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Abstract

This PhD thesis describes the development and implementation of computational algorithms in
forensic friction ridge examination. The thesis is separated into two parts, reflecting the major objectives
of the research. Part | describes the design, development, and validation of two different publicly accessible
algorithmic tools—DFIQI and FRStat—that enable examiners to practically apply statistical measures to
friction ridge impression evidence and explore more objective interpretation schemes. Part Il explores
practitioner and stakeholder perspectives on issues related to the adoption and implementation of
algorithmic tools into practice; discusses salient challenges, considerations, and a path forward related to
the implementation of algorithms in domains largely dominated by human judgment; and describes details
surrounding the actual implementation of an algorithmic tool described in Part | (FRStat) into operational
practice at a federal forensic laboratory in the United States and subsequent litigation involving its use. The
work presented in this thesis has broad impact and implications—both theoretical and practical, ranging
from statistics and evidence quantification to social psychology and human behavior—affecting policy,
procedure, training, quality assurance, research, reporting and testimony, and litigation as it relates to the
operational implementation and use of algorithms in friction ridge examination and forensic science more
broadly. The availability of the tools presented in Part | and results of the discussions and proposed
framework presented in Part |1 support eight key recommendations to strengthen the foundations of friction
ridge examination and improve our understanding of the reliability of evidence that our nations’ legal
system depends on.

Résumé

Cette thése de doctorat présente le développement et la mise en ceuvre d'algorithmes venant en
soutien & I'examen forensique des crétes papillaires. Elle est divisée en deux parties, reflétant les principaux
objectifs de la recherche. La partie | décrit la conception, le développement et la validation de deux outils
algorithmiques accessibles au public -DFIQI et FRStat- qui permettent aux examinateurs d'appliquer de
maniére pratique des mesures statistiques reflétant la qualité des traces papillaires et des comparaisons et
permettant d’exploiter des schémas d'interprétation plus objectifs. La deuxiéme partie explore les
perspectives des praticien-ne-s et des parties prenantes sur les questions liées a I'adoption et a la mise en
ceuvre d'outils algorithmiques dans la pratique ; elle analyse les principaux défis et considérations liés a la
mise en ceuvre d'algorithmes dans un domaine largement dominé par le jugement humain. Dans cette partie
¢galement sont décrits les détails entourant la mise en ceuvre opérationnelle dans un laboratoire forensique
fédéral aux Etats-Unis d'un des outils algorithmiques développés dans la premiére partie (FRStat) et les
débats liés a son utilisation. Les travaux présentés dans cette these ont un impact et des implications a la
fois théoriques et pratiques, allant de 1’usage de la statistique et de la quantification des preuves a la
psychologie sociale et au comportement humain. Ils ont une incidence sur les politiques, les procédures, la
formation, l'assurance qualité, la recherche, les rapports et les témoignages, ainsi que sur les litiges liés a la
mise en ceuvre opérationnelle et a I'utilisation d'algorithmes dans 1'examen des crétes papillaires et, plus
généralement, dans la science forensique. La disponibilité des outils présentés dans la partie | et les résultats
des discussions et du cadre d’usage présent¢ dans la partie II ameénent a proposer huit recommandations
clés visant a renforcer les fondements de I'examen dactyloscopique et a améliorer notre compréhension de
la fiabilité des preuves dont dépend le systéme juridique de nos nations.

Vi
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1 Introduction

Friction ridge examination is ubiquitously practiced by forensic laboratories throughout
the world and is often presented as incontrovertible evidence that an individual touched an item or
was present at the scene of a crime. Despite being first introduced in the late 1800s and
operationalized in the early 1900s, the practice of performing the examinations have remained
nearly the same for well over a century and rely on a visual comparative methodology often
referred to in more contemporary times as “ACE-V,” an acronym for “Analysis,” “Comparison,”
“Ewvaluation,” and “Verification.”

In general, when conducting an examination, the analyst first “analyzes” the impression
for discriminating features and determines the value and quality of the mark. If the mark is deemed
“of value” in the analysis phase, the examiner will “compare” the mark to a print from a known
source and “evaluate” the significance® of observed similarities and differences between the mark
and known source. Based on the results of the evaluation, the analyst will traditionally either
conclude “identification” (the two impressions were made by the same source), “exclusion” (the
two impressions were made by different sources), or “inconclusive” (insufficient similarities or
differences to determine if the impressions were made by the same source or different sources).
Once the analyst has rendered her conclusion, another examiner then verifies this determination
by conducting an independent examination.

Throughout the examination process, the analyst is responsible for making a number of
assessments. These assessments and the ultimate conclusions rendered are not based on empirical
statistical measurements or clearly defined standards; rather, they are subjective determinations
made by the analyst on a case-by-case basis and depend on her experience and personal confidence
in the conclusion. Without statistical measurements or an empirical basis for which the
significance of the evidence? is evaluated, it is unclear what contributed to the overall assessment
of the evidential strength and how it was evaluated. Consequently, assessments made during
friction ridge examinations are susceptible to variation from one analyst to another as well as by
the same analyst from one examination to another. When considering borderline impressions with
marginal quality or quantity of features, these variations often result in differences in the overall
conclusion. In the broad spectrum, however, while the lack of empirical standards and
measurements do not necessarily suggest the practice as a whole is unreliable or fraught with error,
it does raise questions as to how reliable the evidence is for the case at hand; thus, there is a critical
need for the friction ridge community to move towards integrating an empirical foundation using
quantitative and statistical methods (through algorithmic tools) into their examination
methodology.

Over the last several years, the friction ridge community has faced increasing criticism by
scientific and legal commentators, challenging the validity and reliability of the ACE-V method,

! The term “significance” used throughout refers to the importance, weight of the observations, or their ability to
discriminate impressions originating from common sources versus impressions originating from different sources. It
should not be confused with the use of the term in classic frequentist hypothesis testing.

2 The term “evidence” used throughout refers to the findings and information from the examination of physical items
submitted in a particular case. This is consistent with colloquial usage of the term “evidence” in the American legal
system; however, it is recognized that technically speaking, whether such findings or information are deemed as
“evidence” that has probative value in specific litigation is ultimately within the purview of the court.

1



which relies heavily on the subjective interpretation of forensic practitioners [1-8]. Of particular
concern, noted in 2009 by the National Research Council (NRC) of the National Academies of
Science (NAS) [3] as well as the President’s Council of Advisors on Science and Technology
(PCAST) in 2016 [7] and the American Academy for the Advancement of Science (AAAS) in
2017 [8], is the lack of an empirically demonstrable basis to substantiate conclusions from friction
ridge examinations, thus limiting the ability for the judiciary to reasonably understand the
reliability of the expert’s testimony for a given case. Along with several academic commentators,
the NRC, PCAST, and AAAS strongly encourage the forensic science community to develop tools
to evaluate and report the strength of forensic evidence using validated statistical methods [3, 7-
9].

In an effort to strengthen the foundations of friction ridge examination, the objectives of
this thesis are twofold: (1) to develop, validate, and make publicly accessible friction ridge
examination statistical software tools capable of (a) assessing the clarity of friction ridge skin
features and overall quality of impressions and (b) evaluating the statistical strength of
correspondence between two impressions, and (2) to develop strategies for practical application
and implementation of these (and similar) tools in an operational forensic science laboratory.
Taken together, this research will not only provide the friction ridge community access to novel,
validated algorithmic tools to evaluate the significance of friction ridge examinations, but it will
also provide a better understanding of how to practically apply and implement algorithmic tools
in an operational forensic science laboratory. As a result, this work has the aim and potential to
promote meaningful reform and transform the way forensic fingermark impressions are evaluated,
interpreted, and reported throughout the United States and the international forensic science
community.

1.1 Background to Friction Ridge Examination

Friction ridge examinations are conducted by human analysts using a visual comparative
methodology often referred to as “ACE-V.” Examinations are based on the ridge flow, ridge
events or features, and ridge structures of friction ridge skin impressions. Of particular importance
are the location, orientation, type, and spatial relationships of ridge features when making a
determination of suitability for comparison or whether two impressions could have originated from
a common source.

For over a century, the friction ridge community has relied upon two broad premises, or
tenets, as the foundational principles supporting the use of friction ridge impressions as a means
of personal identification:

(1) Persistence — the morphological structure of friction ridge skin is formed before birth and,
barring scarring or disease, does not change in a significant manner until after death.

(2) Uniqueness —the morphological structure of friction ridge skin bears a complex and unique
pattern of ridges which are highly discriminating between different individuals.



Generally speaking, the friction ridge community subscribes to three different levels of
friction ridge skin detail that are used for examinations. Level 1 detail refers to the overall ridge
flow and pattern type. Level 2 detail refers to the individual friction ridge features, such as
bifurcations, ending ridges, and dots, and their relative arrangement among one another. Level 3
detail refers to ridge structures, such as edge shapes and pores, and their relative arrangement
among one another. Non-ridge events that impact the appearance of friction ridges, such as
creases, scars, warts, incipient ridges, and other features may have aspects that are reflected in all
three levels of detail and are also used for examination purposes.

Friction ridge skin impressions are imperfect representations of the morphological
structures of the ridges on the skin. A variety of factors, such as deposition, substrate, matrix,
development, and environmental conditions often have a degradative effect on impressions thereby
limiting the legible attributes available for examination. As a result, the friction ridge community
invests a considerable amount of effort to train analysts on how to properly detect and interpret
complex impressions. In the following sections, an overview of the individual steps of the ACE-
V methodology are discussed along with a critical analysis of major gaps in the methodology
which expose vulnerabilities in the foundation of friction ridge examination.

1.1.1 Analysis

During the “analysis” phase, the analyst visually inspects the questioned impression to
detect the qualitative and quantitative attributes® of the impression and determine whether the
impression is “suitable” for a specified purpose (such as identification or exclusion). To this end,
the analyst is particularly concerned with identifying discriminating attributes of the friction ridge
detail which may be used for comparison and evaluation against the prints of a known source
impression. The ability for the analyst to reliably detect these attributes depends heavily on the
clarity of the impression. Generally, as the clarity of an impression increases, the confidence
analysts’ have in their interpretation of the location, orientation, type, and spatial arrangement of
features also increases. Additionally, as the number of interpretable features increases, the
discriminating strength of the impression is considered to increase as well. Once the features have
been detected, the analyst will assess the overall quality of the impression and make an experience-
based determination of the “suitability” for further comparison and evaluation [10]. This
determination is often not based on an empirical standard or a specific measure; rather, it is a
personal determination made by the analyst on a case-by-case basis and depends on whether the
analyst judges that the quality of the impression is sufficient to compare to a known source and
render a particular conclusion regarding the potential source of the impression.

3 Quantitative attributes of the impression refer to the number of features in the impression. Qualitative attributes
refer to the clarity, type, location, orientation, and spatial arrangement of features in the impression, as well as other
details that indicate the orientation and anatomical location of the source of friction ridge skin that made the impression
(e.g., tip of a finger, hypothenar of a palm).



1.1.2 Comparison

Once the overall qualitative and quantitative attributes of the impression have been
assessed and the analyst has determined the impression to be “suitable,” then he or she will proceed
to the “comparison” phase. In the comparison phase, the analyst will visually compare the features
detected in the impression against those available in the standard to determine if the features are
in agreement with one another — or in other words, whether the features are similar enough to be
considered “sufficient” and therefore included as a possible source. Because there are factors
which may impact the appearance of features, criteria for “sufficient” agreement may allow for
differences in appearance depending on various deposition conditions of the impression [10]. Like
in the analysis phase, this determination is not based on an empirical standard or specific measure;
rather it is a personal determination made by the analyst on a case-by-case basis and depends on
whether the analyst judges that the conditions of the impression are such that the observed
differences between the impressions are within the typical range of variation that is possible from
impressions originating from the same source.

1.1.3 Evaluation

Once the analyst has compared each feature detected in the questioned impression to the
features present (or absent) in the known source impression, he or she will proceed to the
“evaluation” phase. In the “evaluation” phase, the analyst considers the strength of the
correspondence or discordance, or in other words, the likelihood the questioned impression and
known source impression originated from a common source, and renders a conclusion of either
“identification” — the questioned impression and known source impression both originated from
the same source, “exclusion” — the questioned impression and known source impression originated
from different sources, or “inconclusive” — there was insufficient agreement or disagreement to
conclude whether the questioned impression and known source impression did or did not originate
from the same source [10]. Again, like in the analysis and comparison phases, this determination
of whether two impressions were made by the same source is not based on an empirical standard
or specific measure; rather it is a personal determination made by the analysts on a case-by-case
basis and depends on whether the analyst judges that the likelihood the two impressions were made
by a different source is so remote that it is a “practical impossibility” [10] and he or she is willing
to defend this claim to his or her peers or during litigation.

1.1.4 Verification

Once the analyst has rendered a conclusion, she will provide the questioned impression
and known source impression to another “competent” analyst to repeat the ACE steps outlined
above. If the both analysts reach the same conclusion then the findings are reported accordingly
[10]. However, if the analysts reach different conclusions, the laboratory will make an
administrative decision on how the conclusion is reported. Some laboratories may defer to a panel
of analysts to independently conduct their own examinations and the final conclusion is based on
some degree of consensus among the analysts or others may defer to a single manager or senior
analyst to conduct their own examination and make the final conclusion. In situations where



consensus (however defined) is not achieved, some laboratories will simply report “inconclusive”
whereas other laboratories may reassign the case to an analyst that may be “able” (or “willing”) to
render a more definitive conclusion.

1.2 Discussion of the Problem

From the general description of the ACE-V methodology, there are several key aspects of
the methodology which expose the discipline to vulnerabilities. Broadly stated, there is wide
latitude in how the method is applied, there are no standard instruments (other than human visual-
cognitive system) to measure feature attributes, there is no traceability to empirical data to
substantiate certain conclusions, and the human analyst plays the role of both the instrument of
measurement (albeit actual measurements are not taken) and the instrument of interpretation by
establishing (flexible, undefined) criteria by which (non)measured results are compared to
determine their significance. This creates several concerns from a scientific standpoint and
presents a grave threat to the scientific foundations of the discipline. Within this context, the
overarching concern is the lack of an empirical means of calibrating the human system or an
empirical foundation by which the significance of the evidence is evaluated such that a specified
level of confidence can be provided for the final result [3, 7, 8]. This is likely to always be an
issue where human beings, relying on their personal experience and judgment, play a role of the
measuring instrument. The issue is further complicated when the human being also serves as the
one who determines whether the measurements assessed are significant without empirical
validation. Notwithstanding the clear potential for cognitive and contextual biases to impact the
analyst’s determinations and conclusion [11], there is a potent decision-theoretic influence across
the entire examination spectrum that cannot be disentangled from the analyst’s evaluative
judgment of the evidence [12]. This adds another layer of complication in which personal,
professional, and societal values and cultural expectations shape decision theoretic utilities which
contribute to the analyst’s evaluative judgment. Without defined measurements or empirical basis
for which the significance of the evidence is evaluated, it is unclear what contributed to the overall
assessment of the evidential strength and how it was evaluated. While the lack of empirical
standards and measurements do not necessarily suggest the practice as a whole is unreliable or
fraught with error, it does raise questions as to how reliable the assessment is for a specific case at
hand.

For years, these issues have been echoed and communicated to the forensic science
community by several different scientific advisory committees in the United States. The primary
concerns related to these issues brought forth by these committees can be summarized as:

1. Forensic fingermark examinations rely on the subjective interpretation of forensic
examiners, which are vulnerable to human error, inconsistency across examiners, and
cognitive biases [7, 8].

2. The ACE-V methodology is not specific enough to qualify as a validated method; does not
guard against bias; is too broad to ensure repeatability and transparency; and does not
guarantee that two analysts following it will obtain the same results [3].



3. The reported results that make claims, directly or by implication, of zero error rates, 100%
certainty, or a single source attribution to the exclusion of all other sources are not
scientifically defendable [9]; conclusions of “identification” or “individualization” claims
too much, is not adequately established by fundamental research, and is impossible to
validate solely on the basis of experience [3, 8, 9]; and statements claiming or implying
greater certainty than demonstrated by empirical evidence are scientifically invalid [7].

In his 2012 thesis, Langenburg [13] describes his attempts to gain a better understanding
of what factors contribute to the overall assessment of the evidence by deconstructing the ACE-V
framework into smaller, more compartmentalized tasks. In doing so, he provides a series of critical
findings and recommendations for best practices and useful tools to help reduce expert variance
and errors while increasing transparency and understanding of expert decision making. In the
Analysis phase experiments, Langenburg finds significant variation in feature selection and
determinations of whether marks were considered “of value” or “suitable for comparison.” After
introducing an annotation scheme, called “GYRO,” to convey levels of uncertainty in the existence
of minutiae annotated, Langenburg finds that, in general, experts’ error rates for incorrect minutiae
selection mirrored their assignment of uncertainty using the GYRO system (minutiae selection
error rates increased as the analyst uncertainty assigned to the minutiae also increased). Further,
when evaluating the number of minutiae reported versus the decision for “suitability” for a given
mark, an operational threshold for “suitability” appeared between 7 to 8 minutiae. In the
Comparison phase experiments, Langenburg finds that the clarity of marks had the most drastic
effect on the ability for experts to accurately locate a match during searching tasks—Ilower clarity
images resulted in fewer correct responses. In the Evaluation phase experiments, Langenburg
finds that experts were mostly consistent in their precision and sensitivity of reported decisions
with a false positive error rate of approximately 0.1%. When using the LQMetrics Quality Map
software [14] to assess the quality of fingermarks, analysts reported highly reproducible
“identification” and “exclusion” decisions when quality values were “high.” When quality values
were “low,” analysts reported highly reproducible “no value” decisions. For quality values in
between, significant variations were observed in analysts’ determinations of “value” or
“identification” and “exclusion” decisions. Following these series of experiments, Langenburg
identifies several significant findings from the research. Key findings among those discussed by
Langenburg [13] include:

1. There is significant variation in the features that analysts perceive, select, and utilize
throughout the ACE-V process.

2. GYRO conveys analysts’ uncertainty regarding the features that are selected.

3. Tools, strategies, and specific training can be implemented to reduce the variation of
feature selection.

4. Operational decision thresholds were shown for decisions “of value” and “identification.”

5. Methods for assessing quality were useful predictors of case complexity.



Reproducibility and repeatability for feature selection and reported decisions was
significantly lower in complex cases where marks had marginal ridge detail.

Consensus feature sets are the most reliable and accurate features upon which to base a
decision.

Taking into consideration the findings listed above, Langenburg [13] proposes the following
recommendations to help improve the practice of fingerprint examination and provide a starting
point for future research:

1.

As early in the examination process as possible, cases should be identified as to their level
of complexity.

Documentation must be done in each case to the extent that is appropriate for the
complexity of the case and to the extent that it is sufficiently transparent how the analyst
arrived at her conclusions.

Decision thresholds should be formalized, transparent, and documented.

In disputed and/or complex cases, a consensus feature set approach should be considered
for the primary basis of the reported conclusions.

Likelihood ratios offer a demonstrative means of representing the weight of the
contribution of the corresponding features between two fingerprint impressions.

The work by Langenburg provides one of the first and most comprehensive evaluations of

the ACE-V process in terms of salient factors and general trends influencing the assessment of
fingermark evidence.

In 2017, Hicklin, in his thesis [15], expands upon the work by Langenburg through a

compilation of studies conducted over the course of several years in which he attempts to address
ways to improve the rigor, standardization, transparency, and quantifiability of the fingermark
examination process. While Hicklin notes there have been improvements to the processes over
the years, he found that there is still a great deal of variation and ambiguity in the process and
provides several findings and recommendations that augment those proposed by Langenburg. Key
findings and recommendations among those discussed by Hicklin [15] are summarized below:

1.

Address inconsistencies through standardized training, competency and proficiency tests,
operating procedures, certification, and accreditation: There remains a great deal of
variation in friction ridge examination procedures and terminology—among agencies,
among training programs, and among examiners. These differences present major
problems to the criminal justice system causing results to vary by organization and by
examiner, inserting ambiguity into legal testimony, and impeding cross-agency evaluations
of examiners’ performance.



2. Conduct further Black Box testing based on examiner proficiency and comparison
difficulty: Black Box tests to date are based on performance for examiners in general, on
marks and exemplars of a range of qualities; however, there is a wide disparity in the
difficulty of friction ridge comparisons as well as in the skills of examiners, and therefore
overall averages should be seen as only the first step. In practice, the consumers of
examiners’ decisions are not just interested in overall averages but are particularly
interested in a specific examiner’s abilities to render a decision for a specific comparison.

3. Focus attention on effectiveness as well as error: Training and competency/proficiency
tests should reflect an increased focus on effectiveness and efficiency, not just the
avoidance on eliminating or minimizing error. Trying to optimize a single error would be
a red flag; errors almost always involve tradeoffs. We can (facetiously) eliminate all
erroneous identifications by doing no work whatsoever, which is obviously not an
acceptable solution. Proposed quality assurance measures and changes to standard
operating procedures should be assessed not only in regard to the effect on error rates, but
also in regard to the impact on the amount of casework that can be performed.

4. Require detailed documentation of the features used by examiners in making their
determinations: Rigorously defined and consistently applied methods of performing and
documenting ACE-V would improve the transparency of the friction ridge examination
process and reduce the risk of error.

5. Provide a greater continuum for determinations: Much of the reason for the imperfect
repeatability and reproducibility of examiners’ determinations appears to be due to
discretization error: making categorical decisions in borderline cases. The value of marks
is a continuum that is not well described by binary (value vs. no value, or individualization
vs. inconclusive) determinations. In the medium or long term, probabilistic determinations
will provide such continuous measures.

6. Use quality metrics: The lack of standard methods of assessing quality means that all
friction ridge evidence must be treated as if it is all the same. The ability to assess the
quality of a mark, or the comparative quality of a mark-exemplar comparison, suggests a
variety of possible uses, such as for assessing the examiner performance metrics, quality-
directed workflow, enhanced quality assurance practices, and describing datasets for
research purposes.

7. Augment examiners’ determinations with probabilistic models: A great deal of on-going
research is being conducted on statistical models designed to quantify the probability that
a mark came from a specified source. Having this capability will be particularly useful for
more difficult comparisons that cannot be identified using fully automated means in a
“lights-out” environment.

Then, in her thesis in 2020, Eldridge [16] expands on the work by Langenburg [13] and
Hicklin [15] while focusing specifically on the concept of “suitability” during the Analysis phase
of the ACE-V methodology. Eldridge not only explores the information that is most considered
by examiners when making decisions through white-box testing, but also proposes expanded scales



for assessing the utility of a mark and presents the development and validation of a predictive
suitability model that relies on both key observations from a human expert and automated
measures from existing quality tools [16]. Ultimately, Eldridge demonstrates, as a proof-of-
concept, benefits that can be achieved by a hybrid examiner—algorithm model that leverages the
strengths of both to provide consensus-based guidance and encourages the friction ridge
community to move toward adopting such approaches. Key findings and recommendations from
Eldridge [16] include:

1. Do not annotate with minutiae-type specific markers: Results showed that examiners are
not consistent or cohesive in their use of marker types. The results support that there is
really no justification for designating a particular minutia as either a ridge ending or a
bifurcation. In most cases, the examiner cannot distinguish one from the other with
confidence and therefore the designation is arbitrary.

2. Develop consensus-based standards for suitability decisions: Results showed a high degree
of variability in suitability decisions thus making it clear that the decision is currently far
too subjective and that standards are needed to guide examiners in these decisions.

3. Document analysis, including confidence level: Documentation provides the transparency
necessary to support the suitability decision and for others to review the factors that went
into that decision, such as which features were considered, the weight provided by those
features, and how the decision compares to standardized criteria and thresholds.

4. Use the model as a second—or first—opinion: Results demonstrate that a suitability model
performs well for predicting the consensus opinion of expert examiners along all four
scales of suitability proposed. Adopting such a model could not only improve consistency,
but also increase efficiency of suitability determinations during friction ridge
examinations.

5. Use the new categories proposed by this research: The proposed new and expanded scales
for suitability encourage examiners to approach suitability in terms of a continuum and to
support tailored quality controls as part of a broader quality assurance program (e.g.,
increased quality controls for more complex impressions and lower quality controls for
non-complex impressions).

Collectively, Langenburg [13], Hicklin [15], and Eldridge [16] have provided a
comprehensive evaluation of the practice of friction ridge examination and a deeper understanding
of generalized performance characteristics and sources of variability in the processes; however,
the generalized nature of their findings has limited applicability to a specific case. The findings
and recommendations from Langenburg, Hicklin, and Eldridge, as well as those put forth by the
PCAST and AAAS, boil down to a single common issue—there remains a critical need for the
friction ridge community to move towards integrating quantitative and statistical tools into the
friction ridge examination methodology in order to provide an additional empirical foundation to
the assessment of the evidence. Doing so will not only allow several of the recommendations put
forth by Langenburg, Hicklin, and Eldridge to be acted upon in terms of standardizing the
procedures and improving the overall practice, but it will also allow the friction ridge analyst the



ability to clearly demonstrate the significance of an examination and communicate the reliability
of the assessment for the specific case at hand thereby resolving the underlying issue espoused by
the NRC, PCAST and AAAS which have called into question the continued admissibility of
fingermark evidence.

Within the context of the ACE-V methodology, the development and integration of
quantitative and statistical tools are most critical for:

(1) Analysis: Assessment of quality/clarity of friction ridge features and the value of the mark
for subsequent comparison.

(2) Comparison and Evaluation: Assessment of the statistical strength between two
impressions.

Over the years, there have been a number of notable efforts by researchers in which quantitative
and statistical tools were introduced for these purposes [16-44]; however, none have successfully
made it into the hands of practitioners and implemented into routine casework operations. There
are a number of different reasons for this, which include both technological and cultural
dimensions. For example, Eldridge [16] notes that a significant limitation to her thesis was the
technological challenges of developing a single stand-alone version of the proposed model in a
single user interface that is conducive to operational use. This is unfortunately a common issue
that renders such tools inaccessible for practical applications. Aside from technological issues, the
single greatest challenge that is often underestimated with the practical application of such tools
is the longstanding cultural hesitation and the paradigm shift that would be required to facilitate
such a transition. Attention must be directed toward how to most effectively navigate the
implementation of these tools in a field that has largely been dominated for so long by human
interpretation and experience-based judgment. In forensic science, little effort has been given to
such a critical issue. As a result, many prior recommendations have yet to manifest in practice
thereby stifling their impact.

Overcoming the challenges associated with practical implementation of quantitative and
statistical tools is not a straightforward task. The integration of these tools to the friction ridge
discipline is often viewed as more than the mere introduction of an “additional tool in the toolbox”
to assist analysts in their interpretation. Rather, it has been viewed as a challenge to a century old
paradigm and an indictment on traditional practices and examiners’ prior judgments, experiences,
and expertise. Consequently, successful implementation requires consideration of the cultural
challenges that come with facilitating practitioner acceptance of the new technology and methods.
The hesitation by the friction ridge community is best illustrated following a commentary in 2001
by Champod and Evett in which they proposed probabilistic reasoning based on empirical
measurements as a more appropriate, scientifically compatible, and defensible approach to
fingerprint examination and which could afford the legal system the ability to consider potentially
valuable evidence that would otherwise be denied under traditional practices if it did not meet the
analyst’s experience-based threshold of “sufficiency” [45]. Shortly after this commentary
emerged, it was quickly met with resistance and incited hostility by many throughout the friction
ridge community [46-48]. In direct response, one author responded with the opening sentence,
“Once again, identification science is under attack, this time from a shotgun blast by statisticians”
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[46]. Following this response, others followed suit. Another author responded by offering
“reassurance to members of the fingerprint community who may feel there are moves afoot to
weaken the hold that fingerprint has as a science” and further reported, “Recently the courts have
accepted the status earned by these practitioners and pronounced that there is nothing lacking in
the process of fingerprint identification” [47]. And yet another author reported being “disturbed
and astounded that someone in our profession would propose such a detrimental and dangerous
proposition” and “urge the IAI to reject this probabilistic approach to fingerprint evidence” [48].
Since these initial reactions nearly two decades ago, the friction ridge community has come a long
way in beginning to embrace this new paradigm as a theoretical ideal; however, the shift is still
within its infancy and polarizing viewpoints continue to exist.

Recognizing that the ultimate issue is the need for the friction ridge community to move
towards integrating quantitative and statistical tools into the friction ridge examination
methodology in order to provide an empirical foundation to the assessment of the observations,
the tools must be developed in a manner that maximizes practitioner receptivity and acceptance.
This requires consideration of the needs and expectations of the adversarial legal environment,
laboratory operational workflows and throughput requirements, practitioner knowledge and skills,
and appropriately balancing human intuition and judgment with quantitative and empirical
standards as it relates to the procedures governing the use of the tools and reporting and testimony
of the results.

1.3 Objectives of the research

The major objectives of this research are twofold: (1) to develop, validate, and make
publicly accessible algorithms and software applications for friction ridge examination capable of
(a) assessing the clarity of friction ridge skin features and overall quality of impressions and (b)
evaluating the statistical strength of correspondence between two impressions, and (2) to develop
strategies for practical application and implementation of these (and similar) tools in an operational
forensic science laboratory. These objectives are achieved through a series of studies and
discussions related to the development, validation, and operationalization of these tools in practice.

Collectively, this work expands upon the generalized foundations established by
Langenburg, Hicklin, and Eldridge, among others, and attempts to provide an implementable
solution for the friction ridge community to act on their recommendations and resolve the
underlying issue espoused by prior commentators, including the PCAST and AAAS, which have
called into question the continued admissibility of friction ridge impressions in court.

1.4  Structure of the thesis

This thesis combines two parts. Part | (Chapters 2 through 4) focuses on the development
and validation of algorithmic tools. Part Il (Chapters 5 through 8) focuses on the implementation
of algorithmic tools into practice. Chapter 9 summarizes the contributions and major findings in
each preceding chapter and provides overarching recommendations for future practice and

11



research. Chapter 10 provides a high-level summary and conclusion of the work. The scope of
each chapter is briefly described below:*

Chapter 2 — Quality Assessment Software (DFIQI)

This chapter presents a manuscript entitled “A Method for Measuring the Quality of
Friction Skin Impression Evidence: Method Development and Validation” (Swofford et al., 2021)
[49] published in Forensic Science International that describes the development and validation of
a publicly accessible algorithm and software application (referred to as the Defense Fingerprint
Image Quality Index, or DFIQI). The DFIQI algorithm first assesses the clarity of each friction
ridge feature identified by an analyst and provides a color-coded output (green, yellow, red) to the
user as an indication of its reliability. The software then accounts for the quantity and clarity of
features to provide a measure of the overall quality of the impression for suitability for further
examination by an expert. In addition to the published manuscript, this chapter also discusses the
performance of DFIQI compared to other available methods.

Chapter 3 — Statistical Interpretation Software (FRStat)

This chapter presents a manuscript entitled “A Method for the Statistical Interpretation of
Friction Ridge Skin Impression Evidence: Method Development and Validation” (Swofford et al.,
2018) [50] published in Forensic Science International that describes the development and
validation of a publicly accessible algorithm and software application (referred to as the Friction
Ridge Statistical Interpretation Software, or FRStat). The FRStat algorithm first calculates the
similarity (referred to as the Global Similarity Statistic, or GSS) between two sets of features
identified by an analyst on two separate impressions which the analyst believes to correspond. The
software then provides two estimates, one indicating how often impressions originating from
common sources would result in a GSS that is equal to or less than the calculated GSS and another
indicating how often impressions from different sources would result in a GSS that is equal to or
greater than the calculated GSS. The two values are then combined as a ratio providing a single
summary statistic indicating to what extent the GSS is consistent with impressions originating
from a common source compared to different sources. In addition to the published manuscript,
this chapter also discusses the performance of FRStat compared to another available methods.

Chapter 4 — Toward Objectivity: Integrating Algorithmic Outputs

This chapter explores the utility (i.e., usefulness), from a quality management standpoint, of
integrating the DFIQI and FRStat algorithms into a single system for which the input to the FRStat
is dependent upon the output from the DFIQI. An integrated system such as this could provide a
more objective and semi-automated approach for ensuring analysts’ interpretations are empirically

4 Throughout this thesis, the term “latent print,” “fingermark,” “mark,” and “fingerprint” are used interchangeably to
refer to chance reproductions of friction ridge skin. Further, use of these terms also includes “patent print” and “plastic
print” for purposes of the thesis. The technically appropriate terms are “mark” or “fingermark” to refer to chance
reproductions of the friction ridge skin. The inconsistency in using one specific term is due to their use in published
manuscripts and other published sources that are reflected in this thesis—the terms “latent print” and “fingerprint” are
commonly used throughout the United States whereas the terms “mark” and “fingermark” are commonly used
throughout European countries. Additionally, references to tables, figures, and equations have been modified from
their original publication to uniquely identify them and reflect the chapters in which they occur within this thesis.
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supported for all major decisions throughout the examination methodology as well as a means for
monitoring and ensuring the quality of results meet minimum standards for quality assurance. This
chapter describes how the two systems can be integrated and evaluates the impacts of such an
application in practice.

Chapter 5 — Evaluation of Practitioners’ Perspectives

This chapter presents a manuscript entitled “‘Mt. Everest—We are Going to Lose Many”’:
A Survey of Fingerprint Examiners’ Attitudes Toward Probabilistic Reporting” (Swofford et al.,
2021) [51] published in Law, Probability & Risk that explores practitioners’ perspectives related
to probabilistic reporting practices (with or without algorithmic tools) in terms of their reactions,
attitudes, and sources of resistance toward probabilistic methods. Practitioners’ perspectives are
evaluated quantitatively and qualitatively using a structured survey instrument with Likert-scale
response and free-text responses choices.

Chapter 6 — Evaluation of Stakeholders’ Perspectives

This chapter presents a manuscript entitled “Probabilistic Reporting and Algorithms in
Forensic Science: Stakeholder Perspectives within the American Criminal Justice System”
(Swofford & Champod, 2022) [52] published in Forensic Science International: Synergy that
explores perspectives from key criminal justice stakeholders (forensic laboratory managers,
prosecuting attorneys, defense attorneys, judges, and other academic scientists and scholars)
related to interpretation and reporting practices (with or without algorithmic tools) and the use of
computational algorithms in legal settings. Stakeholders’ perspectives are evaluated qualitatively
from semi-structured interviews.

Chapter 7 — Implementation of Algorithms: A Responsible and Practical Roadmap

This chapter presents a manuscript entitled “Implementation of Algorithms in Pattern &
Impression Evidence: A Responsible and Practical Roadmap” (Swofford & Champod, 2021) [53]
published in Forensic Science International: Synergy that discusses challenges, considerations,
and a path forward for the implementation of algorithms in pattern and impression evidence
domains. The paper explores human-algorithm interactions and seeks to understand why
practitioners (in general) tend to oppose algorithmic interventions and how their concerns might
be overcome. Further, it addresses issues concerning to human-algorithm interactions in both real-
world domains and laboratory studies as well as issues concerning the litigation of algorithms in
the American legal system. With these considerations in mind, the article proposes a strategy for
approaching the implementation of algorithms, including a taxonomy describing the various ways
algorithms can be implemented, in a responsible and practical manner.

Chapter 8 — Operationalization of Algorithms: Anecdotal Reflections and Observations
This chapter discusses the implementation of algorithms into operational practice through

anecdotal reflections and observations from my own experiences—both as a laboratory manager
and as a private analyst. From those distinct experiences, | reflect on my perspective and discuss
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strategies for implementation, considerations for policies and procedures, and use of the algorithm
in litigation.

Chapter 9 — Looking Forward: Implications, Recommendations, and Future Research

This chapter summarizes key developments and findings from this thesis and discusses the
impact and implications of the work, provides recommendations for friction ridge examination
practices, and proposes areas for future research.
Chapter 10 — Conclusion

This chapter provides a high-level summary of the thesis, including a brief description of
the algorithms developed, various challenges and considerations related to the implementation of

algorithms into practice, and a path forward toward stronger foundations for friction ridge
examination and other pattern and impression evidence disciplines.
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2 Quality Assessment Software (DFIQI)

This chapter presents a manuscript entitled “A Method for Measuring the Quality of
Friction Skin Impression Evidence: Method Development and Validation” (Swofford et al., 2021)
[49] published in Forensic Science International that describes the development and validation of
a publicly accessible algorithm and software application (referred to as the Defense Fingerprint
Image Quality Index, or DFIQI). The DFIQI algorithm first assesses the clarity of each friction
ridge feature identified by an analyst and provides a color-coded output (green, yellow, red) to the
user as an indication of its reliability. The software then accounts for the quantity and clarity of
features to provide a measure of the overall quality of the impression for suitability for further
examination by an expert. In addition to the published manuscript, this chapter also discusses the
performance of DFIQI compared to other available methods.

2.1 Method Development and Validation

A Method for Measuring the Quality of Friction Skin Impression Evidence: Method
Development and Validation

1Swofford, H.; !Champod, C.; 2Koertner, A.; L*Eldridge H.; *Salyards M.

1School of Criminal Justice, Forensic Science Institute, University of Lausanne, Switzerland
2U.S. Army Criminal Investigation Laboratory, Defense Forensic Science Center, USA
3RTI International, Inc., USA
4Compass Scientific, LLC, USA

2.1.1 Abstract

The forensic fingerprint community has faced increasing criticism by scientific and legal
commentators, challenging the validity and reliability of fingerprint evidence due to the lack of an
empirical basis to assess the quality of the friction ridge impressions. This paper presents a
method, developed as a stand-alone software application, DFIQI (“Defense Fingerprint Image
Quality Index”), which measures the clarity of friction ridge features (locally) and evaluates the
quality of impressions (globally) across three different scales: value, complexity, and difficulty.
Performance was evaluated using a variety of datasets, including datasets designed to simulate
casework and a dataset derived directly from casework under operational conditions. The results
show performance characteristics that are consistent with experts’ subjective determinations. This
method provides fingerprint experts: (1) a more rigorous approach by providing an empirical
foundation to support their subjective determinations from the Analysis phase of the examination
methodology, (2) a framework for organizations to establish transparent, measurable, and
demonstrable criteria for Value determinations, (3) and a means of flagging impressions that are
vulnerable to erroneous outcomes or inconsistency between experts (e.g., higher complexity and
difficulty), and (4) a method for quantitatively summarizing the overall quality of impressions for
ensuring representative distributions for samples used in research designs, proficiency testing and
error rate testing, and other applications by forensic science stakeholders.

Keywords: Forensic Science; Fingerprints; Quality Metric; Probability
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2.1.2 Introduction

Friction ridge examination is practiced by nearly every forensic laboratory throughout the
world and is often relied upon as evidence that an individual touched an item or was present at the
scene of a crime. The process for conducting friction ridge examination is described by the
acronym ACE-V, which stands for “Analysis,” “Comparison,” “Evaluation,” and “Verification.”
ACE-V has been described in the forensic literature as a means of comparative analysis of evidence
since 1959 [3]. The process begins with the analysis of the latent print in which human analysts
will visually observe and interpret friction ridge detail in a latent impression and determine if it is
“suitable” or “of value” for comparison purposes. This determination is an experience-based
judgment based on the quality and quantity of friction ridge detail discernible in the impression.
If a latent print does not have “sufficient” detail to form a conclusion regarding the source of the
impression, the impression is determined to be “not suitable” or “no value” and no comparison is
made. If an impression is determined to be “of value,” the analyst will perform a side-by-side
comparison of the friction ridge detail between the latent print and the known prints from an
individual. During comparison, and ultimately thereafter, the analyst will evaluate the similarities
and differences of the friction ridge detail between the two impressions and form a conclusion
regarding the source of the impression. Verification occurs when another qualified analyst repeats
the observations and forms the same conclusion.

Within the ACE-V process, the “analysis” of the friction ridge skin detail is one of the most
critical tasks of the examination as it establishes whether, and to what extent, the impression bears
sufficiently discernible features that can be used for examination. More specifically, during the
“analysis,” the analyst is particularly concerned with identifying reproducible and discriminating
attributes of the friction ridge detail which may be used for comparison and evaluation against a
known source impression. The ability for the analyst to reliably detect these attributes depends
heavily on the clarity of the impression. Generally, as the clarity of an impression increases,
analysts’ have more confidence in their interpretation of the location, orientation, type, and spatial
arrangement of features. Additionally, as the number of interpretable features increases, the
discriminating strength of the impression as a whole is considered to increase as well. Once the
features have been detected, the analyst will assess the overall quality of the impression and make
a determination of the “suitability” or “value” for further comparison and evaluation [10]. This
determination is not based on an empirical standard; rather, it is a subjective determination made
by the analyst on a case-by-case basis and depends on whether the analyst believes the quality of
the impression is sufficiently reproducible and selective to be compared to a known source and
render a particular conclusion regarding the potential source of the impression. Consequently,
assessments made during friction ridge examinations are susceptible to variation from one analyst
to another (inter-analyst) as well as by the same analyst from one examination to another (intra-
analyst). When considering borderline impressions which contain marginal quality or quantity of
features, these variations often result in differences in the analysis conclusion. In the broad
spectrum, however, while the lack of empirical standards and measurements do not necessarily
imply the practice as a whole is unreliable or fraught with error, it does raise questions as to how
reliable the evidence is for the case at hand. Thus, there is a critical need for the friction ridge
community to move towards integrating tools to quantitatively assess the clarity and quality of
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friction ridge impression details to standardize and provide an empirical warrant for analysts’
claims [3, 7-9].

Over the years, there have been several notable efforts by researchers in which quantitative
tools were introduced for assessing the quality of friction ridge impressions [14, 17-28, 44]. The
majority of these efforts can be classified as suitability prevision models, which provide a
predictive estimate of whether the impression is suitable for some intended purpose or utility, such
as suitability for identification or exclusion purposes during manual comparisons or, more often,
for assessments of search performance using automated fingerprint identification systems (AFIS).
Early models are described by Alonso-Fernandez et al. (2005) and all focus on calculating quality
as a means of predicting AFIS feature extraction or matcher performance. Most of the early
methods entailed a variety of different image processing techniques, such as measuring ridge
frequency, ridge thickness, and ridge to valley thickness ratio, using Gabor filters to increase
contrast, measuring pixel intensity differences, two-dimensional Discrete Fourier Transform
(DFT), and neural network classifiers to classify local regions as “good” or “bad” quality [17].
Alonso-Fernandez et al. note that all of the various methods tend to behave similarly to one another
except for the method based on neural network classifiers, likely due to the low number of quality
labels used for training, and propose the concept of integrating the various algorithms into a
quality-based multimodal authentication system for future works.

In 2007, Nill developed Image Quality of Fingerprint (IQF) as a freeware software
application designed to predict AFIS matching performance, alert operators to poor quality
enrollment of known source standards or aid in performance assessments of capture devices [18].
The approach developed by Nill relies on the two-dimensional, spatial frequency power spectrum
of the digital fingerprint image to produce a global assessment of quality [18]. In 2008, Fronthaler
et al. studied the orientation tensor of fingerprint images to quantify signal impairments like noise,
lack of structure, and blur with the help of symmetry descriptors when combining multiple AFIS
matchers for improved matching performance [19].

In 2011, Hicklin et al. [20] attempted to understand how human latent fingerprint analysts
assess fingerprint quality by surveying eighty-six latent print examiners from federal, state, local,
international, and private sector laboratories using overlapping subsets of 1,090 latent and
exemplar fingerprint images to identify key features that will guide the development of automated
quality metric algorithms in future works [20]. Up to this point, nearly every other method was
focused entirely on optimizing AFIS matching performance or developing quality metrics to
predict match performance rather than attempting to understand what was considered by human
analysts during manual examinations. From the survey, Hicklin et al. note there is general
concurrence of human assessments of local and overall image quality, but enough variation
between examiners to result in differing conclusions and demonstrate the need to provide uniform
definitions of quality and automated assessment tools to standardize the practice [20].

In 2012, two additional methods were proposed: both focused on optimizing or predicting
AFIS match performance. While earlier methods tended to focus on biometric enrollments and
known source impressions, these were geared more towards latent fingerprint impressions. Murch
et al. (2012) proposed a method for automated feature extraction to improve the performance of
AFIS searches of latent fingerprint impressions using image segmentation to differentiate the
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foreground impression from background noise [21]. Yoon et al. (work first presented in 2012, but
published in 2015) proposed a method for assessing latent fingerprint image quality using the
product of the average ridge clarity bounded within the convex hull enclosing all annotated
minutiae and total number of minutiae [22]. The calculation of average ridge clarity involved the
application of two-dimensional Fourier analysis to a pre-processed contrast enhanced image.
Although Yoon et al. was focused specifically on latent impressions, the quality algorithm was
still geared towards predicting AFIS matcher performance and thus not necessarily tailored to
attributes considered during human examinations [22, 44].

