to be more reliable than estimation of .2

Estimates of the mean treatment effect were virtually unbiased in most of the scenarios 

considered and whatever the scale chosen. Moreover, the Wald CIs obtained for this 
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parameter provided coverage rates that were close to nominal. The only settings where the 

performance of the PL method somewhat deteriorated for this parameter were scenarios with 

extremely rare events and large heterogeneity. For the RD, this was particularly the case with 

large positive mean treatment effect.

Although providing a good estimate of the mean treatment effect is a desirable feature, this is 

not sufficient in the presence of treatment effect heterogeneity and the between-study 

variance should also be estimated. However, our simulations corroborated previous findings 

that it is difficult to obtain a good estimate of this parameter (it is very often underestimated), 

especially with rare events19,34. Therefore, assessing the degree of heterogeneity based only 

on this parameter’s estimate can lead to dubious conclusions. 

Fortunately, the computation of a PI allows one to alleviate – if not solve – this issue. Indeed, 

in most of the settings studied, our simulations have shown that when the heterogeneity was 

not too asymmetric, the computed PIs were conservative and contained the 2.5th and 97.5th 

quantiles of the ES’s distribution. This is in contrast with previous simulations studies that 

found suboptimal coverage under certain circumstances27,29. However, this can be explained 

by the two-stage approach adopted by these authors. In this study, we used a one-stage 

approach (i.e. all model’s parameters are estimated simultaneously), which, as shown, 

performed much better. Notice that formula (4) includes both the between and the within-

study variances. With rare events, the within-study component is likely to dominate the 

between-study component and large values of the former to compensate underestimation of 

the latter. 

The specificity of the PL approach is that it is based on working distributions; we are neither 

making the assumption that the outcome model is the correct one, nor that the baseline 

prevalence and the treatment effect are genuinely normally distributed. Actually, in models 

(2) and (3), the Poisson distribution in the former and the normal distribution in the latter 
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served as an approximation for the true binomial distribution, whereas the bivariate normal 

distribution serves as an approximation for the uniform distribution used to simulate the data. 

Therefore, it was important to assess the robustness of this model. In additional simulations, 

we considered various ES’s distributions (normal and gamma; results not shown). When 

using the normal distribution, results were virtually identical to those obtained with the 

uniform distribution, whereas results obtained with the gamma distribution (with scale 

parameter 1 and shape parameter 0.1, 0.25, and 0.5) slightly deteriorated the PI’s 

performance. The more asymmetrical the underlying distribution of the ES, the more the 

0.975th quantile was underestimated. These findings lead us to the conclusion that the PL 

approach is robust to the true ES’s distribution, as long as this distribution is not too 

asymmetric.

In order to obtain a sufficient number of converged runs, we had to simplify models (1) – (3) 

by assuming a zero correlation between  and . As such this amounts to imposing a non-k k

smaller variability of the event probability in the treatment group than in the control group, 

which is a defensible assumption. For instance, Bhaumik and colleagues adopted 

assumption20. Another way to proceed is to recode the treatment dummy (i.e. ) 1 as 1/2 kjT

and 0 as -1/2, which implies an equal variability in the two groups35. If one is not willing to 

make any assumption regarding how the variability in the two treatment arms compare, then 

one should use models (1) – (3) without constraining the correlation to zero. However, the 

price is an increased risk of running into a numerical issue.

Based on all these considerations, when the treatment effect is expected to be heterogeneous 

but not too asymmetrically distributed, we recommend the use of the PL approach for the 

meta-analysis of rare events, whatever the ES considered (i.e. OR, RR, or RD). Moreover, we 

urge researchers to always report the PI (and not simply the mean and between-study 
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variance) when conducting a MA under the assumption of a heterogeneous treatment effect. 

Indeed, although the range covered by the PI was often too wide with rare events, this can 

serve as an interesting benchmark (i.e. if a value does not fall within the computed PI, it is 

very unlikely that this value will be observed for a new study).
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Appendix

Table A1. Proportions of treatment arms reporting zero event in the 45 scenarios considered
0.1

c
M  0.01

c
M  0.005

c
M 

CA = 0 TA = 0 CA = 0 TA = 0 CA = 0 TA = 0
2
log( ) 0OR 

log( ) 1.5OR   0.07 11.75 38.89 80.05 61.73 89.80

log( ) 0.5OR   0.12 0.66 39.09 55.66 61.29 75.03

log( ) 0OR  0.14 0.09 39.10 38.60 61.08 60.82

log( ) 0.5OR  0.11 0.00 38.08 22.05 61.77 45.20

log( ) 1.5OR  0.12 0.00 39.23 2.58 61.33 13.33
2
log( ) 0.1OR 

log( ) 1.5OR   0.13 12.79 39.29 79.91 61.06 89.28

log( ) 0.5OR   0.08 0.95 38.16 54.86 61.59 73.04

log( ) 0OR  0.10 0.17 38.34 38.99 61.46 60.98

log( ) 0.5OR  0.08 0.02 38.89 22.80 61.86 45.54

log( ) 1.5OR  0.05 0.00 38.67 3.78 60.91 15.53
2
log( ) 0.5OR 

log( ) 1.5OR   0.08 16.88 38.10 76.83 61.90 87.30

log( ) 0.5OR   0.04 3.29 38.91 53.10 61.51 70.13

log( ) 0OR  0.09 0.74 39.07 38.20 62.11 58.14

log( ) 0.5OR  0.09 0.20 38.18 25.39 61.37 44.11

log( ) 1.5OR  0.09 0.00 38.03 6.81 61.08 18.59
Note: "CA = 0" = average proportion of control arms with zero event; "TA = 0" = average proportion of 
treatment arms reporting zero event. Results based on 10,000 MA generated, with 20 primary studies each.
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Romain Piaget-Rossel and Patrick Taffé* 