In 2013, three additional approaches were introduced, which begin to steer focus towards
latent fingerprint image clarity relevant during human examinations compared to prior methods.
Hicklin et al. (2013) developed Latent Quality Assessment Software (LQAS), which applies a
variety of image processing algorithms to assess the clarity of friction ridges in localized regions
[14, 23] (LQAS [23] was later enhanced and combined with Universal Latent Workstation (ULW).
Within ULW, it is referred to as LQMetric. Details related to LQMetric development are provided
by Kalka et al. 2020 [14]). Based on the clarity assessment, the software then applies a color-
coded clarity map which corresponds to the color codes within the American National Standards
Institute/National Institute of Standards and Technology (ANSI/NIST) 2011 standard “Data
Format for the Interchange of Fingerprint, Facial & Other Biometric Information” [24] for simple
interpretation and a standardized framework for documentation [13-14]. Sankaran et al. (2013)
propose a method which assesses ridge clarity and quality [25]. The former (Hicklin et al.) refers
to the visual discernibility of the features irrespective of the presence or absence of features and
the latter (Sankaran et al.) refers to the quantity and number of features present in a given local
region (i.e. a predictor of AFIS matching performance). The local ridge clarity assessment is based
on average eigenvalues from decomposed structure tensors following image smoothing using a
Gaussian filter [25]. A local clarity map is generated as a result of the clarity assessment similar
to that of Hicklin et al. (2013) [20]. The ridge quality assessment is calculated as the kurtosis of
the weighted average histogram based on the local clarity map described previously along with the
number of features present within a local region [25]. Pulsifer et al. (2013) propose a method for
calculating overall quality based on a semi-automated assessment of the local clarity maps
generated from LQAS developed by Hicklin et al. (2013) [14, 23] to produce an alternative way
of calculating the overall quality of the impression [26].

In 2014, Kellman et al. proposed a number of quantitative measures of image
characteristics related to image quality metrics, such as intensity and contrast information, as well
as measures of information quantity, such as total fingerprint area, to calculate image quality and
predict analyst performance and perceived difficulty during comparisons by human analysts [27].
The work by Kellman et al. indicates a shift towards establishing quality metrics geared towards
predicting human analyst performance rather than tailored specifically to predicting AFIS match
performance. More recently in 2018, with a similar intent as Hicklin et al. [14, 23] and Kellman
et al. [27], Chugh et al. proposed a crowdsourcing framework to understand the underlying bases
of suitability determinations by fingerprint analysts and use it to develop an automated means of
predicting suitability determinations [28].

While there have been a number of different models proposed over the years, the majority
of them are geared entirely towards optimizing or predicting AFIS match performance rather than
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focused on assessing local ridge clarity (discernibility of feature data) and predicting human
performance using image quality attributes considered by human analysts during manual
comparisons. Consequently, these types of predictive models are often based on the aggregate of
qualitative and quantitative attributes of the entire impression to provide a single estimate of utility
or quality. These approaches often lack transparency and often do not necessarily correspond to
the same features considered by human analysts during traditional examinations. The motivation
behind this focus is largely driven by industry desires to optimize the performance of AFIS in a
“lights-out” environment. Indeed, this focus is important for the broader biometric industry;
however, the narrow focus on AFIS platforms leaves a gap as it relates to manual examination and
interpretation processes by human analysts in the traditional forensic setting. Thus, the need
remains for the development and implementation of tools capable of quantitatively assessing the
clarity of friction ridge detail in a transparent and objective manner within in a simple, accessible,
and user-friendly software application that can be easily integrated into friction ridge examination
practices. Such a tool would offer significant improvements to traditional practices and permit
laboratories to establish standardized suitability criterion and provide empirical substantiation to
analysts’ opinions.

This paper presents a method, developed as a stand-alone software application, DFIQI
(“Defense Fingerprint Image Quality Index”), designed to measure the clarity of friction ridge
impression minutiae and provides a quantitative assessment of the quality of an impression for
comparison and evaluation purposes. Although this method builds upon general approaches
described earlier and considers well established means of assessing image clarity, it provides a
simple and novel approach for quantifying the quality of friction ridge impressions. Further,
having been developed as an automated stand-alone software application, this method is accessible
to the forensic community® thereby providing the capability for laboratories to ensure the quality
of friction ridge details are sufficient to permit reliable interpretations and move toward
standardizing and improving traditional practices. In the sections that follow, this paper provides
a brief overview of the calculations performed by the method followed by more detailed
discussions regarding its development, performance and validation. Limitations of the method
and considerations for policy and procedure when applied to forensic casework are discussed as
well as implications for future integrations with other tools to strengthen the foundations of friction
ridge examination in general.

2.1.3 Materials & Methods
Background

In general terms, the method assesses the clarity of friction ridges in localized “regions of
interest” (ROIs) immediately surrounding the x,y location of features identified in the impression.
Features can be identified by manual annotation or using automated feature extraction applications
(followed by human-expert verification). Each region of interest is assessed using five variables
(described below) consisting of various measures of friction ridge image clarity and quality. The
five variables were selected by the authors based on domain expertise, reduced mathematical
complexity, and algorithmic transparency. The output of each variable measured is normalized by

5 The software application can be accessed at: https://doi.org/10.5281/zenodo0.4426344.
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a scoring function and combined to create a single quantitative value representing the clarity and
quality of the friction ridges within the localized ROI. Each local ROI score is then combined to
a single quantitative value representing the quality of the ROIs combined across the entire
impression, which accounts for both the quality and quantity of detail in the impression.

Once the x,y coordinates are identified for the features in the impression (e.g. by an analyst
marking the location), the application creates an inverted 8-bit digital grey-scale copy of the image
on which all subsequent digital processing is performed. For each feature, a 2.54mm x 2.54mm
(i.e. 0.1-inch x 0.1-inch) square ROI, centered on the location of the feature, is applied to the image
and cropped (as a copy). The size of the ROl was selected to ensure it is small enough to represent
a local region of the impression immediately surrounding a feature, but large enough to cover
multiple ridges and enable a meaningful discrete Fourier transform related to the spatial frequency
variable (described below); however, it was not subject to formal parameter optimization methods
Each ROl is large enough to generally contain between four and seven ridges, depending on the
width and orientation of the ridges. The five variable measures are taken from the cropped ROI
to calculate the clarity and quality of the ridge detail immediately surrounding each individual
feature in the impression.

Before the variable values are calculated, each ROI is split into two separate images to
separate the “ridges” from the “furrows” (or more appropriately referred to as “signal” from
“background”) by applying adaptive mean thresholding to the pixel intensity values with a local
neighborhood radius of 0.38mm. The 0.38mm radius was selected based on ad hoc testing and not
subject to formal parameter optimization methods. Unlike simple thresholding methods, adaptive
thresholding determines the threshold for a pixel based on a small region around it resulting in
different thresholds for different regions of the same image. This generally provides greater
segmentation accuracy as illumination conditions may vary throughout an image. Figure 2-1
illustrates the results of applying adaptive thresholding to a cropped ROI.

* A4

Figure 2-1: The image on the left represents the original ROI (the darker color pixels correspond to friction
ridges). The image in the center represents the binary mask of the segmented ROI for which the black areas
correspond to pixels thresholded as “signal.” The image on the right represents the binary mask of the segmented
ROI for which the black areas correspond to pixels thresholded as “background” (i.e. the image on the right is the
inverse of the image in the center). NOTE: Actual size of images are 2.54mm x 2.54mm. Images are enlarged and
pixels interpolated for illustration.
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Variables

Using the cropped and segmented ROIs, the following measures of clarity and quality are
calculated:

Signal Percent Pixels Per Grid (S3PG): This variable calculates the percentage of pixels
that have been segmented as “signal” compared to the total number of pixels available in
the ROI. For a high-quality impression of friction ridges, an approximate value of 50,
accounting for approximately 50% of total pixels segmented as “signal,” is expected. As
S3PG values deviate from the expected output of 50 in one direction or another, it suggests
there are distorting artifacts in the ROI that may interfere with accurate detection of friction
ridge detail.

Bimodal Separation (BS): This variable calculates an index value summarizing the extent
to which two histograms of pixel intensity values are separated from one another. Using
the pixel intensity values of those segmented as “signal” and those segmented as
“background,” the index is calculated using the formula below. As the difference between
the mean values increase and the standard deviations decrease between the segmented
images, the value of the bimodal separation index increases, which indicates greater
contrast between pixels classified as “signal” versus “background.” On the other hand, as
the difference between the mean values decrease and the standard deviations increase
between the segmented images, the value of the bimodal separation index decreases, which
indicates lower contrast and may interfere with accurate detection of friction ridge detail.
The bimodal separation variable is calculated using the formula in equation 2-1.

S—B
X =—"""-7-
2(0-5+0-B)

Equation 2-1: The formula for which the bimodal separation variable is calculated for each ROI.

Acutance (ACUT): This variable calculates an index value summarizing the natural log of
the mean acutance across the entire ROl and is applied to the non-segmented copy of the
image. Acutance is described as the physical characteristics that underlay the subjective
perception of “sharpness” in an image. In general terms, the acutance is calculated as the
mean squared difference between a center pixel and its eight neighboring pixels in a 3x3
window iteratively calculated across an entire image. As the difference of pixel intensities
increase, the perceived sharpness of the objects represented in the image also increase.
This perceived increase of sharpness is represented by a higher acutance index value. As
the acutance index value decreases, the perceived sharpness of the image decreases
resulting in lower contrast which may interfere with accurate detection of friction ridge
detail. The acutance variable calculation routine is illustrated in Figures 2-2a and 2-2b and
stated in equation 2-2 (adapted from Choong et al. [54]).
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Figure 2-2a: The 3x3 window representing a neighborhood of pixel values (the center pixel surrounding by its 8

contiguous neighbors).

Figure 2-2b: The external box is a simplistic illustration representing the entire ROI containing p x p pixels (e.g. for

an image resolution of 500 pixels per inch, p = 50 pixels. The inner box is a simplistic illustration representing the

inner window of p-1 x p-1 pixels for the ROI in which every pixel serves as the center pixel of the scrolling 3x3 pixel
window. The 3x3 window at the top left is a simplistic illustration of the 3x3 window represented in Figure 2-2a.

= In <Z(Z%=1(Ic —1,)?)
8(p — 2)?

)

Equation 2-2: The formula for which acutance is calculated for each ROI.

Mean Object Width (MOW): This variable calculates the mean width of objects segmented
as “signal” in the ROI. The term “objects” refers to a set of contiguously thresholded pixels
within the “signal.” The width of each object is calculated by fitting an ellipse and
measuring the width of the minor axis. In the context of friction ridge impressions having
perfect quality, those pixels thresholded as “signal” would correspond to separate and
distinct “objects” in the image, representing separate friction ridges having nearly uniform
and predictable widths. As the values for the mean object width deviate from the expected
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width of friction ridges in one direction or another, it suggests there are distorting artifacts
in the ROI that may interfere with accurate detection of friction ridge detail. The manner
in which the mean object width variable is calculated is illustrated in Figures 2-3a and 2-
3b.

Figure 2-3a: The image on the left represents the original ROI (the darker color pixels correspond to friction
ridges). The image on the right represents the mask of the segmented ROI for which the light grey areas correspond
to pixels thresholded as “signal.” The dark grey borders represent the borders around groups of contigous pixels
represenging the various “objects” in the impression. NOTE: Actual size of images are 2.54mm x 2.54mm. Images

are enlarged and pixels interpolated for illustration.

Figure 2-3b: An ellipse is fit to each distinct “object” in the image (ellipses overlaid on the origial image of friction

ridges). The object width is calculated by measuing the width of the minor axis of each ellipse. In this example, two

ridges appear connected together due to smudging in the impression resulting in a larger mean object width for the
ROI; thus indicating the presence of distorting factors which may interfere with accurate interpretation of friction
ridge detail. NOTE: Actual size of image is 2.54mm x 2.54mm. Images are enlarged and pixels interpolated for

illustration.

Spatial Frequency (SF): This variable calculates the spatial frequency of the ridges in the
non-thresholded ROI using the two-dimensional discrete Fourier transform. For high-
quality impressions of friction ridges, the ridges have been shown to have a predictable
spatial frequency of approximately 2.1 ridges per millimeter for males and 2.4 ridges per
millimeter for females [55] (combined mean of approximately 2.25 ridges per millimeter).
As the spatial frequency values deviate from the expected output of approximately 2.25
ridges per millimeter in one direction or another, it suggests there are distorting artifacts in
the ROI that may interfere with accurate detection of friction ridge detail. The two-
dimensional discrete Fourier transform for a sample ROI is shown in Figures 2-4a and 2-
4b to illustrate how the system calculates this variable.
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Figure 2-4a: The image on the left represents the original ROI (the darker color pixels correspond to friction
ridges). The image on the right represents the discrete two dimensional Fourer transform of the image on the left.
NOTE: Actual size of images are 2.54mm x 2.54mm. Images are enlarged and pixels interpolated for illustration.
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Figure 2-4b: A three-dimensional representation of the pixel intensity values of the discrete two-dimensional
Fourier transform image in Figure 2-4a. The vertical axis represents the pixel intensity values corresponding to
lighter colored pixels in the Fourier transform image in Figure 2-4a. The tallest point on the vertical axis in the

middle represents the DC-value for the image. The second two tallest points on each side of the DC-value represent
the spatial frequency of the ridges in the image (indicated by the arrows).

Local Quality Score

As described earlier, the five variable values are calculated for each ROl in an image. Let
x_i denote the i™" variable, with i = 1...4 corresponding to S3PG, BS, MOW, and SF, respectively,
and x_5 denote ACUT. The raw variable values for S3PG, BS, MOW, and SF are each normalized
and scored using a symmetrical distribution scaled between 0 and 1 as provided by f(x) in equation
2-3 below. A symmetrical distribution is used for these variables since a value that deviates too
far on either side of the expected value indicates the presence of distorting artifacts in the ROI that
may interfere with accurate detection of friction ridge detail.
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Equation 2-3: Scoring function for raw variable values S3PG, Bimodal Separation, Mean Object Width, and Spatial
Frequency. The scoring function provides a maximum value of 1 if the raw variable value is equal to the expected

value (fi) (i.e. location parameter). As the raw variable value deviates from the expected value on either side, the
score is reduced and trends toward O at a rate determined by the scale parameter (o).

The raw variable value for ACUT is provided by a simple logistic cumulative distribution (scaled
between 0 and 1) as provided by g(x) in equation 2-4 below. A cumulative distribution is used
for this variable since only values that are less than the expected value indicates the presence of
lower sharpness and contrast of ridges in the ROI that may interfere with accurate detection of
friction ridge detail.

1
gx) =—5=
1+e 3

=)

Equation 2-4: Scoring function for the raw variable value Acutance. The scoring function provides a maximum

value of 1 if the raw variable value is equal to the expected value (f1) (i.e. location parameter). As the raw variable
value deviates from the expected value (lower acutance values), the score is reduced and trends toward 0 at a rate

determined by the scale parameter (S). The Acutance is scored on a cumulative distribution since lower quality is
only manifest with lower acutance values.

The input parameters for the scoring functions for each variable consist of the location
parameter (i.e. mean raw variable value) and scale parameter (e.g. standard deviation of the raw
variable value) empirically estimated from a reference dataset. The reference dataset consisted of
1,373 ROIs selected from pristine quality exemplar impressions. The impressions in this dataset
were deposited under controlled conditions using a mixture of traditional ink and Livescan device.
Table 2-1 provides the input parameters for the scoring function related to each variable.

Variable Location Parameter (i) | Scale Parameter (@ or §)
S3PG 51.408 4.134
Bimodal Separation 0.843 0.147
Acutance 6.869 0.532
Mean Object Width 1.383 0.391
Spatial Frequency 2.078 0.397

Table 2-1: Input parameters for the scoring functions for each variable.

The five normalized variable values are then combined to create a mean univariate
quantitative score summarizing the clarity and quality of the feature represented in the ROl on a
scale from 0 to 1 (higher values indicate higher clarity and quality of the friction ridges in the
ROI). This ROI score (i.e. Local Quality Score, or “LQS”) provides a proxy estimate of the quality
of the feature contained within the ROI on the basis of the clarity of the friction ridge detail
immediately surrounding it. The LQS is calculated using the formula below:
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Equation 2-5: Local Quality Score (LQS) function — calculated for each ROI as the mean of the normalized variable
scores, where f(x); is the normalized variable score for i-th function in the set containing the normalized variable
scores for all 5 variables.

The LQS value is then used as a basis to categorize and color-code the quality of the feature as a
graphical output to the user (e.g. high, medium, and low) in terms that align with subjective
determinations by human analysts, such as that proposed by Langenburg & Champod (2011) [56].
Features color-coded as green generally indicate areas of high quality, features color-coded as
yellow generally indicate areas of medium quality, and features color-coded as red generally
indicate areas of low quality.

Global Quality Scores

Three different Global Quality Score (GQS) values are calculated, each of which represent
a summary of the overall quality of the impression for different purposes: to predict analysts’
determinations of “value,” “complexity,” and “difficulty” as proposed by Eldridge et al. (2020)
[57] and as part of the Analysis phase of the examination methodology. For all three prediction
categories (value, complexity, and difficulty), the GQS is calculated as a multinomial combination
of two variables: (a) LQSsum — the sum of all LQS values, and (b) nFEAT — the total quantity of
features identified in the impression. Taken together, these provide explainable quantitative
representations and variables of the overall quality of the impression for manual comparison
purposes.

The multinomial coefficients for each outcome class (value, complexity, and difficulty)
were derived using a multinomial regression model provided by the nnet package in R [58] against
a training/test-dataset of feature measurements from impressions for which latent print examiners
previously analyzed and categorized based on their “value,” “complexity,” and “difficulty” for
comparison. The multinomial model was selected after testing a range of machine learning
techniques with the variables LQSsum and nFEAT (naive based classifier, tree-based classifiers,
discriminant analysis techniques, neural networks and support vector machines). Overall, the
multinomial regression offers a competitive accuracy while maintaining easy explainability (see
Appendix B-1 for raw model diagnostics and uncertainty values). The training-dataset was derived
as a random 50/50 training-test split obtained from the full dataset provided by Eldridge et al.
(2020) [57]. The full dataset consisted of a total of 3,241 determinations made by 116 analysts
rendering “value,” “complexity,” and “difficulty” decisions for each image they viewed from a set
of 100 different latent print impressions — each participant was provided a set of approximately 30
impressions to analyze, resulting in each impression being analyzed by between 26 and 41 different
analysts. The impressions were generated during the course of normal casework at a large
metropolitan police laboratory using standard powder processing and lifting techniques. All
participants were practicing latent print examiners recruited by several outreach methods, such as
email distribution lists, presentations given at professional educational meetings, and professional
contacts. Half of this dataset was used to train the models (1,621 responses) and the other half of
this dataset was used to test the models (1,620 responses) described by GQS Test-Dataset 1 below.
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It should be noted that the model was trained and tested using the results of each examiner’s
individual observations and judgments of the impressions rather than artificially combining them.
Ground truth for these types of judgments is non-existent. Although consensus judgments could
be declared as a surrogate to ground truth for each image, the examiners’ observations for which
their subjective judgments are based are variable which would require artificially aggregating
examiners’ judgments and disconnecting their individual observations from their individual
judgments. As a result, the authors believe a model that is trained using individual examiners’
observations and resulting judgments is appropriate in this context. The output of the model,
effectively, then reflects a proxy consensus of examiners’ judgments for a given input in a specific
case impression. Tables 2-2a through 2-2c provide the coefficients related to the multinomial
models from the training partition (see Appendix B-1 for raw model diagnostics and uncertainty
values on the coefficients). Each multinomial model provides a probability of class inclusion
(ranging from 0.00 to 1.00) for each outcome class (e.g., for the Value determination the three
outcome classes are no-value, value for exclusion only, and value for identification).

“Value”
coefficients Intercept LQSsum NFEAT
No Value 0.000 0.000 0.000
Value for Exclusion -1.736 -0.051 0.277
Value for
Identification -6.042 0.495 0.726

Table 2-2a: Multinomial coefficients for each outcome class probability (no-value, value for exclusion only, value
for identification) of the “value” determination. Note: In Eldridge et al. [57], participants were given the following
response choices: “no value,” “some probative or investigative value but insufficient for identification or
exclusion,” “value for exclusion only,” “value for identification only,” “value for both identification and
exclusion.” Responses of “some probative or investigative value but insufficient for identification or exclusion”
were categorized as “value for exclusion” to represent the middle bin of the value spectrum. Responses of “value
for both identification and exclusion” and “value for identification only” were categorized as “value for
identification. ”

Sg;}?éieexﬁg Intercept LQSsum nFEAT
Highly Complex 3.325 -0.100 -0.459
Complex 0.000 0.000 0.000
Non-Complex -1.781 0.741 -0.025

Table 2-2b: Multinomial coefficients for each outcome class probability (highly complex, complex, non-complex) of
the “complexity” determination. Note: In Eldridge et al. [57], participants were given the following response
choices: “no value,” “of value, complex,” “of value, non-complex; requiring documentation,” and “of value, non-
complex; self-evident.” Responses of “of value, non-complex; requiring documentation” and “of value, non-
complex; self evident” were both categorized as “non-complex.” Responses of “no value” were re-labeled “highly
complex” to represent the extreme end of the complexity spectrum.
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Clggﬁgg:]}tls Intercept LQSsum NnFEAT
High 0.000 0.000 0.000
Medium -1.896 0.289 0.125
Low -3.071 0.965 -0.004

Table 2-2¢: Multinomial coefficients for each outcome class probability (high, medium, low) of the “difficulty”
determination.

Recognizing each class represents an outcome along a spectrum (e.g. for the “value”
determination: No Value represents the left-most extreme and Value for Identification represents
the right-most extreme) and the sum across all classes equals 1.00, we can combine to create single
values representing the GQS for each determination (value, complexity, difficulty) by subtracting
the probability of class inclusion representing the left-most extreme from the probability of class
inclusion representing the right-most extreme to produce a number ranging from -1.00 to 1.00,
where higher values indicate stronger support for “value for identification,” “non-complex,” and
“low difficulty” and lower values indicate stronger support for “no value,” “highly complex,” and
“high difficulty.” The GQS values for each determination are calculated using the formulae below:

Valueggs = p(VID) — p(NV)

Equation 2-6: GQS function for Value determination — calculated by subtracting the probability of class inclusion
for No Value outcome (NV) from the probability of class inclusion for Value for Identification outcome (VID).
Values near -1.00 indicate no-value determinations, values near 1.00 indicate value for identification
determinations, and values near O indicate value for exclusion only determinations (or inconclusive determinations
in lieu of value for exclusion only).

Complexitygos = p(NC) — p(HC)
Equation 2-7: GQS function for Complexity determination — calculated by subtracting the probability of class
inclusion for Highly Complex outcome (HC) from the probability of class inclusion for Non-Complex outcome (NC).

Values near -1.00 indicate no-value determinations, values near 1.00 indicate non-complex determinations, and
values near 0 indicate complex determinations.

Difficultygos = p(L) — p(H)

Equation 2-8: GQS function for Difficulty determination — calculated by subtracting the probability of class
inclusion for High difficulty outcome (H) from the probability of class inclusion for Low difficulty outcome (L).
Values near -1.00 indicate high difficulty determinations, values near 1.00 indicate low difficulty determinations,
and values near 0 indicate medium difficulty determinations.

ROC curves will be used to illustrate model performance. The associated areas under the curve
(AUC), and confidence intervals have been computed taking advantage of the pROC package [59].

Method Performance

The performance of the method was evaluated in different conditions capturing
performance characteristics both locally and globally. The local performance characteristics were
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evaluated in terms of (i) the ability of the LQS value to accurately distinguish between the extreme
conditions of “good” and “bad” quality ROIs and (ii) the ability of the LQS value to predict
analysts’ subjective determinations of feature quality according to the GYRO annotation scheme
proposed by Langenburg & Champod (2011) [56]. The global performance characteristics were
evaluated in terms of the ability of the GQS values to distinguish between analysts’ subjective
determinations of “value,” “complexity,” and “difficulty” from test-datasets of feature
measurements from impressions for which latent print examiners previously analyzed and
categorized.

Local Performance Characteristics:

The local performance characteristics were evaluated to understand the behavior of the
system as the clarity of friction ridge detail within the ROIs change. This was evaluated using
measurements from two different test-datasets:

(1) LQS-Test-Dataset-1: This dataset consists of 867 “good” quality ROIs selected from high
quality regions of exemplar friction ridge impressions and a dataset of 3,816 “bad” quality
ROIs selected from low quality regions of latent lift cards submitted under operational
conditions as attempts to lift latent images from a variety of different surfaces during
normal forensic casework. The “bad” quality ROIs represented impressions with excessive
smudging, indiscernible ridge detail, background interference and artifacts, and related
factors impacting reliable interpretation of friction ridges, yet still having artifacts present
bearing reasonable contrast and clarity but lacking morphological representations of
friction ridge detail. The purpose of this dataset is to evaluate how well the LQS values
distinguish between the extremes of “good” and “bad” quality ROIs collected under
operational conditions.

(2) LQS-Test-Dataset-2: This dataset consists of 4,480 ROIs containing features annotated as
“high confidence” (i.e. green) and 920 ROIs containing features annotated as “medium
confidence” (i.e. yellow) by practicing latent print examiners according to the GYRO
annotation scheme proposed by Langenburg & Champod (2011) [56] across 300 different
impressions deposited using normal handling of objects and developed using common
latent print processing methods representative of typical casework. This dataset was
obtained from John & Swofford (2020) [60]. The purpose of this dataset is to evaluate
how well the LQS color-coded quality categories correspond to fingerprint experts’
subjective assessment of feature confidence (“high” confidence vs. “medium” confidence).

Global Performance Characteristics:

The global performance characteristics were evaluated to understand the ability of the
method to predict human analysts’ subjective assessments of whether impressions are considered
“suitable” or “of value” as well as assessments of “complexity” and “difficulty” for comparison
purposes. These were evaluated using measurements from two different test-datasets:
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(1) GQS-Test-Dataset-1: This dataset represents the test fraction derived as a random 50/50
training-test split of the full dataset obtained from Eldridge et al. (2020) [57]. The full
dataset consisted of a total of 3,241 analysts’ determinations of “value,” “complexity,” and
“difficulty” and documentation of features across a set of 100 different latent print
impressions by approximately 116 different participants — each participant was provided a
set of approximately 30 impressions to analyze resulting in each impression being analyzed
by between 26 and 41 different analysts. The impressions were generated during the course
of normal casework at a large metropolitan police laboratory using a variety of standard
processing techniques. All participants were practicing latent print examiners recruited by
several outreach methods, such as email distribution lists, presentations given at
professional educational meetings, and professional contacts. Half of this dataset was used
to train the models (1,621 responses) and the other half of this dataset was used to test the
models (1,620 responses). The purpose of this dataset is to evaluate how well the GQS
values correspond to subjective determinations of value, complexity, and difficulty when
examined under pseudo-operational conditions.

(2) GQS-Dataset-2: This dataset consists of 605 latent impressions collected from casework
during the course of routine operations by fingerprint experts in a federal crime laboratory
in the United States for which fingerprint experts conducted examinations and identified
the impressions to corresponding reference standards. All impressions in this dataset were
determined to be “suitable” or “of value” for identification purposes. The purpose of this
dataset is to evaluate the distribution of GQS values and implications thereof when applied
to impressions derived from actual casework and assessed under normal operational
conditions.

2.1.4 Results & Discussion
Local Performance Characteristics

The local performance characteristics were evaluated on the basis of how well the LQS
values were able to distinguish between the extremes of “good” and “bad” quality ROIs collected
under operational conditions using LQS-Test-Dataset-1 and how well the LQS color-coded quality
categories correspond to fingerprint experts’ subjective assessment of feature confidence (“high”
confidence vs. “medium” confidence) using LQS-Test-Dataset-2. Figures 2-5a and 2-5b illustrates
the degree of separation observed between the extremes of “Good” and “Bad” quality ROIs using
the LQS value.
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Figure 2-5a: Boxplot of LOS values for “Bad” (n = 3,816) and “Good” (n = 867) quality ROIs from LQS-Test-
Dataset-1.
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Figure 2-5b: Receiving Operating Characteristic (ROC) curve of LQOS values for “Bad” (n = 3,816) and “Good” (n
= 867) quality ROIs from LQS-Test-Dataset-1. The area under the curve (AUC) is 99.7% with a 95% confidence
interval of (99.6% - 99.8%).
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From Figures 2-5a and 2-5b, we see remarkable separation between the two extremes of
“Good” and “Bad” quality ROIs. Although these results may be expected for this dataset since
they represent the extreme ends of the spectrum, it establishes an important baseline which
validates the relevance of the input variables which comprise the LQS value and its ability to
distinguish between high-quality friction ridge impressions and low-quality non-friction ridge
artifacts. Further, from these data, we can establish thresholds for distinguishing between “high,”
“medium,” and “low” color-coded bins categorizing ROI quality as an overlay output to the user.
For this purpose, LQS values between 0.35 and 1.00 are color-coded green (high quality), LQS
values between 0.20 and 0.35 are color coded yellow (medium quality), and LQS values between
0.00 and 0.20 are color-coded red (low quality). Using this color-coding scheme, Table 2-3
provides the distribution of “Good” and “Bad” quality ROIs categorized as green, yellow, and red.

Ol Quality
Good Bad Total

LQS Color Co
Green 862 318 1,180
Yellow 5 1,892 1,897
Red 0 1,606 1,606
Total 867 3,816 4,683

Table 2-3: Number of LQS values color-coded as green, yellow, and red compared for “Good” and “Bad” quality
ROIs using LQS-Test-Dataset-1. LQS values between 0.35 and 1.00 are color-coded green (high quality), LQS
values between 0.20 and 0.35 are color coded yellow (medium quality), and LQS values between 0.00 and 0.20 are
color-coded red (low quality).

Having established the baseline performance of the LQS values to distinguish between
“Good” and “Bad” quality ROIs and a threshold for categorizing as “high,” “medium,” or “low”
quality (i.e. green, yellow, red), we can use LQS-Test-Dataset-2 to evaluate how well the color-
coding output correspond to fingerprint experts’ subjective assessment of feature quality (“high”
quality vs. “medium” quality due to insufficient annotations of “low” quality features in the
dataset). Table 2-4 demonstrates the consistency between automated predictions of quality using
the LQS color-code scheme and experts’ subjective judgments.
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ert Judgement
Green Yellow Total
LQS Color Co
Green 3,077 450 3,527
Yellow 1,119 348 1,467
Red 284 122 406
Total 4,480 920 5,400

Table 2-4: Number of LQS values color-coded as green, yellow, and red compared to experts’ subjective judgments
of feature quality / confidence using GYRO [56] using LQS-Test-Dataset-2. LQS values between 0.35 and 1.00 are
color-coded green (high quality), LQS values between 0.20 and 0.35 are color coded yellow (medium quality), and
LQS values between 0.00 and 0.20 are color-coded red (low quality). NOTE: As discussed by John & Swofford
(2020) [60] from which this dataset was obtained, experts mostly only annotated features as green and yellow.
Experts rarely annotated features as low quality (red), thus those data were insufficient for this assessment.

From Table 2-4, we see that approximately 94% of the features annotated by experts as green (high
quality) were categorized by the LQS color-code scheme as either green (69%) or yellow (25%).
Approximately 6% of the features annotated by experts as green were categorized by the LQS
color-code scheme as red. Of the features annotated by experts as yellow (medium quality),
approximately 87% were categorized by the LQS color-code scheme as green (49%) or yellow
(38%). Approximately 13% of the features annotated by experts as yellow were categorized by
the LQS color-code scheme as red. Although not perfect correspondence between green vs. green
and yellow vs. yellow (which may be expected given the variable nature of experts’ judgements),
these results indicate reasonable agreement between experts’ subjective assessments of feature
quality and LQS color-coded classifications as it relates to general groupings of medium or high-
quality features. Taken together, among the 5,400 total features annotated as either green or yellow
by experts’ subjective judgments, approximately 93% were categorized as either green or yellow
by the LQS color-code scheme. Recognizing the variability in subjective judgments of feature
quality (e.g. green-yellow or yellow-red), the most significant contribution of the LQS color-code
scheme is the ability for it to provide a standardized framework for establishing consistency
between examiners related to the relative contribution of features for comparison and flag
conditions warranting additional quality assurance review such as those situations where
examiners’ judgments and the LQS color-code scheme contradict each other on the extreme ends
of the spectrum (e.g. green vs. red). While the local performance characteristics are important, the
global performance characteristics have the most significant impact on the ultimate outcome of the
examination.

Global Performance Characteristics

The global performance characteristics were evaluated on the basis of how well the GQS
values correspond to analysts’ subjective assessments of “value,” “complexity,” and “difficulty”
using a dataset representing casework-like conditions (GQS-Test-Dataset-1). The implications of
applying GQS values to impressions under operational conditions is further explored using a
dataset derived directly from casework (GQS-Test-Dataset-2). Each dataset is evaluated
separately so that the results can be considered within context of the conditions from which the
datasets were obtained (e.g. casework-like conditions vs. casework conditions).
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“Value” Determinations

The Valuesgs score is calculated by equation 2-6 and can range from -1.0 to 1.0. Values
near -1.0 indicate the impression is “not suitable” or “no value” and thus should not proceed for
further comparison or should do so with caution and additional quality assurance safeguards in
place. Values near 1.0 indicate the impression is “suitable” or “of value for identification” and
may proceed for further comparison in accordance with normal operating protocols. Figure 2-6
illustrates how well the Valuesgs score correspond to experts’ subjective judgments of impressions
deemed to be “no value” (n = 252), “value for exclusion only” (n = 227), or “value for
identification” (n = 1,141).

C! ] %
LR i l l
g © !

@ !
g o _ ’
E (]
g = :
0 2 . |
C:-I | _ _—
T i i i
NV WVEO VID

Value Determination

Figure 2-6: Boxplot of Valueggs scores for impressions subjectively judged by experts to be “no value” (NV) (n =
252), “value for exclusion only” (VEO) (n = 227), or “value for identification” (VID) (n = 1,141) from GQS-Test-
Dataset-1.

From Figure 2-6, we see the Valuecgs score is able to reasonably distinguish between impressions
determined to be “no value” and “value for identification,” which represent the ends of the value
spectrum. There is overlap between the classes; however, the results demonstrate a trend
consistent with expectations—the majority of impressions judged as “VID” have higher values
compared to those judged as “NV.” The impressions deemed “value for exclusion only” represent
a broad span of Valuesgs scores and are more difficult to predict. This is understandable, however,
since the impressions deemed “value for exclusion only” represent the broad category of
impressions in the middle of the value spectrum for which disagreement between examiners was
most significant. Looking closer at the inter-rater reliability across the full dataset (train and test
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partitions combined), none of the impressions resulted in consensus determination (defined as two-
thirds agreement among participants) for this decision outcome. Consequently, and more
practically in an operational setting, the Valuesos Score has greater applicability to predicting
whether an impression should be categorized as “no value” or “value for identification” and the
lack of support for one of those categories should be indicative of the potential for disagreements
between experts’ interpretations in the middle of the spectrum, thus triggering the impression to
be raised for further quality assurance review. Figure 2-7 illustrates the performance of the
Valueggs score when distinguishing against those impressions determined to be “no value” and
“value for identification” using the receiver operator characteristic (ROC). Table 2-5 demonstrates
the performance tradeoff when different threshold values are applied.
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Figure 2-7: Receiving Operating Characteristic (ROC) curve of Valueggs scores for impressions subjectively judged
by experts to be “no-value” (n = 252) and “value for identification” (n = 1,141) from GQS-Test-Dataset-1. The
area under the curve (AUC) is 97.3% with a 95% confidence interval of (96.5% - 98.2%).

Threshold Valuecos “No Value” “Value for Identification”

-0.50 0.623 (0.563-0.683) 1.00 (1.00-1.00)

-0.33 0.484 (0.425-0.548) 0.996 (0.991-0.999)
-0.25 0.405 (0.345-0.464) 0.992 (0.987-0.996)
0.00 0.274 (0.218-0.329) 0.979 (0.97-0.987)
0.25 0.159 (0.115-0.206) 0.954 (0.942-0.966)
0.33 0.127 (0.087-0.171) 0.938 (0.924-0.952)
0.50 0.063 (0.036-0.095) 0.895 (0.876-0.912)

Table 2-5: Proportion of responses resulting in Valueggs score greater than threshold values (-0.50, -0.33, -0.25,
0.00, 0.25, 0.33, 0.50) and assessed as “no-value” (n = 252) and “value for identification” (n = 1,141) by experts

from GQS-Test-Dataset-1. Confidence intervals are indicated (lower CI - upper CI).
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“Complexity” Determinations

The Complexitysos Score is calculated by equation 2-7 and can range from -1.0 to 1.0.
Values near -1.0 indicate the impression is “not suitable” or “highly complex” and thus should
only proceed to comparison with caution and additional quality assurance safeguards in place.
Values near 1.0 indicate the impression is “non-complex” and may proceed for further comparison
in accordance with normal operating protocols. Figure 2-8 illustrates how well the Complexitysgs
score corresponds to experts’ subjective judgments of impressions deemed to be “no value” or
“highly complex” (n = 291), “complex” (n = 452), or “non-complex” (n = 877).
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Figure 2-8: Boxplot of Complexitysgs scores for impressions subjectively judged by experts to be “highly complex”
(n=291), “complex” (n =452), or “non-complex” (n = 877) from GQS-Test-Dataset-1.

It transpires from Figure 2-8, that the Complexitysos Score is able to reasonably distinguish
between impressions determined to be “highly complex” and “non-complex,” which represent the
ends of the complexity spectrum. There is overlap between the classes; however, the results
demonstrate a trend consistent with expectations—the majority of impressions judged as “non-
complex” have higher values compared to those judged as “highly complex.” The impressions
deemed “complex” represent a broad span of Complexitysqs Scores and are more difficult to
predict. Similar to the “value” spectrum, this is understandable since impressions deemed
“complex” represent the broad category of impressions in the middle of the complexity spectrum
for which disagreement between examiners was most significant. Consequently, and more
practically in an operational setting, the Complexitysqs Score has greater applicability to predicting
whether an impression should be categorized as “highly complex” or “non-complex” and the lack
of support for one of those categories should be indicative of the potential for disagreements
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between experts’ interpretations in the middle of the spectrum, thus triggering the impression to
be raised for further quality assurance review. Figure 2-9 illustrates the performance of the
Complexitycos score when distinguishing against those impressions determined to be “highly

complex” and “non-complex” using the receiver operator characteristic (ROC). Table 2-6
demonstrates the performance tradeoff when different threshold values are applied.
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Figure 2-9: Receiving Operating Characteristic (ROC) curve of Complexitysqgs scores for impressions subjectively
Jjudged by experts to be “highly complex” (n = 291) and “non-complex” (n = 877) from GQS-Test-Dataset-1. The
area under the curve (AUC) is 96.8% with a 95% confidence interval of (95.9% - 97.7%).

Threshold Complexitysos “Highly Complex” “Non-Complex”

-0.50 0.570 (0.512-0.625) 0.997 (0.992-1.00)
-0.33 0.419 (0.364-0.478) 0.994 (0.989-0.999)
-0.25 0.378 (0.323-0.433) 0.989 (0.981-0.995)
0.00 0.206 (0.162-0.254) 0.962 (0.950-0.975)
0.25 0.076 (0.048-0.107) 0.886 (0.864-0.906)
0.33 0.055 (0.031-0.082) 0.854 (0.830-0.877)
0.50 0.027 (0.010-0.048) 0.717 (0.688-0.747)

Table 2-6: Proportion of responses resulting in Complexitycgs score greater than threshold values (-0.50, -0.33, -
0.25, 0.00, 0.25, 0.33, 0.50) and assessed as “highly complex” (n = 291) and “non-complex” (n = 877) by experts
from GQS-Test-Dataset-1. Confidence intervals are indicated (lower CI - upper CI).
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“Difficulty” Determinations

The Difficultysqs score is calculated by equation 2-8 and can range from -1.0 to 1.0. Values
near -1.0 indicate the impression is “high difficulty” and thus should only proceed to comparison
with caution and additional quality assurance safeguards in place. Values near 1.0 indicate the
impression is “low difficulty” and may proceed for further comparison in accordance with normal
operating protocols. Figure 2-10 illustrates how well the Difficultysos score corresponds to
experts’ subjective judgments of impressions deemed to be “high difficulty” (n = 487), “medium
difficulty” (n = 556), or “low difficulty” (n = 577).

1.0

] g
o |

o © !

S w — :

d ] 1

@ l :

2 l !
32 2 | i :
= [’ L :
0 : |
1 [Ty] 1
1)) > , l !
g < ! ! |

[ — [ E— _—
o
T I I I
High Medium Low

Difficulty Determination

Figure 2-10: Boxplot of Difficultysgs scores for impressions subjectively judged by experts to be “high difficulty” (n
=487), “medium difficulty” (n = 556), or “low difficulty” (n = 577) from GQS-Test-Dataset-1.

From Figure 2-10, we see the Difficultysos score is able to generally distinguish between
impressions determined to be “high difficulty” and “low difficulty,” which represent the ends of
the difficulty spectrum. There is overlap between the classes; however, the results demonstrate a
trend consistent with expectations—the majority of impressions judged as “low” difficulty have
higher values compared to those judged as “high” difficulty. The impressions deemed “medium
difficulty” represent a broad span of Difficultysgs scores and are more difficult to predict. Similar
to the “value” and “complexity” spectrums, this is understandable since impressions deemed
“medium difficulty” represent the broad category of impressions in the middle of the spectrum for
which disagreement between examiners was most significant. Consequently, and more practically
in an operational setting, the Difficultysgs score has greater applicability to predicting whether an
impression should be categorized as “high difficulty” or “low difficulty” and the lack of support
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for one of those categories should be indicative of the potential for disagreements between experts’
interpretations in the middle of the spectrum, thus triggering the impression to be raised for further
quality assurance review. Figure 2-11 illustrates the performance of the Difficultysos Score when
distinguishing against those impressions determined to be “high difficulty” and “low difficulty”
using the receiver operator characteristic (ROC). Table 2-7 demonstrates the performance tradeoff
when different threshold values are applied.
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Figure 2-11: Receiving Operating Characteristic (ROC) curve of Difficultycgs scores for impressions subjectively
judged by experts to be “high difficulty” (n = 487) and “low difficulty” (n = 577) from GQS-Test-Dataset-1. The
area under the curve (AUC) is 88.8% with a 95% confidence interval of (86.9% - 90.7%).

Threshold Difficultycos “High Difficulty” “Low Difficulty”
-0.50 0.729 (0.690-0.768) 0.986 (0.976-0.995)
-0.33 0.515 (0.470-0.561) 0.953 (0.936-0.969)
-0.25 0.415 (0.372-0.458) 0.922 (0.899-0.943)
0.00 0.193 (0.158-0.228) 0.782 (0.747-0.815)
0.25 0.057 (0.037-0.080) 0.610 (0.570-0.650)
0.33 0.045 (0.029-0.064) 0.555 (0.515-0.594)
0.50 0.012 (0.004-0.023) 0.449 (0.409-0.490)

Table 2-7: Proportion of responses resulting in Difficultysgs score greater than threshold values (-0.50, -0.33, -0.25,
0.00, 0.25, 0.33, 0.50) and assessed as “high difficulty” (n = 487) and “low difficulty” (n = 577) by experts from

GQS-Test-Dataset-1. Confidence intervals are indicated (lower CI - upper CI).
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Casework Evaluation

From GQS-Test-Dataset-1, we see that the GQS values are able to reasonably distinguish
between impressions on the ends of the value, complexity, and difficulty spectra thus indicating
those impressions which may proceed to further comparison in accordance with normal
operational protocols versus those impressions which may be flagged for further quality assurance
review and additional safeguards. Having established the baseline performance characteristics
under case-work like conditions, we can consider the implications if this quality metric were to be
applied in an operational setting on actual casework to demonstrate the distribution of GQS values
and potentially indicate the need for intervention from a quality assurance perspective when GQS
values fall below an established threshold. To evaluate this, we use GQS-Test-Dataset-2, which
consists of 605 impressions that were deemed “value for identification” by experts’ subjective
judgements (and subsequently identified to exemplar impressions). Although this dataset does not
include those impressions deemed to be “no value” since operational procedures did not require
retention of annotated images for that outcome category, we can consider the proportion of
impressions for which the determination of “value for identification” was supported. Similarly,
despite the impressions not being pre-categorized against the complexity spectrum or difficulty
spectrum, we can visualize the distribution of the impressions against each metric for general
context.

Figure 2-12 illustrates the distribution of Valuesos Scores, Complexitysos Scores, and
Difficultyses scores for the GQS-Test-Dataset-2.
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Figure 2-12: Boxplot of Valueggs, Complexitysgs, and Difficultycqgs scores for 605 impressions subjectively judged
by experts to be “value for identification” and subsequently identified to exemplar impressions during normal
casework conditions from GQS-Test-Dataset-2.
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If we were to apply threshold values to the GQS metrics to evaluate how often the experts’
assessment of “value for identification” was supported or to indicate circumstances in which the
impressions may be flagged for additional quality assurance review, we can consider the
implications to practice more clearly. For the Value determination, Table 2-5 suggests a Valuesgs
score of 0.50 is a reasonable threshold. For the Complexity determination, Table 2-6 suggests a
Complexitysqs score of 0.33 is a reasonable threshold. For the Difficulty determination, Table 2-
7 suggests a Difficultysqs score of 0.00 is a reasonable threshold. Table 2-8 provides the proportion
of impressions for which normal procedures are sufficient and those for which additional quality
assurance review may be considered based on the results of the GQS metrics. From these data,
we see reasonably strong support for experts’ subjective judgement on the casework sample (GQS-
Test-Dataset-2) and only a small percentage of impressions for which additional quality assurance
review might be considered (~2% lacking support for value, ~6% categorized as complex, and
~16% categorized as difficult).