University of Lausanne, Center for Primary Care and Public Health (Unisanté), Division of Biostatistics, Route 
de la Corniche 10, 1010 Lausanne, Switzerland 

Abstract: Unlike the classical two-stage DerSimonian and Laird meta-analysis method, the one-stage random-effects 
Poisson and Negative-binomial models have the great advantage of including the information contained in studies 
reporting zero event in one or both arms and in studies with one missing arm. Since the Negative-binomial distribution 
relaxes the assumption of equi-dispersion made by the Poisson, it should perform better when data exhibit 
over-dispersion. However, the superiority of the Negative-binomial model with rare events and single-arm studies is 
unclear and needs to be investigated. Moreover, to the best of our knowledge, this model has never been investigated in 
the context of a meta-analysis of incidence rate data with heterogeneous intervention effect. Therefore, we assessed the 
performance of the univariate and bivariate random-effects Poison and Negative-binomial models using simulations 
calibrated on a real dataset from a study on the surgical management of phyllodes tumors. Results suggested that the 
bivariate random-effects Negative-binomial model should be favored for the meta-analysis of incidence rate data 
exhibiting over-dispersion, even in the presence of zero-event and single-arm studies. 

Keywords: Incidence rate, Meta-analysis, Negative-binomial model, Poisson model, Rare events, Random effects. 

1. INTRODUCTION 

Meta-analysis is considered as the gold standard of 
evidence-based medicine [1]. By combining the results 
of related but independent studies, it allows to evaluate 
the effect of a treatment (or an intervention; here-after 
we will use this latter terminology to emphasize the fact 
that we are in an observational framework) in situations 
where primary studies taken separately would not have 
sufficient power to detect a statistically significant effect 

[2]. Meta-analyses are thus particularly useful when 
studying rare events. For example, Nissen and Wolski 
studied the impact of a diabetes drug on the incidence 
of myocardial infarctions and cardiovascular deaths [3], 
whereas Niël-Weise, Stijnen, and van den Broek 
conducted a meta-analysis on the effect of 
anti-infective-treated central venous catheters on the 
incidence of catheter-related bloodstream infections [4]. 

When the data at hand are counts of events over 
time, the effect size (ES) of interest is often the 
incidence rate (IR) and different intervention arms can 
be contrasted using the incidence rate ratio or the 
incidence rate difference. In this setting, the most 
commonly-used approach, which can be applied in 
both fixed-effect (FE) and random-effects (RE) 
frameworks, consists in computing a weighted average 
of the primary study ESs with weights proportional to 
the inverse of each ES’s variance [5] (the so-called 
“two-stage” approach [6]). Although this approach is 
very popular and enjoys good asymptotic properties, its 
use is problematic in small/finite samples, especially 
with rare events, when some studies report no event in  
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one or both arms, and when some studies’ arms are 
missing. Indeed, the ES and/or the weight computed in 
a single-zero (SZ), double-zero (DZ), or single-arm 
(SA) study are indefinite. To deal with SZ and DZ 
studies, researchers sometimes use a continuity 
correction factor [7]. However, this method is flawed 
and suffers from several criticisms [8-10]. In addition, 
SA studies are still excluded from the meta-analysis. 

Under the assumption of a homogeneous 
intervention effect, Mantel-Haenszel (MH) is an 
alternative to the classical inverse variance method 
and has been shown to be very performant, even with 
very rare events [11]. Unlike the inverse variance 
method, the MH method can cope with SZ studies. 
However, DZ studies are simply discarded with that 
method and, therefore, do not contribute to the ES 
estimate. Similarly, the MH method fails to include the 
information contained in SA studies. Piaget-Rossel and 
Taffé have shown that only the exclusion of SA studies 
impacted the performance of this method (i.e. a loss of 
precision was observed in settings with a large 
proportion of SA studies) [12]. Another limitation of the 
MH method is that it is only valid under the assumption 
of a homogeneous intervention effect [13].  

To improve these simple methods, one-stage or 
exact methods based on the likelihood principle have 
been developed. Such methods use the information 
contained in all the studies (i.e. including SZ, DZ, and 
SA studies) and allow for the inclusion of covariates. A 
natural way to model IR data is to use a Poisson 
likelihood [14]. This model can be adapted to the 
setting of a heterogeneous intervention effect by 
introducing random effects [15-16] and can be used to 
model the IR using either a univariate or a bivariate 
modelling approach [17]. One important limitation of the 
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Poisson model is its reliance on the equi-dispersion 
assumption (i.e. the mean of the distribution is equal to 
its variance), which rarely holds with count data 
(because of unmeasured individual characteristics 
differing within studies for instance). A way to relax the 
equi-dispersion assumption is to replace the Poisson 
distribution by the Negative-binomial [18]. Although we 
found some applications of the Negative-binomial 
model for the meta-analysis of individual patient data in 
a two-stage approach or in the context of a 
homogeneous intervention effect [19-20], we are not 
aware of the use of the random-effects 
Negative-binomial (Re-NB) model for the 
meta-analysis of incidence rate data within a 
framework of a heterogeneous intervention effect, 
especially with rare events and SA studies.  

Therefore, the goal of this paper was to assess the 
appropriateness of the Re-NB model for the 
meta-analysis of IR data in the presence of SZ, DZ, 
and even SA studies. Using simulations calibrated on a 
real clinical dataset, we compared this model with the 
random-effects Poisson (Re-Poi) model. We 
considered both univariate and bivariate versions of 
these two models. The data we used came from a 

recent systematic review on the impact of the width of 
the resection’s margin on the rate of local recurrences 
in phyllodes tumors [21]. The use of a model allowing 
for over-dispersion seemed particularly adapted to this 
example where the exposure (i.e. the width of the 
resection’s margin) had not been randomized and 
accounting for patient-level covariates affecting the 
incidence rate of recurrences at the analysis stage was 
difficult. We restricted our analyses to the framework of 
a heterogeneous intervention effect because the 
assumption of a homogeneous intervention effect was 
not plausible for the example considered. 

In the remaining of this paper, we start by 
describing the illustrative example. Then, Section 3 
presents the different models under investigation. In 
Section 4, we illustrate these models using data from 
the illustrative example and present results from a 
simulation study. Finally, Section 5 contains the 
discussion and some concluding remarks.  

2. ILLUSTRATIVE EXAMPLE 

The dataset used in this paper came from a 
systematic review on the surgical management of 
phyllodes tumors [21]. The author conducted a 

Table 1: Data Extract from the Study on Surgical Management of Phyllodes Tumors 

Study Tumor’s type 
Control arm 

(i.e. margin < 10mm) 
Intervention arm 

(i.e. margin ≥ 10mm) 

n t Y n t Y 

1 Benign 14 1020.6 3 8 583.2 0 

1 Borderline 4 291.6 2 11 801.9 4 

1 Malignant 4 291.6 3 5 364.5 2 

2 Benign - - - 7 522.2 0 

2 Malignant - - - 3 98.1 0 

3 Benign 104 10712 4 30 3090 1 

3 Borderline 34 2856 2 23 1932 0 

4 Benign 56 3976 7 44 3124 6 

4 Borderline 1 71 0 3 213 0 

4 Malignant 1 71 0 3 213 0 

5 Malignant 10 1399 6 14 1958.6 4 

6 Benign 126 9450 5 14 1050 0 

6 Borderline 19 1121 4 13 767 1 

6 Malignant 1 15 0 9 135 5 

7 Benign 16 665.6 4 18 748.8 0 

7 Borderline 1 57 0 2 114 0 

7 Malignant 1 45 1 2 90 0 

8 Malignant 6 726 0 30 3630 0 

9 Benign 53 3074 0 5 290 0 

9 Borderline 5 290 1 2 116 0 

10 Benign - - - 179 6748.3 12 

10 Borderline - - - 43 1406.1 3 

10 Malignant - - - 32 979.2 1 

Note: n = sample size; t = person-months (number of patients × mean follow-up); Y = number of recurrences. 
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systematic review to assess the impact of the width of 
the resection’s margin on the rate of tumor’s 
recurrences (Table 1).  

The dataset entails 10 primary studies on tumors 
patients who underwent a surgical intervention to 
remove their tumor. Each tumor was classified as 
either benign, borderline, or malignant. Two arms were 
defined according to the margin of resection used 
during the surgery: intervention arm included patients 
with a margin above or equal to 10mm, and patients 
whose resection’s margin was below 10mm belonged 
to the control arm. Study 2 and 10 corresponded to SA 
studies as they reported results only for margins above 
ten millimeters. One third of the control arms and more 
than half of the intervention arms reported zero event. 
Sample sizes and person-months varied widely across 
the studies.  

3. MODELS TO COMBINE INCIDENCE RATES 

3.1. The Random-Effects Poisson Model 

3.1.1. Univariate Modelling 

Let !!"# be the number of events occurring in study 
i (! = 1,… ,10), type of tumors j (j ∈ {benign, borderline, 
malignant}) and arm k (k = C for control and I for 
intervention). Assume that the number of events is 
conditionally distributed as a Poisson variable with 
mean !!"# = !!"# ∗ !!"# , where !!"#  denotes the 
incidence rate and !!"# the person-time. Consider the 
following univariate Re-Poi model: 

!!"#|!!"#~!"#$$"% !!"#  

!!"# = !!"# ∗ !!"# 

log(!!"#) = !!! + !!! ∗ !!"# + !! ∗ !!"# + !! ∗ !!"# ∗ !!"# 

!!!
!!!

~! β,Ω , β = !!
!!

,Ω =
!!!
! 0
0 !!!

!  

where !!"# is an indicator variable taking the value 0.5 
if k = I and -0.5 if k = C, !!"# is a vector of covariate 
affecting the baseline incidence rate, !!"# is a vector of 
covariates affecting the intervention effect. For the 
sake of clarity, we have separated the covariates 
affecting the baseline incidence rate from those 
affecting the intervention effect. Notice, however, that 
!!"# and !!"# may contain the same covariates. In this 
model, one makes the assumption that the residual 
variance of the log(IR) is the same in the control and 
intervention groups [22]. Observe that !!! −

!
!
!!! 

represents the residual log(IR) in the control group and 
!!! +

!
!
!!! the residual log(IR) in the intervention group 

in study i. Therefore, !!!  is the residual log(IRR) in 
study i and !! the mean residual log(IRR) across the 
10 studies. The vector of parameters ! measures the 
change in baseline log(IR) associated with a one-unit 

change of !!"#, whereas ! allows one to account for a 
differential effect of the intervention according to the 
covariates contained in !!"#. Finally, !!!