Proportion of Cases with Proportion of Cases to
GQS Metric Normal Procedures Consider Additional
Warranted Quality Assurance Review
Value 0.977 0.023
Complexity 0.942 0.058
Difficulty 0.843 0.157

Table 2-8: Proportion of impressions for which normal procedures are warranted and those for which additional
quality assurance review may be considered based on the results of the GQS metrics from GQS-Test-Dataset-2 (n =
605) and the following thresholds: Valuecqgs scores less than 0.50, Complexitysgs scores less than 0.33, and
Difficultycgs scores less than 0.00. Note: GQS-Test-Dataset-2 is a dataset of impressions taken from a single
federal laboratory in the United States which were considered “value for identification” and subsequently identified
to exemplar impressions. Given the lack of quantifiable standards for “value for identification” at the time these
impressions were examined, the extent to which these results are generalizable is unclear.

General Discussion

The method proposed provides three different quality metrics which can be used as a means
to provide empirical support to experts’ subjective assessments and a framework for establishing
policies and procedures to flag impressions warranting further quality assurance review.
Determinations of “value” have been considered by the friction ridge discipline for decades and
are familiar to all practicing examiners. Determinations of “complexity” and “difficulty,”
however, are more recent terms to categorize impressions which tend to have lower quality and
quantity of features and are therefore more susceptible to erroneous outcomes. With limited time
and resources due to growing backlogs and operational demands, it is critical to have a means of
focusing efforts on those impressions most vulnerable to errors or may require additional quality
control measures. This method provides a means of accomplishing this goal in a more objective,
transparent, and consistent fashion grounded by empirical validation. Although ground truth is
non-existent for determinations of “value,” “complexity,” and “difficulty,” the results demonstrate
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reasonable agreement to experts’ subjective assessments and illustrate a consistent general trend
of increasing GQS values across the ordinal scale of “value,” “complexity,” and “difficulty”
determinations. Having these quantitative outputs along ordinal scales, further work could enable
a visual illustration and representation of the overall quality of an impression in three-dimensional
space based on axes of “value,” “complexity,” and “difficulty.”

Two important limitations for this method remain. First, the LQS and GQS values are
dependent upon the subjective detection and annotation of friction ridge skin features (minutiae)
by the human expert. Second, the method relies on clarity attributes of friction ridge minutiae and
does not consider all of the attributes that experts may consider when making subjective
determinations, such as pattern type, feature type, rarity of features and their configurations,
continuity of ridge detail between features, and other types of features (non-minutiae) available.

To attenuate these limitations, two general recommendations for policy and procedure
could be considered. First, the method should be used after the expert has visually analyzed,
detected, and annotated friction ridge skin features for which the expert has reasonably high
confidence of their presence. Second, the method should be used as a framework for flagging
impressions which may require additional quality assurance review. Although the method
demonstrates reasonable consistency with experts’ judgements, it should not be considered a
replacement for the experts’ interpretation. This method is a step toward greater transparency and
objectivity, but is not designed or intended to supplant the careful interpretation of experts.

This method provides fingerprint experts the capability to provide an empirical foundation
to support their subjective interpretations following Analysis. It also offers a framework for
organizations to establish transparent, measurable, and demonstrable criteria for Value
determinations and a means of flagging impressions that are vulnerable to erroneous outcomes or
inconsistency between experts (e.g. higher Complexity and/or Difficulty). Finally, it provides a
means for quantitatively summarizing the overall quality of the impression in terms of Value,
Complexity, and Difficulty for ensuring representative distributions in samples used for research
designs, proficiency testing, error rate testing, and other applications by forensic science
stakeholders. As a stand-alone application, this method enables the forensic science community
to take a step toward greater transparency and empiricism — particularly as it relates to Value and
Complexity determinations during casework examinations and assessments of Difficulty for
research, training, and testing purposes. Further, because this method provides quality assessments
at both the local and global levels (LQS and GQS), its development lends the possibility of
integrating with other quality assessment and statistical evaluation software applications, such as
FRStat [50], to provide a complete tool-pack to ensure experts’ interpretations are empirically
supported for all major decisions throughout the entire examination methodology.

2.1.5 Conclusion
Over the years, the forensic science community has faced increasing criticism by scientific and
legal commentators, challenging the validity and reliability of many forensic examination methods

that rely on subjective interpretations by forensic practitioners. Among those concerns is the lack
of an empirically demonstrable basis to assess the quality of fingerprint evidence for a given case.
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In this paper, a method is presented which measures the clarity of friction ridge features and
evaluates the quality of impression across three different scales: Value, Complexity, and
Difficulty. The local quality scores (LQS) provide a quantitative assessment of the quality of
individual features based on the clarity of the local region of friction ridge detail immediately
surrounding each feature. Individual features are then color-coded green, yellow, or red indicating
high, medium, or low quality. The results demonstrate remarkable separation between regions
representing the extreme ends of “good” and “bad” quality of friction ridge detail and general
agreement with experts’ subjective assessments of feature quality based on features categorized as
“high” or “medium” quality. While quality assessments at localized regions are important, quality
assessments for the overall impression have the most significant impact on the ultimate outcome
of the examination. The global quality scores (GQS) provide quantitative assessments of the
quality of the entire impression against different outcome scales (value, complexity, and difficulty)
based on the quality and quantity of individual features. The results demonstrate reasonable
consistency between automated predictions and experts’ subjective assessments. In an operational
environment, the tool is intended to provide an empirical foundation to support experts’ subjective
judgments, provide transparency to the overall quality of the impression for a given outcome (e.g.
determination of value, complexity, or difficulty), and provide a framework to establish policies
and procedures for examination decisions geared toward flagging impressions that are generally
lower quality and more vulnerable to disagreements between experts or potentially erroneous
interpretations.

As with any method, there are limitations to consider. The most significant is that this
method relies on the features annotated by the expert and does not take into account all aspects of
the friction ridge detail. Consequently, the system should not be considered as a means of
supplanting expert interpretation and judgement when analyzing friction ridge detail. Rather, the
method should be considered a tool to support experts’ judgements or detect potentially
problematic impressions necessitating further quality assurance review.

Although various aspects of this method may be further optimized, the performance
characteristics described are proposed as a sufficient basis to demonstrate the foundational validity
of the method to perform within the scope of its intended purpose — as a means of providing a
quantitative measure of the quality of a fingerprint. Further optimizations which may improve
upon the method’s performance are encouraged for future works.

2.2 Comparison with Other Methods

The preceding section presents the published manuscript [49] that describes the
development and validation of DFIQI as a stand-alone software application. This section is
supplemental to the published manuscript [49] and explores the performance of DFIQI compared
to other available methods. The results show that the DFIQI provides comparable performance to
other available methods and that no added value is obtained when machine learning (ML)
techniques are leveraged to combine multiple solutions.
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2.2.1 Background

The DFIQI algorithm presented in this chapter provides a measure of the overall quality of
the impression for further examination purposes as well as an objective measure of the clarity of
friction ridge features identified by the analyst. The DFIQI algorithm, however, is not the only
algorithm that has been proposed for such purposes. Among several other methods that have been
proposed, LFIQ [44], LQMetric [14], and ESLR [61] algorithms have been made accessible for
evaluation. Each algorithm accounts for different variables and provides a distinct approach to the
calculation of its quality measure. Taking into account that the DFIQI was developed with
consideration of balancing performance against computational complexity and algorithmic
transparency as it relates to the selection of variables and the machine learning classifier, it seems
prudent to conduct an exploratory comparison of the DFIQI against these other methods to better
understand the impact of this tradeoff. Rather than comparing the performance the DFIQI as a
standalone application as described in [49] with each method individually, we can explore the
value of a multidimensional combination of the various algorithmic approaches across several
different machine learning classifiers. This combined approach would enable us to measure the
extent to which the performance of a new integrated algorithm for which the input variables are
defined by the outputs and related meta-data from each of the individual methods improves over
the performance of the DFIQI alone for predicting the quality of impressions as it relates to value,
complexity, and difficulty determinations across all of the methods. This evaluation is useful as it
provides a more objective means of assessing the optimal approach, amongst these four distinct
algorithms (DFIQI [49], LFIQ [44], LQMetric [14], and ESLR [61]) or a combination thereto
through more sophisticated machine learning classifiers, for measuring the overall quality of the
impressions for further examination purposes.

2.2.2 Materials & Methods

This exploratory comparison was conducted using a dataset provided by Eldridge et al.
(2020) [57]. The full dataset consisted of a total of 3,241 determinations made by 116 analysts
rendering “value,” “complexity,” and “difficulty” decisions for each image they viewed from a set
of 100 different marks — each participant was provided a set of approximately 30 impressions to
analyze, resulting in each impression being analyzed by between 26 and 41 different analysts. The
impressions were obtained during the course of normal casework at a large metropolitan police
laboratory using standard powder processing and lifting techniques. All participants were
practicing friction ridge examiners recruited by several outreach methods, such as email
distribution lists, presentations given at professional educational meetings, and professional
contacts. As described in Swofford et al. [49], the DFIQI was developed and tested using a random
50/50 training-test split obtained from this dataset as it relates to individual examiners’
observations and judgments. For purposes of this evaluation, however, additional models were
developed and tested using cross validation schemes described below.

The baseline performance of the DFIQI to which the performance of the other methods is
compared against was established in two distinct ways: First, the baseline performance of the
actual DFIQI algorithm (as it is originally proposed in [49]) is provided by the raw model
diagnostics discussed in Appendix B-1. This is based on a multinomial regression model using
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two variables (LQSsum and nFEAT) and a random 50/50 training-test split using individual
examiners’ observations and judgments of “value,” “complexity,” and “difficulty” from the full
dataset provided by Eldridge et al. [57]. For purposes of this exploratory comparison, these data
are referred to as the baseline performance of the “actual DFIQI” algorithm. Although these data
provide the raw model diagnostics of the actual DFIQI algorithm as it was originally proposed in
[49], it does not provide a straightforward means of exploring the utility of a multidimensional
combination of the various algorithmic approaches across several different machine learning
classifiers and measuring the extent to which the performance of a new integrated algorithm (for
which the input variables are defined by the outputs and related meta-data from each of the
individual methods — LFIQ [44], LQMetric [14], and ESLR [61]) improves over the performance
of the DFIQI variables alone. This is because all of the other methods available for this exploratory
comparison (i.e., LFIQ [44], LQMetric [14], and ESLR [61]) do not rely on user inputs and
therefore only have a single set of quality measures output per image (independent of user inputs).
This contrasts with the DFIQI in that, as noted above, the DFIQI is dependent on users to identify
the features in the impression. Variations between examiners in the specific quantities and
locations of features identified in the impression will result in different quality measures output
for the same image. Thus, for purposes of this evaluation, we propose a second way of establishing
the baseline performance of the DFIQI and permit a more straightforward comparison by creating
a new derivative algorithm trained using the mean values of the variables and related meta-data
from the DFIQI across all examiners for each image. This would create a single set of consensus
derived values as it relates to the DFIQI variables alone for each image independent of the input
from a specific user. Differences between examiners in the outcome judgment (i.e., determinations
of “value,” “complexity,” and “difficulty”) are assigned (for purposes of the training) based on
majority consensus among all examiners for each image. For purposes of this exploratory
comparison, model diagnostics related to this approach are referred to as the baseline performance
of the “derivative DFIQI” algorithm. Having a single set of input values representing the mean
values of the DFIQI variables then enable these data to be combined with the variables from the
other algorithmic approaches (i.e., LFIQ [44], LQMetric [14], and ESLR [61]) to create the new
integrated algorithm for which we can measure the extent to which performance is improved
compared to a model using the DFIQI variables alone.

For purposes of this evaluation, three sets of models were developed (for each type of
judgment — “value,” “complexity,” and “difficulty”) using the applicable variables and related
meta-data from the DFIQI, LFIQ, LQMetric, and ESLR. One set of models established the
baseline performance using the DFIQI variables alone (referred to as “derivative DFIQI” baseline).
Variables and related meta-data used in this set of models included: SP3G, Bimodal Separation,
Acutance, Mean Object Width, Spatial Frequency, LQSsum, NFEAT, and GQS (as applicable for
each judgment outcome, i.e., Valuesgs, Complexitysos, Difficultysqes). A second set of models
established the baseline performance of all other methods combined (LFIQ, LQMetric, and ESLR)
(referred to as “LFIQ-LQM-ESLR” baseline). Variables and related meta-data used in this set of
models included: LFIQ-1, LQM-overall-quality, LQM-overall-clarity, LQM-VCMP, LQM-VID,
LQM-area-of-ridge-flow, LQM-area-of-good-ridge-flow, LQM-largest-contiguous-area-of-ridge-
flow, LQM-largest-contiguous-area-of-good-ridge-flow, LQM-FA, and ESLR. A third set of
models (i.e., integrated algorithm) provided a measure of the extent to which the performance is
improved by combining the variables from all algorithmic approaches (DFIQI, LFIQ, LQMetric,
and ESLR) compared to the performance provided by the DFIQI alone (referred to as “Integrated
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Algorithm — All Methods Combined”). Variables and related meta-data used in this set of models
included those which were used in the prior two sets of models combined. All models were
developed using the caret package in R [62] using a range of machine learning techniques (naive
based classifier, tree-based classifiers, discriminant analysis techniques, neural networks and
support vector machines) called directly from the caret package, specifically: Classification and
Regression Tree (CART), Random Forest (RF), Multinomial (MultiNom), K-Nearest Neighbors
(KNN), Naive Bayes (NB), C5.0, and Support Vector Machine (SVM). The machine learning
techniques were applied using a “leave-one-out” cross validation for which training was conducted
using the mean values for the input variables across all examiners for 99 of the 100 images, then
tested using the individual examiners’ responses for the image left out. This process was repeated
100 times such that with each iteration a different image was left out. For purposes of the training,
the judgment outcomes were assigned based on majority consensus of examiners’ responses for
each image. This approach creates models that are intended to predict the judgment outcome that
is most likely supported by a consensus of examiners. Testing, however, was done in two distinct
ways: (1) the values for the input variables were based on the examiners’ individual responses and
the judgment outcomes assigned were based on the majority consensus of examiners’ responses
for each image, and (2) the values for the input variables and judgment outcomes assigned were
both based on the examiners’ individual responses (noting, however, that values for the input
variables for LFIQ, LQM, and ESLR were the same across all examiners since those methods do
not require examiner input). The first approach evaluates how well the models predicted the
consensus judgment outcomes. The second approach evaluates how well the models predicted the
individual examiners’ judgment outcomes, which mirrors how the “actual DFIQI” algorithm was
tested.

2.2.3 Results & Discussion

The performance of each method was evaluated in terms of classification accuracy® based
on the raw model diagnostics provided by the nnet package in R [58]. Although these raw model
diagnostics do not necessarily correspond to the performance of the GQS scores output by the
actual DFIQI when applied in the context of a binary decision to flag an impression for further
quality assurance review (consistent with how the DFIQI is intended to be applied in practice),
they are useful for purposes of this evaluation as they provide a consistent means of measuring the
extent to which the performance of the various models can be expected to change when different
variables and machine learning techniques are used.

The baseline performance of the “actual DFIQI” for each judgment outcome is provided
by Appendix B-1 and reproduced below in Table 2-9. These data provide the nexus between the
actual performance of the DFIQI, in terms of the classification accuracy based on the raw model
diagnostics as originally proposed by [49], and the new models developed for purposes of this
exploratory comparison.

® Ground truth is non-existent for determinations of “value,” “complexity,” and “difficulty.” Although the term
“precision” is technically more appropriate, the term “accuracy” in this context refers to the extent to which the output
classification from the model corresponds to examiners’ determinations and is used in this section to be consistent
with the discussion in the supplemental appendix of the published manuscript reflected in this chapter.
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Outcome Overall 95% Confidence Interval
Judgment Accuracy (lower bound — upper bound)
Value 0.805 (0.785 - 0.824)
Complexity 0.674 (0.650 - 0.696
Difficulty 0.580 (0.555 - 0.604)

Table 2-9: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications of
the “actual DFIQI” for each judgment class (Value, Complexity, Difficulty). Table reproduced from [49].

“Value” Determinations

The overall classification accuracy of the “derivative DFIQI” baseline set of models is
provided in Tables 2-10a and 2-10b for each of the six machine learning techniques used for this
evaluation. These data provide the baseline performance of models trained using the mean values
of the DFIQI variables and assignment of the outcome judgment for each image based on majority
consensus among all examiners. Table 2-10a provides the baseline performance of the models
when tested using the examiners’ individual values of the DFIQI variables and outcome judgments
assigned based on majority consensus among all examiners for each image. Table 2-10b provides
the baseline performance of the models when tested using the examiners’ individual values of the
DFIQI variables and outcome judgments assigned based on the examiners’ individual responses.

Value Determinations
(Derivative DFIQI Baseline)
Consensus Outcome Judgments
Machine Learning Overall 95% Confidence Interval

Technique Accuracy (lower bound — upper bound)
CART 0.816 0.795-0.836
RF 0.823 0.804 — 0.843
MultiNom 0.833 0.814 — 0.852
KNN 0.828 0.809 — 0.847
NB 0.805 0.785 — 0.825
C5.0 0.838 0.820 — 0.857
SVM 0.836 0.818 — 0.853

Table 2-10a: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “derivative DFIQI baseline” for each machine learning technique for Value determinations (tested using
outcome judgments assigned based on majority consensus among all examiners for each image).
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Value Determinations
(Derivative DFIQI Baseline)
Individual Outcome Judgments
Machine Learning Overall 95% Confidence Interval

Technique Accuracy (lower bound — upper bound)
CART 0.809 0.787 —0.832
RF 0.812 0.790 —0.834
MultiNom 0.809 0.787 — 0.831
KNN 0.809 0.786 —0.831
NB 0.789 0.769 — 0.810
C5.0 0.811 0.788 —0.833
SVM 0.798 0.774 - 0.822

Table 2-10b: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “derivative DFIQI baseline” for each machine learning technique for Value determinations (tested using
outcome judgments assigned based on the examiners’ individual responses).

The overall classification accuracy of the “LFIQ-LQM-ESLR” baseline set of models is
provided in Tables 2-11a and 2-11b for each of the six machine learning techniques used for this
evaluation. These data provide the baseline performance of models trained using the LFIQ, LQM,
and ESLR variables and assignment of the outcome judgment for each image based on majority
consensus among all examiners. Table 2-11a provides the baseline performance of the models
when tested using the values of the LFIQ, LQM, and ESLR variables and outcome judgments
assigned based on majority consensus among all examiners for each image. Table 2-11b provides
the baseline performance of the models when tested using the values of the LFIQ, LQM, and ESLR
variables and outcome judgments assigned based on the examiners’ individual responses.

Value Determinations
(LFIQ-LQM-ESLR Baseline)
Consensus Outcome Judgments
Machine Learning Overall 95% Confidence Interval

Technique Accuracy (lower bound — upper bound)
CART 0.849 0.841 —0.858
RF 0.835 0.825 -0.845
MultiNom 0.754 0.739 — 0.768
KNN 0.823 0.810 — 0.835
NB 0.556 0.532 - 0.579
C5.0 0.698 0.676 — 0.720
SVM 0.825 0.816 — 0.835

Table 2-11a: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “LFIQ-LQM-ESLR baseline” for each machine learning technique for Value determinations (tested using
outcome judgments assigned based on majority consensus among all examiners for each image).
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Value Determinations
(LFIQ-LQM-ESLR Baseline)
Individual Outcome Judgments
Machine Learning Overall 95% Confidence Interval
Technique Accuracy (lower bound — upper bound)

CART 0.724 0.695 —0.753
RF 0.704 0.676 —0.732
MultiNom 0.674 0.649 — 0.698
KNN 0.701 0.671-0.732
NB 0.548 0.524 - 0.573
C5.0 0.601 0.578 —0.624
SVM 0.710 0.679 —0.740

Table 2-11b: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “LFIQ-LQM-ESLR baseline” for each machine learning technique for Value determinations (tested using
outcome judgments assigned based on the examiners’ individual responses).

The overall classification accuracy of the “Integrated Algorithm — All Methods Combined”
set of models is provided in Tables 2-12a and 2-12b for each of the six machine learning techniques
used for this evaluation. These data provide the performance of all methods combined — models
trained using the mean values of the DFIQI variables, combined with the values of the LFIQ,
LQM, and ESLR variables, and assignment of the outcome judgment for each image based on
majority consensus among all examiners. Table 2-12a provides the performance of the models
when tested using the examiners’ individual values of the DFIQI variables, combined with the
values of the LFIQ, LQM, and ESLR variables, and outcome judgments assigned based on
majority consensus among all examiners for each image. Table 2-12b provides the baseline
performance of the models when tested using the examiners’ individual values of the DFIQI
variables, combined with the values of the LFIQ, LOM, and ESLR variables, and outcome
judgments assigned based on the examiners’ individual responses. This set of models provide the
extent to which performance is improved when combining variables from all methods compared
to a model using the DFIQI variables alone.

Value Determinations
(Integrated Algorithm — All Methods Combined)
Consensus Outcome Judgments
Machine Learning Overall 95% Confidence Interval

Technique Accuracy (lower bound — upper bound)
CART 0.816 0.795 - 0.836
RF 0.832 0.812 - 0.851
MultiNom 0.764 0.745-0.782
KNN 0.833 0.821 — 0.845
NB 0.747 0.728 — 0.767
C5.0 0.837 0.818 — 0.856
SVM 0.837 0.822 — 0.852

Table 2-12a: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “Integrated Algorithm — All Methods Combined ” for each machine learning technique for Value
determinations (tested using outcome judgments assigned based on majority consensus among all examiners for
each image).
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Value Determinations
(Integrated Algorithm — All Methods Combined)
Individual Outcome Judgments
Machine Learning Overall 95% Confidence Interval

Technique Accuracy (lower bound — upper bound)
CART 0.809 0.787 — 0.832
RF 0.810 0.788 — 0.832
MultiNom 0.775 0.754 — 0.796
KNN 0.710 0.680 — 0.741
NB 0.737 0.717 —0.758
C5.0 0.810 0.788 — 0.832
SVM 0.798 0.775-0.821

Table 2-12b: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “Integrated Algorithm — All Methods Combined” for each machine learning technique for Value
determinations (tested using outcome judgments assigned based on the examiners’ individual responses).

“Complexity” Determinations

The overall classification accuracy of the “derivative DFIQI” baseline set of models is
provided in Tables 2-13a and 2-13b for each of the six machine learning techniques used for this
evaluation. These data provide the baseline performance of models trained using the mean values
of the DFIQI variables and assignment of the outcome judgment for each image based on majority
consensus among all examiners. Table 2-13a provides the baseline performance of the models
when tested using the examiners’ individual values of the DFIQI variables and outcome judgments
assigned based on majority consensus among all examiners for each image. Table 2-13b provides
the baseline performance of the models when tested using the examiners’ individual values of the
DFIQI variables and outcome judgments assigned based on the examiners’ individual responses.

Complexity Determinations
(Derivative DFIQI Baseline)
Consensus Outcome Judgments
Machine Learning Overall 95% Confidence Interval
Technique Accuracy (lower bound — upper bound)

CART 0.674 0.653 — 0.695
RF 0.668 0.647 — 0.688
MultiNom 0.667 0.646 — 0.688
KNN 0.635 0.613 — 0.657
NB 0.645 0.622 — 0.667
C5.0 0.654 0.632 —0.676
SVM 0.655 0.632 -0.678

Table 2-13a: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “derivative DFIQI baseline” for each machine learning technique for Complexity determinations (tested
using outcome judgments assigned based on majority consensus among all examiners for each image).
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Complexity Determinations
(Derivative DFIQI Baseline)
Individual Outcome Judgments
Machine Learning Overall 95% Confidence Interval
Technique Accuracy (lower bound — upper bound)
CART 0.682 0.658 — 0.706
RF 0.677 0.654 —0.700
MultiNom 0.670 0.647 — 0.693
KNN 0.666 0.643 —0.688
NB 0.660 0.636 — 0.685
C5.0 0.668 0.645 — 0.692
SVM 0.663 0.639 — 0.687

Table 2-13b: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “derivative DFIQI baseline” for each machine learning technique for Complexity determinations (tested
using outcome judgments assigned based on the examiners’ individual responses).

The overall classification accuracy of the “LFIQ-LQM-ESLR” baseline set of models is
provided in Tables 2-14a and 2-14b for each of the six machine learning techniques used for this
evaluation. These data provide the baseline performance of models trained using the LFIQ, LQM,
and ESLR variables and assignment of the outcome judgment for each image based on majority
consensus among all examiners. Table 2-14a provides the baseline performance of the models
when tested using the values of the LFIQ, LQM, and ESLR variables and outcome judgments
assigned based on majority consensus among all examiners for each image. Table 2-14b provides
the baseline performance of the models when tested using the values of the LFIQ, LQM, and ESLR
variables and outcome judgments assigned based on the examiners’ individual responses.

Complexity Determinations
(LFIQ-LQM-ESLR Baseline)
Consensus Outcome Judgments

Machine Learning Overall 95% Confidence Interval

Technique Accuracy (lower bound — upper bound)
CART 0.590 0.576 — 0.604
RF 0.578 0.562 — 0.593
MultiNom 0.610 0.593 — 0.626
KNN 0.658 0.644 — 0.672
NB 0.600 0.585 - 0.616
C5.0 0.637 0.622 — 0.651
SVM 0.623 0.606 — 0.639

Table 2-14a: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “LFIQ-LQM-ESLR baseline” for each machine learning technigque for Complexity determinations (tested
using outcome judgments assigned based on majority consensus among all examiners for each image).
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Complexity Determinations
(LFIQ-LQM-ESLR Baseline)
Individual Outcome Judgments
Machine Learning Overall 95% Confidence Interval
Technique Accuracy (lower bound — upper bound)
CART 0.554 0.530 - 0.578
RF 0.554 0.532 —0.575
MultiNom 0.558 0.536 — 0.580
KNN 0.542 0.519 — 0.565
NB 0.514 0.492 — 0.536
C5.0 0.562 0.540 — 0.584
SVM 0.555 0.527 — 0.583

Table 2-14b: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “LFIQ-LQM-ESLR baseline” for each machine learning technique for Complexity determinations (tested
using outcome judgments assigned based on the examiners’ individual responses).

The overall classification accuracy of the “Integrated Algorithm — All Methods Combined”
set of models is provided in Tables 2-15a and 2-15b for each of the six machine learning techniques
used for this evaluation. These data provide the performance of all methods combined — models
trained using the mean values of the DFIQI variables, combined with the values of the LFIQ,
LQM, and ESLR variables, and assignment of the outcome judgment for each image based on
majority consensus among all examiners. Table 2-15a provides the performance of the models
when tested using the examiners’ individual values of the DFIQI variables, combined with the
values of the LFIQ, LQM, and ESLR variables, and outcome judgments assigned based on
majority consensus among all examiners for each image. Table 2-15b provides the baseline
performance of the models when tested using the examiners’ individual values of the DFIQI
variables, combined with the values of the LFIQ, LQM, and ESLR variables, and outcome
judgments assigned based on the examiners’ individual responses. This set of models provide the
extent to which performance is improved when combining variables from all methods compared
to a model using the DFIQI variables alone.
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Complexity Determinations
(Integrated Algorithm — All Methods Combined)
Consensus Outcome Judgments
Machine Learning Overall 95% Confidence Interval

Technique Accuracy (lower bound — upper bound)
CART 0.674 0.653 — 0.695
RF 0.679 0.657 —0.701
MultiNom 0.636 0.626 — 0.656
KNN 0.628 0.616 — 0.640
NB 0.646 0.627 — 0.664
C5.0 0.677 0.656 — 0.697
SVM 0.670 0.651 — 0.690

Table 2-15a: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “Integrated Algorithm — A/l Methods Combined” for each machine learning technique for Complexity
determinations (tested using outcome judgments assigned based on majority consensus among all examiners for
each image).

Complexity Determinations
(Integrated Algorithm — All Methods Combined)
Individual Outcome Judgments
Machine Learning Overall 95% Confidence Interval
Technique Accuracy (lower bound — upper bound)
CART 0.682 0.658 — 0.706
RF 0.681 0.658 — 0.703
MultiNom 0.653 0.631 - 0.675
KNN 0.539 0.516 — 0.563
NB 0.632 0.611 — 0.653
C5.0 0.676 0.653 — 0.699
SVM 0.653 0.631—0.676

Table 2-15b: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “Integrated Algorithm — All Methods Combined” for each machine learning technique for Complexity
determinations (tested using outcome judgments assigned based on the examiners’ individual responses).

“Difficulty” Determinations

The overall classification accuracy of the “derivative DFIQI” baseline set of models is
provided in Tables 2-16a and 2-16b for each of the six machine learning techniques used for this
evaluation. These data provide the baseline performance of models trained using the mean values
of the DFIQI variables and assignment of the outcome judgment for each image based on majority
consensus among all examiners. Table 2-16a provides the baseline performance of the models
when tested using the examiners’ individual values of the DFIQI variables and outcome judgments
assigned based on majority consensus among all examiners for each image. Table 2-16b provides
the baseline performance of the models when tested using the examiners’ individual values of the
DFIQI variables and outcome judgments assigned based on the examiners’ individual responses.

53



Difficulty Determinations
(Derivative DFIQI Baseline)
Consensus Outcome Judgments
Machine Learning Overall 95% Confidence Interval
Technique Accuracy (lower bound — upper bound)

CART 0.540 0.514 — 0.567
RF 0.594 0.571-0.617
MultiNom 0.590 0.565 - 0.614
KNN 0.563 0.539 — 0.587
NB 0.598 0.575-0.621
C5.0 0.550 0.528 — 0.572
SVM 0.584 0.559 — 0.609

Table 2-16a: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “derivative DFIQI baseline” for each machine learning technique for Difficulty determinations (tested using
outcome judgments assigned based on majority consensus among all examiners for each image).

Difficulty Determinations
(Derivative DFIQI Baseline)
Individual Outcome Judgments
Machine Learning Overall 95% Confidence Interval
Technique Accuracy (lower bound — upper bound)

CART 0.532 0.502 — 0.562
RF 0.552 0.522 — 0.582
MultiNom 0.552 0.524 — 0.580
KNN 0.525 0.493 — 0.556
NB 0.554 0.523 — 0.584
C5.0 0.530 0.501 - 0.559
SVM 0.552 0.523 - 0.582

Table 2-16b: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “derivative DFIQI baseline” for each machine learning technique for Difficulty determinations (tested using
outcome judgments assigned based on the examiners’ individual responses).

The overall classification accuracy of the “LFIQ-LQM-ESLR” baseline set of models is
provided in Tables 2-17a and 2-17b for each of the six machine learning techniques used for this
evaluation. These data provide the baseline performance of models trained using the LFIQ, LQM,
and ESLR variables and assignment of the outcome judgment for each image based on majority
consensus among all examiners. Table 2-17a provides the baseline performance of the models
when tested using the values of the LFIQ, LQM, and ESLR variables and outcome judgments
assigned based on majority consensus among all examiners for each image. Table 2-17b provides
the baseline performance of the models when tested using the values of the LFIQ, LQM, and ESLR
variables and outcome judgments assigned based on the examiners’ individual responses.
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Difficulty Determinations
(LFIQ-LQM-ESLR Baseline)
Consensus Outcome Judgments
Machine Learning Overall 95% Confidence Interval

Technique Accuracy (lower bound — upper bound)
CART 0.575 0.560 — 0.590
RF 0.528 0.514 - 0.543
MultiNom 0.600 0.580 — 0.619
KNN 0.485 0.470 — 0.502
NB 0.628 0.615 - 0.642
C5.0 0.530 0.516 — 0.545
SVM 0.559 0.545-0.573

Table 2-17a: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “LFIQ-LQM-ESLR baseline” for each machine learning technique for Difficulty determinations (tested using
outcome judgments assigned based on majority consensus among all examiners for each image).

Difficulty Determinations
(LFIQ-LQM-ESLR Baseline)
Individual Outcome Judgments
Machine Learning Overall 95% Confidence Interval
Technique Accuracy (lower bound — upper bound)

CART 0.503 0.482 — 0.525
RF 0.485 0.464 — 0.505
MultiNom 0.517 0.495 — 0.540
KNN 0.483 0.459 — 0.507
NB 0.511 0.489 — 0.533
C5.0 0.466 0.446 — 0.485
SVM 0.495 0.475-0.514

Table 2-17b: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “LFIQ-LQM-ESLR baseline” for each machine learning technique for Difficulty determinations (tested using
outcome judgments assigned based on the examiners’ individual responses).

The overall classification accuracy of the “Integrated Algorithm — All Methods Combined”
set of models is provided in Tables 2-18a and 2-18b for each of the six machine learning techniques
used for this evaluation. These data provide the performance of all methods combined — models
trained using the mean values of the DFIQI variables, combined with the values of the LFIQ,
LQM, and ESLR variables, and assignment of the outcome judgment for each image based on
majority consensus among all examiners. Table 2-18a provides the performance of the models
when tested using the examiners’ individual values of the DFIQI variables, combined with the
values of the LFIQ, LQM, and ESLR variables, and outcome judgments assigned based on
majority consensus among all examiners for each image. Table 2-18b provides the baseline
performance of the models when tested using the examiners’ individual values of the DFIQI
variables, combined with the values of the LFIQ, LQM, and ESLR variables, and outcome
judgments assigned based on the examiners’ individual responses. This set of models provide the
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extent to which performance is improved when combining variables from all methods compared
to a model using the DFIQI variables alone.

Difficulty Determinations
(Integrated Algorithm — All Methods Combined)
Consensus Outcome Judgments
Machine Learning Overall 95% Confidence Interval

Technique Accuracy (lower bound — upper bound)
CART 0.516 0.489 — 0.543
RF 0.607 0.584 — 0.630
MultiNom 0.595 0.572 -0.618
KNN 0.551 0.536 — 0.566
NB 0.613 0.593 — 0.632
C5.0 0.586 0.563 — 0.608
SVM 0.572 0.551 —0.592

Table 2-18a: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “Integrated Algorithm — A/l Methods Combined” for each machine learning technique for Difficulty
determinations (tested using outcome judgments assigned based on majority consensus among all examiners for

each image).
Difficulty Determinations
(Integrated Algorithm — All Methods Combined)
Individual Outcome Judgments
Machine Learning Overall 95% Confidence Interval

Technique Accuracy (lower bound — upper bound)
CART 0.506 0.475 - 0.537
RF 0.562 0.533-0.591
MultiNom 0.538 0.509 — 0.566
KNN 0.485 0.462 — 0.509
NB 0.557 0.531 -0.583
C5.0 0.552 0.525 - 0.579
SVM 0.537 0.512 — 0.562

Table 2-18b: Overall accuracy and associated uncertainty (95% confidence interval) from raw model classifications
of the “Integrated Algorithm — All Methods Combined” for each machine learning technique for Difficulty
determinations (tested using outcome judgments assigned based on the examiners’ individual responses).

General Discussion

There are three key observations we can make based on these data presented in Tables 2-9
through 2-18b. First, the baseline performance of the “derivative DFIQI” (for both individual
outcome judgments and consensus outcome judgments) is consistent with the performance of the
“actual DFIQI” as provided by Appendix B-1 across all outcome judgments (“value,”
“complexity,” and “difficulty”’). This is relevant as it demonstrates that the modification used in
the training of the “derivative DFIQI” to permit these comparisons did not have a substantive
impact to the performance of the baseline. Second, in terms of the best performing machine
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learning techniques, the ‘“derivative DFIQI” (for both individual outcome judgments and
consensus outcome judgments) performs similar to the “LFIQ-LQM-ESLR Baseline” for
consensus outcome judgments only. The performance the “LFIQ-LQM-ESLR Baseline” for
individual outcome judgments, however, was consistently inferior. These findings were observed
across all outcome judgments (“value,” “complexity,” and “difficulty””). Third, the performance
of the “Integrated Algorithm — All Methods Combined” did not result in substantive improvements
compared to the baseline performance provided by the models developed using the DFIQI
variables alone. These results suggest that, for purposes of predicting examiners’ judgments of
“value,” “complexity,” and “difficulty,” the DFIQI variables are influential variables for predicting
individual and consensus outcome judgments and the tradeoff decisions that were made during the
development of DFIQI (i.e., reduced computational complexity and algorithmic transparency) did
not have a substantive impact to performance compared to the more complex algorithms evaluated.
Although these findings do not allow strong inferences as to why the models developed using the
DFIQI variables resulted in the greatest performance, one key distinction between the DFIQI and
the other methods evaluated is that the values of the DFIQI variables rely on examiners’ inputs (as
it relates to identifying the specific quantities and locations of features in the impression) whereas
the other methods do not. Thus, in this context of predicting examiners’ outcome judgments for
which ground truth is non-existent, it seems that a tradeoff must be made in terms of performance
versus complete objectivity. Looking forward, however, objectivity of the DFIQI might be
improved by relying on high performance automated feature extraction algorithms to automatically
detect the quantity and locations of features as a pre-processing step prior to using the DFIQI
(thereby reducing the variability caused by user inputs).
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3  Statistical Interpretation Software (FRStat)

This chapter presents a manuscript entitled “A Method for the Statistical Interpretation of
Friction Ridge Skin Impression Evidence: Method Development and Validation” (Swofford et al.,
2018) [50] published in Forensic Science International that describes the development and
validation of a publicly accessible algorithm and software application (referred to as the Friction
Ridge Statistical Interpretation Software, or FRStat). The FRStat algorithm first calculates the
similarity (referred to as the Global Similarity Statistic, or GSS) between two sets of features
identified by an analyst on two separate impressions which the analyst believes to correspond. The
software then provides two estimates, one indicating how often impressions originating from
common sources would result in a GSS that is equal to or less than the calculated GSS and another
indicating how often impressions from different sources would result in a GSS that is equal to or
greater than the calculated GSS. The two values are then combined as a ratio providing a single
summary statistic indicating to what extent the GSS is consistent with impressions originating
from a common source compared to different sources. In addition to the published manuscript,
this chapter also discusses the performance of FRStat compared to another available methods.

3.1 Method Development and Validation

A Method for the Statistical Interpretation of Friction Ridge Skin Impression Evidence:
Method Development and Validation

1Swofford, H.J.; *Koertner, A.J.; 2Zemp, F.; *Ausdemore, M.; “Liu, A.; Salyards M.J.

1U.S. Army Criminal Investigation Laboratory, Defense Forensic Science Center, USA
2School of Criminal Justice, Forensic Science Institute, University of Lausanne, Switzerland
3Department of Mathematics and Statistics, University of South Dakota, USA
“Department of Statistics, University of Virginia, USA

3.1.1 Abstract

The forensic fingerprint community has faced increasing amounts of criticism by scientific
and legal commentators, challenging the validity and reliability of fingerprint evidence due to the
lack of an empirically demonstrable basis to evaluate and report the strength of the evidence in a
given case. This paper presents a method, developed as a stand-alone software application, FRStat,
which provides a statistical assessment of the strength of fingerprint evidence. The performance
was evaluated using a variety of mated and non-mated datasets. The results show strong
performance characteristics, often with values supporting specificity rates greater than 99%. This
method provides fingerprint experts the capability to demonstrate the validity and reliability of
fingerprint evidence in a given case and report the findings in a more transparent and standardized
fashion with clearly defined criteria for conclusions and known error rate information thereby
responding to concerns raised by the scientific and legal communities.

Keywords: Forensic Science; Fingerprints; Strength of evidence; Weight of Evidence; Likelihood
Ratio; Probability
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3.1.2 Introduction

Over the last several years, the forensic science community has faced increasing amounts
of criticism by scientific and legal commentators, challenging the validity and reliability of many
forensic examination methods that rely on subjective interpretations by forensic practitioners [1-
7]. Of particular concern, noted in 2009 by the National Research Council (NRC) of the National
Academies of Science (NAS) [3] as well as the President’s Council of Advisors on Science and
Technology (PCAST) as recently as September 2016 [7], is the lack of an empirically
demonstrable basis to substantiate conclusions from pattern evidence, thus limiting the ability for
the judiciary to reasonably understand the reliability of the expert’s testimony for the given case.
Consistent with several academic commentators, both the NRC and PCAST strongly encouraged
the forensic science community to develop tools to evaluate and report the strength of forensic
evidence using validated statistical methods [3, 7, 9]. While these concerns apply to nearly every
pattern evidence discipline, the forensic fingerprint discipline has received most of the attention
because fingerprint analysis is one of the most widely used techniques in the criminal justice
system. As aresult, over the last several years numerous methods and models have been proposed
to provide a statistical estimate of the weight of fingerprint evidence using features that are familiar
to forensic practitioners, primarily fingerprint minutiae [29-43].

Prior methods can be classified as either (a) feature-based models, which calculate
probability estimates from the random correspondence of feature configurations within a pre-
determined tolerance or (b) similarity metric models, which calculate the probability estimates
from distributions of similarity scores. Among the feature-based models: Zhu, Dass, and Jain
proposed a family of finite mixture models to represent the distribution of fingerprint minutiae,
including minutiae clustering tendencies and dependencies in different regions of the fingerprint
image domain to calculate the probability of a random correspondence [30]; Su and Srihari
proposed a model based on the spatial distribution of fingerprint minutiae, taking into account the
dependency of each minutiae on nearby minutiae and the confidence of their presence in the
evidence, to calculate the probability of random correspondence [34]; Lim and Dass proposed a
simulation model based on the distribution of fingerprint minutiae estimated using a Bayesian
MCMC framework [35]; Abraham et al. proposed a model based on support vector machines
trained with features discovered via morphometric and spatial analyses of corresponding minutiae
configurations for both match and close non-match populations [39]. Among the similarity metric
models: Neumann et al. proposed a variety of models based on a similarity metric calculated from
feature vectors taking into consideration type, direction, and relative spatial relationships of
fingerprint minutiae [29, 32, 37] as well as taking into account general pattern [38]; Egli [31, 33,
41], Choi and Nagar [36], and Leegwater et al. [43] proposed a variety of models based on the
distribution of similarity scores from Automated Fingerprint Identification Systems (AFIS).
Abraham, deJongh, and Rodriguez evaluate the effect of different types of conditioning on the
impact of the results derived from AFIS-based models [40]. Taking a slightly different approach
than those discussed above, Neumann et al. proposed a model relying on an AFIS algorithm to
estimate the probability distributions of spatial relationships, directions and types of minutiae
rather than directly modeling the distribution of AFIS scores [42].
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Although each of the proposed models demonstrated promising performance metrics, none
have been widely accessible to the forensic community, thus prohibiting their ability to be further
evaluated or implemented into routine casework. Consequently, forensic science laboratories
throughout the United States have been unable to adequately address the concerns by the NRC and
PCAST by demonstrating the reliability of fingerprint evidence for the case at hand. In light of
this gap, this paper presents a method, developed as a stand-alone software application, FRStat,
which measures the similarity between two configurations of friction ridge skin features and
calculates a similarity metric. Statistical modeling of the distributions of the similarity statistic
values from mated and non-mated impressions facilitates a statistical assessment of the strength of
the fingerprint evidence. Although this method builds upon the general concepts of similarity-
based models described earlier, this method utilizes a novel approach for quantifying the similarity
and strength of fingerprint evidence. Further, having been developed as a stand-alone software
application by the United States Government, this method is accessible to the forensic community
thereby providing the capability to ensure the strength of fingerprint evidence is evaluated with an
empirically grounded basis.

This paper provides a brief overview of the similarity calculations performed by the method
followed by more detailed discussions regarding its development, performance and validation.
Limitations of the method and considerations for policy and procedure when applied to forensic
casework are also discussed.

3.1.3 Materials & Methods
Similarity Calculations

In general terms, the method measures the similarity between the configurations of friction
ridge skin features (often referred to as level 2 detail or minutiae) from two different fingerprint
images. The spatial relationships and angles of the features annotated by a forensic examiner are
used to calculate a similarity statistic (i.e. score). The similarity statistic is then evaluated against
datasets of similarity statistic values derived from pairs of impressions relevant for forensic
casework made by mated (same) and non-mated (different) sources of friction ridge skin to
calculate a statistical estimate of the strength of the given comparison. The method consists of
three overarching steps: (1) feature pairing, (2) feature measurements, and (3) similarity statistic
calculations.

In order to perform the similarity calculations, the features must be paired between the two
impressions. Features are paired by initially detecting the Cartesian coordinates and angles of the
annotated features on each image, which represent the locations and angles of ridge flow for the
features. Using those feature details, a series of transformations are performed by iteratively
rotating and translating the feature configurations to identify the optimal overlay of features
between the two impressions among all possible overlays. Corresponding features are paired
between the two images using a well-established combinatorial optimization algorithm to solve
for the “optimal assignment” of features within each configuration [63]. Figure 3-1 illustrates the
overlay and pairing of features. Once paired, the features retain their original Cartesian coordinates
and angles as they appear on their respective images.
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Figure 3-1. Conceptual illustration of the overlay and pairing of features. The grey annotations represent features
on one impression and the black annotations represent features on the other.