!  captures the 
residual baseline log(IR) heterogeneity, whereas !!!

!  
measures the residual heterogeneity of the intervention 
effect.  

The likelihood function writes: 

! !!"#|!!"# ,!!! ,!!!
!∈ ! ,!

  

!∈!

! !!! ,!!!|  β,Ω !!!!!!!!

!!

!!

!!

!!

!"

!!!

 

where D = {benign, borderline, malignant}, 
! !!"#|!!"# ,!!! ,!!!  is the Poisson density with mean 
!!"# = !!"# ∗ !!"# , and ! !!! ,!!!|  !,Ω  is the bivariate 
normal density with mean ! and variance-covariance 
matrix Ω. 

3.1.2. Bivariate Modelling 

In the bivariate approach, the log incidence rates of 
events are modelled separately for the intervention and 
control arms and the variances of the residuals log(IR) 
for the control and intervention groups are allowed to 
be different. Therefore, the bivariate Re-Poi model is 
given by: 

!!"#|!!"#~!"#$$"% !!"#  

!!"# = !!"# ∗ !!"# 

log(!!"#) = !!" + !′ ∗ !!"# + !′! ∗ !!"# 

!!"#|!!"#~!"#$$"% !!"#  

!!"# = !!"# ∗ !!"# 

log(!!"#) = !!" + !′ ∗ !!"# + !′! ∗ !!"# 

!!"
!!" ~! !,Ω ,! =

!!
!! ,Ω =

!!! !!"
!!" !!!

 

where !!"#  and !!"#  are defined as in the univariate 
Re-Poi model. Note that !!"  represents the residual 
log(IR) in the control group of study i and !!"  the 
residual log(IR) in the intervention group of study i. 
Therefore, !!" − !!" is the residual log(IRR) in study i 
and !! − !!  the mean residual log(IRR) across the 
studies. Again, !!"# contains the covariates affecting 
the baseline incidence, whereas !!"#  contains those 
affecting the intervention effect. This bivariate model is 
more flexible than the univariate since it allows 
estimating two distinct variance parameters (!!!,!!!). 
Moreover, the covariance (!!") links the two processes.  

The likelihood is given by 

! !!"#|!!"# ,!!" ,!!"
!∈ ! ,!

  

!∈!

! !!" ,!!"|  !,Ω !!!"!!!"

!!

!!

!!

!!

!"

!!!

 

where ! !!"#|!!"# ,!!" ,!!"  is the Poisson density, 
! !!" ,!!"|  !,Ω  denotes the bivariate normal 
density  with  mean ! and variance-covariance matrix Ω. 
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3.2. The Random-Effects Negative-Binomial Model 

3.2.1. Univariate Modelling 

To obtain a Negative-binomial model [18], one can 
introduce over-dispersion into the Re-Poi model by 
including a random multiplicative coefficient !! in the 
expression of the mean/variance parameter: !!"# =
!!"# ∗ !!"# ∗ !! , where !!~Gamma

!
!
, !  (i.e. a one 

parameter Gamma distribution with unit mean and 
variance !, ! > 0). With !!"#|!!"#~!"#$$"%(!!"#), it can 
be shown that the marginal expectation ! !!"# = !!"# 
and marginal variance !"# !!"# = !!"# 1 + !!!"# , 
thereby allowing the variance to differ from the mean. 
Consequently, the univariate Re-NB model is given by: 

!!"#|!!"#~!"#$$"% !!"#  

!!"# = !!"# ∗ !!"# ∗ !! 

log(!!"#) = !!! + !!! ∗ !!"# + !! ∗ !!"# + !! ∗ !!"# ∗ !!"# 

!!!
!!!

~! β,Ω , β = !!
!!

,Ω =
!!!
! 0
0 !!!

! , !!~Γ
1
!
, !  

and the likelihood writes: 

 

where ! !!"#|!!"# ,!!! ,!!! , !!  is the Poisson density, 
Γ !!|1/!, !  is the Gamma density with mean 1 and 
variance ! , ! !!! ,!!!|  β,Ω  is the bivariate Normal 
density with mean β and variance-covariance matrix 
Ω. 

3.2.2. Bivariate Modelling 

The bivariate Re-NB model is similar in structure to 
the bivariate Re-Poi model, except for the addition of 
the over-dispersion terms !!" and !!":  

!!"#|!!"#~!"#$$"% !!"#  

!!"# = !!"# ∗ !!"# ∗ !!" 

log(!!"#) = !!" + !′ ∗ !!"# + !′! ∗ !!"# 

!!"#|!!"#~!"#$$"% !!"#  

!!"# = !!"# ∗ !!"# ∗ !!" 

log(!!"#) = !!" + !′ ∗ !!"# + !′! ∗ !!"# 

!!"
!!" ~! !,Ω ,! =

!!
!! ,Ω =

!!! !!"
!!" !!!