Feature measurements are performed by applying a series of translation and rotation
transformations to the paired features to facilitate anchoring and overlay of feature triplets (sub-
configurations of three features). Within the feature triplet, two features serve as primary and
secondary anchors while the third feature is measured with respect to the Euclidean distance and
angle differences between the paired features. The primary anchor features are aligned on the
origin of a coordinate plane and the secondary anchor features are aligned parallel to the x-axis.
Figure 3-2 illustrates this concept of anchoring and overlaying a feature triplet. Using the
measured differences between paired features, a “weight” is calculated for both the distance
difference and angle difference between each feature. This process is repeated such that weights
for distance and angle differences are calculated for all features using every possible combination
of features in each triplet.
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Figure 3-2. Conceptual illustration of the anchoring and overlay of a feature triplet. The primary pair of anchor
features are on the origin. The secondary pair of anchor points are parallel to the x-axis. The grey annotations
represent features on one impression and the black annotations represent features on the other.

The weight functions exploit subtle variations in the measured differences as well as
provide context to the significance of those measurements in terms of the plasticity of friction ridge
skin. The weight functions were designed such that the following criteria were met:

a. The weight functions are insensitive to common variations of feature location and angle
displacements in mated source impressions due to distortion during friction ridge skin
deposition under heavy pressure and movement.

b. The weight functions maximize the separation of similarity statistic values between mated
and non-mated impressions for a given quantity of features.

c. The weight functions increase the separation of similarity statistic values between mated
and non-mated impressions as the number of features increases.

The rules and parameter values for the weight functions are based on the empirical
observations by Fagert & Morris [64]. In their study, Fagert & Morris [64] measured the variations
of features commonly observed from repeated impressions of mated source fingers under various
conditions of lateral pressure with respect to the distance difference and angle differences of
features. Using the observations by Fagert & Morris [64] as an initial starting point, manual
optimizations of the rules and parameter values for the weight functions were performed using a
subset of mated fingerprint samples representing actual casework conditions. Once the
measurements and weights for each feature are calculated they are combined into a single statistic
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and transformed to represent the global similarity of the entire configuration of features (once
transformed, higher values indicate higher similarity).

As noted above, the similarity statistic is dependent upon the manual selection and
annotation of features by fingerprint experts. Consequently, the precision by which features are
annotated introduces uncertainty in the calculated value of the similarity statistic. The method
accounts for this uncertainty by applying an iterative random sampling scheme for the annotated
details resulting in random displacements of the feature annotations in terms of Euclidean distance
and angles. The parameters for the random displacements of feature annotations were determined
by modeling the variability of feature annotations in latent impressions and reference impressions
across multiple practicing fingerprint experts employed by a federal crime laboratory in the United
States. Appendix C-1 provides more specific details regarding the evaluation and statistical
modeling of the precision of feature annotations by practicing experts.

Following one-hundred iterations of randomly displacing feature annotations and re-
calculating the global similarity statistic (using an unseeded random number generator), the final
similarity statistic value output to the user is calculated as the lower bound of the 99% confidence
interval for the mean. The lower bound of the 99% confidence interval was selected as it provides
a conservative estimate of the “true” similarity statistic value for the given annotation.

Empirical Distributions

The empirical distributions of similarity statistic values among mated and non-mated
impressions provide the foundation for estimating the strength of the fingerprint evidence. Taking
into consideration that this method is intended for use in criminal or civil courts, the empirical
distributions are intentionally biased such that the non-mated data are biased to higher similarity
statistic values and mated data are biased to lower similarity statistic values. For non-mated data,
this is accomplished by conditioning on (i) the region of friction ridge skin which maximizes the
opportunities of observing higher values and (ii) any set of n features determined to be “optimally
paired” from a larger set of m possible features with respect to the combinatorial optimization
algorithm described in [63] under any condition of rotation and translation such that the similarity
statistic values are maximized. For mated data, this is accomplished by conditioning on lateral
pressures and other distortions such that the similarity statistic values are minimized and ensuring
that the distributions represent the full range of plausible similarity statistic values that could
reasonably be observed in casework when impressions are subject to various distortions during
deposition. Keeping in mind that the similarity calculations do not take into account pattern type,
feature type, specific feature configurations, or other details which may have biological
dependencies, the empirical distributions were not conditioned on those specific criteria.
However, because the similarity statistic calculations were designed to account for feature
quantity, the distributions are calculated separately for each quantity of features (ranging from 5
to 15).

For the non-mated distributions, conditioning on the delta region was determined to

maximize the opportunities of observing higher similarity statistic values. Appendix C-2 provides
more specific details regarding this determination. The distributions of similarity statistic values
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characterizing the broader population of non-mated samples for each quantity of features (ranging
from 5 to 15) were generated using a subset of impressions from the National Institute of Standards
and Technology (NIST) Special Database (SD) 27 [65], cropped to a standard size of 0.5in x 0.5in
(12.7mm x 12.7mm) centered on the delta and randomly paired to non-mates. Features were
annotated by practicing fingerprint experts beginning with those closest to the delta. Only n
number of features under consideration were annotated in “image #1.” All visible features, m, in
“image #2” were annotated, such that m >> n for each comparison. For each quantity of features,
a distribution of 2,000 similarity statistic values was calculated and conditioned on any set of n
features on image #1 determined to be “optimally paired” from the larger set of m possible features
on image #2 with respect to the combinatorial optimization algorithm described in [63]. The two-
sample Kolmogorov-Smirnov (K-S) test was used to evaluate the stability of the distributions.
This was accomplished by comparing the distribution from one half of the dataset to the
distribution from the other half of the dataset (each half distinct from one another) for each quantity
of features. The K-S test was selected for this purpose on the basis of its ubiquitous use as a non-
parametric test of the equality of continuous probability distributions. For all distributions, the K-
S test resulted in a p >> 0.05 and determined to be sufficiently stable to permit parameter estimation
and modeling of the population distributions.

For the mated distributions, a sample of fingerprints were collected from 50 different
individuals using a livescan device with extreme distortions deliberately produced. This sample
was determined to provide distributions representative of those observed in actual casework.
Appendix C-3 provides more specific details regarding this determination. For the mated
distribution, each individual provided eleven repeated impressions from the right thumb on the
livescan device. The thumb was chosen because it results in maximal pliability of skin compared
to the other fingers [64]. The repeat impressions consisted of one “non-distorted” impression used
as the reference print and the remaining ten were made with lateral distortions applied in the
following directions: north, south, east, west, northeast, northwest, southeast, southwest, twist
clockwise, and twist counter-clockwise. Pressure was applied in the respective directions until the
skin began to lose grip with the livescan surface. Of the 500 pairs obtained (ten distortions each
for fifty different individuals), one pair lacked sufficient clarity to permit accurate determination
of the corresponding features and therefore was discarded. Fifteen corresponding fingerprint
features for the remaining 499 pairs of mated fingerprint impressions were annotated by practicing
fingerprint experts in a federal crime laboratory in the United States. The distribution of similarity
statistic values for each subset of feature quantities (ranging from 5 to 15) was calculated by
randomly selecting (using a random selection algorithm) four combinations of n features out of m
available (where m = 15). This resulted in 1,996 similarity statistic values for each quantity of
features (ranging from 5 to 14) and 499 similarity statistic values for 15 features. The stability of
the distributions were evaluated using a two-sample K-S test comparing the distribution from one
half of the dataset to the distribution from the other half of the dataset (each half distinct from one
another) for each quantity of features. For all distributions, the K-S test resulted in a p >> 0.05
and determined to be sufficiently stable to permit parameter estimation and modeling of the
population distributions.
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Parameter Estimation and Modeling

The empirical distributions of similarity statistic values described above (non-mated and
mated) were modeled to determine plausible probability density functions which may model the
similarity statistic values for the relevant populations of non-mated and mated friction ridge skin
impressions. Taking into consideration the visual appearance of the empirical distributions and
the construct of the weighting functions, the empirical distributions were each modeled using k-
component (where k = 2 or 3) mixtures of Gaussian distributions. Component weights and
parameter estimates were determined using maximum likelihood estimation methods within
commercially available statistical analysis software (JMP). Although k-component Gaussian
mixtures are more common, logistic distributions were applied on the basis of their heavier tails
compared to Gaussian distributions. The heavier tails provide more conservative estimates of
probabilities in the extreme ends of the distributions. The parameters for the logistic distribution
were approximated using the estimated parameters of the Gaussian distributions. This was
accomplished by setting the location parameter of the logistic distribution equal to the mean
parameter of the Gaussian distribution as well as applying a coefficient to the standard deviation
parameter of the Gaussian to approximate the scale parameter of the logistic distribution such that
the difference between the two densities is minimized. Prior to estimating the component weights
and parameter values, the empirical distributions were partitioned into two groups. For each bin
of feature quantities, three-fourths of the sample was randomly selected using a random selection
algorithm and used to estimate the population distribution parameters. The remainder of the
sample was used to evaluate the goodness of fit of the estimated parameters for the population
distribution. Once the optimal parameters were estimated, a one-sample K-S test was performed
to evaluate the goodness of fit between the estimated theoretical logistic mixture distribution and
the empirical distribution of the partition of similarity statistic values that was not used to estimate
the theoretical distribution parameters. This process was repeated for each quantity of features
(ranging from 5 to 15) for both mated and non-mated samples. The parametric models are
proposed as plausible estimations of the population distributions for each quantity of features.
Appendix C-4 provides more specific details regarding these determinations. Figures 3-3 and 3-4
illustrate the overlays between the theoretical density distributions and the empirical distributions
of similarity statistic values for non-mated and mated datasets, respectively.
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Figure 3-3. Empirical density distributions of the similarity statistic values for the nhon-mated sample (grey)

compared to the theoretical (k-component logistic mixture) distribution (black) for each quantity of features

(ranging from 5 to 15). The X-axis represents the global similarity statistic values. The y-axis represents the
density.
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Figure 3-4. Empirical density distributions of the similarity statistic values for the mated sample (grey) compared to
the theoretical (k-component logistic mixture) distribution (black) for each quantity of features (ranging from 5 to
15). The X-axis represents the global similarity statistic values. The y-axis represents the density.

Method Performance

The overall performance of the method was evaluated in terms of its sensitivity, specificity,
within-sample variability, and between-sample variability. The performance of the method may
be evaluated in terms of both the similarity statistic (i.e. global similarity statistic, GSS) values
alone as well as in terms of the similarity statistic values in the context of the relevant probability
distributions of mated vs. non-mated populations.

In terms of the mated distribution, the value of interest is the left tailed probability (the
probability of a specific similarity statistic value or lower) as depicted in equation 3-1. In other
words, the left tailed probability provides an indication of the proportion of similarity statistic
values from mated source impressions which are estimated to be less than a specified test statistic
value for a given case at hand. In terms of the non-mated distribution, the value of interest is the
right tailed probability (the probability of a specific similarity statistic value or higher) as depicted
in equation 3-2. In other words, the right tailed probability provides an indication of the proportion
of similarity statistic values from non-mated source impressions which are estimated to be greater
than a specified test statistic value for a given case at hand.
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P(GSS, < GSS(t),|0

nmated)

Equation 3-1: The left-tailed probability of observing a given similarity statistic, GSS(t), value or lower with respect
to the distribution of GSS values from mated impressions, where “t” indicates the test statistic, “n” represents the
feature quantity, and 6, represents the parameters characterizing the distribution of values for a given feature
guantity.

P(GSS,, = GSS(t),|6

nnon—mated)

Equation 3-2: The right-tailed probability of observing a given similarity statistic, GSS(t), value or higher with

respect to the distribution of GSS values from non-mated impressions, where “t” indicates the test statistic, “n”

represents the feature quantity, and 6, represents the parameters characterizing the distribution of values for a
given feature quantity.

The values derived from equations 3-1 and 3-2 may be combined as a ratio, such that the estimated
proportion of a given similarity statistic value or lower among mated sources is considered relative
to the estimated proportion of a given similarity statistic value or higher among non-mated sources.
Equation 3-3 combines equations 3-1 and 3-2 as the numerator and denominator, respectively.

P(GSS, < GSS(t),|0
P(GSS,, = GSS(t),|6

nmated)

nnon—mated)

Equation 3-3: Ratio of equations 3-1 and 3-2 indicating the relative support of a given similarity statistic, GSS(t), in
terms of one proposition (mated) over another (non-mated).

From equation 3-3, values greater than 1 indicate a higher probability of the observed similarity
statistic value among mated sources compared to non-mated sources and values less than 1 indicate
a higher probability of the observed similarity statistic values among non-mated sources compared
to mated sources. Values equal to 1 indicate equal probability of the observed similarity statistic
value among mated and non-mated sources.

It is important to note that equations 3-1 and 3-2 are calculated as tail probabilities rather
than likelihoods; thus, equation 3-3 is not a true likelihood ratio or Bayes’ factor and should not
be used as such with the intent of calculating a posterior probability.

Datasets
The performance of the method is evaluated using the following datasets:

1. Mated test dataset #1 (known to be mated) — A test dataset of 288 mated latent and reference
impressions deposited under semi-controlled, normal handling conditions (to simulate
casework) on a variety of different surfaces by 78 different individuals. The purpose of
this dataset is to evaluate the performance of the method using latent and reference
impressions which are similar to casework in terms of deposition and development, but for
which ground truth mated status is known. Latent impressions were developed using a
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variety of chemical and physical processing techniques commonly used in casework by
fingerprint experts, such as cyanoacrylate ester fuming, fluorescent dye stains, ninhydrin,
indanedione, 1-8 diazafluoren-9-one, and fingerprint powders. Each set was visually
examined and corresponding features (ranging between 5 and 15) were manually annotated
by practicing fingerprint experts in a federal crime laboratory in the United States. The
overall quality (clarity) of the latent impressions is considered to be representative of
casework impressions. This is based on the subjective evaluation by fingerprint experts as
well as a comparison of the empirically measured quality scores using LQMetrics software
available in the Universal Latent Workstation. A two-sample K-S test was performed
comparing the distribution of LQMetric quality (clarity) scores from this dataset to the
distribution of LQMetric clarity scores from the publically available dataset of casework
impressions (mated test dataset #2 described below). The value of the K-S test statistic
(D2sgs,184 = 0.087) fails to reject the null hypothesis that the two samples originated from
the same distribution (p > 0.05) based on a p-value decision threshold of 0.01.

Mated test dataset #2 (accepted to be mated) — A casework dataset of 184 latent and
reference impressions publically available by the National Institute of Standards and
Technology (NIST) Special Database 27 [65]. Although this dataset is commonly accepted
to be mated by the general scientific community, it was collected from adjudicated
casework by the Federal Bureau of Investigation and therefore ground truth is not actually
known. The purpose of this dataset is to evaluate the performance of the method using
latent and reference impressions from actual casework and which has been publically
available and commonly used by the general scientific community. Each set was visually
examined and corresponding features (ranging between 5 and 15) were manually annotated
by practicing fingerprint experts in a federal crime laboratory in the United States. NOTE:
The NIST Special Database 27 actually contains 258 latent and reference impressions in
total; however, only 184 were able to be evaluated due to a technical issue with the
remaining files preventing them from being opened (corrupted image files).

Mated test dataset #3 (believed to be mated) — A casework dataset of 605 latent and
reference impressions collected from casework during the course of routine operations by
fingerprint experts in a federal crime laboratory in the United States and reported as
“positive associations.” The purpose of this dataset is to evaluate the performance of the
method using latent and reference impressions from a much larger sample of actual
casework impressions as compared to the NIST Special Database 27 alone. The
impressions were collected from a wide variety of cases, substrates, and assigned
fingerprint experts. The corresponding features (ranging between 7 and 15) were manually
annotated by the assigned fingerprint expert during the initial case examination. The
selected features were then annotated later in a format suitable for FRStat analysis by the
same fingerprint expert for purposes of this evaluation.

Non-mated test dataset #1 (known to be non-mated) — A test dataset of 20 latent print
images from the mated test dataset #1 that were selected on the basis of representing the
left delta region fingerprint impressions and 25 non-mated reference images obtained from
the NIST Special Database 27 [65]. The purpose of this dataset is to evaluate the
performance of the method using non-mated impressions for which the impressions were
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arbitrarily paired and for which the impressions are publically available and commonly
used by the general scientific community. For each latent print image, fifteen features were
annotated around the delta region. Each reference print was cropped to a standard size of
0.5in x 0.5in (12.7mm x 12.7mm) centered on the left delta. All features visible in the
cropped reference images were manually annotated by practicing fingerprint experts. For
each comparison of the 20 latent prints to each of the 25 non-mated reference prints, a
configuration of n features was randomly selected (using a random selection algorithm)
from the latent print and compared against the reference print (each containing m annotated
features, where m >> n) resulting in 500 similarity statistic values for each set of n features
(ranging from 5 to 15). One similarity statistic value was obtained per image pair. The
similarity statistic value was conditioned on any set of n features on image #1 determined
to be “optimally paired” from the larger set of m possible features on image #2 with respect
to the combinatorial optimization algorithm described in [63] under any condition of
rotation and translation.

Non-mated test dataset #2 (known to be non-mated; “close non-match” from AFIS database
search) — Two separate datasets: (#2a) a test dataset of fingerprint images representing the
“delta” region and (#2b) a test dataset of fingerprint images representing the “core” region.
The purpose of this dataset is to evaluate the performance of the method using non-mated
impressions for which the impressions were paired on the basis of an AFIS similarity
algorithm. Each dataset was separated into eleven separate subsets, each containing
approximately 100 samples, conditioned on the number of features (n) being compared
(ranging from 5 features to 15 features). Features were manually annotated by practicing
fingerprint experts such that the features closest to the reference point (core or delta
depending on the sample) were annotated first and then the remaining n features were
annotated in a radiating fashion outward. Post annotation, each image was cropped by a
bounding rectangle such that only those ridges and features that are part of the annotated
configuration remain. These images serve as the “query” print. Each query print was then
searched using an AFIS against an operational database containing approximately 100
million different fingerprint impressions from approximately 10 million different
individuals. The AFIS ranked the top 20 most similar reference fingerprints to the
fingerprint image searched. Of the top 20 results, the fingerprint image in rank 1 was
confirmed to be a non-mated source with respect to the query print and used for
comparison. Appendix C-2 provides more specific details regarding the development of
this dataset.

Sensitivity & Specificity

The sensitivity was measured as the proportion of mated samples which resulted in a

probability ratio value greater than a specified threshold ratio value. The specificity was measured
as the proportion of non-mated samples which resulted in a ratio value less than a specified
threshold ratio. Both the sensitivity and specificity will vary as a function of the ratio value chosen
as a threshold. As the threshold ratio value increases, the sensitivity will decrease and the
specificity will increase. As the threshold ratio value decreases, the sensitivity will increase and
the specificity will decrease. Accordingly, both sensitivity and specificity were measured
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separately using threshold ratio values of 1, 10, and 100, respectively. In addition to these
threshold values, Receiver Operator Characteristics (ROC) curves illustrate the performance of the
method across the full range of potential threshold values.

The sensitivity was evaluated using the mated test dataset #1 (known to be mated). Mated
test dataset #2 (accepted to be mated) and mated test dataset #3 (believed to be mated) were also
utilized to evaluate the consistency between threshold ratio values and experts’ interpretation of
mated status. The term “consistency” is used here since it is not a true measure of sensitivity
because mated status is not truly known. Each dataset was considered separately. Of the total
number of available latent and reference impressions in each dataset, up to ten different
configurations of n features were randomly selected (using a random selection algorithm) from m
available for each quantity of features (ranging between 5 and 15) to evaluate the results across
the impressions subject to different conditions of distortion. Each configuration is considered as
a separate measurement.

The specificity was evaluated using the non-mated test dataset #1 (known to be non-mated)
as well as the non-mated test datasets #2a and #2b (known to be non-mated, “close non-match”
from AFIS database search). The use of both datasets provides two different perspectives of the
specificity as a result of prints being paired with non-mated impressions selected arbitrarily (non-
mated dataset #1) as well prints being paired with the most-similar non-mated impression selected
from a database of approximately 100 million others. In the latter context, “most-similar” is
defined as the #1 rank candidate response from a large operational AFIS utilizing blackbox
fingerprint search and matching algorithms. It is reasonable to consider the distribution of
similarity statistic values from the non-mated test dataset #2 as representing the extreme tail of the
distribution of values from the non-mated test dataset #1.

Within-Sample Variability & Between-Sample Variability

The variability of the method was evaluated separately in terms of the within-sample
variability and between-sample variability of the similarity statistic values. The within-sample
variability captures the variation as a result of multiple measurements of the same features. The
between-sample variability captures the variation as a result of multiple measurements of different
features and prints. Thus, the within-sample variability accounts for variations due to the
imprecision and uncertainty of the specific location and angles of the feature annotations and the
between-sample variability accounts for variations due to differences in distortions caused by
pressure, substrate, etc. from different measurements across different configurations of features
and impressions.

By taking into account the imprecision of feature annotations described in Appendix C-1,
repeat measurements of the same features (without manual re-annotation) are subject to variation
due to the random resampling scheme built into the method. The within-sample variability
captures the variation of the similarity statistic values as a result of multiple measurements of the
same features. The within-sample variability was evaluated using 92 image replicates from the
mated test dataset #1 and mated test dataset #2, each of which contained 15 annotated features.
Considering the intended use of this method is on impressions believed to be mated by the
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fingerprint expert, the within-sample variability was not evaluated on the non-mated test datasets.
For each image replicate, a configuration of n features was selected at random. Using the same
configuration of n features for each respective replicate, a series of 25 repeat measurements were
taken (where each measurement represents the lower bound of the 99% confidence interval of the
k-iterations from the random resampling scheme; and where k = 100). The standard deviation of
the 25 repeat measurements for each of the 92 image replicates was calculated. Using the standard
deviations from each of the 92 image replicates, the combined standard deviation was calculated
as the within-sample variability. This was repeated for each bin of feature quantities (ranging from
5to 15).

The between-sample variability captures the variation of the similarity statistic values as a
result of multiple (different) measurements of different features across different impressions.
While variabilities of the similarity measurements as a result of the imprecision of the feature
annotation process are taken into account in the similarity statistic calculations, the variabilities of
the similarity measurements as a result of different conditions of distortion across different regions
of an impression or across different impressions are not since they are not a consequence of repeat
attempts to measure the same feature data. Rather, the between-sample variability is expected to
represent a much larger range of similarity statistic values similar to the range of values represented
by the estimated parameters of the population distributions discussed in further detail in Appendix
C-4. The between-sample variability was evaluated using all image replicates from the mated test
dataset #1 (known to be mated), mated test dataset #2 (accepted to be mated), and mated test dataset
#3 (believed to be mated) combined. Considering the intended use of this method is on impressions
believed to be mated by the fingerprint expert, the between-sample variability was not evaluated
on the non-mated test datasets. For each of the total number of available latent and reference
impressions from each mated test dataset (1,077), up to ten different k-configurations of n features
were randomly selected (using a random selection algorithm) from m available for each quantity
of features (ranging between 5 and 15) to evaluate the results across the impressions subject to
different conditions of distortion. The standard deviation was calculated as the between-sample
variability for each bin of feature quantities (ranging from 5 to 15).

The within-sample variability and between sample variability are both illustrated in terms
of the similarity statistic value rather than in terms of the probability ratio because the impact to
the probability ratio will vary depending on the location of the similarity statistic value within the
distributions — subtle variations of the similarity statistic value in the tail of a distribution will
cause a more dramatic change to the probability value compared to the other locations, such as the
middle region. Thus, representing the variability in terms of the probability ratio itself would be
incomplete and potentially misleading.

3.1.4 Results & Discussion
The overall performance of the method was evaluated in terms of its sensitivity, specificity,
within-sample variability, and between-sample variability. Initially, the expected performance

may be evaluated in terms of comparing the empirical distributions of similarity statistic values
between mated and non-mated impressions. These distributions served as the empirical foundation
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for the parameter estimations and modeling described in greater detail in Appendix C-4. Figure
3-5 illustrates the empirical distributions in terms of density.
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Figure 3-5. Empirical distributions of similarity statistic values for both non-mated (dark grey) and mated (light
grey) samples for feature quantities 5 through 15. The X-axis represents the global similarity statistic values. The
y-axis represents the density.

From figure 3-5, two important observations can be made. First, we see that the distributions
appear to exhibit little overlap between the mated and non-mated datasets. Second, we see that
the distributions appear to increase in separation as the feature quantities increase.

Sensitivity

The sensitivity was evaluated using the mated test dataset #1 (known to be mated). Mated
test dataset #2 (accepted to be mated) and mated test dataset #3 (believed to be mated) were also
utilized to evaluate the consistency between threshold ratio values and experts’ interpretation of
mated status (“consistency” is used here since it is not a true measure of sensitivity because mated
status is not truly known). Each dataset was considered separately. Table 3-1 provides the
sensitivity using mated test dataset #1. Table 3-2 provides the consistency between the method
and experts’ interpretation of mated status using mated test dataset #2. Table 3-3 provides the
consistency between the method and experts’ interpretation of mated status using mated test
dataset #3.
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Number of
Feature | configurations Sensitivity Sensitivity Sensitivity
Quantity | (Mated Dataset (Ratio >1) (Ratio >10) (Ratio >100)
#1)
5 2,798 0.657 0.249 0.085
6 2,703 0.708 0.381 0.145
7 2,550 0.736 0.478 0.234
8 2,367 0.823 0.593 0.402
9 2,092 0.892 0.755 0.565
10 1,898 0.928 0.824 0.645
11 1,655 0.947 0.860 0.710
12 1,432 0.970 0.925 0.799
13 1,230 0.984 0.949 0.825
14 994 0.980 0.971 0.902
15 97 0.990 0.979 0.959

Table 3-1. Sensitivity of the method using mated test dataset #1 (known to be mated) for each quantity of features
(ranging from 5 to 15). Sensitivity was evaluated using a ratio of 1, 10, and 100 as the thresholds.

Featu_re coﬂ;gqubre(a&i%fns Cons_istency Cons_istency Con_sistency
Quantity (Mated Dataset #2) (Ratio >1) (Ratio >10) (Ratio >100)
5 1,772 0.730 0.201 0.052
6 1,674 0.783 0.317 0.100
7 1,512 0.830 0.446 0.163
8 1,317 0.913 0.636 0.328
9 1,166 0.959 0.852 0.595
10 088 0.966 0.899 0.721
11 781 0.968 0.948 0.827
12 706 0.965 0.965 0.905
13 583 0.971 0.971 0.949
14 480 0.973 0.960 0.960
15 47 0.979 0.957 0.957

Table 3-2. Consistency between ratio values greater than 1, 10, and 100 and experts’ interpretation of mated status
using mated test dataset #2 (accepted to be mated) for each quantity of features (ranging from 5 to 15).
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Number of
Feature | configurations Consistency Consistency Consistency
Quantity | (Mated Dataset (Ratio >1) (Ratio >10) (Ratio >100)
#3)

5 6,050 0.794 0.287 0.088

6 6,038 0.840 0.436 0.150

7 5,982 0.870 0.530 0.239

8 5,830 0.927 0.716 0.437

9 5,526 0.955 0.889 0.690

10 5,040 0.961 0.927 0.805

11 4,441 0.965 0.934 0.868

12 3,876 0.971 0.953 0.910

13 3,226 0.970 0.958 0.920

14 2,638 0.978 0.974 0.961

15 258 0.981 0.977 0.970

Table 3-3. Consistency between ratio values greater than 1, 10, and 100 and experts’ interpretation of mated status
using mated test dataset #3 (believed to be mated) for each quantity of features (ranging from 5 to 15).

With respect to the sensitivity calculations listed above, it is important to note that the
values were generated without the examiners having direct feedback regarding their annotation
precision. Without such feedback, examiners have become acclimated to a relaxed environment
in which they were accustomed to annotating the mere presence of a feature and in which
measurements were not taken directly from the annotations. In practice, where a fingerprint expert
recognizes the importance of precise annotations and adjusts accordingly, it is a reasonable
assumption that the sensitivity will be higher (and thus the false negative rate will be lower) than
what is represented in this section; however, a quantitative measure of how much higher the
sensitivity would be in practice is unknown at this time. Nevertheless, the sensitivity of the method
is expected to increase as examiners gain more experience and become more precise in their feature
annotations — similar to when examiners gain a better understanding of how feature annotations
impact the performance of AFIS search results and adjust their annotation habits accordingly.

Specificity

The specificity was evaluated using the non-mated test dataset #1 (known to be non-mated)
as well as the non-mated test datasets #2a and #2b (known to be non-mated, “close non-match”
from AFIS database search). The use of both datasets provides two different perspectives of the
specificity as a result of prints being paired with non-mated impressions selected arbitrarily (non-
mated dataset #1) as well prints being paired with the most-similar non-mated impression selected
from a database of approximately 100 million others. Table 3-4 provides the specificity using non-
mated test dataset #1. Table 3-5 provides the specificity using non-mated test datasets #2a and
#2b (table 3-5a — “delta” region; table 3-5b — “core” region).
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Number of
Feature Image pairs Specificity Specificity Specificity
Quantity (Non-mated (Ratio <1) (Ratio <10) (Ratio <100)
Dataset #1)
5 500 0.818 1.000 1.000
6 500 0.850 0.992 1.000
7 500 0.900 0.994 1.000
8 500 0.912 0.986 1.000
9 500 0.940 0.952 0.990
10 500 0.970 0.976 0.992
11 500 0.978 0.982 0.990
12 500 0.988 0.992 0.998
13 500 0.988 0.994 0.996
14 500 0.988 0.992 0.994
15 500 0.996 1.000 1.000

Table 3-4. Specificity of the method using non-mated test dataset #1 (known to be non-mated) for each quantity of
features (ranging from 5 to 15). Specificity was evaluated using a ratio of 1, 10, and 100 as the thresholds.

Number of
Feature msgir?;'e? Specificity Specificity Specificity
Quantity Dataset #24 — (Ratio <1) (Ratio <10) (Ratio <100)
“delta’ region)
5 99 0.566 0.788 0.980
6 99 0.687 0.747 0.980
7 96 0.688 0.719 0.896
8 99 0.747 0.788 0.812
9 99 0.818 0.818 0.828
10 97 0.814 0.835 0.845
11 96 0.802 0.823 0.823
12 98 0.857 0.867 0.888
13 99 0.899 0.929 0.939
14 100 0.980 0.990 0.990
15 100 0.920 0.920 0.940

Table 3-5a. Specificity of the method using non-mated test dataset #2a (known to be non-mated, “close non-match”
from AFIS database searches of the delta region) for each quantity of features (ranging from 5 to 15). Specificity
was evaluated using a ratio of 1, 10, and 100 as the thresholds.
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Number of
Feature '(mﬁg_en?;gds Specificity Specificity Specificity
Quantity Dataset #2b — (Ratio <1) (Ratio <10) (Ratio <100)
“core” region)
5 94 0.787 0.979 1.000
6 96 0.802 0.927 1.000
7 95 0.884 0.926 0.979
8 96 0.906 0.938 1.000
9 95 0.884 0.952 0.990
10 96 0.969 0.990 1.000
11 95 0.989 0.989 0.989
12 97 1.000 1.000 1.000
13 97 1.000 1.000 1.000
14 96 1.000 1.000 1.000
15 95 1.000 1.000 1.000

Table 3-5b. Specificity of the method using non-mated test dataset #2b (known to be non-mated, “close non-match”
from AFIS database searches of the core region) for each quantity of features (ranging from 5 to 15). Specificity
was evaluated using a ratio of 1, 10, and 100 as the thresholds.

With respect to the specificity calculations listed above, it is important to note that the
values are limited to the output of the FRStat algorithm alone; thus, these values should not be
confused with the overall specificity of the latent print examination method in general which is
much improved by the input of the fingerprint expert. In practice, where a fingerprint expert’s
visual examination will precede the calculation of a similarity statistic value using FRStat and
serve as an initial means of discrimination using details that FRStat is not designed to take into
account, it is a reasonable assumption that the specificity will be much higher (and thus the false
positive rate will be much lower) than what is represented in this section. However, because there
are no publically available datasets to empirically measure how often non-mated impressions are
falsely included by fingerprint experts and which result in sufficiently high similarity statistic
values using this method, a quantitative measure of how much higher the specificity would be in
practice cannot be determined at this time.

Receiver Operator Characteristic (ROC)

The Receiver Operator Characteristic (ROC) illustrates the performance of the method
across the full range of potential threshold values. Figure 3-6 illustrates the ROC curves for mated
test dataset #1 (known to be mated) and non-mated test dataset #1 (known to be non-mated) as well
as the non-mated test datasets #2a and #2b (known to be non-mated, “close non-match” from AFIS
database search). The use of both non-mated datasets provides two different perspectives of the
performance of the method as a result of prints being paired with non-mated impressions selected
arbitrarily (non-mated dataset #1) as well prints being paired with the most-similar non-mated
impression selected from a database of approximately 100 million others.
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Figure 3-6. ROC curves illustrating the performance of the method using mated test dataset #1 (known to be mated)
and non-mated test datasets #1 (known to be non-mated) as well as non-mated test datasets #2a (known to be non-
mated, “close non-match” from AFIS database searches of the delta region) and #2b (known to be non-mated;
“close non-match” from AFIS database searches of the core region) for each quantity of features (ranging from 5 to
15). The solid black line represents the ROC using non-mated test dataset #1(known to be non-mated). The dotted
black line represents the ROC using non-mated test dataset #2a (known to be non-mated; “close non-match” from
AFIS database searches of the delta region). The solid grey line represents the ROC using non-mated test dataset
#2b (known to be non-mated; “close non-match” from AFIS database searches of the core region). The X-axis
represents 1 - specificity. The y-axis represents the sensitivity.

From figure 3-6 as well as tables 3-4 and 3-5, we can make two important observations.
First, the specificity rates from non-mated dataset #1 and non-mated dataset #2b are very similar
to one another. Second, while the specificity rates from non-mated dataset #2a provides an
indication of the “worst case-scenario” since it narrowly focuses on the #1 rank candidates out of
approximately 100 million other non-mated prints as a result of AFIS searches and only considers
the delta region of the fingerprint during the searches, the method still demonstrates the ability to
accurately classify mated and non-mated impressions. Taking together, the performance
characteristics discussed above may provide some general context to the results when non-mated
samples are selected at random or whether they were selected on the basis of their similarity from
large database searches. The samples comprising non-mated datasets #2a and #2b are limited in
size due to operational constraints at the time of collection. A likely consequence of the small
sample sizes is the subtle variability in the performance characteristics observed between the
various feature quantities, particularly between 13, 14, and 15 features where the observed data
suggests 14 features had better performance characteristics than 15 features. With a larger sample,
the uncertainty associated with the performance characteristics will be reduced; therefore, further
research into the impact of AFIS searches on the specificity rates is encouraged. Nevertheless,
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because the intent of the method is to estimate the relative prevalence of similarity statistic values
among the broader population of non-mated impressions rather than focus only on “close non-
mates” from large database searches, the low sample size of these datasets (#2a and #2b) is not
considered a critical limitation — their selection as the #1 rank candidate means they were already
distinguished from all other impressions in the system using the high performance AFIS
algorithms.

Within-Sample Variability

The within-sample variability captures the variation of the similarity statistic values as a
result of multiple measurements of the same features without re-annotations (due to the random
resampling scheme discussed in greater detail in Appendix C-1). Table 3-6 provides the within-
sample variability of the method in terms of the combined standard deviation of similarity statistic
values. These results demonstrate very low within sample variability and are insignificant
compared to the between-sample variability.

Feature Combined ¢ Mean
Quantity GSS(t) GSS(t)
5 0.593 20.742

6 0.648 20.202

7 0.651 24.736

8 0.692 25.104

9 0.831 25.869

10 0.903 32.910
11 0.916 33.371
12 0.969 37.555
13 1.067 39.275
14 1.196 42.979
15 1.244 47.464

Table 3-6. Within-sample variability (combined standard deviation from 25 repeat measurements each for 92
different images) of the similarity statistic value (GSS(t)) for each quantity of features (ranging from 5 to 15).

Between-Sample Variability

The between-sample variability captures the variation of the similarity statistic values as a
result of multiple (different) measurements of different features. Table 3-7 provides the between-
sample variability of the method in terms of the similarity test statistic. These results demonstrate
between-sample variabilities consistent with those represented by the estimated parameters of the
population distributions discussed in further detail in Appendix C-4 and are therefore consistent
with expectations.
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Feature Number of Mean c

Quantity | configurations GSS(t) GSS(t)
5 10,620 20.864 13.585
6 10,415 23.849 15.112
7 10,044 25.372 16.681
8 9,514 29.557 18.41
9 8,784 32.392 19.642
10 7,926 36.602 21.666
11 6,877 39.826 23.653
12 6,014 44.864 25.133
13 5,039 47.81 27.192
14 4,112 52.908 27.698
15 402 56.952 29.233

Table 3-7. Between-sample variability (standard deviation) of the similarity statistic value (GSS(t)) for each quantity
of features (ranging from 5 to 15).

General Discussion
Ratio Values

The ratio values obtained with the method will vary depending on the measured similarity
between the two impressions, reflected by the global similarity statistic, GSS(t), as well as the
quantity of features. As the GSS(t) value and quantity of features increase, the ratio value will
also increase indicating stronger significance of the association between the paired impressions.
Theoretically, the ratio values can range from negative infinity to positive infinity; however, this
provides little context to understanding the range of ratio values that one may plausibly observe in
practice. Figure 3-7 illustrates the range of ratio values based on the GSS(t) values corresponding
to 95% of the theoretical distribution modeling the mated source dataset (ranging from a left tail
probability of 0.025 to 0.975) for each quantity of features.
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Figure 3-7. Box plots illustrating the plausible range of ratio values that may be reasonably expected for each
quantity of features based on GSS(t) values corresponding to 95% of the theoretical distribution modeling the mated
source dataset (ranging from a probability of 0.025 to 0.975). The X-axis represents the number of features
(ranging from 5 to 15). The y-axis represents the logo ratio value.

From figure 3-7, we observe a steady increase of ratio values as the quantity of features
increases. This steady increase is a mathematical consequence of the algorithms for calculating
the similarity statistic and consistent with the expected behavior of the method in terms of
experience by forensic experts. Although the actual ratio values are much lower than what experts
might expect, these ratio values are highly conservative since: (1) the method does not take into
account all aspects of the impression, such as pattern type, feature type, ridge counts, and other
types of features considered by an expert, (2) the similarity statistic value provides a single
dimensional summary of the similarity between two impressions and does not consider the
prevalence of the specific arrangement of features under consideration within the population, (3)
the empirical distributions of similarity statistic values were conditioned such that the non-mated
distribution was biased towards higher similarity statistic values (in terms of randomly paired
impressions) and the mated distribution was biased towards lower similarity statistic values, and
(4) logistic mixture distributions were chosen to model the empirical distributions of similarity
statistic values on the basis of their heavier tails thus providing more conservative estimates of
probabilities in the extreme ends of the distributions compared to Gaussian mixture distributions.

Although the ratio values provide a measure of the significance (i.e. strength of an
association) between two impressions, common practice by forensic experts is to conduct an
experience-based judgment and classify an impression as originating from a specific individual
(i.e. individualization decision) based on personal confidence and subjective observation. The
accuracy of expert determinations of individualization has been evaluated by Ulery et al. [66]
finding approximately 0.1% false individualization rate. In a subsequent study, [67] Ulery et al.
found that individualization determinations increase as the number of annotated features increase.
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Further, among all individualization decisions (n = 1,653), only 1% were based on mated
comparisons containing less than 7 features and among all mated comparisons with 12 or more
features, 98.4% resulted in individualization decision. Table 3-8 provides the percentage of
individualization decisions for each number of features (ranging from 5 to 15) from [67]. Although
a loose comparison, given the accuracy of individualization determinations from [66] and the
breakdown of individualization decisions as it relates to the number of annotated features from
[67], these data may provide some general context for understanding how the results from this
method compare to performance metrics and individualization decision behaviors by experts in
traditional practice. Interestingly, if we compare the inter-quartile range of ratio values for each
quantity of features from figure 3-7 above to the individualization determinations in table 3-8, we
see that the inter-quartile ranges for 9 or more features exceeded a ratio of 10, which correspond
to reasonably high specificity rates. Having discussed the comparisons between the ratio values
of this method and experts’ performance when making individualization decisions, caution should
be exercised to ensure the probability estimates from this method are not incorrectly interpreted.
The results provide the ratio of the estimated probabilities of a given similarity statistic value or
more extreme among datasets of similarity statistic values from mated and non-mated
comparisons. The results do not provide the probability of observing a specific configuration of
features in the population or the probability that a specific individual is the source of an impression.
Accordingly, although this method will provide an empirical foundation to the strength of an
association between two impressions, determinations that specific individual is the source of an
impression (i.e. individualization decisions) remain a subjective opinion by the expert.

Feature .. %. )
Quantity Ind|V|dng|zat|on
Decisions
5 2
6 17
7 47
8 64
9 81
10 90
11 92
12 95
13 97
14 99
15 96

Table 3-8. Percentage of individualization decisions by fingerprint experts on fingerprint images having different
numbers of features (ranging from 5 to 15). Table values estimated from figure 3-3B in [67].

Method Limitations

The major limitations of the method include: (1) The similarity statistic values are
dependent upon the subjective detection and annotation of friction ridge skin features by the human
expert. (2) The method is only able to consider what the expert annotates and is not able to evaluate
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the accuracy of feature annotations by the expert. (3) The method requires a minimum of five
features and a maximum of fifteen features. The minimum of five features is due to the manner in
which the similarity statistic is calculated. The maximum of fifteen features was a cutoff decision
by the authors due to the computational impact of running the pairing algorithm on configurations
containing higher numbers of features based on the current software implementation. For friction
ridge skin impressions that contain more than fifteen features, only fifteen features can be encoded
for statistical evaluation. This does not prevent the expert from making reference to the additional
features available, but were not able to be encoded and evaluated by this version of the software
application. (4) The weight functions are based on lateral distortions of friction ridge skin
impressions on flat surfaces and may not capture all types of extreme distortions which may be
encountered in practice, such as substrate, matrix, or photographic effects. (5) The method is not
designed to evaluate all aspects of the impression, such as pattern type, feature type, ridge counts,
and other types of features considered by an expert; thus, the quantitative results are artificially
attenuated and conservative.

Considerations for Policy and Procedure

Taking into consideration the major limitations described above, general considerations for
policy and procedure include: (1) The method should only be used after the expert has visually
analyzed, detected, and annotated friction ridge skin features which are believed to correspond
between two separate impressions of friction ridge skin. The method should not be used on
impressions in which the analyst is able to visually exclude the two impressions as originating
from the same source. (2) The method should be used in accordance with a set of strict policies
and procedures to guard against potential cognitive biases in the analysis, detection, interpretation
and annotation of friction ridge skin features as well as a quality assurance program to verify the
accuracy of the annotated features. (3) The method should be used on digital images having a
resolution of 500 pixels per inch or higher to ensure distance calculations are not impacted by
lower resolution images.

Despite the limitations described above, this method provides several advantages which
far outweigh the limitations. Most importantly, it provides fingerprint experts the capability to
demonstrate the reliability of fingerprint evidence for the case at hand and ensure the evidence is
reported with an empirically grounded basis. Further, having the ability to quantify the strength
of fingerprint comparison, the evidence can be reported in a more transparent and standardized
fashion with clearly defined criteria for conclusions and known error rate information. Appendix
C-5 provides an example demonstrating the use of FRStat.

3.1.5 Conclusion

Over the years, the forensic science community has faced increasing amounts of criticism
by scientific and legal commentators, challenging the validity and reliability of many forensic
examination methods that rely on subjective interpretations by forensic practitioners. Among
those concerns is the lack of an empirically demonstrable basis to evaluate and report the strength
of the fingerprint evidence for a given case. In this paper, a method is presented which provides a
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statistical assessment of the strength of fingerprint evidence. The method measures the similarity
between friction ridge skin impressions using details annotated by human experts to calculate a
similarity statistic (i.e. score), which is then evaluated against databases of similarity statistic
values derived from pairs of impressions made by mated (same) and non-mated (different) sources
of friction ridge skin impressions relevant for forensic casework. The distributions of similarity
statistic values were developed such that the non-mated data are biased to higher similarity statistic
values and mated data are biased to lower similarity statistic values. For non-mated data, this was
accomplished by conditioning on (1) the delta region of friction ridge skin which was determined
to maximize the opportunities of observing higher similarity statistic values, and (2) any set of n
features determined to be “optimally paired” from a larger set of m possible features with respect
to a combinatorial optimization algorithm under any condition of rotation and translation such that
the similarity statistic values are maximized. For mated data, the bias to lower values was
accomplished by conditioning on lateral pressures and other distortions such that the similarity
statistic values are minimized and ensuring that the distributions represent the full range of
plausible similarity statistic values that could reasonably be observed in casework when
impressions are subject to various distortions during deposition. The empirical distributions were
statistically modeled and plausible estimates of population parameters were evaluated using the
Kolmogorov-Smirnov (K-S) “goodness of fit” test. The K-S test was selected for this purpose on
the basis of its ubiquitous use as a non-parametric test of the equality of continuous probability
distributions. The strength of the fingerprint evidence is calculated as a ratio of the tail
probabilities from the distributions of similarity statistic values of mated and non-mated
impressions. The numerator is the left tail probability of a given similarity statistic value or lower
among the distribution of values from mated sources. The denominator is the right tail probability
of a given similarity statistic value or higher among the distribution of values from non-mated
sources. Although similar in appearance, the ratio is not a true likelihood ratio or Bayes’ factor
and therefore should not be used to estimate a posterior probability for a proposition.