 

!!"~Γ
1
!!
, !! , !!"~Γ

1
!!
, !!  

The likelihood is given by: 

 

where ! !!"#|!!"# ,!!" ,!!" , !!"  is the Poisson density, 
Γ !!"|1/!! , !!  is the Gamma density with mean 1 
and variance !!  ( ! = !,! ), ! !!" ,!!"|  !,Ω  is the 
bivariate Normal density with mean !  and 
variance-covariance matrix  Ω. Close inspection of the 
likelihood function reveals that the bivariate Re-NB 
model allows not only two distinct variances to be 
estimated (i.e. one for each arm), but also two distinct 
over-dispersion parameters (!! , !!), which makes this 
model more flexible than the more commonly-used 
bivariate Re-Poi model. 

4. NUMERICAL ANALYSES 

All the numerical analyses were conducted using 
Stata/IC 15.1 [23]. We used the command mepoisson 
to fit both Re-Poi models, menbreg to fit the univariate 
Re-NB model, and gsem to fit the bivariate Re-NB 
model. To integrate the likelihood, we used the 
mean-variance adaptive Gauss-Hermite quadrature 
method with seven integration points (the default 
implementation in Stata). We set the maximum number 
of iterations at 1001. 

4.1. Specifications of the Log Incidence Rate 

For the univariate Re-Poi and the univariate Re-NB 
models, we considered the following log(IR) 
specification: 

log(!!"#) = !!! + !!! ∗ !!"# + !! ∗!!"# + !! ∗ !!"# ∗!!"# 

where !!"# is an indicator for malignant tumors taking 
the value 1 for malignant and 0 otherwise and !!"# is 
defined as in Section 3. The focus was on estimating 
the mean intervention effect for non-malignant tumors 
(!(!!!) ≡ log!"" ), the residual heterogeneity of the 
intervention effect (   !"#(!!!) ≡ !!"#!""! ), and the 
difference in the mean intervention effects between 
malignant and non-malignant tumors (!! ≡ Δ!"#!""). 

For the bivariate models, we considered the 
following specifications for the log(IR): 

log(!!"#) = !!" + !! ∗!!"# 

log(!!"#) = !!" + !! ∗!!"# 

Again, parameters of interest were the mean 
intervention effect for non-malignant tumors (!(!!" −
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!!") ≡ log!"" ), the residual heterogeneity of the 
intervention effect (!"#(!!" − !!") ≡ !!"#!""! ) and the 
difference in the mean intervention effect between 
malignant and non-malignant tumors ( γ! − !! ≡
Δ!"#!""). 

4.2. Application to the Surgical Management of 
Phyllodes Tumors 

Table 2 reports the results obtained by fitting the 
four models described in Section 3 to the data 
presented in Table 1. Changing from the univariate to 
the bivariate framework had a smaller effect on the 
estimates obtained by the Re-Poi model than on those 
obtained by the Re-NB model. 

For each model, the estimated effect of a margin of 
resection above 10mm was a reduction of the rate of 
local recurrence for non-malignant tumors (i.e. all 
estimates of log!"" were below zero). This reduction 
was larger for the Re-NB models, with the largest 
reduction estimated by the univariate model. 
Estimations of the residual heterogeneity of the 
intervention effect by both Re-Poi models were around 
0.4, whereas the Re-NB models provided values close 
to zero for this parameter (the univariate Re-NB model 
even found an absence of residual heterogeneity).  

With the two Re-Poi models, estimates of the 
impact of the margin was greater for malignant tumors 
(i.e. Δ!"#!"" < 0), whereas with the Re-NB models the 
opposite result was obtained. While with the univariate 
Re-NB model it was still found that the margin above 

10mm reduced the rate of local recurrences of 
malignant tumors, this was not the case anymore with 
the bivariate model (i.e. the estimated coefficients of 
log!"" and Δ!"#!"" cancelled each other out). 

4.3. Simulations 

To identify the best fitting model from Section 3, we 
conducted Monte-Carlo simulations that were 
calibrated in order to mimic the data from the studies 
selected in the systematic review on phyllodes tumors 
(Table 1). The number of events were generated 
according to the bivariate Re-NB model described in 
Subsection 3.2.2. We set the parameters of this model 
in order to investigate four different scenarios (see 
Table 3 below). The first scenario used values closed 
to the estimates obtained when fitting the model on the 
example dataset. This was our baseline scenario, from 
which we derived the three others. Scenario 2 
corresponded to a Poisson framework with no 
over-dispersion, scenario 3 was devised to study the 
impact of having a large amount of residual 
heterogeneity of the intervention effect, whereas the 
last scenario investigated the situation with no mean 
intervention effect. 

For each scenario, we simulated ! = 1000 
datasets. Performance of each model was assessed by 
the median relative bias (i.e. relative difference 
between the median estimate and the true parameter’s 
value), and coverage rate and median width of the 95% 
Wald confidence intervals (CIs) obtained for the three 

Table 2: Estimation of the Three Parameters of Interest in the Illustrative Example Dataset 

Model !"#!"" !!"#!""!  !!"#!"" 

Univariate Re-Poi -0.27 
(-1.15; 0.61) 

0.40 
(0.02 ; 7.35) 

-0.33 
(-1.58 ; 0.91) 

Bivariate Re-Poi -0.33 
(-1.36 ; 0.70) 

0.45 
(0.02 ; 8.25) 

-0.32 
(-1.57 ; 0.92) 

Univariate Re-NB -0.58 
(-1.66 ; 0.50) 

0 
(.) 

0.24 
(-1.70 ; 2.18) 

Bivariate Re-NB -0.48 
(-1.61 ; 0.64) 

0.02 
(0.01 ; 0.03) 

0.48 
(-1.52 ; 2.48) 

Note: 95% Wald confidence intervals are provided between parentheses. log!"" = mean intervention effect for the non-malignant tumors (i.e. impact of margin ≥ 
10mm vs margin < 10mm); !!"#!""!  = residual heterogeneity of the intervention effect; Δ!"#!"" = difference in the mean intervention effect between malignant and 
non-malignant tumors. 
 

Table 3: Value of the Different Parameters under the Four Simulated Scenarios 

Scenarios !! !! !! !! !! !! !!! !!! !!" 

1) Baseline 0.45 1.65 -6.5 -7 0.9 1.4 0.40 0.25 0.30 

2) No over-dispersion 0 0 -6.5 -7 0.9 1.4 0.40 0.25 0.30 

3) Large residual heterogeneity 0.45 1.65 -6.5 -7 0.9 1.4 1.60 1.00 0.30 

4) No mean intervention effect 0.45 1.65 -6.5 -6.5 0.9 0.9 0.40 0.25 0.30 

Note: !!, !!, !!, !!! and !!", for k = C, I, correspond to the parameters of the bivariate Re-NB model described in Subsection 3.2.2. Values in bold represent 
changes compared to the baseline scenario. 
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parameters of interest (i.e. the mean intervention effect 
for non-malignant tumors log!"" , the residual 
heterogeneity of the intervention effect !!"#!""! , and the 
difference in mean intervention effect between 
malignant vs non-malignant tumors Δ!"#!"" ). We 
decided to compute the median instead of the mean for 
the bias and CI’s width to avoid the influence of 
exceedingly large or small values obtained in some 
simulations. Since the numerical algorithm used to 
estimate the different models sometimes failed to 
converge, we also reported the proportion of 
converged runs achieved by each model. 

4.3.1. Scenario 1: Baseline 

The baseline scenario corresponded to the situation 
with moderate mean intervention effect for 
non-malignant tumors ( log!"" = −0.5 ), moderate 
difference in mean intervention effect between 
malignant and non-malignant tumors (Δ!"#!"" = 0.5 ) 
and small residual heterogeneity of the intervention 
effect (!!"#!""! = 0.05). Results for this scenario are 
displayed in Table 4. Overall, the univariate and 
bivariate versions of the Re-Poi model provided more 
similar results than the two versions of the Re-NB 
models. Moreover, these latter ran into more 
convergence issues.  

The bivariate Re-NB models provided the best 
estimates for the mean intervention effect for 
non-malignant tumors; biases were lower and 
coverage rates closer to nominal (i.e. 95%). Regarding 
the estimation of the mean intervention effect between 
malignant and non-malignant tumors, all the models 
obtained small relative bias but only the bivariate 
Re-NB model’s CIs provided acceptable coverage 
rates (91.14%). The model that performed the best for 

the estimation of the intervention’s residual 
heterogeneity parameter was again the bivariate 
Re-NB model (although the relative bias was almost 
300%). Coverage rates for this parameter were much 
too low whatever the model considered.  

4.3.2. Scenario 2: No Over-dispersion 

In the scenario without over-dispersion, all the 
models tended to encounter more numerical issues 
than under the scenario 1, especially the bivariate 
Re-NB model whose proportion of converged runs was 
below 10% (Table 5). Again the bivariate Re-NB model 
provided the best estimate for the mean intervention 
effect for non-malignant tumors (relative bias < 5%). 
However, the CIs provided by this model for this 
parameter were too conservative. For the residual 
heterogeneity parameter, the bivariate Re-Poi model 
was the only one to obtain unbiased estimates but its 
CIs displayed the lowest coverage rates (15%). 
Compared to scenario 1, coverage rates obtained for 
parameter Δ!"#!""  was now satisfactory for all 
models. 

4.3.3. Scenario 3: Large Residual Heterogeneity 

With large residual heterogeneity (!!"#!""! = 2; Table 
6), biases in the mean intervention effect for 
non-malignant tumors and difference in mean 
intervention effect estimates were more or less similar 
to those obtained in the baseline scenario (i.e. 
Scenario 1; Table 4). However, coverage rates tended 
to be lower and confidence intervals wider. Regarding 
the estimate of the residual heterogeneity parameter, 
both Re-NB models underestimated this parameter 
(median relative bias = -63.77% for the univariate 
model and -30.90% for the bivariate one), whereas the 