The performance of the method was evaluated using a variety of different mated and non-
mated datasets, including the most similar non-mated impressions from AFIS searches against a
database of approximately 100 million other fingers. The results show strong performance
characteristics. As the number of features increase, the magnitude of the ratio values increase as
well as the ability to discriminate between mated and non-mated impressions, often with values
supporting specificity rates greater than 99%. Despite the trend of increasing ratio values, there is
still some overlap of the values between the different quantities of features. Consequently, similar
to the findings in [37, 42], these data demonstrate the importance of evaluating the strength of the
fingerprint evidence based on the measurable attributes of the given comparison rather than relying
on generalizations based solely on the number of features.

As with any method, there are limitations to consider. For example, this method relies on
the features annotated by the expert but does not take into account all aspects of fingerprint
evidence. As aresult, the quantitative results for reported associations using this method (FRStat)
will be artificially low. Despite the limitations, FRStat provides fingerprint experts the capability
to demonstrate the reliability of fingerprint evidence for the case at hand and ensure the evidence
is evaluated with an empirically grounded basis. Further, having the ability to quantify the strength
of the fingerprint comparison, the evidence can be reported in a more transparent and standardized
fashion with clearly defined criteria for conclusions and known error rate information.
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Although various aspects of the method may be further optimized, the performance
characteristics described are proposed as a sufficient basis to demonstrate the foundational validity
of the method to perform within the scope of its intended purpose — as a means of providing a
statistical measure of the strength of a given fingerprint comparison. Further optimizations which
may improve upon the method’s performance are encouraged for future works.

3.2 Comparison with Other Methods

This section is supplemental to the published manuscript [50] and explores the utility of the
FRStat compared to another method available at the University of Lausanne when applied as a
quality control within a quality management system. Although both systems have their own
benefits and limitations, the results show that each method has the capacity to distinguish between
mated and non-mated impressions with reasonable accuracy and provide an additional layer of
quality control to the overall examination scheme.

3.2.1 Background

The FRStat algorithm presented in this chapter provides a measure of the similarity
between two sets of features identified by an analyst on two separate impressions which the analyst
believes to correspond, and provides a statistical assessment of the significance of that
correspondence. The FRStat algorithm, however, is not the only algorithm that has been proposed
for purposes of assessing the strength of fingerprint evidence. Among several other methods that
have been proposed, an updated version of the model originally described by Egli [33], which is
based on the distribution of similarity scores from AFIS, has been made accessible for evaluation
(referred to herein as the AFIS-SLR). Although both the FRStat and the AFIS-SLR provide
measures of similarity and statistical assessments of the strength of fingerprint evidence, they do
so in very distinct ways.

The FRStat, as described in [50], first calculates the similarity (referred to as the Global
Similarity Statistic, or GSS) between the impressions, then it provides two estimates: one
indicating how often impressions originating from common sources would result in a GSS that is
equal to or less than the calculated GSS and another indicating how often impressions from
different sources would result in a GSS that is equal to or greater than the calculated GSS. The
two values are then combined as a ratio providing a single summary statistic indicating to what
extent the GSS is consistent with impressions originating from a common source compared to
different sources.

The AFIS-SLR model was originally developed by Egli [33] based on a commercial AFIS
matcher developed by Sagem-Morpho (now Idemia). Initially, the prototype was relatively slow
and required a case-by-case establishment of the within-source variability using pseudo-marks
obtained from a range of prints provided by the person of interest. The model was later matured
through the work of Marco De Donno’ who added a distortion model based on the thin plate spline

" Marco De Donno is a current Ph.D. student at the School of Criminal Justice, University of Lausanne.
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model of Bookstein [68] which improved computing times by taking advantage of multi-core and
parallel processing. The model has also been adapted for the assessment of the expected weight
of evidence to be assigned to a given mark described by Stoney et al. [61]. Generally, the AFIS-
SLR first creates a dataset of pseudo-marks representing the mark in algorithmically distorted ways
and calculates the similarity using the AFIS matcher between the mark and each of the pseudo-
marks (resulting in a distribution of similarity scores representing the within-source variability).
Next, it uses the AFIS algorithm to calculate the similarity between the mark and prints in the
database (resulting in a distribution of similarity scores representing the between-source
variability). Then, it calculates the similarity score between the mark and print for the case at
hand. The distributions of scores representing the within-source variability and between-source
variability are both fit to probability density distributions and the likelihood ratio for the similarity
score resulting from the mark-print comparison for the case at hand is calculated (referred to as
the score-based likelihood ratio, or SLR).

From the descriptions above, we note that the FRStat and AFIS-SLR apply very different
mathematical approaches in their calculations of similarity and assessments of statistical strength
(i.e., ratio values). Each method has its own benefits and limitations in terms of computational
complexity and algorithmic transparency. The FRStat is a computationally light and transparent
algorithm implemented into a stand-alone software application that is freely available; however, it
lacks the ability to calculate the similarities of the feature configuration for the case at hand directly
against a database of other impressions. The AFIS-SLR is a computationally complex system that
benefits from intensive search engines powered by a commercial AFIS technology to calculate the
similarities of the feature configuration for the case at hand directly against databases of other
impressions; however, it requires greater computational resources to operate and lacks algorithmic
transparency due to the proprietary nature of the commercial matching algorithms. Taking into
account these attributes of the two methods, it is relevant to conduct an exploratory comparison of
the performance of the FRStat and the AFIS-SLR to understand the impact of these tradeoffs to
performance. Although the ratio value produced by the FRStat and the AFIS-SLR are
fundamentally different mathematical constructs which prevents a straightforward comparison of
the two systems on the basis of their magnitudes, they both share a common objective — to provide
an empirical foundation to examiners’ subjective assessments and help detect circumstances for
which additional quality assurance review might be warranted. Thus, rather than comparing the
magnitudes of the ratio values produced by the two systems, we can compare the performance of
the two systems in terms of their ability to accurately distinguish between mated and non-mated
impressions. This type of comparison is informative as it provides traditional performance
characteristics of the systems as it relates to their use as an additional layer of quality control by
flagging impressions as potentially problematic prior to issuing a conclusion in the case.

3.2.2 Materials & Methods

This comparison of the performance between the FRStat and the AFIS-SLR was conducted
using the same datasets provided by Swofford et al. [50], which include the datasets used to model
the empirical distributions as well as the mated and non-mated datasets used to test the
performance of the FRStat (i.e., Mated Empirical Distribution [known to be mated], Non-mated
Empirical Distribution [known to be non-mated], Mated Test Dataset #1 [known to be mated],
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Mated Test Dataset #2 [accepted to be mated], Mated Test Dataset #3 [believed to be mated], Non-
mated Test Dataset #1 [known to be non-mated], and Non-mated Test Dataset #2 [known to be
non-mated; “close non-match” from AFIS database search — delta and core regions]). The makeup
of each dataset is described in detail in [50].

The baseline performance of the FRStat to which the performance of the AFIS-SLR is
compared against is derived from the raw performance data provided in [50]. The performance of
the FRStat and the AFIS-SLR were evaluated in two distinct ways. First, the performance was
evaluated in terms of the ability for each method to accurately distinguish between mated and non-
mated impressions using values of their ratios alone—for both systems, ratio values greater than 1
are categorized as mated impressions and values less than 1 are categorized as non-mated
impressions. Second, the performance was evaluated in terms of the ability for each method to
accurately distinguish between mated and non-mated impressions using the values of their ratios
combined with criteria to “flag” impressions as potentially misleading. For the FRStat, this
criterion is based on a simple threshold of the ratio value selected on the basis of balancing
sensitivity and specificity, as discussed in [50]. Under this approach, impressions resulting in a
ratio value between 1 and 10 are flagged as potentially misleading. For the AFIS-SLR, this
criterion is based on a more sophisticated approach using a machine learning model that accounts
for the meta-data output by the AFIS-SLR. Under this approach, the output of the meta-data
resulting from the AFIS-SLR measurements are used as inputs into a separate machine learning
model trained to predict whether the resultant ratio value from the AFIS-SLR is potentially
misleading—irrespective of the magnitude of the ratio value.

The machine learning model used as the basis for flagging impressions evaluated by the
AFIS-SLR as potentially misleading was developed for purposes of this exploratory evaluation
and is not currently a pre-existing component of the AFIS-SLR method. As such, to explore the
utility of machine learning for this purpose and the extent to which performance of the AFIS-SLR
could improve with such criterion, multiple machine learning classifiers were initially developed
using the caret package in R [62] using a range of machine learning techniques (haive based
classifier, tree-based classifiers, discriminant analysis techniques, neural networks and support
vector machines) called directly from the caret package, specifically: Linear Discriminant
Analysis (LDA), Logistical Regression (LogReg), Classification and Regression Tree (CART),
Random Forest (RF), Neural Network (NN), C5.0, Support Vector Machine (SVM), Gradient
Boosting Machine (GBM), and XGBoost_Linear (XGB_Linear). The meta-data output by the
AFIS-SLR that were used as inputs into the machine learning models included fifteen different
predictor values (reduced from an initial set of twenty-seven different predictors to only include
those which had a correlation less than 0.7), specifically: number of minutiae (nb_min), between-
source skewness (inter-skewness), within-source skewness (intra-skewness), between-source
kurtosis (inter-kurtosis), proportion of overlap between the within-source and between-source
distributions (overlap), numerator of the LR (num), denominator of the LR (den), within-source
distribution cumulative probability of the evidence score (pintra), calibrated LR value (IrCal),
evidence score (ev), shearing value of the linear distortion from the thin-plate-spline (TPS)
distortion algorithm (shearing), scale value of the linear distortion from the TPS distortion
algorithm (scale), within-source distribution shape (intra_shape), bending energy of the thin-plate-
spline distortion algorithm (be), and rank position of the mark when compared to the print (r). The
machine learning techniques were developed and tested using a 10-fold cross validation against a
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random 50/50 training-test split (cross validation only being performed on the training partition
and predictions only being performed on the test partition) of the subset of impressions across all
datasets resulting in a ratio value from the AFIS-SLR that contradicts the known (or assigned)
mating status of the impression (i.e., AFIS-SLR ratio values greater than 1 when tested against
impressions from non-mated datasets or ratio values less than 1 when tested against impressions
from mated datasets). Among the various machine learning classifiers considered, the C5.0
resulted in the highest performance in terms of its ability to accurately predict misleading AFIS-
SLR ratio values and was selected for purposes of comparing the performance of the FRStat and
AFIS-SLR when each method is augmented by criterion to flag impressions as potentially
misleading. Figures 3-8a and 3-8b illustrate the performance of the C5.0 compared to the other
machine learning classifiers considered.
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Figure 3-8a. Comparison of the performance of various machine learning classifiers.
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Figure 3-8b. Comparison of receiver operator characteristic (ROC) curves of various machine learning classifiers.

3.2.3 Results & Discussion
Performance with all data

Tables 3-9 through 3-14 provide the baseline performance of the FRStat and AFIS-SLR in
terms of their ability to accurately distinguish between mated and non-mated impressions using
values of their ratios alone. For both systems, ratio values greater than 1 are predicted as mated
impressions and values less than 1 are predicted as non-mated impressions. Tables 3-9 and 3-10
provide the sensitivity of each method (i.e., the ability for each method to accurately predict
impressions as mated) and Tables 3-11 through 3-14 provide the specificity of each method (i.e.,
the ability for each method to accurately predict impressions as non-mated) for the different mated
and non-mated datasets.
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Sensitivity — Mated Empirical Dataset
FRStat AFIS-SLR

Feature Number of Sensitivity Number of Sensitivity

Quantity | configurations (Ratio >1) configurations (SLR >1)
5 1,996 0.675 1,996 0.952
6 1,996 0.686 1,996 0.977
7 1,996 0.807 1,996 0.988
8 1,996 0.885 1,996 0.994
9 1,996 0.962 1,996 0.997
10 1,996 0.970 1,996 0.997
11 1,996 0.979 1,996 0.998
12 1,996 0.985 1,996 0.998
13 1,996 0.985 1,996 0.999
14 1,996 0.989 1,996 1.000
15 499 0.990 499 1.000

Table 3-9. Sensitivity of FRStat and AFIS-SLR using the Mated Empirical Dataset for each quantity of features
(ranging from 5 to 15).

Sensitivity — Mated Test Datasets #1, #2, #3
FRStat AFIS-SLR

Feature Number of Sensitivity Number of Sensitivity

Quantity | configurations (Ratio >1) configurations (SLR >1)
5 10,593 0.687 10,593 0.924
6 10,385 0.779 10,385 0.953
7 10,015 0.840 10,015 0.972
8 9,491 0.915 9,491 0.981
9 8,762 0.952 8,762 0.989
10 7,923 0.961 7,923 0.994
11 6,877 0.967 6,877 0.995
12 6,012 0.967 6,012 0.995
13 5,036 0.970 5,036 0.996
14 4,106 0.976 4,106 0.999
15 402 0.978 402 1.000

Table 3-10. Sensitivity of FRStat and AFIS-SLR using the Mated Test Dataset #1, Mated Test Dataset #2, and Mated
Test Dataset #3 combined for each quantity of features (ranging from 5 to 15).
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Specificity — Non-Mated Empirical Dataset
FRStat AFIS-SLR

Feature Number of Specificity Number of Specificity

Quantity | configurations (Ratio <1) configurations (SLR <1)
5 1,850 0.793 1,850 0.927
6 1,850 0.833 1,850 0.911
7 1,850 0.903 1,850 0.924
8 1,999 0.934 1,999 0.936
9 2,000 0.955 2,000 0.933
10 1,999 0.972 1,999 0.946
11 2,000 0.980 2,000 0.933
12 1,998 0.988 1,998 0.959
13 1,999 0.991 1,999 0.949
14 2,000 0.993 2,000 0.951
15 1,849 0.994 1,849 0.959

Table 3-11. Specificity of FRStat and AFIS-SLR using the Non-Mated Empirical Dataset for each quantity of

features (ranging from 5 to 15).

Specificity — Non-Mated Test Dataset #1
FRStat AFIS-SLR

Feature Number of Specificity Number of Specificity

Quantity | configurations (Ratio <1) configurations (SLR <1)
5 500 0.818 500 0.822
6 500 0.852 500 0.856
7 500 0.900 500 0.864
8 500 0.912 500 0.908
9 500 0.940 500 0.894
10 500 0.970 500 0.906
11 500 0.978 500 0.91
12 500 0.988 500 0.95
13 500 0.988 500 0.946
14 500 0.988 500 0.962
15 500 0.996 500 0.972

Table 3-12. Specificity of FRStat and AFIS-SLR using the Non-Mated Test Dataset #1 for each quantity of features
(ranging from 5 to 15).
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Specificity — Non-Mated Test Dataset #2a — “close non-match” delta region
FRStat AFIS-SLR

Feature Number of Specificity Number of Specificity

Quantity | configurations (Ratio <1) configurations (SLR <1)
5 99 0.566 99 0.636
6 99 0.677 99 0.545
7 96 0.688 96 0.531
8 99 0.737 99 0.515
9 99 0.818 99 0.545
10 97 0.804 97 0.536
11 96 0.802 96 0.417
12 98 0.857 98 0.418
13 99 0.899 99 0.444
14 100 0.980 100 0.570
15 100 0.920 100 0.460

Table 3-13. Specificity of FRStat and AFIS-SLR using the Non-Mated Test Dataset #2a — “close non-match” delta
region for each quantity of features (ranging from 5 to 15).

Specificity — Non-Mated Test Dataset #2b — “close non-match” core region
FRStat AFIS-SLR

Feature Number of Specificity Number of Specificity

Quantity | configurations (Ratio <1) configurations (SLR <1)
5 94 0.787 94 0.809
6 96 0.792 96 0.833
7 95 0.884 95 0.737
8 96 0.896 96 0.750
9 95 0.874 95 0.653
10 96 0.969 96 0.760
11 95 0.989 95 0.684
12 97 1.000 97 0.753
13 97 1.000 97 0.763
14 96 1.000 96 0.854
15 95 1.000 95 0.853

Table 3-14. Specificity of FRStat and AFIS-SLR using the Non-Mated Test Dataset #2b — “close non-match” core
region for each quantity of features (ranging from 5 to 15).

Performance after application of Supplemental QA criterion

Tables 3-15 through 3-20 provide the performance of the FRStat and AFIS-SLR in terms
of their ability to accurately distinguish between mated and non-mated impressions using values
of their ratios after applying the supplemental QA criterion to “flag” comparisons as potentially
misleading. These data represent only those comparisons of feature configurations that were not
flagged as potentially misleading (i.e., for FRStat, this includes those comparisons that resulted in
a ratio value less than 1 or greater than or equal to 10, and for AFIS-SLR, this includes those
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comparisons that were not flagged by the ML classifier). Tables 3-15 and 3-16 provide the
sensitivity of each method and Tables 3-17 through 3-20 provide the specificity of each method
for the different mated and non-mated datasets as well as proportion of the total number of
configurations that were not flagged by the QA criterion.

Sensitivity — Mated Empirical Dataset

FRStat AFIS-SLR

Proportion of Sensitivity Proportion of Sensitivity
Featur_e Nu_mber _of total number After QA quber pf total number After QA
Quantity | configurations of Criteri configurations of Criteri

configurations riterion configurations riterion
5 917 0.459 0.293 1,777 0.890 1.000
6 996 0.499 0.371 1,838 0.921 1.000
7 1,076 0.539 0.645 1,912 0.958 1.000
8 1,226 0.614 0.812 1,947 0.975 1.000
9 1,764 0.884 0.957 1,967 0.985 1.000
10 1,895 0.949 0.969 1,972 0.988 1.000
11 1,948 0.976 0.979 1,974 0.989 1.000
12 1,984 0.994 0.985 1,978 0.991 1.000
13 1,985 0.994 0.985 1,986 0.995 1.000
14 1,989 0.996 0.989 1,981 0.992 1.000
15 499 1.000 0.990 491 0.984 1.000

Table 3-15. Sensitivity of FRStat and AFIS-SLR using the Mated Empirical Dataset for each quantity of features
(ranging from 5 to 15) after applying criterion to “flag” comparisons as potentially misleading (data excludes those
flagged as potentially misleading).
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Sensitivity — Mated Test Datasets #1, #2, #3

FRStat AFIS-SLR
Proportion of Sensitivity Proportion of Sensitivity
Feature Number of total number Number of total number
Quantity | configurations of éft_er QA configurations of éft_er QA
configurations riterion configurations riterion
5 4,827 0.456 0.313 8,446 0.797 1.000
6 5,246 0.505 0.563 8,551 0.823 1.000
7 5,899 0.589 0.729 8,701 0.869 1.000
8 7,022 0.740 0.885 8,525 0.898 1.000
9 8,088 0.923 0.948 8,079 0.922 1.000
10 7,585 0.957 0.960 7,329 0.925 1.000
11 6,731 0.979 0.967 6,452 0.938 1.000
12 5,973 0.994 0.967 5,627 0.936 1.000
13 5,005 0.994 0.970 4,744 0.942 1.000
14 4,078 0.993 0.976 3,894 0.948 1.000
15 399 0.993 0.977 372 0.925 1.000

Table 3-16. Sensitivity of FRStat and AFIS-SLR using the Mated Test Dataset #1, Mated Test Dataset #2, and Mated
Test Dataset #3 combined for each quantity of features (ranging from 5 to 15) afier applying criterion to “flag”
comparisons as potentially misleading (data excludes those flagged as potentially misleading).

Specificity — Non-Mated Empirical Dataset

FRStat AFIS-SLR
Proportion of Specificit Proportion of Specificit
Feature Number of total number P y Number of total number P y
Quantity | configurations of éﬂ.?r .QA configurations of éft.ir QA
configurations riterion configurations riterion
5 1,521 0.822 0.964 1,227 0.663 0.998
6 1,693 0.915 0.910 1,372 0.742 1.000
7 1,782 0.963 0.938 1,452 0.785 0.999
8 1,965 0.983 0.950 1,648 0.824 1.000
9 1,970 0.985 0.969 1,694 0.847 1.000
10 1,985 0.993 0.979 1,728 0.864 1.000
11 1,988 0.994 0.986 1,742 0.871 1.000
12 1,990 0.996 0.992 1,825 0.913 1.000
13 1,989 0.995 0.996 1,836 0.918 1.000
14 1,992 0.996 0.996 1,860 0.930 1.000
15 1,842 0.996 0.997 1,729 0.935 1.000

Table 3-17. Specificity of FRStat and AFIS-SLR using the Non-Mated Empirical Dataset for each quantity of
features (ranging from 5 to 15) afier applying criterion to “‘flag” comparisons as potentially misleading (data

excludes those flagged as potentially misleading).
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Specificity — Non-Mated Test Dataset #1

FRStat

AFIS-SLR

Proportion of

Specificity

Proportion of

Specificity

Feature Number of total number Number of total number
Quantity | configurations of éft_er QA configurations of Aft_er QA
configurations riterion configurations Criterion
5 409 0.818 1.000 175 0.350 0.863
6 430 0.860 0.991 235 0.470 0.923
7 453 0.906 0.993 236 0.472 0.975
8 463 0.926 0.985 322 0.644 1.000
9 494 0.988 0.951 348 0.696 1.000
10 497 0.994 0.976 386 0.772 1.000
11 498 0.996 0.982 416 0.832 1.000
12 498 0.996 0.992 4438 0.896 1.000
13 497 0.994 0.994 460 0.920 1.000
14 498 0.996 0.992 470 0.940 1.000
15 498 0.996 1.000 471 0.942 1.000

Table 3-18. Specificity of FRStat and AFIS-SLR using the Non-Mated Test Dataset #1 for each quantity of features
(ranging from 5 to 15) after applying criterion to “flag” comparisons as potentially misleading (data excludes those
flagged as potentially misleading).

Specificity — Non-Mated Test Dataset #2a — “close non-match” delta region

FRStat AFIS-SLR
Proportion of Specificit Proportion of Specificit
Feature Number of total number P y Number of total number P y
Quantity | configurations of éﬂ.?r .QA configurations of éft_er QA
configurations riterion configurations riterion
5 77 0.778 0.727 34 0.343 0.941
6 92 0.929 0.728 35 0.354 0.829
7 93 0.969 0.710 41 0.427 0.902
8 94 0.949 0.777 36 0.364 0.889
9 99 1.000 0.818 43 0.434 0.930
10 95 0.979 0.821 49 0.505 0.918
11 94 0.979 0.819 36 0.375 0.889
12 97 0.990 0.866 39 0.398 0.949
13 96 0.970 0.927 41 0.414 0.951
14 99 0.990 0.990 52 0.520 1.000
15 100 1.000 0.920 46 0.460 1.000

Table 3-19. Specificity of FRStat and AFIS-SLR using the Non-Mated Test Dataset #2a — “close non-match” delta
region for each quantity of features (ranging from 5 to 15) after applying criterion to ‘‘flag” comparison as
potentially misleading (data excludes those flagged as potentially misleading).
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Specificity — Non-Mated Test Dataset #2b — “close non-match” core region

FRStat AFIS-SLR
Proportion of Specificit Proportion of Specificit
Feature Number of total number P y Number of total number P y
Quantity | configurations of éft_er QA configurations of éft_er QA
configurations riterion configurations riterion
5 76 0.809 0.974 31 0.330 0.871
6 83 0.865 0.916 37 0.385 0.919
7 91 0.958 0.923 36 0.379 0.917
8 92 0.958 0.935 37 0.385 1.000
9 92 0.968 0.902 35 0.368 0.943
10 94 0.979 0.989 61 0.635 0.967
11 95 1.000 0.989 56 0.589 1.000
12 97 1.000 1.000 66 0.680 1.000
13 97 1.000 1.000 64 0.660 1.000
14 96 1.000 1.000 79 0.823 1.000
15 95 1.000 1.000 78 0.821 1.000

Table 3-20. Specificity of FRStat and AFIS-SLR using the Non-Mated Test Dataset #2b — “close non-match” core
region for each quantity of features (ranging from 5 to 15) after applying criterion to “flag” comparisons as
potentially misleading (data excludes those flagged as potentially misleading).

Figures 3-9 through 3-14 illustrate the impacts to the performance of the FRStat and AFIS-
SLR as a result of applying the supplemental QA criterion to “flag” comparisons as potentially
misleading (i.e., graphically illustrating the sensitivity and specificity values listed in Tables 3-9
through 3-20). Figures 3-9 and 3-10 compare the sensitivity of each method before and after
applying the QA criterion for the mated datasets and Figures 3-11 through 3-14 compare the
specificity of each method before and after applying the QA criterion for the non-mated datasets.
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—@— FRStat Sensitivity AFIS-5LR Sensitivity —@— FRStat Sensitivity AFIS-SLR Sensitivity
Figure 3-9. Comparison of the sensitivity of FRStat and AFIS-SLR using the Mated Empirical Dataset for each

quantity of features (ranging from 5 to 15) before (left) and after (right) applying criterion to “flag” comparisons as
potentially misleading (data excludes those flagged as potentially misleading).
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Figure 3-10. Comparison of the sensitivity of FRStat and AFIS-SLR using the using the Mated Test Dataset #1,
Mated Test Dataset #2, and Mated Test Dataset #3 combined for each quantity of features (ranging from 5 to 15)
before (left) and after (right) applying criterion to “‘flag” comparisons as potentially misleading (data excludes
those flagged as potentially misleading).
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Figure 3-11. Comparison of the specificity of FRStat and AFIS-SLR using the using the Non-Mated Empirical
Dataset for each quantity of features (ranging from 5 to 15) before (left) and after (right) applying criterion to
“flag” comparisons as potentially misleading (data excludes those flagged as potentially misleading).
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Figure 3-12. Comparison of the specificity of FRStat and AFIS-SLR using the using the Non-Mated Test Dataset #1
for each quantity of features (ranging from 5 to 15) before (left) and after (right) applying criterion to “flag”
comparisons as potentially misleading (data excludes those flagged as potentially misleading).
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Figure 3-13. Comparison of the specificity of FRStat and AFIS-SLR using the Non-Mated Test Dataset #2a — “close
non-match” delta region for each quantity of features (ranging from 5 to 15) before (left) and after (right) applying
criterion to “flag” comparisons as potentially misleading (data excludes those flagged as potentially misleading).
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Figure 3-14. Comparison of the specificity of FRStat and AFIS-SLR using the Non-Mated Test Dataset #2b — “close
non-match” core region for each quantity of features (ranging from 5 to 15) before (left) and after (right) applying
criterion to “‘flag” comparisons as potentially misleading (data excludes those flagged as potentially misleading).

Tables 3-21 through 3-26 and Figures 3-15 through 3-20 illustrate the utility of the system
(before and after the application of the supplemental QA criterion) as a function of both its
performance (i.e., sensitivity, specificity) and the proportion of comparisons that were not flagged
as potentially misleading. Tables 3-21 and 3-22 as well as Figures 3-15 and 3-16 demonstrate the
utility of each system as it relates to their sensitivity (calculated by multiplying the values of
sensitivity and the proportion of the total number of configurations not flagged by the supplemental
QA criterion) and Tables 3-23 through 3-26 as well as Figures 3-17 through 3-20 demonstrate the
utility of each system as it relates to their specificity (calculated by multiplying the values of
specificity and the proportion of the total number of configurations not flagged by the
supplemental QA criterion). The utility values listed in Tables 3-21 through 3-26 can be calculated
directly from the data provided in Tables 3-9 through 3-20. Additionally, the utility values before
the application of the supplemental QA criterion are equal to the performance of the system (i.e.,
sensitivity, specificity) since none of the comparisons were flagged by the supplemental QA
criterion (i.e., the proportion of the total number of configurations not flagged by the supplemental
QA criterion is 1.000).

98



Utility (Sensitivity) — Mated Empirical Dataset
FRStat AFIS-SLR

Utility Utility Utility Utility

(before . (before .

Feature L (after application e (after application
. application of application of
Quantity of Supplemental of Supplemental

Supplemental QA . Supplemental QA -

. QA criterion) L QA criterion)

criterion) criterion)

5 0.675 0.134 0.952 0.890
6 0.686 0.185 0.977 0.921
7 0.807 0.348 0.988 0.958
8 0.885 0.499 0.994 0.975
9 0.962 0.846 0.997 0.985
10 0.970 0.920 0.997 0.988
11 0.979 0.956 0.998 0.989
12 0.985 0.979 0.998 0.991
13 0.985 0.979 0.999 0.995
14 0.989 0.985 1.000 0.992
15 0.990 0.990 1.000 0.984

Table 3-21. Utility of FRStat and AFIS-SLR in terms of sensitivity and proportion of comparisons not flagged by
supplemental QA criterion using the Mated Empirical Dataset for each quantity of features (ranging from 5 to 15).
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—@— FRStat Utility (without application of Supplemental QA criterion)
FRStat Utility (with application of Supplemental QA criterion)
AFIS-SLR Utility (without application of Supplemental QA criterion)
AFIS-SLR Utility (with application of Supplemental QA criterion)
Figure 3-15. Utility of FRStat and AFIS-SLR in terms of sensitivity and proportion of comparisons not flagged by
supplemental QA criterion using the Mated Empirical Dataset for each quantity of features (ranging from 5 to 15)

before and after applying criterion to “flag” comparisons as potentially misleading (data excludes those flagged as
potentially misleading).
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Utility (Sensitivity) — Mated Test Datasets #1, #2, #3
FRStat AFIS-SLR

Utility Utility Utility Utility

(before . (before .

Feature L (after application e (after application
. application of application of
Quantity of Supplemental of Supplemental

Supplemental QA . Supplemental QA -

. QA criterion) L QA criterion)

criterion) criterion)

5 0.687 0.143 0.924 0.797
6 0.779 0.284 0.953 0.823
7 0.840 0.429 0.972 0.869
8 0.915 0.655 0.981 0.898
9 0.952 0.875 0.989 0.922
10 0.961 0.919 0.994 0.925
11 0.967 0.947 0.995 0.938
12 0.967 0.961 0.995 0.936
13 0.970 0.964 0.996 0.942
14 0.976 0.969 0.999 0.948
15 0.978 0.970 1.000 0.925

Table 3-22. Utility of FRStat and AFIS-SLR in terms of sensitivity and proportion of comparisons not flagged by
supplemental QA criterion using the Mated Test Dataset #1, Mated Test Dataset #2, and Mated Test Dataset #3
combined for each quantity of features (ranging from 5 to 15).
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FRStat Utility (with application of Supplemental QA criterion)
AFIS-SLR Utility (without application of Supplemental QA criterion)
AFIS-SLR Utility (with application of Supplemental QA criterion)
Figure 3-16. Utility of FRStat and AFIS-SLR in terms of sensitivity and proportion of comparisons not flagged by
supplemental QA criterion using the using the Mated Test Dataset #1, Mated Test Dataset #2, and Mated Test

Dataset #3 combined for each quantity of features (ranging from 5 to 15) before and after applying criterion to
“flag” comparisons as potentially misleading (data excludes those flagged as potentially misleading).
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Utility (Specificity) — Non-Mated Empirical Dataset
FRStat AFIS-SLR
Utility Utility Utility Utility
(before . (before .
Feature L (after application e (after application
. application of application of
Quantity of Supplemental of Supplemental
Supplemental QA . Supplemental QA -
. QA criterion) L QA criterion)
criterion) criterion)
5 0.793 0.792 0.927 0.662
6 0.833 0.833 0.911 0.742
7 0.903 0.903 0.924 0.784
8 0.934 0.934 0.936 0.824
9 0.955 0.954 0.933 0.847
10 0.972 0.972 0.946 0.864
11 0.980 0.980 0.933 0.871
12 0.988 0.988 0.959 0.913
13 0.991 0.991 0.949 0.918
14 0.993 0.992 0.951 0.930
15 0.994 0.993 0.959 0.935

Table 3-23. Utility of FRStat and AFIS-SLR in terms of specificity and proportion of comparisons not flagged by
supplemental QA criterion using the Non-Mated Empirical Dataset for each quantity of features (ranging from 5 to

15).

1 = — -
0.8
0.6
0.4
0.2

0

5 6 7 8 9 10 11 12 13 14 15

—@— FRStat Utility (without application of Supplemental QA criterion)
FRStat Utility (with application of Supplemental QA criterion)
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Figure 3-17. Utility of FRStat and AFIS-SLR in terms of specificity and proportion of comparisons not flagged by
supplemental QA criterion using the using the Non-Mated Empirical Dataset for each quantity of features (ranging

from 5 to 15) before and after applying criterion to “flag” comparisons as potentially misleading (data excludes
those flagged as potentially misleading).
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Utility (Specificity) — Non-Mated Test Dataset #1
FRStat AFIS-SLR
Utility Utility Utility Utility
(before . (before .
Feature L (after application e (after application
. application of application of
Quantity of Supplemental of Supplemental
Supplemental QA . Supplemental QA -
. QA criterion) L QA criterion)
criterion) criterion)

5 0.818 0.818 0.822 0.302
6 0.852 0.852 0.856 0.434
7 0.900 0.900 0.864 0.460
8 0.912 0.912 0.908 0.644
9 0.940 0.940 0.894 0.696
10 0.970 0.970 0.906 0.772
11 0.978 0.978 0.910 0.832
12 0.988 0.988 0.950 0.896
13 0.988 0.988 0.946 0.920
14 0.988 0.988 0.962 0.940
15 0.996 0.996 0.972 0.942

Table 3-24. Utility of FRStat and AFIS-SLR in terms of specificity and proportion of comparisons not flagged by
supplemental QA criterion using the Non-Mated Test Dataset #1 for each quantity of features (ranging from 5 to

15).
1
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—@— FRStat Utility (without application of Supplemental QA criterion)
FRStat Utility (with application of Supplemental QA criterion)
AFIS-SLR Utility (without application of Supplemental QA criterion)
AFIS-SLR Utility (with application of Supplemental QA criterion)
Figure 3-18. Utility of FRStat and AFIS-SLR in terms of specificity and proportion of comparisons not flagged by
supplemental QA criterion using the using the Non-Mated Test Dataset #1 for each quantity of features (ranging

from 5 to 15) before and after applying criterion to “flag” comparisons as potentially misleading (data excludes
those flagged as potentially misleading).
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Utility (Specificity) — Non-Mated Test Dataset #2a — “close non-match” delta region
FRStat AFIS-SLR
Utility Utility Utility Utility
(before . (before .
Feature L (after application e (after application
. application of application of

Quantity of Supplemental of Supplemental

Supplemental QA . Supplemental QA -
. QA criterion) L QA criterion)
criterion) criterion)

5 0.566 0.566 0.636 0.323
6 0.677 0.676 0.545 0.293
7 0.688 0.688 0.531 0.385
8 0.737 0.737 0.515 0.324
9 0.818 0.818 0.545 0.404
10 0.804 0.804 0.536 0.464
11 0.802 0.802 0.417 0.333
12 0.857 0.857 0.418 0.378
13 0.899 0.899 0.444 0.394
14 0.980 0.980 0.570 0.520
15 0.920 0.920 0.460 0.460

Table 3-25. Utility of FRStat and AFIS-SLR in terms of specificity and proportion of comparisons not flagged by
supplemental QA criterion using the Non-Mated Test Dataset #2a — “close non-match” delta region for each
quantity of features (ranging from 5 to 15).
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Figure 3-19. Utility of FRStat and AFIS-SLR in terms of specificity and proportion of comparisons not flagged by
supplemental QA criterion using the Non-Mated Test Dataset #2a — “close non-match” delta region for each

quantity of features (ranging from 5 to 15) before and after applying criterion to “flag” comparisons as potentially
misleading (data excludes those flagged as potentially misleading).
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Utility (Specificity) — Non-Mated Test Dataset #2b — “close non-match” core region
FRStat AFIS-SLR
Utility Utility Utility Utility
(before . (before .
Feature L (after application e (after application
. application of application of

Quantity of Supplemental of Supplemental

Supplemental QA . Supplemental QA -
. QA criterion) L QA criterion)
criterion) criterion)

5 0.787 0.788 0.809 0.287
6 0.792 0.792 0.833 0.354
7 0.884 0.884 0.737 0.348
8 0.896 0.896 0.75 0.385
9 0.874 0.873 0.653 0.347
10 0.969 0.968 0.76 0.614
11 0.989 0.989 0.684 0.589
12 1.000 1.000 0.753 0.680
13 1.000 1.000 0.763 0.660
14 1.000 1.000 0.854 0.823
15 1.000 1.000 0.853 0.821

Table 3-26. Utility of FRStat and AFIS-SLR in terms of specificity and proportion of comparisons not flagged by
supplemental QA criterion using the Non-Mated Test Dataset #2b — “close non-match” core region for each
quantity of features (ranging from 5 to 15).
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Figure 3-20. Utility of FRStat and AFIS-SLR in terms of specificity and proportion of comparisons not flagged by
supplemental QA criterion using the Non-Mated Test Dataset #2b — “close non-match” core region for each

quantity of features (ranging from 5 to 15) before and after applying criterion to “flag” comparisons as potentially
misleading (data excludes those flagged as potentially misleading).

General Discussion

There are three key observations we can make based on these data presented in Tables 3-9
through 3-26 and Figures 3-9 through 3-20 as it relates to the performance of each system and the
overall utility of each system (before and after the application of the supplemental QA criterion).
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First, in terms of the performance of each system to accurately distinguish between mated and non-
mated impressions on the basis of its ratio value alone (without any consideration of supplemental
QA criterion), the AFIS-SLR demonstrated superior performance in terms of its sensitivity across
all feature quantities (ranging from 5 to 15) for both sets of mated datasets (Mated Empirical
Dataset and Mated Test Datasets 1, 2, and 3). When the quantity of features range between 5 and
8, the AFIS-SLR was far superior; however, once the quantity of features reached 9 or greater, the
AFIS-SLR was only slightly better (e.g., approximately 3.5% difference or less). As the quantity
of features increased, the sensitivity values also increased and the difference in the sensitivity
values between the two systems decreased. These results of increasing sensitivity as the quantity
of features increase align with our expectations of how the systems should behave. On the other
hand, both the FRStat and AFIS-SLR demonstrated comparable performance in terms of its
specificity for the Non-Mated Empirical Dataset and Non-Mated Test Dataset 1 (both datasets
involving non-mated impressions arbitrarily paired together). Interestingly, the FRStat
demonstrated superior performance in terms of its specificity for both Non-Mated Test Datasets
2a and 2b (close non-match “delta” and “core” regions, respectively). With minor exceptions
between 5 and 6 features, these results were generally consistent across all other feature quantities,
and the difference in specificity values between the two systems was quite large.

The second key observation is related to the impact on the performance of each system as
a result of applying the supplemental QA criterion to “flag” comparisons for which the ratio value
could be potentially misleading. In an operational context, those comparisons that are “flagged”
would be subject to enhanced quality assurance review(s) prior to a result being finalized. Thus,
those that are “flagged” are essentially considered “inconclusive” by the FRStat or AFIS-SLR,
respectively, and therefore the output is not considered as part of this evaluation. To recall, for the
FRStat, this evaluation includes those comparisons that resulted in a ratio value less than 1 or
greater than or equal to 10, and for AFIS-SLR, this evaluation includes those comparisons that
were not flagged by the ML classifier. Taking into account the performance of each system among
those comparisons that were not flagged, we see the AFIS-SLR demonstrated perfect sensitivity
across all quantities of features (sensitivity values of 1.00), illustrating that the supplemental QA
criterion had a positive impact on the sensitivity of the AFIS-SLR; however, the sensitivity of the
FRStat decreased substantially when the quantity of features ranged between 5 and 8 (compared
to the sensitivity values without the supplemental QA criterion). Once the quantity of features
reached 9 or greater, the supplemental QA criterion had minimal impacts to the sensitivity of the
FRStat. On the other hand, the supplemental QA criterion had positive impacts on the specificity
of both the FRStat and the AFIS-SLR across all non-mated datasets, and both the FRStat and
AFIS-SLR demonstrated comparable performance in terms of its specificity for the Non-Mated
Empirical Dataset and Non-Mated Test Dataset 1 (both datasets involving non-mated impressions
arbitrarily paired together). For the Non-Mated Test Datasets 2a and 2b (close non-match “delta”
and “core” regions, respectively), the AFIS-SLR demonstrated substantial improvement with the
application of the supplemental QA criterion. The AFIS-SLR outperformed the FRStat across all
quantities of features for Non-Mated Test Dataset 2a, and the results were generally comparable
between the FRStat and AFIS-SLR for Non-Mated Test Dataset 2b.

The third key observation is related to the utility of each system (before or after applying

the supplemental QA criterion). We can consider the utility of the system as a function of both its
performance (i.e., sensitivity, specificity) and the proportion of comparisons that were not flagged
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as potentially misleading (i.e., not flagged as “inconclusive” by the system). For example, we can
propose a system that demonstrates high performance in terms of its sensitivity and specificity, but
also flags a high proportion of comparisons as potentially misleading when the supplemental QA
criterion is applied. In this example, although the performance of the system among those
comparisons that were not flagged is high, the system is not very effective at providing a
meaningful result for a high proportion of the comparisons; thus, the system would have moderate
or low overall utility in an operational context. Compare that to a system that demonstrates high
performance in terms of its sensitivity and specificity while flagging few, if any, of the
comparisons as potentially misleading. In this example, not only is the performance of the system
among those comparisons that were not flagged high, but the system is also very effective at
providing a meaningful result for the vast majority of the comparisons; thus, the system would
have high overall utility in an operational context. As illustrated by these examples, and for
purposes of this evaluation, the utility of each system is calculated as the product of the
performance (sensitivity, specificity) and the proportion of comparisons that were not flagged as
potentially misleading. From the utility values represented in Tables 3-21 through 3-26 and
illustrated by Figures 3-15 through 3-20, we see the AFIS-SLR (without the application of the
supplemental QA criterion) provides superior utility in terms of sensitivity across all quantities of
features. In terms of specificity, we see that the AFIS-SLR (without the application of the
supplemental QA criterion) and the FRStat (with or without the application of the supplemental
QA criterion) provide comparable performance for the Non-Mated Empirical Dataset and Non-
Mated Test Dataset 1 (both datasets involving non-mated impressions arbitrarily paired together).
For the Non-Mated Test Datasets 2a and 2b (close non-match “delta” and “core” regions,
respectively), however, we see that the FRStat (with or without the application of the supplemental
QA criterion) provides superior utility.

From the discussion above, we can draw three overall conclusions. First, the supplemental
QA criterion had a negative impact to the overall performance of the FRStat (significant impacts
to sensitivity and negligible impacts to specificity), and, although the application of the
supplemental QA criterion improved performance of the AFIS-SLR, it did so at a significant cost
of removing a large proportion of the dataset. Consequently, in terms of overall utility, neither
system appears to benefit from the application of the supplemental QA criterion (i.e., the ratio
value alone appears to be a sufficient basis for distinguishing between mated and non-mated
comparisons). Second, the AFIS-SLR is superior compared to the FRStat in terms of maximizing
both sensitivity and specificity across all quantities of features (except for “close non-match”
comparisons); however, the greatest impact of this comes from the improved sensitivity of the
AFIS-SLR for comparisons having less than 9 features. For comparisons with 9 features or more,
both the AFIS-SLR and the FRStat demonstrated comparable performance for both sensitivity and
specificity (except for “close non-match” comparisons). Third, the FRStat demonstrated
significantly improved performance in terms of its specificity against “close non-match”
comparisons. These results suggest that both the AFIS-SLR and the FRStat are viable systems to
use as a means of distinguishing between mated and non-mated impressions (with the AFIS-SLR
having a notable edge for impressions with less than 9 features and the FRStat having a notable
edge for distinguishing between “close non-match” comparisons). Overall, these results suggest
that there is some tradeoff of terms of performance and computational complexity, but not enough
to warrant a wholesale rejection of one system over the other—both systems appear to have the
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capacity to distinguish between mated and non-mated impressions with reasonable accuracy and
provide an additional layer of quality control to the overall examination scheme.
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4 Toward Objectivity: Integrating Algorithmic Outputs

This chapter explores the utility (i.e., usefulness), from a quality management standpoint, of
integrating the DFIQI and FRStat algorithms into a single system for which the input to the FRStat
is dependent upon the output from the DFIQI. An integrated system such as this could provide a
more objective and semi-automated approach for ensuring not only that analysts’ interpretations
are empirically supported for all major decisions throughout the examination methodology but
also that a means for monitoring and ensuring the quality of results meets minimum standards for
quality assurance. This chapter describes how the two systems can be integrated and evaluates the
impacts of such an application in practice.

4.1 Background

The DFIQI algorithm presented in chapter 2 (i.e., in [49]) provides measure of the overall
quality of the impression for further examination purposes as well as an objective measure of the
clarity of friction ridge features identified by the analyst. Although a primary utility of the DFIQI
algorithm is the use of its global assessment of quality for purposes of flagging an impression for
additional quality assurance review prior to further examination with an exemplar, the clarity of
the friction ridges immediately surrounding each individual feature is measured as part of the
algorithm and those results are included as an output to the user in the form of color-coded bins
(green, yellow, or red) indicating whether the clarity of ridges in those areas is “high,” “medium,”
or “low,” respectively. The clarity of ridge detail immediately surrounding individual features can
be used as a proxy for their reliability—features in high clarity areas are generally interpreted more
consistently by analysts and are therefore considered more reliable whereas features in low clarity
areas are generally interpreted less consistently by analysts and are therefore considered less
reliable. As such, the DFIQI algorithm can be applied to a mark as a means of (1) measuring the
quality of the overall impression for further examination, and (2) objectively assessing the
reliability of the features identified by the analyst which are intended to be used in further
examination with the exemplar. As a stand-alone algorithm, the DFIQI helps address an important
need for the discipline; however, it is not a comprehensive solution. The DFIQI does provide a
means of assessing the significance of an association between a mark-exemplar pair.