Table 4: Models Performances under Scenario 1 

True para-meter 
value Model Estimate Relative 

bias (in %) 
Coverage rate 

(in %) CI’s width Converged runs 
(in %) 

log!"" = −0.5  

Uni Re-Poi  -0.68 -35.15 87.14 2.21 77.0 

Bi Re-Poi -0.78 -55.24 84.21 2.24 85.4 

Uni Re-NB -0.64 -27.90 91.91 2.20 59.2 

Bi Re-NB -0.57 -13.77 94.76 2.49 55.3 

!!"#!""! = 0.05  

Uni Re-Poi  1.02 1936.65 23.12 6.07 77.0 

Bi Re-Poi 1.02 1933.33 9.94 5.03 85.4 

Uni Re-NB 0.41 722.40 47.05 3.43 59.2 

Bi Re-NB 0.20 295.24 4.34 0.12* 55.3 

Δ!"#!"" = 0.5  

Uni Re-Poi  0.46 -8.63 68.05 2.28 77.0 

Bi Re-Poi 0.49 -2.81 66.67 2.22 85.4 

Uni Re-NB 0.48 -3.46 89.54 3.22 59.2 

Bi Re-NB 0.48 -4.98 91.14 3.43 55.3 

Note: Median values are provided for the estimate and CI’s width. Confidence intervals were computed using the Wald method. 
*Percentage value. 
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Re-Poi models overestimated it (median relative bias 
around 30%). All CIs obtained for this parameter were 
wider than those obtained in the baseline scenario, 
which improved all models’ coverage rates, especially 
for the univariate Re-Poi and Re-NB models, which 
obtained values close to nominal. 

4.3.4. Scenario 4: No Mean Intervention Effect 

The last scenario investigated was that of an 
intervention with a null average effect for both 
malignant and non-malignant tumors (i.e. log!"" = 0 
and Δ!"#!"" = 0). Results obtained under this scenario 
are provided in Table 7. They were virtually identical to 
those obtained under the scenario of efficient 
intervention for non-malignant tumors and non-efficient 

for malignant tumors (i.e. the baseline scenario; Table 
4). The bivariate Re-NB model again provided the most 
reliable results for estimating the mean intervention 
effect for non-malignant tumors and the difference in 
mean intervention effect between malignant and 
non-malignant tumors. However, it also encountered 
more numerical issues. As for the residual 
heterogeneity parameters, all models provided poor 
estimates. 

5. DISCUSSION 

In meta-analysis of IR data, the classical 
inverse-variance weighting method fails to provide valid 
estimates when the event rate is low. One possible 
solution is to use the MH method, but it is only valid 

Table 5: Models Performances under Scenario 2 

True para-meter 
value Model Estimate Relative 

bias (in %) 
Coverage rate 

(in %) CI’s width Converged runs 
(in %) 

log!"" = −0.5  

Uni Re-Poi  -0.54 -7.36 97.10 1.53 20.7 

Bi Re-Poi -0.54 -7.12 95.40 1.36 54.4 

Uni Re-NB -0.56 -12.06 94.68 1.29 79.0 

Bi Re-NB -0.48 4.94 100 1.61 8.8 

!!"#!""! = 0.05  

Uni Re-Poi  0.17 239.88 85.99 3.84 20.7 

Bi Re-Poi 0.05 6.04 15.07 0.04* 54.4 

Uni Re-NB 0.24 372.99 46.71 1.05 79.0 

Bi Re-NB 0.17 245.45 37.50 0.63 8.8 

Δ!"#!"" = 0.5  

Uni Re-Poi  0.50 0.44 96.62 1.86 20.7 

Bi Re-Poi 0.50 -0.02 95.59 1.72 54.4 

Uni Re-NB 0.51 1.14 95.32 1.71 79.0 

Bi Re-NB 0.41 -18.26 97.73 1.98 8.8 

Note: Median values are provided for the estimate and CI’s width. Confidence intervals were computed using the Wald method. 
*Percentage value. 

Table 6: Models Performances under Scenario 3 

True para-meter 
value Model Estimate Relative 

bias (in %) 
Coverage rate 

(in %) CI’s width Converged runs 
(in %) 

log!"" = −0.5  

Uni Re-Poi  -0.86 -71.15 84.03 2.83 91.4 

Bi Re-Poi -0.85 -69.42 83.97 2.99 94.8 

Uni Re-NB -0.82 -64.96 84.74 2.84 67.5 

Bi Re-NB -0.53 -6.98 89.03 2.98 69.3 

!!"#!""! = 2  

Uni Re-Poi  2.57 28.49 93.44 9.68 91.4 

Bi Re-Poi 2.62 31.00 80.06 9.94 94.8 

Uni Re-NB 0.72 -63.77 96.30 4.49 67.5 

Bi Re-NB 1.38 -30.90 30.30 0.59* 69.3 

Δ!"#!"" = 0.5  

Uni Re-Poi  0.48 -3.24 66.19 2.25 91.4 

Bi Re-Poi 0.51 1.85 64.45 2.24 94.8 

Uni Re-NB 0.51 1.69 89.19 3.69 67.5 

Bi Re-NB 0.57 14.09 90.19 3.71 69.3 

Note: Median values are provided for the estimate and CI’s width. Confidence intervals were computed using the Wald method. 
*Percentage value. 
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under the assumption of a homogeneous intervention 
effect and it fails to include the information contained in 
DZ and SA studies. In this paper, we investigated the 
use of the univariate and bivariate Re-NB models to 
conduct a meta-analysis of heterogeneous incidence 
rates, in the presence of rare events and SA studies. 
Through simulations calibrated to mimic a real clinical 
dataset, we compared the performance of these two 
models to that of the univariate and bivariate Re-Poi 
models, which are based on the restrictive assumption 
of equi-dispersion.  

The use of the Re-Poi model for the meta-analysis 
of IR data is not new and has already been discussed 
in the literature. For example, Spittal, Pirkis, and Gurrin 
showed that the univariate Re-Poi model generally 
outperformed the DerSimonian and Laird method, 
notably when the number of SZ or DZ studies was high 

[16]. Stijnen, Hamza, and Özdemir investigated the 
bivariate Poisson modelling [17]. However, we did not 
find any published study investigating the use of either 
the univariate or bivariate Re-NB models for the 
meta-analysis of IR data in the context of a 
heterogeneous intervention effect with both rare events 
and SA studies. 

We found larger discrepancies between the 
univariate and bivariate versions of the Re-NB model 
than between the univariate and bivariate Re-Poi 
models. This suggested that taking into account a 
difference of over-dispersions between the intervention 
and control arms (i.e. !! ≠ !!) was more crucial than 
taking into account a difference between the residuals 
heterogeneity of the log(IR) (i.e. !!2 ≠ !!2).  

Overall, we found that except for the scenario of no 
over-dispersion where all models yielded similar results, 

the univariate and bivariate Re-NB models were more 
performant than the univariate and bivariate Re-Poi 
models. This result was by no means obvious, given 
the greater complexity of the Re-NB models, which 
comprise more parameters to be estimated than the 
Re-Poi models, and the particular settings considered 
of rare events with many SZ, DZ, and SA studies. 

Regarding the estimation of the mean intervention 
effect for non-malignant tumors (i.e. log!"" ), the 
bivariate Re-NB model was the only model to provide 
acceptable bias (never larger than 14% of the true 
parameter’s value) and coverage rates (most of the 
time above 90%) across all scenarios. Due to extreme 
scarcity of the data (i.e. very few events and studies), 
results obtained for the residual heterogeneity of the 
intervention effect (i.e. !!"#!""! ) were poor across all 
scenarios investigated and whatever the model 
considered. Finally, biases in the difference in mean 
intervention effect parameter (i.e. Δ!"#!"" ) were 
acceptable and approximately the same for the four 
models, across the four scenarios investigated. 
Nevertheless, both Re-NB models provided CIs for this 
parameter with better coverage rates than the Re-Poi 
models.  

To sum up, in settings of rare events, intervention 
effect heterogeneity, and SA studies, we highly 
recommend the use of the Re-NB models for the 
meta-analysis of incidence rate data. Indeed, count 
data often exhibit over-dispersion (as groups of 
individuals considered are heterogeneous and there 
are many unmeasured risk factors) and we showed 
that these models performed better than the univariate 
and bivariate Re-Poi models. Under the simulated 
scenario of equi-dispersion, the Re-NB models 

Table 7: Models Performances under Scenario 4 

True para-meter 
value Model Estimate Relative bias 

(in %) 
Coverage rate 

(in %) CI’s width Converged runs 
(in %) 

log!"" = 0  

Uni Re-Poi  -0.18 - 86.29 2.09 81.7 

Bi Re-Poi -0.24 - 83.33 2.14 86.8 

Uni Re-NB -0.15 - 91.09 2.14 60.6 

Bi Re-NB -0.10 - 93.53 2.38 58.7 

!!"#!""! = 0.05  

Uni Re-Poi  1.00 1905.72 20.44 5.81 81.7 

Bi Re-Poi 1.04 1970.04 11.15 4.81 86.8 

Uni Re-NB 0.41 710.59 46.70 3.36 60.6 

Bi Re-NB 0.21 312.32 4.60 0.1* 58.7 

Δ!"#!"" = 0  

Uni Re-Poi  -0.06 - 65.73 2.13 81.7 

Bi Re-Poi -0.10 - 64.02 2.06 86.8 

Uni Re-NB -0.02 - 89.93 3.22 60.6 

Bi Re-NB 0.03 - 92.33 3.35 58.7 

Note: Median values are provided for the estimate and CI’s width. Confidence intervals were computed using the Wald method. 
*Percentage value. 



Meta-Analysis of Incidence Rate Data in the Presence International Journal of Statistics in Medical Research, 2019, Vol. 8  65 

provided similar results as the Re-Poi models. We 
would furthermore recommend the bivariate Re-NB 
model, as it allows more flexibility in modelling the IRs 
than its univariate counterpart.  

Nevertheless, there are two limitations worth 
mentioning. First, convergence might be more difficult 
to achieve with the bivariate Re-NB model (i.e. 
proportion of converged runs achieved by this model 
was often below 60%, whereas it was most of the time 
above 80% for both Re-Poi models). We believe that 
convergence rates can be improved by selecting better 
starting values, which could be provided by the 
estimation of a less complex model such as the 
bivariate Re-Poi. Another solution could be to choose a 
conjugate distribution for the random effects to obtain a 
closed-form likelihood, which would be easier to 
maximize [24].  

Second, results obtained for the residual 
heterogeneity parameter were poor, whatever the 
scenario considered. Notice that our simulations were 
calibrated to mimic a real clinical dataset where not 
only events were rare, but also few studies were 
included in the meta-analysis. Gathering more studies 
might improve the situation. Nevertheless, even the 
most sophisticated statistical method cannot 
compensate for extreme scarcity of the data and 
absence of information. A Bayesian approach could be 
adopted, but it is well known that in the setting of rare 
events, the selection of priors matters and results are 
subjective [25-26]. Still another option could be to 
investigate the use of Zero-Inflated models [27]. Finally, 
to improve the CIs obtained for this parameter, one 
could consider using the profile likelihood method [28] 
instead of the Wald method 
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