The FRStat algorithm presented in chapter 3 (i.e., in [50]) provides a means of quantitatively
conveying the significance of an association observed by an analyst. As such, the FRStat provides
an empirical foundation to analysts’ opinions of association between a mark-exemplar pair as well
as a tool for quality assurance managers to ensure the reported results meet minimum standards.
Although the FRStat helps address a critical gap in the discipline, it has its limitations. The most
notable limitation is that the FRStat is only able to consider the annotations by the analyst
representing the locations and angles of the features and is not able to evaluate the reliability of
the actual features. Consequently, without proper protocols in place to guard against potential
cognitive biases related to the interpretation of features, it is foreseeable that the input to the FRStat
could include annotations of low quality and unreliable features that are incorrectly represented.
If the incorrect interpretation leads to a misalignment of similarity, then the FRStat is likely to
produce a low similarity result, which would flag it for further quality assurance review. However,
if the incorrect interpretation leads to a false alignment of similarity, then the FRStat is unlikely to
flag it, which could lead to a more consequential outcome if not detected by other means available

108



in the quality system (e.g., verification, technical review, etc.). To address this, the FRStat should
not be used in isolation—it should be used in accordance with a set of strict policies and procedures
to verify the reliability of the annotated features. Different strategies can be employed to
accomplish this, such as linear applications of ACE (i.e., only those features which were
documented on the mark prior to exposure to the exemplar and which were not adjusted after
exposure to the exemplar are included), consensus feature markups (i.e., only those features which
were independently observed and documented on the mark by multiple examiners are included),
or quality metrics (i.e., only those features measured by an algorithm and exceed a minimum
standard for quality are included). The DFIQI algorithm presented in chapter 2 is an example of
an algorithm to enable the latter approach. As a combined system, the integration of DFIQI and
FRStat outputs could be a valuable tool for improving the objectivity, transparency, and
standardization of the examination process.

Integrating the DFIQI and FRStat algorithmic outputs can be accomplished through
governance of policy and procedure or through technology by consolidating the two programs into
a single software application and creating a bridge between the two algorithms. Given the
construct of the two software applications, both options are possible—each with their own pros
and cons:

Governance by policy and procedure requires more effort in terms and workflow and would
require discretizing the clarity of the features measured by DFIQI (reducing the clarity measures
to one of three classes). Although this option is less automated, it offers the laboratory more
flexibility and discretion if the analyst disagreed with the output of the algorithm midway through
the examination process. In those situations, the laboratory could flag the impression for more in-
depth quality assurance review and arbitrate the disagreement at that stage in the process prior to
applying the FRStat algorithm. This option offers more precision when identifying and addressing
the cause of the disagreement.

Governance by technology allows for either: (a) the clarity of features measured by DFIQI
to be treated in a discretized manner and features input to the FRStat are automatically filtered to
those which meet the minimum quality threshold (much like governance by policy and procedure
but in an automated fashion), or (b) the clarity of features to be treated on a continuous scale such
that all features are input into the FRStat, but the contribution of each feature to the FRStat
algorithm is automatically weighted based on the clarity measured (as a continuous value) by the
DFIQI algorithm. The former could be accomplished relatively easily without modification to the
substantive elements of the FRStat algorithm. The latter would require substantive modifications
to certain elements of the FRStat algorithm and is therefore presented here as a theoretical
possibility but left for future work. This option offers the laboratory greater automation, but less
flexibility and discretion if the analyst disagreed with the output of the DFIQI algorithm midway
through the process versus waiting until the end after both algorithms have been applied.

In the sections that follow, the impact of integrating the two algorithms is evaluated by
treating the clarity of features in a discretized manner and only permitting those features which are
color coded green or yellow as eligible for entry into the FRStat. This approach simulates a form
of integration that could be governed by either policy and procedure or technology and therefore
represents the most likely scenario in which the two algorithms would be integrated operationally.
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4.2 Materials & Methods

Although it is possible to integrate the two algorithms by consolidating the two programs
into a single software application and creating a bridge between the two algorithms, for purposes
of this evaluation both programs remain as separate software applications. The impact of
integrating the two algorithms as a combined system is evaluated by running a dataset of
impressions through the DFIQI using the global quality measure (Valuecgs) as an initial gating
function followed by FRStat without pre-assessment by DFIQI LQS (i.e., all features observed by
the analysts are input into FRStat irrespective of their clarity measures) and with pre-assessment
by DFIQI LQS (i.e., only those features color-coded as green or yellow by DFIQI clarity measures
are input into FRStat).

The dataset used for this evaluation consists of 605 marks and corresponding exemplars
arbitrarily collected from casework during the course of routine operations by fingerprint experts
in a federal crime laboratory in the United States. All impressions in this dataset were initially
determined subjectively by analysts to be “suitable” or “of value” for identification purposes and
subsequently identified to the exemplars. All impressions collected in this dataset were examined
as part of routine casework operations prior to the use of algorithms to augment traditional
subjective examination practices. The impressions were collected from a wide variety of cases,
substrates, and assigned fingerprint experts. The corresponding features (ranging between 7 and
15) were manually annotated by the assigned fingerprint expert during the initial case examination.
The selected features were then annotated later in a format suitable for DFIQI and FRStat analysis
by the same fingerprint expert that did the initial examination. For clarity, this dataset is the same
as that referenced as “GQS-Dataset-2” in chapter 2 (i.e., [49]) related to the evaluation of DFIQI
and “Mated Test Dataset #3 (believed to be mated)” in chapter 3 (i.e., [50]) related to the evaluation
of FRStat. The utility of this particular dataset for purposes of this evaluation is to consider the
impact of the algorithms in terms of the proportion of cases for which the analysts’ opinions would
be supported by the algorithms versus those which would be flagged for further review when
applied to impressions derived from actual casework and assessed under normal operational
conditions. It should be noted that this dataset does not include those impressions deemed to be
“no value.” Operational procedures at the time these impressions were examined did not require
retention of annotated images for “no value” outcomes; thus, the impact of algorithms is only
considered in terms of the proportion of mark-exemplar pairs that the algorithms supported the
analysts’ opinion of “value” and subsequent association or flagged for further review. For
purposes of this evaluation, results are analyzed using the following thresholds for DFIQI and
FRStat discussed in chapters 2 and 3, respectively: DFIQI Valueggs result of 0.50 or greater for
analysts’ subjective suitability opinions to be supported without further review, DFIQI LQS result
of green or yellow (LQS values of 0.20 or greater) for the features to be eligible for entry into
FRStat, and a FRStat ratio result of 10 or greater for analysts’ opinions of a positive association
between the mark and exemplar to be reported without further review.
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4.3 Results & Discussion

Among the 605 mark-exemplar pairs, 591 (98%) produced a DFIQI Valueggs result of 0.50
or greater thereby supporting the analysts’ initial opinion of “value” and determination to proceed
to further examination. Thus, at the outset, the DFIQI Valuecgs would have flagged 14 (2%) of
the marks as warranting further review from a quality assurance perspective prior to further
examination. Of the 591 that were supported by the DFIQI Valuecgs pre-assessment, when run
through the FRStat without consideration of the measured clarity of features, 559 produced a
FRStat ratio of 10 or greater. Among the 14 that were flagged by the DFIQI Valuecgs pre-
assessment, 7 resulted in an FRStat ratio supporting an association. These results are summarized
in Table 4-1.

Total mark- FRStat (without
exemplar pairs DFIQI Valuesos DFIQI LQS filter)
559 Supported
591 Supported
32 Flagged
605
7 Supported
14 Flagged
7 Flagged

Table 4-1: Proportion of mark-exemplar pairs evaluated by the DFIQI and FRStat algorithms (without
consideration of the measured clarity of features) which resulted in algorithmic outputs that supported analysts’
subjective opinions of “association” or flagged as warrating further quality assurance review. Note: This dataset
of impressions was taken from a single federal laboratory in the United States which were considered “value for
identification” and subsequently identified to exemplar impressions. Given the lack of quantifiable standards for
“value for identification” at the time these impressions were examined, the extent to which these results are
generalizable is unclear.

Among those same 591 that were supported by the DFIQI Valueggs pre-assessment, when
run through the FRStat with consideration of the measured clarity of features (i.e., limiting the
features eligible for FRStat to only those which were categorized by DFIQI LQS as green or yellow
indicating “high” or “medium” clarity / reliability, respectively), 520 produced a FRStat ratio of
10 or greater. Of the 14 that were flagged by the DFIQI Valuecgs pre-assessment, 4 resulted in an
FRStat ratio supporting an association. These results are summarized in Table 4-2.
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Total mark- FRStat (with
exemplar pairs DFIQI Valuecos DFIQI LQS filter)
520 Supported
591 Supported
71 Flagged
605
4 Supported
14 Flagged
10 Flagged

Table 4-2: Proportion of mark-exemplar pairs evaluated by the DFIQI and FRStat algorithms (with consideration of
the measured clarity of features limiting those features eligigble for entry into FRStat to those occuring in “high” or
“medium” clarity regions) which resulted in algorithmic outputs that supported analysts’ subjective opinions of
“association” or flagged as warrating further quality assurance review. Note: This dataset of impressions was
taken from a single federal laboratory in the United States which were considered “value for identification” and
subsequently identified to exemplar impressions. Given the lack of quantifiable standards for “value for
identification” at the time these impressions were examined, the extent to which these results are generalizable is
unclear.

Taken together, under the most stringent circumstances when DFIQI Valuecgs is applied as
an initial gating function and DFIQI LQS is applied as a means of controlling the reliability of
features eligible for entry into FRStat, 520 (86%) of the mark-exemplar pairs resulted in
algorithmic outputs which supported the analysts’ subjective judgments, warranting reports to be
issued without additional quality assurance reviews. The remaining 85 (14%) would have been
flagged by either DFIQI, FRStat, or both, thus warranting further examination prior to a report
being issued. It is important to note that impressions (or mark-exemplar pairs) flagged for
additional quality assurance review by the algorithms do not imply the analysts’ original opinion
was incorrect or inappropriate. Although this very well could be the case, it could also mean that
those impressions might be lower quality and/or higher complexity compared to others (e.g.,
“borderline” cases) or a potential mistake by the analysts in their initial interpretation or annotation
of features (e.g., additional features overlooked, mistakes during feature annotation, issues
preventing the algorithms from accurately detecting image details, etc.). In either situation, an
additional review seems prudent from a quality assurance perspective, and the algorithms can be
an effective tool to triage cases and suggest when and where to strategically focus resources
compared to arbitrary sampling schemes which are unlikely to detect potential issues as efficiently
as the algorithms.
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5 Evaluation of Practitioners’ Perspectives

This chapter presents a manuscript entitled “‘Mt. Everest—We are Going to Lose Many’:
A Survey of Fingerprint Examiners’ Attitudes toward Probabilistic Reporting” (Swofford et al.,
2021) [51] published in Law, Probability & Risk that explores practitioners’ perspectives related
to probabilistic reporting practices (with or without algorithmic tools) in terms of their reactions,
attitudes, and sources of resistance toward probabilistic methods. Practitioners’ perspectives are
evaluated quantitatively and qualitatively using a structured survey instrument with Likert-scale
response and free-text responses choices.

Mt. Everest—We Are Going to Lose Many:
A Survey of Fingerprint Examiners’ Attitudes toward Probabilistic Reporting

1Swofford, H.; Cole, S.; 2King, V.

1School of Criminal Justice, Forensic Science Institute, University of Lausanne, Switzerland
2Department of Criminology, Law & Society, University of California, Irvine, CA, U.S.A.

5.1 Abstract

Over the last decade, with increasing scientific scrutiny on forensic reporting practices,
there have been several efforts to introduce statistical thinking and probabilistic reasoning into
forensic practice. These efforts have been met with mixed reactions—a common one being
skepticism, or downright hostility, toward this objective. For probabilistic reasoning to be adopted
in forensic practice, more than statistical knowledge will be necessary. Social scientific knowledge
will be critical to effectively understand the sources of concern and barriers to implementation.
This study reports the findings of a survey of forensic fingerprint examiners about reporting
practices across the discipline and practitioners’ attitudes and characterizations of probabilistic
reporting. Overall, despite its adoption by a small number of practitioners, community-wide
adoption of probabilistic reporting in the friction ridge discipline faces challenges. We found that
almost no respondents currently report probabilistically. Perhaps more surprisingly, most
respondents who claimed to report probabilistically, in fact, do not. Further, we found that two-
thirds of respondents perceive probabilistic reporting as “inappropriate”—their most common
concern being that defense attorneys would take advantage of uncertainty or that probabilistic
reports would mislead, or be misunderstood by, other criminal justice system actors. If
probabilistic reporting is to be adopted, much work is still needed to better educate practitioners
on the importance and utility of probabilistic reasoning in order to facilitate a path toward
improved reporting practices.

Keywords: Reporting, Testimony; Fingerprint; Categorical; Probability; Attitudes.
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5.2 Introduction

Recent years have witnessed increasing efforts to introduce probabilistic reasoning into
forensic practice—particularly in the pattern evidence disciplines. We define probabilistic
reasoning in forensic practice as formally recognizing and articulating the uncertainties inherent
in forensic interpretation using probabilistic logic. Forensic statisticians’ efforts in these areas
have primarily, and understandably, been concentrated in their area of technical expertise:
statistics. Therefore, these efforts have been focused on such activities as developing statistical
models [29, 31, 32, 37, 41-43, 50], building useful data sets [69, 70], and developing quality
metrics [14, 18, 23, 26-28, 44, 49].

However, for probabilistic reasoning to be adopted in forensic practice, more than
statistical knowledge will be necessary. Probabilistic reasoning will have to be adopted by the
current workforce of forensic practitioners. It is not clear that this workforce is either
knowledgeable about or committed to a probabilistic approach. Indeed, some practitioners have
expressed skepticism, or downright hostility, toward probabilities and statistics (e.g., [46, 71, 72]).

In addition to statistical knowledge, therefore, social scientific knowledge will be necessary
to actually enact the introduction of probabilistic reasoning into forensic practice. Such knowledge
can help us understand issues such as: whether and to what extent forensic practitioners understand
probabilistic reasoning; how better to educate practitioners in probabilistic reasoning; and whether
practitioners welcome the introduction of probabilistic reasoning or are actively resistant to it and
the reasons for, and sources of, such reactions.

The present study was intended to be a contribution to that effort. It used a survey of
practitioners in a single forensic discipline—friction ridge examination—and it focused on a single
deployment of probabilistic reasoning, which we call “probabilistic reporting”— that is, the
reporting of forensic findings in probabilistic (as opposed to “categorical”) terms. Friction ridge
analysis was chosen because the researchers are familiar with the discipline and had connections
with the large practitioner community, it is a widely used and influential pattern evidence
discipline, the debate over probabilistic reporting is familiar to many in the discipline, and
statistical tools have been developed and are familiar to the community. This study aims to capture
baseline data on reporting practices across the discipline in order to: (i) ascertain what kind of
reporting language friction ridge examiners and Forensic Service Providers (FSPs) currently use,
and to what extent examiners and FSPs use probabilistic reporting, (ii) gauge friction ridge
examiners’ attitudes toward probabilistic reporting, and the reasons for, or sources of, those
reactions; (ii1) understand examiners’ characterization of probabilistic reporting and what it means
to report probabilistically.®

It is hoped that this study will be useful for scientists interested in fostering the use of
probabilistic reasoning in forensic science. It may also be of interest to forensic practitioners,
laboratory administrators, legal scholars, social scientists, and others interested in the introduction
of statistical thinking into forensic practice. The findings may help these groups better understand

8 The study originally had a fourth goal: to capture and record the experiences of latent print examiners who have
adopted probabilistic reporting. However, we received only 6 survey responses (2%) from such examiners. We
deemed this an insufficient sample, and we do not address this goal further here.
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the degree of penetration of probabilistic reasoning that has already been achieved, the reasons
practitioners may welcome or resist the introduction of probabilistic reasoning, and how to
improve education and implementation efforts.

5.3 Background

Friction ridge impression evidence (colloquially referred to as “fingerprint evidence™) has
long been considered one of the most important kinds of forensic evidence used in criminal and
civil litigation and is often regarded by jurors and other criminal justice system actors as
incontrovertible proof that an individual touched an item in question [73-77]. This is based upon
decades of testimony that fingerprint evidence is unique to an individual and that no two
individuals, including identical twins, share the same arrangement of friction ridge skin [78].
Friction ridge examination consists of visual observation and comparison of friction ridge details
between two impressions. Traditionally, the process for conducting friction ridge examinations is
described by the acronym ACE-V, which stands for “Analysis,” “Comparison,” “Evaluation,” and
“Verification” [79]. ACE-V has been described in the forensic literature as a means of comparative
analysis of evidence since 1959 [3].

For nearly a century, latent print examiners have expressed their findings in categorical
terms with statements or implications of absolute certainty, something also true of many other
forensic disciplines [80]. When we characterize reporting as “categorical,” we mean that reporting
follows a system in which reports are assigned to “categories” which are treated as homogeneous
within and mutually exclusive. For example, in friction ridge analysis it is common to report results
in three categories often named “exclusion,” “inconclusive,” and “identification.” Although
categorical reporting does not require statements of certainty (and often allows for statements of
uncertainty), historically it has been common to treat one or both of the endpoints of categorical
frameworks (i.e., “exclusion” and “identification” in the framework above) as statements either of
certainty or of some state of quasi-certainty that can be treated as tantamount to certainty [6]. So,
for example, lay fact-finders were often told that fingerprints “matched” with “100% certainty”
and the two impressions were made by the same source [81]. Over time, terms such as “match,”
“identification,” and “individualization” became synonymous expressions, all of which meant that
a specific individual was determined to be the source of an impression [6]. Such claims have been
criticized as unsupportable by individual scientists and scholars [37, 45, 82-89] and a number of
governmental and scientific reports [3, 7-9, 90]. While this paper is not intended to review these
debates, we summarize the criticisms as follows: First, statements of certainty, to the extent that
they are being made, are inherently misleading and unscientific—they systematically overstate the
value of the evidence. Forensic results, particularly those with an inclusionary outcome, cannot
preclude the possibility of any considered hypothesis. Proper reporting of forensic results should
therefore account for the probability of the evidence under the considered hypotheses and some
probability, even if small, must necessarily be assigned to each hypothesis [91]. Second, statements
of certainty aside, categorical frameworks are too simplistic. They treat all forensic results as
equivalent, no matter how different, assigned to the same category. And, they may overstate the
difference between two forensic results that are quite similar but fall on opposite sides of the
arbitrarily defined boundary between two categories. Ideally, then, forensic results should be
reported along a continuum rather than in categories [45]. How this should be done is not
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something we will discuss in this paper, but, to summarize, proposals range from expanded “verbal
scales” to expressing probabilistic statements along a continuum. Methods for expressing
probabilistic findings range from the use of likelihood ratios to the use of accuracy data, and from
the use of statistical models and associated software to the use of subjective probabilities based on
human judgment.

The friction ridge discipline has responded with statements that limit strength of the claim
that the words “identification” and “individualization” are supposed to convey [10, 92]. These
changes, however, insisted on retaining the terms themselves and the claim that two impressions
were made by the same source while dispensing with the phrase “to the exclusion of all others,”
resulting in ensuing criticisms that the change had no practical impact [93, 94]. At least one crime
laboratory, the United States Army Criminal Investigation Laboratory (USACIL), the primary
forensic laboratory supporting the criminal investigative mission of the Department of Defense,
announced a policy change to abandon the term “identification” and report their findings in a
probabilistic framework [95]. In 2017, the USACIL went a step further and announced the
implementation of a statistical software application, FRStat, to provide probabilistic support to
fingerprint associations [96].° In 2018, the Organization for Scientific Area Committees (OSAC)
for Forensic Science, Friction Ridge Subcommittee (OSAC FRS), which is responsible for the
promulgation of standards and best practices related to the forensic examination of friction ridge
skin impression evidence nationwide, released the proposed Standard for Friction Ridge
Examination Conclusions [97], which took an additional step toward ensuring a probabilistic
expression. While the proposed standard maintains the term “identification,” it was redefined in
a probabilistic likelihood ratio format [97]. In addition to the revised definition, the OSAC FRS
states that “an examiner shall not assert that a source identification is the conclusion that two
impressions were made by the same source or imply an individualization to the exclusion of all
other sources” [97].

This debate over reporting practices provides the context for the present study. However,
the purpose of this study was not to advance the debate for or against probabilistic reporting.
Rather, it was to try to elicit the perspectives of a practitioner community on the prospect of
probabilistic reporting.

% The FRStat software is method developed by the United States Army Criminal Investigation Laboratory (USACIL)
designed to serve as a quality assurance tool and a means of quantitatively conveying the significance of an association
observed by an examiner. The FRStat development and validation is described by Swofford et al., 2018. Briefly
described, the FRStat first calculates a similarity value (called GSS) between two sets of features identified by an
examiner on two separate impressions which the analyst believes to correspond. The software then provides two
estimates, one indicating how often prints originating from common sources would result in a GSS that is equal to or
greater less than the calculated GSS and another indicating how often prints from different sources would result in a
GSS that is equal to or greater than the calculated GSS. The two values are then combined as a ratio providing a
single summary statistic indicating to what extent the GSS is consistent with originating from a common source
compared to different sources. Generally speaking, higher values of this ratio indicate greater evidence in favor of
the analyst’s opinion of association; lower values indicate less evidence in favor of the analyst’s opinion of association
and may serve as a quality assurance tool to flag a comparison as potentially problematic due to insufficient similarity
to support an association, based on the thresholds and standards set by an organization’s policies.

116



5.4 Methods
Participant Recruitment and Survey Administration

Participants were recruited to participate in the study by invitation through their membership
in the International Association for Identification (1Al), the largest professional organization of
forensic fingerprint practitioners in the world, and through word of mouth by members of the
friction ridge (fingerprint) community. The survey was emailed to approximately 1,700 IAIl
members listed as having background in friction ridge examination (see Appendix D-1 for the
recruitment email). On the Study Information Sheet (but not in the Recruitment Email) participants
were informed that they would receive a Center for Statistical Applications in Forensic Evidence
(CSAFE)-branded coffee mug for completing the survey. Eligible participants were forensic
practitioners 18 years of age or older. Participants were provided a link to an online survey using
a commercial survey platform, Qualtrics®. All responses to the survey were anonymous. As will
be discussed below, the survey received a total of 301 survey responses.

The survey was open for a two-month period during August and September 2018. After giving
informed consent, participants were presented with a series of questions pertaining to their
demographics (gender, age, and education), employment and testimony experience. Participants
were then provided a closed-response question in which they were asked to choose which of three
sample statements most closely resembled the wording they currently used in reports of an
association between two friction ridge impressions (see Appendix D-2). The first option was
meant to encompass a variety of different “categorical” ways in which friction ridge examiners
tend to report and testify. The second was intended to encompass the variety of ways in which
friction ridge examiners currently try to testify “probabilistically.” The third, which we call
“demonstrability,” was intended to capture a kind of reporting currently advocated by some
practitioners which emphasizes the “demonstrability” of the conclusions more than their
probabilistic nature [98]. We refer to this question as the “trigger question” because it was used
to initially divide the subject pool into two groups, labelled “probabilistic” and “categorical,”
which were administered questions slightly differently in parts of the remainder of the survey.®
For purposes of this binary assignment, “demonstrability” respondents were aggregated with the
“probabilistic” group.!!

Next, all participants were given an open-response question which asked them to provide
the actual language used in their written examination reports when reporting an association

10 Participants responding to the trigger question indicating that their reporting language was “probabilistic” were
asked to report their attitudes toward probabilistic reporting: (1) before making a change to probabilistic reporting and
(2) after making a change to probabilistic reporting (currently) in order to understand the degree to which their views
have changed over time, if at all. This group was also asked an additional set of questions concerning what was most
and least effective with helping the participant understand the importance of probabilistic reporting and gain comfort
with reporting and testifying using probabilistic conclusions. However, we received only 6 survey responses (2%)
from examiners who have adopted probabilistic reporting. We deemed this an insufficient sample, and we do not
address this further.

11 We doubt that either forensic statisticians or the proponents of the approach themselves would consider the
statements associated with “demonstrability” probabilistic. We combined these responses with the “probabilistic”
group because, though not probabilistic, they do represent a desire to move beyond the conventional categorical
approach, even if the demonstrability approach still does consider itself categorical [99].
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between two friction ridge impressions in their practice. In a follow-up binary, closed-response
question, participants were then asked whether they believed their actual reporting language was
“probabilistic” or “non-probabilistic (categorical).”

After being divided into two groups based on their responses to the trigger question,
participants were administered a series of Likert-scale and free-response questions regarding their
positions toward probabilistic reporting. Likert-scale questions included five response choices
indicating the extent participants agree or disagree with the statements provided. The Likert-scale
response choices included: “strongly agree,” “somewhat agree,” “neither agree or disagree,”
“somewhat disagree,” “strongly disagree.” Likert-scale responses were evaluated quantitatively
and free text responses were evaluated qualitatively through researcher coding and analysis using
Atlas.ti® software. The raw surveys and our coding are publicly available through the CSAFE data
portal [70].

99 <¢

Current Reporting Practices

Cateqorical versus Probabilistic

The first aim of the survey endeavored to capture current reporting practices for associations
between friction ridge impressions. This was accomplished in two different ways. First,
examiners were asked to choose from three fixed options (referred to earlier as the trigger
question). Second, we offered participants the opportunity to articulate their reporting language
in their own terms. Following this second probe, participants were asked to self-report whether
they believed the language they used was “probabilistic” or “non-probabilistic (categorical).” This
second probe allowed us the opportunity to evaluate whether the submitted language was or was
not probabilistic and compare participants’ self-reports to our own evaluations. The free text
responses for which participants provided samples of the actual language used in their written
examination reports when reporting an association between two impressions were evaluated and
coded as “probabilistic” or “non-probabilistic (categorical)” independently by two of the
researchers using the criteria outlined below:

Statements are coded “Probabilistic” if they openly and transparently assign in any way
(verbal or numerical) a probability to the alternative hypothesis.

Statements are coded “Categorical” if they do not assign a probability to the alternative
hypothesis or if they do assign a probability to the alternative hypothesis but, in the same
statement, minimize, belittle, or otherwise encourage the disregarding of that probability.

Coding discrepancies between the two researchers were reviewed by the third researcher and

discussed until a consensus was reached. This design allowed us to compare participants’ self-
reports to our own evaluations of whether or not statements were probabilistic.
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Types of Categorical and Probabilistic Reporting

In order to achieve greater specificity about the nature of the statements being used, we
subdivided “categorical” and “probabilistic” statements into two subcategories each. We
subdivided categorical statements into “Traditional” or “Elaborated,” following the nomenclature
proposed by Bali et al. [80]. Traditional statements are generally those kinds of statements that
have pervaded the friction ridge discipline for the past century. Elaborated statements are those
that appear to recognize that the manner of reporting needs to change, but appear to do so subtly.
An example would be the redefinition of the term “individualization” by the Scientific Working
Group for Friction Ridge Analysis Study and Technology (SWGFAST) to mean “the decision that
the likelihood the impression was made by another (different) source is so remote that it is
considered as a practical impossibility” [10]. More specifically, “Traditional” statements (e.g.,
“the two prints are from the same source”; “this finger made this print”; “the print was identified
to the defendant”; “I made an identification,” etc.) assign no probability to the alternative
hypothesis. “Elaborated” statements assign a probability to the alternative hypothesis but also
minimize it with a statement that encourages disregarding it (e.g., “practical impossibility,”
“negligible,” “discounted,” etc.).

We subdivided probabilistic statements into two categories according to the degree of rigor
with which the statements follow the logical and formal rules of probabilistic reporting (e.g.,
clearly articulating hypotheses) [100]. Statements in the first category, which we call “Probability
of Findings,” tend to articulate two hypotheses and characterize the probability of the evidence.
Statements in the second category, which we call “Probability of Hypothesis,” tend to articulate
only one hypothesis and characterize the probability of the hypothesis (i.e. posterior probabilities)
as opposed to the probability of the evidence. Based on our reading of the statement, we believe
the “Probability of Hypothesis” statements represent efforts to testify in a logical probabilistic
manner which have, like many efforts to speak probabilistically, inadvertently transposed the
conditional [101].

Support for Probabilistic Reporting (Agency Policy versus Personal Belief)

In addition to gaining a general understanding of the extent to which examiners report
categorically vs. probabilistically, we were also interested in understanding the extent to which
examiners support reporting probabilistically. By asking examiners to report the statements that
they use in their actual reports, we may have captured agency policy rather than examiners’
personal beliefs. In order to better understand examiners’ personal positions toward probabilistic
reporting, thus capturing whether such examiners may be at least open to the idea of a transition,
we asked several questions designed to elicit their personal beliefs about categorical and
probabilistic reporting. These were explored using the following Likert-scale response questions
for all respondents:

| feel that the proposed shift away from "identification” and the use of probabilistic
language is an appropriate direction for the fingerprint community.
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I do not understand why there is concern with expressing positive conclusions in absolute
terms, such as "identification."

| support probabilistic reporting because it is a scientifically more appropriate means of
expressing positive fingerprint conclusions.

| do not understand why probabilistic conclusions are more appropriate means of
expressing positive fingerprint conclusions.

| am willing to take an active role in helping other practitioners become more
understanding and accepting of probabilistic reporting.
Attitudes Toward Probabilistic Reporting

Receptivity to Probabilistic Reporting

The second aim of the survey endeavored to capture examiners’ attitudes toward probabilistic
reporting and the reasons for, or sources of, those reactions. This was accomplished in several
ways. First, our survey question “I feel that the proposed shift away from ‘identification’ and the
use of probabilistic language is an appropriate direction for the fingerprint community” probed the
current state of examiners’ receptivity to probabilistic reporting. Second, in order to gain greater
insight into examiners’ views, we solicited a free text response which invited participants to
elaborate on why they agree or disagree “that the proposed shift away from ‘identification’ and the
use of probabilistic language is an appropriate direction for the community.” The free text
responses were analyzed in three groups according to aggregated responses from the Likert-scale:
(1) those who perceive probabilistic reporting as appropriate (i.e., those who responded
“somewhat” or “strongly agree”); (2) those who perceive probabilistic reporting as inappropriate
(i.e., those who responded “somewhat” or “strongly disagree”); and (3) those who were neutral as
to the appropriateness of probabilistic reporting (i.e., those who responded ‘“neither agree nor
disagree”). Free text responses were single-coded by the second author in order to derive themes
that emerged from the data according to a grounded theory approach. The second author has been
studying friction ridge analysis from historical, sociological, epistemological, and rhetorical
perspectives for more than 20 years and, therefore, is, we believe, sufficiently familiar with the
jargon of the discipline to interpret the responses. After a provisional list of themes was generated,
the themes were re-evaluated, and some themes were aggregated, disaggregated, or deleted. The
researcher then made a second pass through the data using this final list of themes. There was no
maximum placed on the number of themes which could be applied to any single response, but the
minimum was 1 to ensure the assignment of at least one theme to each response (i.e., if a response
did not fit any existing theme, a new theme was added).

General Opposition to Probabilistic Reporting

In addition to the free text responses allowing participants to elaborate on why they agree or
disagree “that the proposed shift away from ‘identification’ and the use of probabilistic language
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is an appropriate direction for the community,” we were also interested in understanding key
reasons for the opposition in a more structured way. We accomplished this by asking all
participants several Likert-scale response questions designed to elicit general reasons why they
may be opposed to probabilistic reporting. The questions were selected based on our anecdotal
observations of examiners’ claims or implications at conferences, online chat boards, and informal
discussions over the last several years:

| feel that law enforcement, special agents, and/or other investigators would not understand
how to interpret probabilistic conclusion language.

| feel that defense attorneys would take advantage of probabilistic conclusion language to
create reasonable doubt.

| feel that prosecutors would be less willing to use fingerprint evidence in court because of the
probabilistic conclusion language.

| feel that judges and/or jurors would not understand probabilistic conclusion language.

| feel that I do not sufficiently understand probabilities and would not to be able to properly
testify to my conclusion in court.

| feel that a probabilistic conclusion is too weak of a conclusion.
| feel that a probabilistic conclusion would negatively impact the outcome of a trial.

| feel that if 1 were to report and/or testify to probabilistic language that my certification with
the International Association for Identification (IAl) would be in jeopardy.

| feel that probabilistic reporting will cause the number of erroneous associations to
significantly increase.

Characterizations of Probabilistic Reporting

The third aim of the survey endeavored to understand examiners’ characterization of
probabilistic reporting and what it means to report probabilistically. Although the concept of
“probabilistic reporting” has been advocated by proponents, it is unclear what examiners
understand those words to mean and whether they differ from one another. In a free-text response
question, we sought to allow the respondents to tell us what they understood the term “probabilistic
reporting” to mean with the following question: “How would you describe probabilistic reporting,
compared to non-probabilistic (categorical) reporting?” For analysis purposes, we divided
respondents into two groups (categorical reporters and probabilistic reporters) based on the trigger
question discussed above. Using the same analysis procedures described above, the free text
responses were reviewed by one of the researchers in order to derive themes that emerged from
the data according to a grounded theory approach.
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5.5 Results
Participant Responses

A total of 435 raw survey responses were received in the two-month period the survey was
open (August and September 2018); however, 134 survey responses omitted the trigger question
and were largely incomplete or blank altogether, and we discarded them. Given that the survey
was made freely available on the internet, many “responses” may have reflected individuals who
preferred to view the survey, rather than complete it. After removing the incomplete surveys, a
total of 301 completed surveys were available for evaluation—yielding a response rate of 17.7%
out of approximately 1,700 IAl members invited to participate. A completed survey, however,
does not mean that the respondent answered every question.

Of the 301 respondents who completed surveys, the demographics are as follows: 44% were
male and 54% were female (2% unreported), 88% reported being employed in the United States
and 10% reported being employed outside of the United States, 83% reported having a Bachelor’s
Degree or higher, 84% have testified in court, 54% testified in court in the past year, the average
years of experience is 16.5 years (standard deviation of 11.2 years), and the distribution of
participants’ ages was: 8% reported as 20-29 years, 36% reported as 30-39 years, 28% reported as
40-49 years, 19% reported as 50-59 years, 8% reported as 60-69 years, 2% reported as 70-79 years,
and 2% unreported.

Current Reporting Practices

Cateqorical versus Probabilistic

Among the 301 completed surveys, all participants responded to the trigger question with
three fixed reporting options. The responses to this question are shown in Table 5-1.

Response Brief description n
_ I 88%
Categorical Same source; identified to, matched (264/301)
S - : 10%
Probabilistic Likelihood same or different source (31/301)
0,
Demonstrability The conclusion is easily demonstrable to others (6/23?))1)

Table 5-1. Breakdown of fixed options of current reporting practices for associations. Examiners selected the
samples of fixed reporting options that most closely resembled their own. The fixed reporting options acted as a
“trigger question” to initially categorize respondents as reporting categorically or probabilistically. The
“demonstrability” option was treated as probabilistic for purposes of this initial categorization.

Table 5-1 shows that the vast majority of respondents (88%) use categorical reporting
language. Probabilistic reporting is rare (10%) and only 2% of respondents use “demonstrability”
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language. In short, 9 out of 10 friction ridge examiners surveyed responded that they report
categorically.

Among the 301 completed surveys, only 247 provided free text responses with a sample of
their actual reporting language. For those 247 respondents, we were able to code whether the
reporting language was categorical or probabilistic (coding discrepancies between the two
researchers occurred in 3 of the 247 responses—all three related to whether a categorical statement
should be sub-coded as “traditional” versus “elaborated”). Table 5-2 compares respondents’ self-
reports with researcher coding. The self-reports for the smaller group of 247 respondents are
consistent with those found in the larger group of 301 (Table 5-1): 88% of examiners described
themselves as reporting categorically (Table 5-2, column 2). Surprisingly, even among the small
number of examiners who purported to report probabilistically, the majority of them, in our view,
report categorically. Conversely, two respondents described themselves as reporting categorically,
but provided a sample statement that we interpret to be probabilistic (columns 4 and 6).

1 \ 2 3 \ 4 5 \ 6
Self-report Researcher coded Total (Researcher coded)
Categorical 87%
88% (215/247) 98%

categorical | (uriaary [ <1% W (241/247)
ropapilistic (2/247)
Categorical 10% \
12% (26/247) 2%

Probabilistic
(30/247) L 2% (6/247)
Probabilistic (41247)

Probabilistic

Table 5-2. Breakdown of categorical vs. probabilistic reported based on respondents’ self-report compared to
researcher coding of the actual reporting language. The arrows show the consequences of reassigning respondents
whose self-reports the researchers deemed incorrect.

Readers may wonder whether and why they should treat our assessment of whether a
statement is probabilistic as dispositive. We believe that readers who examine the statements for
which we disagreed with the participant’s self-report will find our assessments uncontroversial
(taking note of the definitions of these two categories we provide above). For example, one
respondent self-reported that the following statement was “probabilistic”; however, we interpreted
it to be categorical: “Identification is the opinion of an examiner that there is sufficient quality and
quantity of detail in agreement to conclude that two impressions originated from the same source.”
Conversely, another respondent self-reported that the following statement was “categorical”—we
coded it as probabilistic: “In the opinion of this examiner the likelihood that the impressions were
made by a different source other than the one listed is very small.” A full listing of all the
statements for which researcher coding conflicted with self-report is presented in Appendix D-3.

Table 5-2 suggests that categorical reporting is even more prevalent than the 90% figure
found in the self-reports. According to our coding of actual provided sample reporting language,*?

12 Readers may wonder whether multiple participants from the same laboratory participated in the survey. The
anonymous nature of the survey precludes any insights into this.
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98% of respondents are using categorical statements to describe associations between friction ridge
impressions. Only 6 of the 247 respondents provided statements that we interpret as probabilistic.

Types of Categorical and Probabilistic Reporting

Table 5-3 provides the breakdown of respondents’ categorical statements subdivided as
“traditional” versus “elaborated” and respondents’ probabilistic statements subdivided as

“probability of findings” versus “probability of hypothesis.”

Researcher coded Statement subtype
Traditional 89%
Categorical 8% (220/247)
(241/247) Elaborated %
(21/247)
Probability of 2%
_— 2% Findings (4/247)
Probabilistic (6/247) Probability of <1%
Hypothesis (2/247)

Table 5-3. Breakdown of categorical and probabilistic reporting into subtype based on determinations of categorical
vs. probabilistic from researcher coding (traditional vs. elaborated for categorical and probability of findings vs.
probability of hypothesis for probabilistic).

Support for Probabilistic Reporting (Agency Policy versus Personal Belief)

Table 5-4 shows the responses from participants who actually report categorically related
to questions designed to elicit their personal support for probabilistic reporting. As Table 5-4
shows, between 32% and 43% of respondents who report categorically responded in ways that
suggest they personally support probabilistic reporting.

Degrees of
Question Likert-Measure Total dis/agreement
aggregated
9%
Strongly agree (24/265) 3904
0,
| feel that the proposed shift away from | Somewhat agree (6??225) (85/265)
"identification™ and the use of i 0 5
robabilistic language is an Neit e agree or 10% 10%
P FIstic fangt disagree (26/265) (26/265)
appropriate direction for the 8%
fingerprint community. Somewhat disagree (73/265) 5806
. 31% (154/265)
Strongly disagree (81/265)
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Strongly agree 22%
(59/265) 49%
Somewhat agree 26% (129/265)
| do not understand why there is (70/265)
concern with expressing positive Neither agree or 9% 9%
conclusions in absolute terms, such as disagree (23/265) (23/265)
"identification.” Somewhat disagree 25%
(65/265) 43%
. 18% (113/265)
Strongly disagree (48/265)
Strongly agree 12%
(34/280) 37%
Somewhat agree 25% (104/280)
| support probabilistic reporting (70/280)
because it is a scientifically more Neither agree or 12% 12%
appropriate means of expressing disagree (33/280) (33/280)
positive fingerprint conclusions. . 21%
Somewhat disagree (58/280) 510
. 30% (143/280)
Strongly disagree (85/280)
Strongly agree 21%
(59/280) 46%
Somewhat agree 25% (128/280)
I do not understand why probabilistic (69/280)
conclusions are more appropriate Neither agree or 14% 14%
means of expressing positive disagree (38/280) (38/280)
fingerprint conclusions. . 25%
Somewhat disagree (69/280) 41%
. 16% (114/280)
Strongly disagree (45/280)
Strongly agree 13%
(37/280) 34%
Somewhat agree 20% (94/280)
| am willing to take an active role in (57/280)
helping other practitioners become Neither agree or 34% 34%
more understanding and accepting of disagree (95/280) (95/280)
probabilistic reporting. Somewhat disagree (35;@0) 00
. 20% (91/280)
Strongly disagree (56/280)

Table 5-4. Participants’ (categorical respondents based on researcher coding) responses to Likert-scale questions
related to examiners’ personal beliefs and support for probabilistic reporting.
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Attitudes Toward Probabilistic Reporting

Receptivity to Probabilistic Reporting

The first question on Table 5-4 shows the range of responses on the Likert-scale to the
question “I feel that the proposed shift away from ‘identification’ and the use of probabilistic
language is an appropriate direction for the fingerprint community” for respondents and then
shows aggregations of the Likert-scale responses into broader categories. From these data, we see
most friction ridge examiners feel that probabilistic reporting is not an appropriate direction for
the community (58%). Few examiners are neutral on the issue (10%). Among the 239 respondents
with opinions (responding “somewhat” or “strongly dis/agree” in either direction), approximately
two-thirds view it as inappropriate and one-third view it as appropriate. Although the proportion
who view it as appropriate is far greater than those who actually apply probabilistic reporting, the
majority of the examiner community at large still remains generally opposed to, or at least skeptical
of, probabilistic reporting.

When invited to elaborate on why participants agree or disagree “that the proposed shift
away from ‘identification’ and the use of probabilistic language is an appropriate direction for the
community” in a free text response, respondents expressed a wide diversity of opinions to this
guestion. Some respondents wrote long disquisitions, and at least one complained about the lack
of space in which to enter a response. The mean and median number of themes for each response
was 3. The minimum was 1 (our coding rules required the assignment of at least one theme to
each response), and the maximum was 8.

Respondents supporting probabilistic reporting

Among the 85 participants who consider probabilistic reporting appropriate (i.e., those
who responded “somewhat” or “strongly agree” on the first question in Table 5-4), a total of 36
different themes were identified suggesting why they viewed it as appropriate, and a total of 113
themes were coded across the 85 respondents. Table 5-5 shows all themes that were mentioned by
more than one respondent. The full list of themes is available through the CSAFE data portal (see

[70]).
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Number Theme Frequency
1. more accurate 12
2. more scientific 12
3. uncertainty 10
4. jury clarity 9
5. transparency 7
6. weight of evidence 7
7. finer 6
8. unigueness unproven 6
9. objectivity 5
10. it's happening 3
11. statistic ok with verbal 3
12. appropriate 2
13. consistent with other disciplines 2
14. external scrutiny 2
15. law 2
16. overselling 2
17. reliance on stock phrases/expertise 2
18. sound reasoning 2
19. step in right direction 2

Table 5-5. “Shift to probabilistic reporting is appropriate”: all coded themes (n=85).

The most common responses were that probabilistic reporting was an improvement over
past or current practice. This was most commonly described as either “more accurate” or “more

scientific.” An example of a “more accurate” statement is:

It is a more accurate description of my observations and the limits of my observations

(38).13

An example of a “more scientific” statement is:

[ think it’s time for LP [latent print] examination to apply more scientific rigor to the
practice of latent print examination. This would include articulating probabilities when

reporting results of examinations. | would hope that this ultimately leads to more

credibility for friction ridge examination as a forensic discipline (416).

These respondents also viewed probabilistic reporting’s ability to convey uncertainty as an

advantage. For example, one respondent wrote:

13 All quotations or references to specific responses from the survey are followed by a parenthetical reference to the
respondent number. Respondent numbers were assigned to all respondents who opened the survey, including those
who did not complete it. Therefore, some respondent numbers are greater than the total number of respondents, 301.
Spelling errors in the responses are corrected, but grammatical errors are not.
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We shouldn't speak in absolute terms. Identification over estimates the evidence and our
conclusions should convey the level of certain [sic] we know. Even if we know what we
mean by identification it does imply to a jury absolute certainty. It's not scientific. | would
like the field to be better (31).

Several respondents specifically cited the “weight of evidence,” an important concept in forensic
statistics, as an advantage of probabilistic reporting. Many of these respondents perceived
probabilistic reporting as offering greater “jury clarity” and “transparency” for the jury. This
contrasts with many respondents who do not support probabilistic reporting and cited “jury
confusion” as a reason for their opposition (see below).

Overall, respondents offered a rich and diverse set of reasons for the appropriateness of
probabilistic reporting. There were reference to epistemological considerations (e.g., “uniqueness
unproven”; “objectivity”), external forces (e.g., “it’s happening,” “external scrutiny,” “law”), and
perceived problems with current practice (e.g., “overselling,” “reliance on stock
phrases/expertise,” “conclusions are not overstated””). However, in contrast to the responses that
probabilistic reporting is inappropriate, those who consider it appropriate were characterized by a
clearly perceptible degree of ambivalence. Many responses coded as “appropriate” listed some
advantages of probabilistic reporting, but then turned to some perceived disadvantage.!* An
example is this:

99 ¢

It gives a more accurate representation of the validity of the conclusion and results
reported. However, | do worry it may confuse the issue in the event of a
distracted/inattentive jury (419).

Recognizing the importance of this ambivalence, we coded such responses as containing
“reservations.” Fully 36 of the 85 responses (42%) that considered probabilistic reporting
appropriate contained such reservations. Such ambivalence was not nearly as common among the
responses that considered it inappropriate, and so “reservations” in those responses were not
counted.

141t is important to recall that in this analysis respondents were categorized according to their responses to the Likert-
scale question, not according to researcher coding of their free-text responses. Thus, a respondent who reported that
they “somewhat agree” that probabilistic reporting is appropriate and submitted a free-text response criticizing
probabilistic reporting was still analyzed in the “appropriate” group. For example, the following free-text responses
were made by respondents who self-reported that they agreed or somewhat agreed that probabilistic reporting was
appropriate: “I believe much more study into the usage of probabilistic statements is required. Specifically, in district
and county courts within the US, not just military court as is currently being done” (86); and “The shift towards
probabilistic language seems contradictory to the principles of fingerprint identification that I learned in my training
years. | was taught to give definitive conclusions - not maybes. Additionally, | worry that probabilistic conclusions
may have the negative effect of increasing the number of people being erroneously associated with a given latent
print” (374).
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Respondents not supporting probabilistic reporting

Among the 154 participants who considered probabilistic reporting inappropriate (i.e.,
those who responded “somewhat” or “strongly disagree” on the first question in Table 5-4), a total
of 49 different reasons were identified suggesting why they viewed it as inappropriate, and a total
of 265 themes were coded across the 154 respondents. Table 5-6 shows all themes that were
mentioned by more than one respondent. The full list of themes is available through the CSAFE
data portal (see [70]).

Number Theme Frequency
1. jury confusion 36
2. probability not ready 26
3. underselling 23
4. quantification impossible 18
5. opinionization 15
6. uncertainty can be eliminated 14
7. misleading 12
8. uniqueness 12
9. wealth of empirical data 9
10. DNA paradigm inappropriate 7
11. unnecessary 7
12. appropriate in some cases 6
13. combine probability with id 6
14. models don't capture all information 6
15. vague 6
16. only problem uncertainty 5
17. verbal/subjective probabilities unacceptable 5
18. politics 4
19. skeptical of statistics as discipline/all models wrong 4
20. customer is police/attorneys 3
21. examiner confusion 3
22. risk contradicting ground truth more often 3
23. transparency sufficient 3
24. whole population problem 3
25. accuracy more important 2
26. defense exploitation 2
27. doesn't prefer 2
28. not science 2

Table 5-6. “Shift to probabilistic reporting is inappropriate”: all coded themes (n=154).

The most common response was that probabilistic reporting would confuse the jury:
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Our job in court is to make the jury understand the evidence. | feel that the language being
referred to will just confuse a lay person (36).

For many examiners, the “confusion” they feared lay in the move away from communicating
results in the simple form of certainty:

This shift seems to add confusion. It's giving some degree of uncertainty to our conclusions
(185).

This contrasts with the respondents favoring probabilistic reporting who viewed “uncertainty” as
an advantage.

A similar concern was invoked when examiners expressed concern about “underselling”—the
concern that probabilistic reporting is too “weak’ and would understate the probative value of the
evidence:

No accurate or "full" way to express LPE's opinions. The numbers are weak and meaningless
(413).

Compared to respondents who consider probabilistic reporting appropriate, some examiners cited
“jury confusion” to express the opposite concern: that probabilistic reporting would overstate,
rather than understate, the value of the evidence:

Until probabilistic language is valid and reliable, as well as easily understood by all
practitioners and easily explained by those practitioners to a judge and jury, they are useless
numbers. They provide to confuse the trier of fact, add little to the data, and very likely will
serve to bolster the testimony and evidence (24).

The second most common reason given was “probability not ready.” These respondents
communicated that they were not opposed to probabilistic reporting in principle. Their opposition,
rather, was a practical consideration based on their perception of the current state of affairs with
regard to the development of a statistical model useable for assigning a probability to a friction
ridge association:

There is no current scientific basis for a probabilistic model.  Reporting latent print
conclusions in probabilistic language is misleading and unscientific. Statistics are not in
themselves scientific or objective (254).

Some other common themes cited fundamental epistemological concerns about the use
probability to communicate the findings of friction ridge analysis. One such concern is
“quantification is impossible”:

| believe there cannot be probabilistic language involved with latent print examination. There

are too many variables involved. Latent prints examination is too subjective to have
probability (169).
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These responses suggest the impossibility of quantification as deriving from the limits of friction
ridge analysis: it is inherently uncertain, subjective, and reliant on continuous rather than discrete
measures and, therefore, impervious to quantification. In contrast, other respondents resisted the
premise that friction ridge analysis is inherently uncertain, claiming “uncertainty can be
eliminated™:

When | form the opinion that | have made an identification - 1 am certain that this is the
person. There is no probability of it being from someone else. If I am not certain then | will
not say it's an identification but that I can not exclude them as being the contributor (258).

Ident is ident I don’’t see the purpose of assigning a probability number, it’s 100% or [ wouldn 't
call it a ident (172).

A third such concern is reference to “uniqueness’:

Strongly disagree because it is impossible to apply a probability to something, anything,
that is unique. The scientific basis in biology and other natural sciences is well established.
Therefore, probabilistic language is inappropriate and unscientific (270).

Some respondents expressed outright hostility toward the discipline of statistics, which was
called, for example, a “bandwagon” and a “fad” (239). Another respondent commented:

The probabilistic method (not language) is put upon us because it is supposed to be more
scientific. It comes from the DNA science. | see that nowadays DNA evidence in practice
is accepted as Empirical fact in spite of statistical humdrum (296).

There was also some hostility expressed toward DNA, primarily for imposing an inappropriate

paradigm on friction ridge analysis. “Politics,” defense attorneys, defense experts, and “critics”
were also perceived as imposing the shift toward probabilistic reasoning on the discipline.

Respondents neutral to probabilistic reporting

Among the 26 participants who were neutral as to the appropriateness of probabilistic
reporting (i.e., those who responded “neither agree nor disagree” on the first question in Table 5-
4), a total of 27 different reasons were identified, and a total of 36 themes were coded across the
26 respondents. Table 5-7 shows all themes that were mentioned by more than one respondent.
The full list of themes is available through the CSAFE data portal (see [70]).
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Number Theme Frequency
1. jury confusion 5
2. truly undecided 4
3. doesn't understand 2
4, unnecessary 2

Table 5-7. “Neutral on shift to probabilistic reporting is appropriate”: all coded themes (n=26).

General Opposition to Probabilistic Reporting

Table 5-8 shows the responses to the Likert-scale questions designed to elicit key reasons
why examiners may be opposed to probabilistic reporting and provides them in rank order based
on the proportion of examiners who responded “agree” or “strongly agree” to each question.

Agree or
Key Reasons for Opposition to Probabilistic Reporting (in rank order) Strongly
Agree
Defense attorneys would take advantage of probabilistic conclusion 79%
language to create reasonable doubt (211/266)
Judges and/or jurors would not understand probabilistic conclusion 79%
language (209/264)
Law enforcement, special agents, and other investigators would not know 69%
how to interpret probabilistic conclusion language (184/265)
I . : 48%
A probabilistic conclusion is too weak of a conclusion (127/265)
I do not sufficiently understand probabilities and would not be able to 44%
properly testify (116/266)
I . : . : 41%
A probabilistic conclusion would negatively impact the outcome of a trial (110/266)
Prosecutors would be less willing to use fingerprint evidence in court 38%
(100/266)
Probabilistic reporting will cause the number of erroneous associations to 28%
significantly increase (80/281)
My certification with the International Association for Identification would 15%
be in jeopardy (40/266)

Table 5-8. Participants’ (categorical respondents based on researcher coding) responses to Likert-scale questions
related to possible reasons for opposition to probabilistic reporting (from tables 5-6 and 5-7) in rank order. Note:
n’s vary by question.
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Characterizations of Probabilistic Reporting

When asked to describe probabilistic reporting compared to non-probabilistic (categorical)
reporting in a free text response, 192 participants responded. Among those, 177 were respondents
who had self-reported that they report categorically and 15 were respondents who had self-reported
that they report probabilistically. Due to the small number of respondents indicating they report
probabilistically, we only discuss the results of the 177 participants who indicated they report
categorically. Among the 177 categorical respondents, a total of 94 different themes were
identified, and a total of 326 themes were coded across the 177 respondents. Table 5-9 shows all
themes that were mentioned by more than one respondent. The full list of themes is available

through the CSAFE data portal (see [70]).

Number Theme Frequency
1. uncertainty 25
2. quantification 19
3. jury confusion 17
4. probability not ready 17
5. random match probability 16
6. weight of evidence 15
7. likelihood ratio inverted conditional 13
8. scientific 11
9. likelihood ratio 9
10. confusing for customer 7
11. undermining of fingerprinting 7
12. continuum 6
13. incomplete 6
14, vague 6
15. confusing 5
16. confusing to practitioners 5
17. don't know 5
18. sliding scale 5
19. too weak 5
20. underselling 5
21. unnecessary 5
22. DNA model 4
23. driven by critics/self-serving agenda 4
24, error prone 4
25. statistical model 4
26. the way forward 4
217. disaster 3
28. misleading 3
29. more data to support conclusion 3
30. possible associations 3
31. problematic 3
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32. anti-ground truth 2
33. consider with other evidence 2
34. dropping exclusion of all others 2
35. expectation of seeing similarity 2
36. greater exploitation of evidence 2
37. imprecise 2
38. inappropriate 2
39. insufficient weight 2
40. more accurate 2
41. not opposite of categorical 2
42. objective 2
43. probability impossible 2
44, protects incompetence 2
45. reliance on technology 2
46. score-based 2
47, transparent 2
48. wiggle room for witnesses 2
49. wordy 2
50. world population paradigm 2

Table 5-9. Describe probabilistic reporting — Categorical respondents: all coded themes (n=177).

The most common response characterized probabilistic reporting as the quantification, or
at least the communication, of “uncertainty’:

Probabilistic reporting assigns uncertainty to each examination while non-probabilistic
reporting offers a conclusion (16).

The second most common response characterized probabilistic reporting in terms of
“quantification”:

Using numbers, statistics, and/or frequencies to explain a conclusion rather than words or
descriptions (181).

As shown in Table 5-9, two of the more common themes that appeared in response to
questions about the appropriateness of probabilistic reporting also appeared in response to
questions about its definition: “jury confusion” and “probability not ready.”

A number of specific technical statistical concepts appeared in the responses. The notion
of “random match probability” appeared more frequently than “weight of evidence.” This is
notable because the latter of the two terms better captures the current thinking among forensic
statisticians, especially with regard to pattern evidence, such as friction ridge analysis. For
example, many respondents described probabilistic reporting in terms of a random match
probability:
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| would describe it as using a statistic [sic] model to convey the likelihood of finding
someone else with the same characteristics in those prints (25).

Slightly fewer described the weight of evidence:

Probabilistic reporting would involve some sort of calculation to give a weight to the
conclusion based on the information present in the known and unknown (180).

The likelihood ratio, which is currently a very common topic of discussion in forensic statistics,
was mentioned more frequently than either random match probability or weight of evidence.
However, it was more common to describe the likelihood ratio incorrectly, with the conditional
inverted [101], than it was to describe it correctly. For example, one respondent correctly
characterized the likelihood ratio:

Probabilistic reporting puts a number on the result. In some models, that number is a
similarity score, sort of like the scores we get when we search a print in AFIS. In other
models, the number is a likelihood ratio, telling you how likely it is that the prints having
so many features in common come from the same source versus how likely it is that prints
having those features in common come from a different source (20).

But others described it with the conditional inverted:

Instead of just saying "identification™ which would be categorical reporting, probabilistic
reporting would include the likelihood of the latent print being made by the subject (189).

5.6 Discussion
Participant Responses

The usable response rate of 17.7% (301 out of approximately 1,700 IAl members invited
to participate) poses a limitation on our survey. Viewed in combination with the recruitment
scheme and voluntary participation, it is difficult to know whether these responses were
representative of the views of the latent print examiner population at large. However, the
demographics of our participants hint that our participants were not an unusual subset of the 1Al
membership. Most of our participants were mid-career latent print examiners between the ages of
30 and 50 years with testimony experience.

Current Reporting Practices

Probabilistic reporting appears to remain rare in the friction ridge discipline, despite its
adoption by a small number of FSPs and practitioners. Approximately 98% of friction ridge
examiners surveyed report categorically using terms and phrases that are reminiscent of over a
century of practice. This is consistent with the findings of other studies in a variety of disciplines.
In their analysis of mock forensic reports from proficiency tests, Bali et al. [80] found categorical
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statements in 100% of toolmark reports, 100% of fiber analysis reports, 98% of firearms
examination reports, 97% of glass analysis reports, 93% of questioned documents reports, 87% of
handwriting examination reports, 85% of paint analysis reports, and 79% of shoeprint impression
reports. Across all disciplines, 94% of reports were categorical.®® Morrison et al. [102] found that
categorical reporting was by far the most common for speaker identification results. One
interesting observation from our survey is that approximately 80% of the examiners surveyed who
claimed to be reporting probabilistically gave as examples statements that were actually
categorical. This suggests some examiners may have a false belief that they are reporting
probabilistically and therefore may not recognize many of the concerns over categorical reporting
are applicable to them.

Even among those who report categorically, fewer than 10% appear to have adopted the
“elaborated” approach espoused by SWGFAST as early as 2011. Nearly a decade of calls by the
scientific community to move toward probabilistic reporting seem to have had limited impact.
However, as noted above, approximately one-third of respondents report categorically but
responded in ways that suggest they personally support probabilistic reporting. This indicates that
some examiners may be “captured” by agency policy—teporting in a manner dictated by agency
policy rather than by personal belief. This raises several open questions. Why is there such a large
discrepancy between examiners who support the idea of probabilistic reporting and those who
actually practice it? Are there some examiners whose reporting is inconsistent with what they
personally believe is appropriate? Or did these responses merely reflect the respondents’
perception that probabilistic reporting was the “socially desirable” answer?

Attitudes Toward Probabilistic Reporting

Most respondents perceived probabilistic reporting as inappropriate for friction ridge
analysis. Only around one third of our respondents described a shift toward probabilistic reporting
as appropriate. At the same time, it can reasonably be argued that finding approximately one-third
of friction ridge practitioners described probabilistic reporting as “appropriate” would have been
unthinkable as recently as one decade ago, let alone two or three decades.

Longstanding “myths” about friction ridge evidence—for example, the claim that the
“uniqueness” of friction ridge skin eliminates uncertainty in associations between friction ridge
impressions—did appear in our data, and so they cannot be considered “dead” and still lurk behind
the scenes [6]. It should be emphasized, however, that they were uncommon among our survey
respondent population, who—precisely because they took the time to complete the survey—may
reasonably be presumed to more aware of, and interested in, current debates and developments
within the discipline.

In assessing the reasons respondents offered for their attitudes, it may be helpful to
distinguish between what we might call “consumption” issues—telating to how evidence is used
by other criminal justice system actors—and what we might call “technical” iSsues concerning the

15 It should be noted, however, that Bali et al. [80] coded categorical statements “absent” or “present”; thus, a single
forensic report could contain both a categorical and a probabilistic statement. We, in contrast, coded “categorical” and
“probabilistic” mutually exclusively: a single statement could not be both probabilistic and categorical.
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merits of probabilistic reporting itself. Among the majority of respondents who viewed the shift
toward probabilistic reporting as inappropriate, the degree of concern about “consumption”
issues—fact-finder comprehension, prosecutor interests, and defense exploitation—is
conspicuous. For example, from the data in Table 5-8, we see that the primary reason respondents
opposed probabilistic reporting was the concern that defense attorneys will take advantage of the
probabilistic conclusion to sow reasonable doubt (79%). Respondents further supported this
through a number of free text responses, such as:

| believe it will confuse the jury and give the defense a chance to place reasonable doubt
(425).

I don’t know why we would be testifying to ‘probable’ outcomes—it would make cross
examination significantly more difficult for the expert witness (310).

The conclusion that would essentially replace ‘identification’, in my opinion, could easily
be misunderstood by jurors as meaning that there is reasonable doubt in the ‘same source’
conclusion (409).

This was closely followed by the concerns that judges, jurors, law enforcement, and other
investigators would not understand or know how to interpret the probabilistic conclusion language
(79% and 69%, respectively). Similarly, the leading free-text reason for probabilistic reporting
being inappropriate was “jury confusion,” a related “consumption” issue that continues to be the
subject of on-going research [74, 103-108]. When considering various options for reporting, it
seems reasonable for examiners to express concern whether consumers of those reports are able to
take appropriate action based on the information. However, whether the concerns are warranted
depend on how “confusion” is being defined. Several of the free-text responses suggest those
respondents who view probabilistic reporting as inappropriate on the basis of “juror confusion” do
so over claims that jurors want a binary answer of “yes” or “no,” probabilistic language seems
“wishy-washy,” and expressing a probabilistic view does not align with the examiner’s belief that
the two impressions were made by the same source. For example, some respondents stated:

Why would we be needed if we used the term probabilistic. That means probably him or
her. SO if we say that then there is no need for fingerprint examiners. Then | guess you
could say he probably wasn't there (199).

| think the matter is being overcomplicated and we are watering down our testimony, which
is a disservice to the victims (56).

Meaningless to jury, not accurate, wishy-washy (222).

This leads us to question whether “juror confusion” is being used as another way of expressing
concern that jurors might not place as much weight on the conclusion as the examiner believes
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they should (compared to a traditional categorical identification conclusion).® For example, one
respondent stated:

Probabilistic Identification is Deceitful. The purpose of having Expert witness is so they
can state their belief; not force the blame on to the Jury (334).

The respondent’s invocation of the notion of “blame” is interesting. It recalls Wells’s [109] remark
that fingerprint examiners’ testimony that their conclusion the person of interest is the source of
an unknown impression may be particularly persuasive to fact-finders because it satisfies a
“bidirectional test”: if the ultimate fact is wrong, the evidence must be wrong as well. As Wells
notes, this mode of reporting evidence shifts the moral hazard of legal decision-making from the
fact-finder to the expert. If the conclusion is wrong, the fact-finder can reason that they were misled
by the expert. Wells found that fact-finders prefer such evidence even to statistically equivalent
evidence in which the moral hazard is not assumed by the expert—the expert simply states the
evidence, rather than the probability of the ultimate fact (i.e., the posterior probability). The
respondent above was not merely willing to assume the moral hazard of the evidence; they
appeared to perceive it as “deceitful” not to. This position is in marked contrast to a common
argument in forensic science which insists that experts should report only the evidence [110].
However, it is consistent with our anecdotal impressions that many forensic experts genuinely
believe that “the legal system” prefers, or even requires, them to state their beliefs about posterior
probabilities, rather than confining their reports to just the evidence. This may reflect a belief that
the expert’s posteriors are superior to the fact-finder’s, or it may simply reflect a sense of
obligation.

Put in simple terms, respondents were less concerned that probabilistic reporting was
“wrong”—although there was certainly a significant number of respondents who espoused that
view—than they were that defense attorneys would take advantage of uncertainty or that it would
mislead, or be misunderstood by, other criminal justice system actors, such as jurors, judges,
attorneys, and police investigators. Arguably, such concerns are external to the discipline of
friction ridge analysis and belong the realm of policy, rather than science. Admittedly, this is a
complicated issue and raises questions as to the extent institutional factors could be at odds with
scientific advancements for the forensic sciences. It could be argued that this is a second-order
problem and one that the forensic scientist need not necessarily face alone. Instead, the
“consumption problem” can reasonably be construed as falling within the purview not solely of
forensic scientists, but perhaps also of lawyers and legal scholars, social scientists, educators, and
policy makers. Although it is clearly a barrier to probabilistic reporting, whether it should be a
barrier to probabilistic reporting and how to mediate practitioners’ concerns over these issues
remain open questions.

Also of interest is the concern that “probabilistic reporting will cause the number of
erroneous associations to significantly increase” shared by just over a quarter of the practitioner
community. This refers to an issue that has long lurked behind proposals for probabilistic
reporting: that it would enable the use of more friction ridge evidence, not less, albeit evidence of

16 Although, it is unclear how much weight should be placed on the conclusion given traditional categorical statements
of single-source attribution have been criticized as unsupportable by individual scientists [37, 45, 82-89] and a number
of governmental and scientific reports [3, 7-9, 90].
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more marginal value [45]. In this sense, respondents who agreed with this prompt may have been
expressing anxiety about the transition from the comforts of the categorical regime to the
discomforts of the probabilistic. Under the categorical regime, experts could feel reassured by the
belief that the categorical regime was ostensibly conservative: evidence whose strength was less
than overwhelming was ruthlessly discarded, and thus it was believed that it was unlikely that
comparisons that fell into the “identification” category would result in error. In a probabilistic
regime, however, all evidence, no matter how marginal, can in theory be reported. While these
reports will be “truer” to the weight of the evidence and potentially provide more information for
investigators and courts to consider, if fact-finders interpret them as equivalent to the old
categorical terms (e.g., “identification,”) they could interpret the evidence as having more weight
than was intended by the examiner, thus creating an opportunity for fact-finders to, for example,
improperly infer that a person of interest is the source of an impression. Indeed, some free-text
responses also touched on what we interpret to be this concern:

| think it creates room for errors (326)

I am concerned with using probabilities because | think that it will wrongfully convict
someone based on a % of something that 1 wouldn't consider reliable as a print examiner
(179).

| believe probabilistic language will confuse and mislead the jury. 1 think there will be a
spike in wrongful convictions (393).

In contrast to the “consumption” issues discussed above, only 15% of examiners reported
that they were motivated by concerns that their certification would be placed in jeopardy if they
were to report probabilistically. Feedback on this source of opposition was solicited to evaluate
the influence of the historical policy of the IAl that codified longstanding culture at the time and
formally remained in effect for over 30 years. Between 1979 and 2010, the IAl officially opposed
any testimony or reporting of “possible, probable, or likely friction ridge identification” with the
threat of formal charges of “conduct unbecoming” and revocation of professional certification
[111-113]. This formal opposition to probabilistic reporting has undoubtedly shaped the
perspectives of many experienced practitioners. However, it appears to be less important to our
respondents than the “consumption” issues.

Characterizations of Probabilistic Reporting

Our findings suggest that examiners’ characterizations of probabilistic reporting are quite
diverse. A review of Table 5-9 suggests that survey participants fell into two broad categories in
responding to this question. A significant number responded in what we might call “technical”
terms. They responded by describing back to us what, technically, probabilistic reporting is:
quantification, uncertainty, “weight of evidence” and so on. Some used specific types of measures,
such as random match probability and likelihood ratio. Given the current discourse around
forensic interpretation in, for example, this journal, it is interesting that “Bayes’ Theorem” was
only mentioned once.
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A second group responded to the question by treating “probabilistic reporting” as an
institutional phenomenon. They described back to us what the move toward probabilistic
represented within the context of institutional debates over the role of forensic science in the
criminal justice system. This elicited a number of what we might call “skeptical,” and at times
even cynical responses, e.g., ‘“undermining of fingerprinting,” “unnecessary,” “driven by
critics/self-serving agenda,” “disaster,” “misleading,” “problematic,” “imprecise,” “protects
incompetence,” “wiggle room for witnesses,” “wordy,” “baseless,” ‘“guessing,” ‘“hysteria,”
“massive undertaking,” “meaningless,” “not a panacea for error,” “quantification for its own sake,”
“scary to most examiners,” “scientific veneer,” ‘“something we don’t do,” “threatening to
examiners careers,” “uncharted territory,” and “unhelpful.” One respondent described probabilistic
reporting simply by: “Mt. Everest--we are going to lose many.” While we admit that we are not
entirely certain how to interpret that remark, it captures the general tone of anxiety that pervaded
many responses well enough that we feel it makes an appropriate title for this paper.
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However, the same prompt also elicited many positive responses, e.g., “the way forward,”
“transparent,” “appropriate,” “natural evolution of science,” “safer,” and “tool.” In retrospect, we
can see that the open-endedness of this prompt allowed respondents to choose whether to respond
in technical or non-technical terms and, to some extent, invited them to editorialize. As with the
responses to our other open-ended questions, one important observation is the heterogeneity of
perspectives within the friction ridge discipline—not only as it relates to what it means technically
to report probabilistically, but also how examiners have characterized it as a concept. These
findings are important as they suggest that even among those who might be welcoming of
probabilistic reporting, there are many different perspectives as to what it means and how it might
be accomplished. We note, however, that it is possible respondents could have been primed by
previous survey questions, so we cannot be sure that these responses truly reflect the respondents’
unadulterated opinions.

29 ¢ 29 ¢e

5.7 Conclusion

The purpose of this survey was to provide proponents of probabilistic reporting with a
sense of the state of progress in one important forensic discipline: friction ridge examination. We
found that probabilistic reporting has not been widely adopted and remains extremely rare. Among
those who responded to our survey, 98% of respondents continue to report categorically with
explicit or implicit statements of certainty. Although we found that approximately one-third of
respondents evinced receptivity to probabilistic reporting, which may well represent a more
receptive audience than some might have expected, we also found that significant resistance to
probabilistic reporting remains across the discipline.

The most common reasons for opposition to probabilistic reporting, shared by
approximately 80% of respondents, were that defense attorneys would take advantage of the
uncertainties as a litigation strategy and that probabilistic language would mislead, or be
misunderstood by, other criminal justice system actors, such as jurors, judges, attorneys, and police
investigators, respectively. Free-text responses related to their opposition were diverse and not
limited to issues of whether probabilistic reporting is scientifically more appropriate. In fact, some
respondents acknowledged probabilistic reporting may be more scientifically appropriate yet
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continued to defend traditional categorical reporting practices. Rather, attitudes toward
probabilistic reporting appear to be influenced by educational, philosophical, psychological, and
complex judicial implications and longstanding cultural and institutional norms.

For forensic statisticians looking for guidance, we believe our findings offer three useful
lessons. First, we would emphasize the sheer heterogeneity of the responses found in, e.g., Tables
5-5 through 5-7. Practitioners’ perspectives, even on a narrowly framed issue such as probabilistic
reporting for a single forensic discipline, are quite varied and complex. This will present a
challenge to educators and trainers. They will not face a handful of widely held “myths” that they
need to debunk or perspectives that they need to realign. Instead, they will face a diverse array of
strongly held opinions about what, if anything, ails the friction ridge discipline, how it can and
should be improved, and to what extent statistics offers a solution to those problems or would be
the cause for other problems. Probabilistic reporting in latent print examination is not a “bi-
partisan” issue; it is more complicated than that.

Second, we would direct readers’ attention to our finding that, what we have called
“consumption” issues, seem to dominate respondents’ attitudes toward probabilistic reporting.
This suggests something important about where our respondents perceive the boundaries of their
role as experts to lie. Our respondents appear to believe that as experts, they are responsible not
only for the evaluation and articulation of the evidence, but also for how that evidence will be
consumed by litigators and the decisions about the evidence that they believe fact-finders should
be making.

We believe the appropriate role of the expert is narrower. We believe that litigation
strategies and juror concerns are not within the remit of the forensic scientist to do forensic science
properly. Rather, we believe the role of the expert is to educate the fact-finder about the evidence
and report their findings within the limits of what the science can support, but leave it to litigators
to fit that information into their arguments and to fact-finders to weigh that information when
making their ultimate decisions. This requires experts to neutrally represent the evidence and
clearly articulate the strengths and limitations related to those findings so that fact-finders can
make an informed decision, but resist the temptation to “simplify” the evidence for fact-finder
consumption (especially when such simplifying would entail rounding the probative value of the
evidence up, as when a strong belief that two impressions derive from the same source is expressed
as “the impressions originate from the same source”). To be sure, we are not denying the
importance of fact-finder comprehension of statistical evidence, which is well understood to be an
important problem and is the subject of a wealth of research. However, we are surprised at the
degree to which bench practitioners seem to understand it be their problem as opposed to a problem
for legal actors, psychologists, policy makers, etc. This puts statisticians in a bind because many
practitioners seem to view probabilistic reporting inappropriate not because it is an incorrect way
to report evidence, but rather because fact-finders have difficulty understanding statistics. The
latter point is undoubtedly true, but it also may well be an intractable problem. In this sense,
concerns about consumption can begin to seem like stalling tactics.

From our findings, few of the respondents appear to share this view. This is most evident

in how they approached several of the open-ended questions. When asked about the scientific
merits of probabilistic reporting over categorical reporting or how they characterize probabilistic,
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compared to categorical, reporting they responded by discussing how such reporting language
could be (mis)used in court. This presents another challenge. If experts are expected to report their
findings within appropriate limits, the role of the expert will need to be clarified by policy makers
and enforced by the judiciary. As long as experts are allowed to express their opinions
categorically, they will continue to do so. Proponents of probabilistic reporting, therefore, will
need to not only include forensic statisticians, educators, and trainers devising statistical tools and
recommending reporting frameworks for experts, but also policy makers and members of the
judiciary to require it of experts and enforce it during litigation.

Third, our survey suggests that many respondents do not share a common understanding
of what is meant by the term “probabilistic reporting.” We would point to the high number of
respondents who claimed to be reporting probabilistically but, in fact, were not. The survey results
offer forensic statisticians ample further reasons for pessimism about their educational efforts thus
far: the insistence that uncertainty can be eliminated in friction ridge analysis, the claim that
quantification of friction ridges is impossible, the claim that a statistical model is “impossible” for
the same reason claims of certainty are impossible, and the skepticism and mistrust directed toward
statistics as a discipline. We might even go a step further and suggest that many respondents did
not understand what it means to report probabilistically or why categorical reporting, as we define
it, has come under so much criticism. However, this was not unexpected. When prompted, almost
half of our respondents (44%) acknowledged that they did not feel they sufficiently understand
probabilities and would not be able to properly testify. This was further evident in some of the
free-text responses to other questions. For example:

Probabilistic language is currently very confusing to me and | would need a lot more
training and understanding of it, before | would be comfortable putting it in a report and
testifying to it in a courtroom setting (117).

| agree that the shift toward probabilistic language is appropriate but | still don't fully
understand the impact at this time and have had no training on the subject of probabilistic
language yet (108).

For the latent examiner not as comfortable with explaining statistics and probability, it
could open the door for the attorney to discredit the examiner. That is not only problematic
for the case it could be detrimental for the examiner's career (103).

We are sympathetic to this concern because it has never been a formal requirement for practitioners
to have any background knowledge in principles of probabilities and statistics. This presents yet
another challenge: if practitioners are expected to testify using probabilistic language, it will
require a coordinated investment by forensic science administrators, educators, and trainers to
ensure practitioners have the fundamental education and training on probabilistic and statistical
principles so that they understand what they are reporting and feel comfortable and confident in
their own knowledge on the subject. For example, as one respondent suggested:

As a scientist, | understand why the community cannot testify to absolutes in terms of

"Identification.” The reasoning behind that argument is sound. However, I think it will take
a change in the dogma of the science to get practitioners to 1) understand probabilities
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and what they're actually reporting (and that their ultimate conclusion is not actually
changing), and 2) want to change how they testify/report their findings (because they are
accustomed to "this is how I've always done it") (30).

It will also require outreach to attorneys and judges so that they understand the transition and what
it means. This will require more than a mere policy-change; it will require a commitment by
forensic science administrators, educators, trainers, practitioners, and policy makers to address the
foundational gaps in education and training curricula as well as establish operational environments
that are conducive to allowing practitioners to explore what it means to report probabilistically and
how to do so in a way that they are comfortable with. This is important because the transition to
probabilistic reporting should not be done in haste. Fortunately, though, probabilistic reporting,
as we define it, does not necessarily require the use of numerical quantities, algorithms and other
statistical tools, or the reporting of evidence along a full continuum, although those measures are
preferred by some. Instead, it can be achieved by simply avoiding claims that an individual is the
source of an impression or using terms that imply certainty for single-source attribution. As
practitioners and stakeholders gain comfort with reporting using probabilistic language for
comparisons which would normally be categorized as “identification” under traditional categorical
reporting schemes, it can be expanded along the continuum to include more marginal comparisons
that still provide useful information, but do not warrant stronger conclusions. The use of numerical
quantities, algorithms, and other statistical tools will provide more precise information related to
the strength of the evidence, but this transition need not be done in a single act nor contingent upon
the availability of such technologies.
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6 Evaluation of Stakeholders’ Perspectives

This chapter presents a manuscript entitled “Probabilistic Reporting and Algorithms in
Forensic Science: Stakeholder Perspectives within the American Criminal Justice System”
(Swofford & Champod, 2022) [52] published in Forensic Science International: Synergy that
explores perspectives from key criminal justice stakeholders (laboratory managers, prosecuting
attorneys, defense attorneys, judges, and academic scientists and scholars) related to interpretation
and reporting practices (with or without algorithmic tools) and the use of computational algorithms
in legal settings. Stakeholders’ perspectives are evaluated qualitatively from semi-structured
interviews.

Probabilistic Reporting and Algorithms in Forensic Science:
Stakeholder Perspectives within the American Criminal Justice System

Swofford, H. and Champod, C.

School of Criminal Justice, Forensic Science Institute, University of Lausanne, Switzerland

6.1 Abstract

In recent years, there have been increased efforts to promote probabilistic reporting and the
use of computational algorithms across several forensic science disciplines. Reactions to these
efforts have been mixed—some stakeholders argue they promote greater scientific rigor whereas
others argue that the opacity of algorithmic tools makes it challenging to meaningfully scrutinize
the evidence presented against a defendant resulting from these systems. Consequently, the
forensic community has been left with no clear direction on how to navigate these mounting
concerns as each proposed solution seemingly has countervailing benefits and risks. In order to
explore these issues in greater depth and provide a foundation for a path forward, this study draws
on one-on-one semi-structured interviews with fifteen participants to elicit the perspectives of key
criminal justice stakeholders, including forensic laboratory managers, prosecuting attorneys,
defense attorneys, judges, and other academic scientists and scholars, on issues related to
interpretation and reporting practices and the use of computational algorithms in forensic science
within the American legal system.

Keywords: Forensic science, Pattern evidence, Probabilities, Statistics, Algorithms

6.2 Introduction

Forensic science has long been considered a cornerstone for advancing investigations and
establishing facts in question to support criminal and civil litigation. Under the powerful aura of
science, interpretations and conclusions made by forensic experts are often presented as
tantamount to fact—the silent witness—that courts can rely on in their pursuit of justice. For
decades on end, forensic evidence was broadly considered infallible and rarely questioned. In
February 2009, however, that all changed with the release of the National Research Council’s
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(NRC) report on the needs of the forensic science community, highlighting that “[t]he law’s
greatest dilemma in its heavy reliance on forensic evidence, however, concerns the question of
whether—and to what extent—there is science in any given forensic science discipline” [3].
Following their analysis of several forensic science disciplines, the NRC noted: “The simple reality
is that the interpretation of forensic evidence is not always based on scientific studies to determine
its validity. This is a serious problem. Although research has been done in some disciplines, there
is a notable dearth of peer-reviewed, published studies establishing the scientific bases and validity
of many forensic methods.” The NRC goes on to assert “no forensic method other than nuclear
DNA analysis has been rigorously shown to have the capacity to consistently and with a high
degree of certainty support conclusions about ‘individualization’ (more commonly known as
‘matching’ of an unknown item of evidence to a specific known source)” [3]. The NRC report,
although positive in the sense that it raised awareness of the need for greater resources, offered
damning critiques to a body of evidence that was often presented, and perceived, as essentially
infallible.

In the years that followed, these types of critiques have become commonplace—
particularly as it relates to concerns over the high reliance on subjectivity and lack of statistical
foundations supporting the interpretation of results, as well as concerns over the expression of
conclusions asserting a level of certainty that implies infallibility. For example, in 2012 a
committee supported by the National Institute of Standards and Technology (NIST) and the
National Institute of Justice (N1J) issued several recommendations specific to improving friction
ridge examinations, claiming: “Because empirical evidence and statistical reasoning do not support
a source attribution to the exclusion of all other individuals in the world, latent print examiners
should not report or testify, directly or by implication, to a source attribution to the exclusion of
all others in the world” [9]. This was followed by another landmark report offered by the
President’s Council of Advisors on Science and Technology (PCAST) in 2016, asserting:
“Statements claiming or implying greater certainty than can be demonstrated by empirical
evidence are scientifically invalid. Forensic examiners should therefore report their findings with
clarity and restraint, explaining in each case that the fact that two samples satisfy a method’s
criteria for a proposed match does not necessarily imply that the samples come from a common
source. ... [CJourts should never permit scientifically indefensible claims” [7]. Finally, in 2017,
the friction ridge community was faced with, yet again, another critique, but this time coming from
the American Association for the Advancement of Science (AAAS)—the world’s largest scientific
society. Following a scientific gap assessment of the research supporting the existing methods,
the AAAS committee stated: “Examiners should be careful not to make statements in reports or
testimony that exaggerate the certainty of their conclusions. ... [T]hey should avoid statements that
claim or imply that the pool of possible sources is limited to a single person. Terms like ‘match,’
‘identification,’ ‘individualization,” and their synonyms, imply more than the science can sustain”

[8].

In light of these concerns, increasing calls have been made for the introduction of
probabilistic reasoning and the use of validated statistical methods into forensic practice—
particularly in the pattern evidence disciplines—to formally recognize and articulate the
uncertainties inherent in forensic interpretation and to reduce the heavy reliance on subjective
judgment [3, 7-9]. Over the years, a number of reputable efforts have been made by researchers
to explore the optimal approach for expressing forensic conclusions to maximize lay fact-finders’

145



interpretation (e.g., see [108]) and, in the friction ridge discipline in particular, to introduce
probabilistic models—often through computational algorithms'’—to provide statistical
foundations to the analysis and evaluation of evidence [17-43, 50]. Although probabilistic
reporting is often presented as a scientifically superior approach to expressing forensic results
compared to traditional categorical assertions, it is often more difficult for lay fact-finders to
interpret [108]. Likewise, although algorithmic tools generally possess remarkable potential to
provide advanced scientific capabilities and promote more objective foundations to the evaluation
of forensic evidence, they often do so at the cost of transparency and explainability [114-120],
which have been argued to stifle meaningful scrutiny and accountability of the evidence resulting
from these tools thereby infringing on criminal defendants’ Constitutional rights (e.g., see [114,
115, 117, 118]). Consequently, the forensic community has been left with no clear path forward
on how to navigate these mounting concerns as each proposed solution seemingly has
countervailing benefits and risks. In recent work, we began to explore some of these issues in
greater detail based on perspectives that have been raised in the literature thus far and provided
some initial recommendations relating to the operational implementation of computational
algorithms [53]. This current study further explores those issues with greater breadth and depth,
but it is only a start to what we consider to be a much needed, and much more extensive, discussion
on these issues so that the forensic and legal communities can begin addressing these challenges
that are no longer over the horizon.

As the forensic community continues to grapple with these issues, widespread reform
efforts have been understandably slow. However, a few notable steps have been taken in an effort
to heed the recommendations from various scientific committees. In 2015, the United States Army
Criminal Investigation Laboratory (USACIL), the primary forensic laboratory supporting the
criminal investigative mission of the Department of Defense, announced a policy change to
abandon the term “identification” and report their findings in a probabilistic framework (albeit in
the absence of a computational algorithm) [95]. In 2017, the USACIL went a step further and
announced the implementation of a statistical software application, FRStat, to provide statistical
support to fingerprint associations [50, 96]. This has been considered by some as a step in the
right direction to reduce variability and improve overall consistency between analysts (e.g., [121,
122]). Then, in 2018, the Organization of Scientific Area Committees (OSAC) for Forensic
Science, Friction Ridge Subcommittee (OSAC FRS), which is responsible for the promulgation of
standards and best practices related to the forensic examination of friction ridge skin impression
evidence throughout the United States, released the proposed standard for Friction Ridge
Examination Conclusions [97], taking an additional step toward promoting probabilistic
expressions on a national level. While the proposed standard maintains the term “identification,”
which has traditionally been used to express categorical conclusions, it was redefined in a
probabilistic framework as a qualitative (non-numeric) expression of a likelihood ratio. In addition
to the revised definition, the OSAC FRS stated that “an examiner shall not assert that a source
identification is the conclusion that two impressions were made by the same source or imply an
individualization to the exclusion of all other sources” [97], a claim which has been a common
hallmark of categorical statements.

17 The term “computational algorithms” refers to automated or semi-automated computer implementable processes
designed to compute mathematical outputs for purposes such as forecasting, predictions, statistical evaluations and
decision making. For purposes of this paper, the term “algorithm” and “computational algorithm” are synonymous.
The term ““algorithmic tools” refer to devices enabling the applications of computational algorithms.
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Despite these efforts, probabilistic reporting and statistical interventions continue to be a
contentious topic within the forensic science community, with some forensic friction ridge
practitioners welcoming it with open arms as a more “scientifically defensible” approach while
others express passive skepticism or outright opposition [51]. Although significant resistance
remains across the friction ridge discipline and probabilistic reporting remains rare, approximately
one-third of survey participants who currently report categorically seem to be receptive to the idea
of reporting probabilistically, but remain hesitant to adopt for one reason or another [51].
Practitioners’ perspectives have been instrumental in highlighting a number of social scientific
issues that are believed to have contributed to this hesitancy (i.e., educational, philosophical,
psychological and complex judicial implications and longstanding cultural and institutional norms)
thereby allowing us to consider strategies to address their concerns [51]. While forensic
practitioners will ultimately be responsible for implementing the proposed solutions, it would be
incomplete to focus solely on perspectives of forensic practitioners.

To fully understand the issues and more effectively facilitate improvements to traditional
practices, we must also account for the perspectives of all stakeholders within the criminal justice
system—not just forensic practitioners. Recognizing that prior work has captured the broad
perspectives of friction ridge practitioners (i.e., [51]), this study aims to explore the individual
perspectives of other key criminal justice stakeholders based on their different roles in the criminal
justice system—including forensic laboratory managers, prosecuting attorneys, defense attorneys,
judges, and other academic scientists and scholars—to provide a better understanding of their
distinct values and interests on issues related to: (i) interpretation and reporting practices (with or
without algorithmic tools) and (ii) the implications of the use of algorithms in legal settings as a
means of calculating the probabilistic values assigned to the evidence.

6.3 Materials & Methods

This study was conducted as one-on-one semi-structured interviews between the first
author and each individual stakeholder using the video-based virtual meeting platform Zoom®.
Although the qualitative nature of this approach prohibits broad generalizations and quantitative
representations, it does allow us to explore these various perspectives in greater depth and with
more clarity than if it were presented as a structured survey. Participants were solicited by
invitation (see Appendix E-1) based on having been actively engaged in issues concerning forensic
science policies, procedures, and practices. These participants have occupied prominent roles in
their disciplines (e.g., senior and executive level positions in their organizations and professional
societies), have been selected to serve on boards and committees steering policy and practice
recommendations (e.g., National Commission on Forensic Science, Organization of Scientific
Area Committees for Forensic Science), have made academic contributions to forensic science
practices through professional publications and presentation, or have influenced the practices of
others across the broader community, either directly through supervision or indirectly through
training and continuing education activities. Overall, a total of twenty-two individuals were
invited to participate in the study and seven individuals declined to participate (four individuals
did not respond to the invitation [one forensic laboratory manager, one prosecuting attorney, and
two judges], two individuals cited competing priorities and commitments to participate within the
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intended timeframe [one forensic laboratory manager and one judge], and one individual expressed
support for the study but felt unable to answer the questions related to the use of algorithms
[academic scholar]). Invitations were extended to potential participants until three individuals
agreed to participate for each stakeholder group (forensic laboratory managers, prosecuting
attorneys, defense attorneys, judges, and other academic scientists and scholars) resulting in a total
of fifteen participants. Specific details related to the backgrounds and experiences for those
individuals who agreed to participate are provided in the Results section for each stakeholder

group.

Interviews were conducted between September and November 2021 and were scheduled
based on participants’ availability, thereby enabling an arbitrary sequence of participants (i.e.,
stakeholder participants were arbitrarily spread throughout and not interviewed in any particular
sequence). Participants’ personal identities are not disclosed or publicly attributed to any specific
statements. Each participant was assigned a unique identifier within their stakeholder group to
distinguish among responses from individual participants. Prior to the study commencing and as
part of the initial invitation, participants were provided an Information and Informed Consent sheet
that summarized the structure of the study (see Appendix E-2), a summary of the purpose and
background of the study that included specific terms and definitions related to the interview
questionnaire (see Appendix E-3), and a general outline along with a set of structured questions to
guide the interview (see Appendix E-4).

Participants were first presented with a series of questions pertaining to their demographics
(occupation, experience, education, and exposure to algorithms). Participants were then asked a
series of structured questions addressing various topics (described below) pertaining to their
perspectives related to interpretation and reporting and the use of computational algorithms for
court purposes. Although most participants offered responses to all of the structured questions, in
a few instances some questions were omitted during the interviews due to time constraints; thus,
not every participant provided a separate response to each individual question. Throughout the
interview, unstructured questions were raised ad hoc to explore participants’ responses in further
detail and to elicit their perspectives related to responses provided by other participants
interviewed thus far.

Questions related to the broader issue of interpretation and reporting sought to elicit
participants’ perspectives around four broad topics:

The first topic focuses on the validity, appropriateness, benefits, and limitations/risks of
categorical reporting compared to probabilistic reporting methods. These concepts have become
central to the broader discourse concerning how forensic science testimony should be delivered
and have been at the forefront of the friction ridge discipline for over a decade (e.g., see [3, 7-9,
51])—often resulting in heated debates within the forensic practitioner community [51].

The second topic points to salient concerns raised by friction ridge practitioners as it relates
to the use of probabilistic reporting. In a recent study surveying various reasons for practitioners’
opposition to probabilistic reporting, the most common concerns cited by friction ridge
practitioners related to how defense attorneys might (mis)use probabilistic reporting to “create
reasonable doubt” and whether jurors would understand the conclusion being conveyed [51]. The

148



findings from this survey raise other questions concerning the role/duties of experts as it relates to
the limits of their testimony and whether, and to what extent, such factors ought to be taken into
account by forensic practitioners when considering the most appropriate means of expressing
forensic conclusions. In other words, should forensic practitioners focus on not only the validity
and appropriateness of such claims, but also how those conclusions might factor into litigation
strategies for one or both sides or be perceived by fact-finders? All these concerns are relevant,
but how they should be addressed and by whom remains an open question.

The third topic focuses on whether it is necessary for forensic practitioners to disclose
underpinnings or statistical data to support their testimony. This topic was motivated primarily by
the PCAST argument that “[s]tatements claiming or implying greater certainty than can be
demonstrated by empirical evidence are scientifically invalid” and “[n]othing—not personal
experience nor professional practices—can substitute for adequate empirical demonstration of
accuracy” [7]. Such claims by the PCAST suggest all forensic testimony must be accompanied by
empirical foundations underpinning such claims. It also raises the question whether statistical data
IS meant to be the means for providing the empirical foundations. This is impactful to friction
ridge practitioners, as traditional practices encourage experts to base their conclusions on “training
and experience” and to couch their conclusions as an expression of their opinion rather than basing
them on statistical measurements. It raises the question as to whether other stakeholder groups
share the perspective suggested by the PCAST and how this might be more explicitly required in
the longer term. Indeed, proposed amendments to Federal Rule 702 have been made to address
“the problem of overstating results” and “emphasize that the court must focus on the expert’s
opinion, and must find that the opinion actually proceeds from a reliable application of the
methodology” when considering the admissibility of expert testimony [123]. The full implications
of such a proposal, however, remains unclear.

The fourth topic focuses on what participants view as the most significant challenges facing
the pattern evidence disciplines relating to examination and reporting. This topic is intended to
highlight how the pattern evidence disciplines might need to consider adapting in light of the
various perspectives raised by the different stakeholders on this broader issue of interpretation and
reporting.

Questions related to the broader issue of the use of computational algorithms for court
purposes sought to elicit participants’ perspectives around five broad topics:

The first topic focuses on the role computational algorithms should play in forensic science
for court purposes along with the benefits and limitations/risks of such applications. These issues
have become central to the broader discussion of responsible applications Al in society. As
computational algorithms have advanced and automated decision systems have become more
accessible, researchers, advocates, and policy makers are debating when and where these systems
are appropriate—including particularly sensitive domains such as criminal justice [124].
Questions have been raised on how to fully assess the short and long-term impacts of these systems
and the appropriateness of their applications given many operate as “black-boxes” [124]. These
are broad questions for which stakeholders often disagree. In the context of forensic science,
perspectives on these issues have yet to be fully explored.
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The second topic focuses on the concept of “trust” with computational algorithms and what
artifacts are needed for stakeholders to be comfortable with the use of an algorithmic tool. For
example, is source code a necessary requisite for an algorithm to be trusted? In recent years,
particularly in the context of probabilistic genotyping algorithms, courts have grappled with legal
issues surrounding whether they can or should compel disclosure of source code due to
countervailing positions related to trade secret violations. These issues have become a growing
source of controversy affecting whether algorithms should be used in forensic science more
broadly [114].

The third topic expands on the concept of “trust” and points specifically to computational
algorithms based on AlI/ML methods. Recognizing that source code has often been the focus of
legal debates as it relates to the admissibility of algorithms based on human interpretable rules or
processes, what about algorithms that are based on non-human interpretable processes, such as
those developed through AI/ML methods? Computational algorithms based on AI/ML are often
“black boxes” even to their developers, irrespective of the availability of source code. Given this
additional layer of opacity, is it appropriate to use computational algorithms based on AlI/ML
methods in forensic science for court purposes? If so, under what circumstances should they be
used?

The fourth topic addresses the issue of regulating computational algorithms. This issue
was motivated by recently proposed legislation, the Justice in Forensic Algorithms Act of 2019,
to “prohibit the use of trade secrets privileges to prevent defense access to evidence in criminal
proceedings, provide for the establishment of Computational Forensic Algorithm Testing
Standards and a Computational Forensic Algorithm Testing Program, and for other purposes”
[125]. Among other implications of this proposed legislation, it would prohibit the use of
computational forensic algorithms unless they have been tested by the Computational Forensic
Algorithm Testing Program and the developers of the algorithmic tools agree to waive any and all
legal claims related to the defense analyzing or testing the computational forensic software [125].
Although this proposed legislation remains early stage, it raises the question of whether
computational algorithms should be regulated, and, if so, by whom and how. Is the adversarial
system sufficiently positioned to regulate computational algorithms as they currently do with the
admissibility of expert testimony? Should specific algorithmic tools be “approved” by an external
authority prior to authorizing their use? If so, should it be administered by a government entity
(federal, state or local) or other non-government institution? The issue of regulation raises several
other complex questions and takes on several different dimensions that have yet to be fully
explored.

The fifth topic focuses on what participants view as the most significant challenges facing
the pattern evidence disciplines relating to the operational use of computational algorithms in
forensic science for court purposes. This topic is intended to highlight how the pattern evidence
disciplines might need to consider adapting in light of the various perspectives raised by the
different stakeholders on this broader issue of the use of computational algorithms.

Interviews were recorded (audio and video) using the Zoom® virtual meeting platform.

The full recording was transcribed using the Descript® transcription platform [126] using a two-
stage approach. First, transcriptions were initially performed using the Descript® commercial
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machine transcription software to automatically detect speakers, transcribe the audio, and align
transcribed text to the audio and video [126]. Second, using the manual transcription editing
features with the text, audio, and video, aligned within the Descript® platform [126], the machine
transcription was reviewed by the first author to confirm accurate transcription and manually
correct any errors. The transcribed interview was then exported to a Microsoft Word® document.
Overall, this resulted in over twenty hours of recorded interviews and over three hundred pages of
written transcripts. The transcribed text from the interviews were then qualitatively analyzed by
categorizing participants’ responses based on the specific topics being explored (e.g., within the
broader issue of “interpretation and reporting,” participants’ responses that were related to the
validity, appropriateness, benefits, and limitations/risks of categorical reporting were categorized
separately from the other topics described earlier). Then, within the categorized responses for each
participant, specific excerpts were identified that succinctly represented each participant’s
viewpoint. This approach allows us to capture specific comments made by individual participants
in their own words, summarize participants’ perspectives for each topic explored, and compare
those perspectives both within and between the different stakeholder groups.

The perspectives of each stakeholder group are presented separately. This enables us to
understand the source(s) of the different perspectives and compare those perspectives across the
different stakeholder groups, which is a key objective of this study. Although all stakeholders
share a common goal for an effective administration of justice, they each serve very different roles
and responsibilities, and therefore may view various issues differently based on those roles. For
example, forensic laboratory managers are responsible for ensuring they have the personnel,
resources, and equipment to examine cases effectively and efficiently to keep pace with the
growing demands and are therefore often focused on ways of increasing capacity while
maintaining acceptable quality standards. Prosecuting attorneys, as legal representatives of the
government, are responsible for convincing a court that a particular individual is guilty of
committing the crimes that they have been charged with and are therefore often focused on
presenting their arguments in a manner that is comprehensible to lay fact-finders. Defense
attorneys, as legal representatives of the defendant, are responsible for defending their client’s
interests and rights and are therefore often focused on confronting and challenging the evidence
presented against them to ensure it meets the appropriate legal standards. Judges are responsible
for overseeing the legal process and are therefore often focused on ensuring that applicable rules,
regulations, and laws are followed by all parties and that the integrity of the process is upheld.
Finally, other scientific and academic scholars are responsible for researching complex issues and
making recommendations for improving policy, procedure, or practice, and therefore are often
focused on considering issues in terms of scientific or legal ideals. Understanding the different
perspectives from each stakeholder group and how their interests may differ as they relate to
fulfilling their specific roles and responsibilities within the criminal justice system is important for
us to lay the foundation and begin to navigate a path forward on these issues that is responsive to
the needs of all stakeholder groups.

In order to provide such an analysis and synthesis of these various stakeholder perspectives,
we have organized the information into two distinct sections. In the Results section, we present a
summary of each participant’s background and experiences and responses to questions addressing
key topics related to the broader issues of “interpretation and reporting practices” and “use of
algorithms” within each stakeholder group. Organizing the Results of the interviews in this
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manner allows us to compare the extent to which perspectives from individual participants are
consistent with others within the same stakeholder group. In the Discussion section, we
characterize the collective perspective representing each stakeholder group by topic and compare
those perspectives across the different groups. Organizing the Discussion in this manner allows
us to consider the extent to which perspectives may vary between different stakeholder groups and
begin to understand the sources of those differences and lay a foundation for us to explore why
those differences might exist. Throughout the Results section, we provide short specific quotes
from individual participants to illustrate certain views or discussion points. While these quotes
are intended to be illustrative, we recognize that some readers might desire to consider participants’
statements in greater context of their responses from the interviews. Although full transcripts
cannot be released to protect the anonymity of participants, in Appendices E-5 and E-6 we provide
more elaborate quotes from participants related to each topic discussed in the interview. In the
Discussion section, we provide a fewer set of more elaborate quotes from participants, primarily
from responses to ad hoc questions presented to participants throughout the interviews to illustrate
other interesting points.

6.4 Results
6.4.1 Laboratory Managers

Background & Experience:

Three laboratory managers participated in the study—all male. All three laboratory
managers are actively working in large metropolitan jurisdictions in the United States and have
between 20 and 38 years of experience in forensic science. One participant’s experience is
dominated by trace evidence, including physical match comparisons, shoe print, tire track, textile,
hair comparisons, and fiber comparisons as well as forensic serology and DNA (LM#1). The other
two participants experiences were dominated by toxicology (LM#2) and analytical chemistry
(LM#3). All three participants, however, currently serve as the director for their respective
laboratory system, overseeing a wide range of forensic disciplines, including DNA, drug
chemistry, toxicology, fingerprints, firearms, and crime scene, among others. Participants’
experiences working with algorithms are varied, and include analytical instrumentation (e.g.,
GCMS, LCMS, etc.), breathalyzers for breath alcohol quantitation, database searching (e.g.,
AFIS), imaging technologies (e.g., 3D imaging for firearms), and DNA mixture interpretation
(e.g., probabilistic genotyping software). One participant (LM#3) has experience developing
computer software and teaches computer science (among other courses, such as physics and
chemistry) at the local college. All three participants are actively engaged in national and
international professional bodies and have been vocal representatives of the needs of forensic
laboratories throughout the United States.

Interpretation & Reporting Practices:

All three laboratory managers expressed the perspective that categorical reporting in
pattern evidence disciplines using terms such as “Identification” or “Individualization” have the
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potential to mask the uncertainty and limitations associated with the conclusion. All of the
participants acknowledged that the forensic science community has historically made claims in
various disciplines that were overly generalized and implied greater certainty than can be
supported by the empirical evidence. However, as long as the examiners caveated the claims as
being their opinion, the participants were less concerned. For example:

Absolutes and conclusions, | think, are probably inappropriate. I, however, do not have a
problem with experts giving their opinion. | think we have very good experts. | think
expertise matters. | think exposure to casework matters. | do agree with a lot of the defense
experts and the academics that we need a reasonably good way to express uncertainty
(LM#3).

Participants suggested that probabilistic reporting, in theory, is superior to categorical
reporting because it explicitly acknowledges the uncertainty in the conclusion; however, all three
participants suggested probabilistic reporting in practice had its own pitfalls. Participants were
concerned that probabilistic statements would be confusing or incorrectly interpreted by lay fact-
finders or would be relied upon too heavily by fact-finders assuming the numerical references were
based on empirical measurements. One participant made it clear that probabilistic statements with
numbers should not be used unless it was clearly based on some empirical data source (LM#3).
For example:

I like [numbers] because it provides [context]. On the other hand, even numbers have their
limitations. ... How do you throw somebody just a number and expect them to understand
it? ... It's still not standalone (LM#1).

From a philosophical standpoint, I think it is more appropriate. What | see though, is a
hell of a lot of confusion on the part of the lay person and lawyers and juries (LM#2).

| have no problem with subjective interpretations [such as] “in my experiences,” [or] “is
very likely,” just as a subjective conclusion, but if you're going to put a number on it, |
think you need to have some basis [of] where you're pulling the number from (LM#3).

Overall, participants generally considered the benefits of categorical reporting as its simplicity and
ease for fact-finders to base their decision and it provides a more holistic assessment of the
examination. However, categorical reporting is “fuzzier” and can mask the uncertainty associated
with the conclusion. Participants generally considered probabilistic reporting as favorable in
principle. However, noting the confusion that often accompanies probabilistic references,
participants were hesitant to suggest probabilistic reporting was superior in practice. Ultimately,
all participants suggested applying both approaches as part of examiners’ explanation of the
evidence.

When responding to concerns raised by practitioners as it relates to probabilistic reporting,
participants agreed with practitioners, expressing the view that probabilistic reporting would be
confusing to lay fact-finders. However, participants did not consider this as a reason not to adopt
probabilistic reporting. Two participants suggested the challenges would not be insurmountable
(LM#1 and LM#2). The other participant was more cautious, suggesting the optimal approach
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moving forward is to adopt probabilistic reporting as supplemental to traditional categorical
reporting. For example:

Watching what I've seen happened with biology, yes, it will be confusing. Is it irrevocably
confusing? No. | think everybody in the system can learn how to deal with it and how to
explain it. ... The practitioners are confused by it right now. But that is (1) not a reason to
not go there, and (2) not an indelible absolute. The confusion will subside. The confusion
will abate and people will get better about explaining it (LM#2).

| think the type of testimony that we're currently giving plus this is the best model for the
future (LM#3).

Participants were also sympathetic to practitioners’ expressing concerns that defense attorneys
would use probabilistic reporting to create “reasonable doubt;” however, none of the participants
expressed the view that it should be a reason not to consider probabilistic reporting. Rather, it
represents an additional barrier that will need to be addressed by proponents of probabilistic
reporting. Two of the participants considered this reaction from practitioners as reinforcement for
their perspective that probabilistic reporting should not be use alone—it should always be
combined with an expert opinion providing an overall conclusion (LM#1 and LM#3). The other
participant expressed the view that it should not be a concern from the standpoint of being rational
and neutral to the issues, but at the same time recognized the human side of practitioners and
suggests that it is impractical for people to be completely divorced from the emotional aspects that
motivate them to be forensic scientists to start with (LM#2).

The last thing I want is to put something out there that can be misused. ... That’s why you
should have the opinion that we believe that this has a likelihood of association, then you
throw in the number but you give the whole package as opposed to just reporting a number
that potentially could be misinterpreted (LM#1).

| think there is a huge grade of the concerns that all come back to the fear of the uncertainty
... their fear is if we change this, I don 't know what’s going to happen on the other side of
it (LM#2).

When responding to questions raised about the role and duties of experts and the limits of
their testimony, participants expressed the view that it is incumbent upon experts to convey those
limitations to ensure the results are properly interpreted, and the conclusions are not overstated or
understated. One participant pointed to consensus-based guidelines to drive how the results should
be framed in order to ensure greater standardization across the field (LM#1). The other two
participants recognized the challenges associated with conveying the limitations, suggesting there
is not a straightforward solution (LM#2 and LM#3). One participant claimed the limitations
should be explicit on the report so that stakeholders did not have to pull it out during testimony,
although acknowledged this is a practice they have not yet implemented and are still working
through how to accomplish it (LM#2). The other participant expressed frustration that courts have
made it challenging to convey limitations unless they are directly asked, but even then, the
participant recognized the difficulty of conveying them (LM#3). For example:
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| think it is an inherent obligation on the part of the expert to convey those limitations and
do the best they can trying to explain the inherent uncertainty there. ... [However,] this is
not saying that we have effectively managed to accomplish this, we haven 't (LM#2).

| think all of us have an ethical obligation to understand the limitations of what we 're
saying. ... [However,] most of the time the court hearings won 't allow us [to express those
limitations] unless they directly ask us. ... So, articulating that uncertainty is something
we re not perfect [doing] yet. But, it’s also one of the reasons why we don’t say to the
exclusion of all others [for example] (LM#3).

When asked about whether participants find it acceptable for experts to express their
opinion in court without disclosing the underpinnings or statistical data to support those opinions,
all three participants strongly advised to do so; however, they also recognized it does not always
come out in practice and, in some situations, suggested it may not be absolutely necessary. One
participant expressed frustration that despite the laboratory’s best efforts to convey those details,
the legal system makes it challenging for the experts to do so during testimony (LM#2). Another
participant echoed similar challenges but seemed to be more resigned to the realities of the court
room environment (LM#3). For example:

| would strongly encourage they do it because | feel it makes their opinion better, stronger
(LM#1).

This is one of the things that I'm finding myself getting a little bit more worked up about
these days, of this issue of it was the laboratory that didn't express the extent and limitations
of the testing. No, the lab is willing to do that, the lab wants to do that, all the rest of the
system cut it off at the knees (LM#2).

Finally, when asked what participants would describe as the greatest challenges facing the
pattern and impression evidence disciplines as it relates to examination and reporting methods,
participants pointed to both cultural and resource challenges, the greatest factor being limited
resources. One participant lamented that many of these scientific issues that have been at the
forefront of debates seem to be trivial compared to the greater challenges of effectively managing
the caseload and data management (LM#2). The other two participants referenced cultural and
educational challenges (LM#1 and LM#3) as well as the inability for crime laboratories to actively
engage in research given their limited resources and pressures to stay abreast of casework (LM#3).
For example:

There is still a little bit of resistance that you 're taking away the expertise [the experts]
already have and supplanting it with something else. That, to me, I think is completely false
if you agree to integrate them both together. ... The other biggest reason is that [for] crime
labs, it’s not our mission to do research, unfortunately. | love research and it’s wonderful,
but we are under so much pressure to get casework done. We just don't have the time,
energy or money to do it. It’s unfortunate because we ’re really the best place to do it, but
we just don 't have the money to do it (LM#3).
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Use of Algorithms:

Laboratory managers offered generally consistent perspectives as it relates to the use of
algorithms in court and the benefits and limitations of them. All three participants expressed
favorable viewpoints of using algorithms; however, participants were clear that the algorithms
should be used to supplement the judgments of examiners and not to replace them. Participants
recognized the value algorithms can provide by promoting greater objectivity and consistency in
the results. One participant expanded on the utility of the algorithms to be a “force multiplier” to
“build capacity” to help offset the limited analysts available and keep pace with caseload and
throughput demands (LM#2). However, all three participants cautioned the urge to rely too
heavily on the algorithms and supplant the expert, or to blindly rely on them without fully vetting
them. All three participants viewed expert judgment, while subjective, as a valued asset that can
account for factors that the algorithm cannot and to help interpret and convey the output of the
algorithm to judicial stakeholders. For example:

| think that's an excellent thing to assist in better understanding why you came up with this
opinion. But the danger is that people then rely too much on the number (LM#1).

| think the greatest benefit on the algorithms is the relative consistency of the result case
over case. ... [However,] I think the biggest risk is becoming overly reliant and we just
exchange the categorical certain answer from the spectacle nerd for now, an infallible
algorithm (LM#2).

When asked about concerns over how algorithms can be trusted for use in court, including
issues concerning the disclosure of source code, participants largely pointed to validation. Two of
the participants expressed views that source-code was unnecessary and requests for disclosure
were legal tactics versus genuine efforts to evaluate the algorithm (LM#1 and LM#2); however,
participants were willing to support disclosure if requested and all three participants stated they
would factor source code disclosure as an element when selecting a commercial vendor. One
participant took it a step further and suggested algorithms should include internal controls on every
single application to help establish trust rather than simply rely on an initial validation prior to
casework applications (LM#2). The third participant offered a slightly different view on these
issues than the other two, expressing a stronger emphasis on disclosure. This participant, (LM#3),
expressed the viewpoint that understanding the internal workings of the algorithm was key for
establishing trust, and source code disclosure was a way to accomplish this. This participant
pointed out that validations have limitations and, while informative and important, were not a
complete substitute for understanding the innerworkings of the algorithm itself, which could be
obtained through public disclosure and open explanations of the conceptual operations. For
example:

| understand the concerns [of trust], but that just means we've got to do our job in showing
these tools are valid before we actually apply them to the case. ... I do believe that having
appropriate validation data and showing that you don't have to see in the black box to see
that it's reliable. ... I think largely revealing source codes is just a tactic. ... It's a waste of
time, but you know what, knock yourself out, here it is as long as it's protected (LM#1).
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The problem with validation is | don't have a perfect world [and] validation is subject to
some limitations based on what | fed it. ... It doesn't mean the validations are not
important. They are, but they are only black box validations. I don't know what's in the
box. ... [That said,] I'm a big proponent of intellectual property, but that's not necessarily
for courtroom use. ... [In] the perfect world, if you're dealing with people’s lives in the
courtroom, knowing everything about how decisions are made is a better approach
(LM#3).

When algorithms are based on AI/ML, however, participants were receptive to the idea of using
these, particularly if validation testing demonstrated superior performance. None of the
participants expressed concern over the opaqueness of the algorithms and the inability to disclose
source-code, provided there was adequate validation demonstrating its performance. One
participant (LM#2) recognized the difficulties with truly understanding the full limits of a black
box system; however, this participant’s concerns were mitigated as long as “best efforts” were
made to explore these issues during validation and the use of the system was confined by the limits
of what was tested. Another participant (LM#3) expressed caution if the limitations are not fully
understood. For example:

I can test the black box and show it's fit for purpose. ... Here's my acceptance criteria. | do
my testing. It meets the criteria. It works. It's fit for purpose. ... So, you can't turn over
source code, [well] I didn't really see that as being a real problem before. ... If it provides
a better value of results, which I should show through my validation, my ongoing testing,
| should always be picking the one that's better (LM#1).

| don't think using it is a bad thing, as long as you know the limitations. If we don't know
those limitations, taking it to court then could cause more damage than good, and that's a
problem. Those limitations have to be understood before it's actually used (LM#3).

When asked about regulation of algorithms, the participants recognized the need for better
coordination and guidance to establish best practice and minimize duplication of efforts; however,
they stopped short of suggesting full regulation. All three participants considered full-fledged
regulation as potential overreach and causing other political and bureaucratic challenges. One
participant considered the value of regulation, in theory, as similar to discussions around the
requirement to license analysts and accredit laboratories, but questioned whether regulation of
specific algorithms would work in practice (LM#2). Overall, participants seemed to express the
view that regulation should come in the form of best practice recommendations and validation data
that the legal system can consider within the course of case-by-case litigations. For example:

| feel that a weakness of our forensic science enterprise is that we don't have a cohesive,
guidance mechanism as much as I think maybe we should. ... I think [full regulation] would
probably be considered by many as an overreach, but the court system in a way should be
self-regulating to a point. ... I think it's been fairly reasonable so far and | think the defense
community is pretty well interconnected that when [issues] come out, they're on top of it
and that information diffuses (LM#1).
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I'm not sure I've got a good answer for that. ... I'd love to think [that an oversight regulatory
body] was an advantage, but I've seen a lot of places where it gets to be a hindrance really
quick (LM#2).

Finally, when asked what participants would describe as the greatest challenges facing the
operational use of computational algorithms for court purposes, all three participants pointed to
resources—specifically, resources to maintain current caseload requirements while enabling the
examiners to gain the foundational training and education to fully understand the systems, validate
the systems, and integrate them into day-to-day workflows. One participant (LM#2) offered a
detailed description of the competing priorities and challenging decisions laboratory managers are
faced with when choosing where to direct their focus. This participant went further by expanding
on several other elements that would need dedicated resources to support the implementation of
an algorithmic tool, such as the peripheral data management and infrastructure requirements.
Another participant (LM#3) highlighted the challenges with developing the algorithms and
ensuring they have the proper datasets to start with, which can be challenging given privacy issues
preventing open sharing and coordination between public and private institutions. For example:

Resources. To stay on top of how quick things are developing, it's taking more and more
resources. We all have backlogs and we're focusing on those. To take people off of
[casework] to train them, then get these new things up to speed and implement them and
then change people's minds [takes resources] (LM#1).

6.4.2 Prosecutors

Background & Experience:

Three prosecutors participated in the study—one male and two female. All prosecutors are
actively working in large metropolitan jurisdictions in the United States and have between 17 and
40 years of experience litigating criminal cases involving forensic science. Each participant serves
as the lead prosecutor specializing in litigating forensic science issues within their jurisdiction,
including directing and training other litigators on issues related to forensic science. Participants’
experiences span across a broad scope of disciplines, including both pattern evidence (e.g.,
fingerprints, handwriting, firearms), trace evidence (e.g., microscopy), and DNA, as well as across
a range of different types of cases, such as street crime, sexual assault, and homicide. One
participant expressed experience handling appeals related to forensic science all the way up to the
Supreme Court. Participants’ experience litigating algorithms primarily involved those related to
probabilistic genotyping algorithms for DNA. Two of the three participants had experience
litigating probabilistic genotyping algorithms as part of admissibility hearings. The third
participant had experience litigating probabilistic genotyping algorithms “on paper” without an
actual legal hearing.
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Interpretation & Reporting Practices:

All three prosecutors expressed the perspective that categorical reporting in pattern
evidence disciplines using terms such as “Identification” or “Individualization” was the most
appropriate and preferred means of expressing conclusions and they disagreed with the claims that
those terms imply “absolute certainty.” Participants expressed the perspective that they are both
appropriate and easily understandable. Two of the participants agreed that there should be
limitations related to those claims, such as not asserting 100% certainty and “to the exclusion of
all others” (P#1 and P#2); however, none of the participants expressed any reservations about
forensic practitioners providing their opinion on matters related to source attribution (i.e., that a
specific individual or item is the source of a questioned impression). For example:

| don't think saying identification implies absolute certainty (P#1).

| don't have a problem with the use of a categorical response. It's easy to understand. It's
easy for the jury to grasp, and | believe that it is the true opinion of the scientist who's
giving us that opinion (P#3).

Participants were not completely opposed to probabilistic reporting, in general, however.
Participants’ have been exposed to probabilistic reporting through DNA and they all feel it is
appropriate in that context, primarily because there is a quantitative basis to the probability and
the participants have a general conceptual understanding of how the numbers are produced. In
pattern evidence, however, one participant was ambivalent and deferential to the practitioners
(P#1), two participants expressed concern that probabilistic statements would be more confusing
to interpret among fact-finders (P#1 and P#2), and one participant questioned whether there is a
scientific basis to such probabilistic statements (P#3). For example:

So obviously probabilistic language has been used in reporting DNA results forever. ... |
don't have any information or knowledge as to how something similar would be done in a
pattern discipline. ... I would be open to considering it (P#1).

A probabilistic conclusion is a lot looser and as a result is much less clear what that means
(P#2).

Overall, participants generally considered the benefits of categorical reporting as being its clarity
and simplicity to express and understand. One participant added that an additional benefit is the
certainty categorical expressions provide to the opinion, but also noted that it is just one small
piece of the overall case (P#3). None of the participants expressed any significant risks to
categorical reporting; however, two of the participants reasserted their concern over probabilistic
reporting as creating additional complications to the conclusions. For example:

I think it gets messier the more you start complicating the conclusions in pattern matching
disciplines (P#2).

The benefit for categorical is the certainty of the opinion (P#3).
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When responding to concerns raised by practitioners as it relates to probabilistic reporting,
participants agreed with the risk that it would be confusing to lay fact-finders and believed it was
appropriate for them to take this into consideration when debating how to express their
conclusions. For example:

| think that they should be worried about it to a certain extent. They should be cognizant
of whether what they are saying at trial is an accurate description of their opinion (P#1).

However, participants were less sympathetic to practitioners’ expressing concerns that defense
attorneys would use probabilistic reporting to create “reasonable doubt.” Although one participant
speculated the practitioners were concerned that defense attorneys would attempt to unfairly
undermine their opinion with illegitimate attacks (P#1), which could be in the purview of the
analyst to be concerned over, the other two participants expressed the perspective that practitioners
should focus on what is scientifically appropriate and leave it to the litigators to argue their cases
(P#2 and P#3). For example:

A defense attorney has an obligation to defend the interests of their clients. So, they can
take anything in a case and try to create reasonable doubt. That's their job (P#2).

When responding to questions raised about the role and duties of experts and the limits of
their testimony, all three participants were clear that they expect the expert to accurately and
impartially convey their opinion and limit their testimony to what is supported by the science. For
example:

The roles and duties of forensic experts are to test the evidence and follow their rules and
the best practices within their discipline and to accurately and impartially convey those
opinions (P#1).

A scientist, in my opinion, should give their opinion as to what the science can say (P#2).

When asked about whether participants find it acceptable for experts to express their opinion in
court without disclosing the underpinnings or statistical data to support those opinions, the
participants were generally consistent in their response. Two participants responded by
referencing governing evidentiary rules in their jurisdictions (P#1 and P#2) and all three
participants suggested it is not required in their viewpoint, although it would not be the best
practice to elicit the opinion without providing that foundation. For example:

There are specific rules of evidence that govern expert testimony in any jurisdiction, and
they differ jurisdiction to jurisdiction. [In my jurisdiction], technically the expert doesn't
even have to discuss the basis of their opinion. But they can be asked about it on cross
(P#1).

One participant expanded on this question by suggesting courts might tend to be more flexible
when testimony is introduced as technical expertise versus scientific expertise and pointed out a
growing debate as to whether pattern evidence might be better when presented under this
framework. For example:
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| think you're seeing a trend, particularly in microscopic toolmark evidence for firearms
where the cases are being argued with technical expertise ... and you're seeing some more
challenges when it's being offered as scientific. So, it's an interesting question. It's a bigger
question, | think, that is going on right now in the community is whether or not some of
these pattern matching disciplines should be offered more as technical expertise rather
than scientific experts to use, because both of them are legitimate to offer into evidence as
expert opinion (P#2).

Finally, when asked what participants would describe as the greatest challenges facing the
pattern and impression evidence disciplines as it relates to examination and reporting methods, the
responses were varied—one participant pointed to understanding issues concerning the science
(P#2) whereas the other two participants pointed to lawyers and other partisan attacks attempting
to undermine forensic evidence overall (P#1 and P#3). For example:

| think it's a bigger issue that's happening in the community, is to understand what the
conclusions are and what the limitations are, and to ensure that we're staying within those
boundaries (P#2).

| think the challenge is that practitioners and people like you are attempting to appease
the defense bar and that's never going to happen. ... You are never going to satisfy the
defense bar because we are in an adversarial system. ... So, | think that the challenge is
trying not to fold in the face of that kind of pressure (P#3).

Use of Algorithms:

Prosecutors offered varying perspectives as it relates to the use of algorithms in court and
the benefits and limitations of them. One participant objected to the use of algorithms in pattern
evidence disciplines, claiming they did not believe algorithms were necessary and would
unnecessarily confuse and complicate the testimony (making it more challenging for lay fact-
finders to interpret) (P#1). Another participant was more skeptical, suggested algorithms could be
useful to provide weight to analysts’ conclusions, but cautioned against blind reliance on a
computational algorithm without ensuring it is sufficiently valid and appropriate for the intended
use (P#2). The third participant was more receptive to the use of algorithms, suggesting algorithms
could be useful as a means of enabling the expert to be more efficient and delegate computational
tasks to the algorithm that would otherwise be impractical to accomplish in a reasonable timeframe
solely by the human, but questioned whether a computational algorithm similar to DNA is even
possible for pattern evidence disciplines and expressed concern over how to effectively explain
the algorithm to lay fact-finders. For example:

I think it would overly complicate things and | would not be in favor of it at this point (P#1).

[Algorithms] allow the scientists to do computations in seconds that would be undoable in
a human timeframe, and so it gives you way more information and helps you weigh the
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evidence. ... Ithinkit's working very well with the DNA [but] I do not see how we establish
the numbers or the levels of confidence in pattern matching (P#3).

When asked about concerns over how algorithms can be trusted for use in court, including
issues concerning the disclosure of source code, participants were generally consistent in their
viewpoints. On the broader issues of trust, participants tended to be deferential to the forensic
experts. On the issue of source code disclosure, although some participants did not feel it was
necessary, they all expressed support for disclosure if requested by the defense under terms of
confidentiality or protective order. For example:

[1]f it's scientifically valid and the scientific community is saying this is good science, then
as a prosecutor, I'm behind it (P#2).

I'm all in favor of giving the defense every tool that they need to investigate the algorithm
(P#3).

When algorithms are based on AI/ML, however, participants recognized the opaqueness of the
algorithms as a potential issue. Although they generally believe AI/ML algorithms would be
admissible under existing admissibility standards based on validation data, two participants
recognized the potential challenges to admissibility on a constitutional dimension (P#1 and P#3).
None of the participants, however, believed the algorithms would be wholly inadmissible,
particularly if they were able to explain details about how the algorithms were developed (e.g.,
parameter selection, training data, etc.) and validated. For example:

Who am | going to call as a witness at a [admissibility] hearing to explain how this system
works that I'm trying to show meets the admissibility standard for my jurisdiction (P#1)?

I would think that you would test that kind of algorithm the same way you do any other
technology by using known samples. ... | can see the confrontation issue. | don't see a due
process issue, but I can see the argument that would be made (P#3).

When asked about regulation of algorithms, the participants were generally deferential to
the forensic science community, but were conflicted on whether the legal system was an
appropriate means of regulation. One participant believed the legal system was not the appropriate
means of regulating algorithms (P#1). Another participant believed the legal system was an
appropriate means of regulating algorithms, along with guidelines established by the scientific
community (P#2). The third participant recognized the benefits of regulation, but expressed
concern that many bodies composed of non-scientists often get “hijacked” by members with
alternative agendas (P#3). For example:

I think [algorithms can be regulated] in the same way that forensic science is already being
regulated. It's being regulated through best practice committees and through the court
system, and | think that those are putting sufficient limitations around forensic science in
general, and that would apply the same with algorithms (P#2).
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| think that regulation in a reasonable way gives everybody confidence in the science. ...
[However,] I'm not sure what that regulation would look like, and I'm not sure how, for
lack of a better word, political, as opposed to scientific, that regulation would be (P#3).

Finally, when asked what participants would describe as the greatest challenges facing the
operational use of computational algorithms for court purposes, the responses were generally
consistent with one another and were concerned that algorithms might create additional challenges
when presenting the evidence to lay fact-finders. Participants want to be sure examiners are
comfortable and confident in their ability to explain in lay terms to the fact-finders the outcome of
that evidence—the more complicated the computational methods, the more challenging it will be.
For example:

| think it's getting stakeholders to understand. ... | think [algorithms are] very foreign to
people in the entire forensic science community (P#2).

| think training the scientists within the labs, to validate it, and to understand it and have
confidence in it. I'm not the scientist. I'm using the science and what | want is reliable
science that is easy to understand and easy to explain to lay people (P#3).

6.4.3 Defense Attorneys

Background & Experience:

Three defense attorneys participated in the study—two male and one female. All defense
attorneys are actively working in large metropolitan jurisdictions in the United States and have
between 20 and 33 years of experience litigating criminal cases involving forensic science—
primarily as public defenders. All three participants serve as the lead defense attorney specializing
in litigating forensic science issues within their jurisdiction, as well as directing the work of other
litigators on issues related to forensic science. One participant specializes strictly on post-
conviction litigation. Participants’ experiences span across a broad scope of disciplines, including
both pattern evidence and analytical disciplines, such as drug identification, fingerprints, firearms,
toxicology, dog scent, DNA, etc., as well as across a range of different types of cases, such as
street crime, sexual assault, and homicide. Participant’s experience litigating algorithms are varied
and primarily involve probabilistic genotyping algorithms for DNA, as well as algorithms designed
for investigatory purposes, such as “Al policing” and algorithms designed to detect and geolocate
gunshots. The general focus of participants’ litigation concerns is around issues concerning
transparency, validation, and reliable applications of algorithmic tools.

Interpretation & Reporting Practices:

All three defense attorneys expressed a consistent perspective that categorical reporting in
pattern evidence disciplines using terms such as “Identification” or “Individualization” is
problematic, overstates the value of the evidence, and is not supported by the science.  For
example:
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If you're going to make an association at all, it should never be categorical, and the
association should always allow for the possibility of error or the possibility of a random
match (D#1).

There's a tremendous amount of concern. Specifically, because there's essentially no
scientific foundation for the claims of identification that are being made in almost all of
the pattern disciplines (D#3).

Participants, however, did not necessarily view probabilistic reporting as superior to categorical
reporting. The chief concern among participants is the extent to which the conclusions expressed
are empirically supported, irrespective if they are reported categorically or probabilistically.
Further, one participant expressed the concern that probabilistic reporting, without an adequate
empirical foundation, would be misunderstood by fact-finders and misused by prosecutors (D#3).
All participants were opposed to the use of probabilistic reporting using numerical references
without empirical foundations as to what those numbers were based on. Rather than probabilistic
reporting, especially in the absence of validated statistical methods upon which the numbers are
based, two participants expressed the view that the optimal approach would be to report
associations coupled with clear statements about error rates from black-box studies (D#1 and D#2).
The other participant, however, expressed the view that probabilistic reporting would be
marginally better (D#3). For example:

| think the move towards probabilistic language for any forensic discipline that doesn't
have reliable rarity data is really problematic. (D#2).

There's a significant concern that jurors, number one, don't really understand probabilistic
language and that prosecutors will misuse it. ... At the end of the day, if there were studies
to support that type of language, and if there was some way to ensure that jurors
understood what it meant and it was not misstated by either the examiner or by the
prosecutor, | think probabilistic language is probably preferable (D#3).

Overall, participants generally considered the benefits of categorical reporting as the simplicity to
express and understand what the expert is attempting to convey; however, all participants believe
this is done at the cost of making inaccurate and exaggerated statements that are not supported.
On the other hand, the participants generally considered the benefits of probabilistic reporting in
that it explicitly conveys limitations, although the extent to which it accurately represents the
limitations depends on the extent to which the statements are based on empirical studies. Without
well-established validation studies to provide a foundation to probabilistic reporting schemes,
especially when numerical quantities are included, could still be problematic since lay fact-finders
tend to assume numerical expressions are based on empirical measurements. For example:

The positive is that [categorical statements] are easy to understand. ... But it doesn't really
accurately convey the weight of the evidence. ... | think very clearly categorical statements
overstate the evidence, and that is always a significant danger. ... [On the other hand,] I
think probabilistic statements they more accurately convey the weight of the evidence, [but]
| think they are very difficult for judges, juries and litigators to understand (D#3).
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When responding to concerns raised by practitioners as it relates to probabilistic reporting,
participants generally agreed with the risk that it would be confusing to lay fact-finders and
believed it was appropriate for them to take this into consideration when debating how to express
their conclusions (although one participant [D#1] expressed the view that this is a reflection of the
extent to which practitioners do not understand probabilistic concepts). For example:

| actually do think that the forensic science community does have some obligation for
thinking through how information should be accurately reporting. I actually do think it is
within their purview because | think that, again, that's something that for years has not
been, either intentional or unintentional, but there have been overstatements made in every
discipline for years and years and years (D#3).

However, participants were quite critical of practitioners’ expressing concerns that defense
attorneys would use probabilistic reporting to create “reasonable doubt.” Overall, none of the
participants expressed a viewpoint that this would be appropriate for them to consider. One
participant took it a step further and suggested this finding is indicative of a hidden bias in the
criminal justice system (D#2). For example:

| think [forensic scientists] should stick to the science and let the lawyers worry about what
we're going to say (D#1).

I would call those results laughable if they didn't concern me so much. ... Why are forensic
examiners concerned about the outcome of the case? ... The fact that 80% of the examiners
in a survey are concerned about case outcomes based on shifts of how we report language
to me shows the power of the unconscious bias in the criminal justice system (D#2).

When responding to questions raised about the role and duties of experts and the limits of
their testimony, all three participants provided impassioned and consistent responses that forensic
scientists base their conclusions on empirical data and be forthright about the limitations of their
findings. Some participants went a step further by suggesting forensic scientists routinely fail to
fulfill their ethical obligations, in their view (D#2 and D#3). For example:

The role and duty is to not overstate the science based on a subjective belief in it, or what
you've been told by a mentor that isn't verified in science (D#1).

Forensic experts have an ethical as well as a legal duty to accurately state the weaknesses
and limitations of their forensic method. But forensic examiners don’t take this duty
seriously. In my 20+ years of litigating many forensic cases, | have never encountered a
forensic examiner who took this duty seriously (D#2).

When asked about whether participants find it acceptable for experts to express their opinion in
court without disclosing the underpinnings or statistical data to support those opinions, all three
participants were opposed to it. One participant stated a simple “no” without further elaboration
(D#2). The other two participants went further to claim it is not legally admissible under existing
admissibility standards (D#1 and D#3). One participant openly expressed frustration that such
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testimony has been admitted in the past and pointed to poor education and poor performance by
judges and defense attorneys in the past to have allowed such precedent to be established, but
expressed optimism that judges are now beginning to take notice (D#3). For example:

No opinion should be entered into evidence without a thorough examination for the basis
of it. The whole reason that we have a confrontation clause and cross examination is to
examine the basis of the opinion (D#1).

[Training and experience] are just not a legally sufficient basis for an opinion. ... [It’s been
admitted in the past because] for years and years and years, the defense bar really was,
frankly, not educated and did not do a particularly good job of starting to bring to courts
the problems with all of these disciplines. So, there's this whole body of case law that's
based on either no litigation or very poor litigation (D#3).

Finally, when asked what participants would describe as the greatest challenges facing the
pattern and impression evidence disciplines as it relates to examination and reporting methods, all
three participants pointed to the need to conduct the necessary research to provide empirical
foundations to the evidence used in criminal cases. One participant (D#1) expressed an
impassioned degree of frustration when expressing their viewpoint. This participant seemed to
lament the impact of these divided perspectives across stakeholder groups and the lack of
enforcement by the courts have had on indignant defendants, suggesting they are the ones that tend
to bear the ultimate consequence for what should otherwise be straightforward scientific issues.

This digging in on the way that this has always been done because of subjective belief that
there were no problems with it or because there haven't been tons of wrongful convictions
associated with it, is sticking your head in the sand. ... The challenge is that courts will . .
.. [well, . . .] I don’t know, you know, actually, the truth is there may be no challenge,
courts just may not care, because we don't care about the rights of the indigent defendants.
In your typical criminal cases, the challenge is scientific integrity. The challenge is trying
to claim science when you don't have any (D#1).

In pattern matching, |1 would say it probably continues to be the lack of empirical research
(D#2).

One participant (D#3) went further and described their observation that research tends to be driven
by the courts, based on what courts will or will not allow, and this is promoted by forensic scientists
looking at court challenges to drive their research priorities. This participant expressed concern
that this approach is unscientific and backwards—case outcomes where the admissibility of
evidence is limited should not be the factor driving research agendas. Instead, this participant
expressed the view that the research should be conducted without consideration of admissibility,
then based on those results the courts determine whether the method is useful to the court.

It was stunning to me that the question that examiners would ask [litigators], essentially
“what will the court allow?” And that is not how research should be conducted. It's not
what the court will allow. It's what the research shows. ... And, then by that same token, |
think that, at least in some of the disciplines right now, the research seems to be driven by
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the courts limiting the testimony. At least in firearms and toolmarks, what I've noticed is a
court limits what a firearms examiner can testify to, and then there's a study that comes as
a result of that limitation (D#3).

Use of Algorithms:

Defense attorneys offered generally consistent perspectives as it relates to the use of
algorithms in court and the benefits and limitations of them. All three participants expressed
significant caution to widespread adoption of algorithms, specifically over concerns of
transparency, validation, and operational uses of algorithms. One participant summarized by
stating “that’s a complicated question” (D#3). Overall, all three participants were supportive of
the use of algorithms, in theory, because, on the one hand they have the potential to provide an
empirical basis to examiners’ claims, to more accurately reflect the strength of evidence, to
promote greater objectivity and consistency in examination results, and to enable examinations to
be performed more efficiently. However, on the other hand, all three participants expressed
concerns over transparency, validity, and reliability of algorithms when applied operationally.
Participants’ greatest concern was the lack of transparency surrounding the use of algorithms in
criminal justice—specifically when algorithms are used from commercial vendors with proprietary
software—which mask the underlying assumptions, parameters, and limitations of the algorithm.
Without those details, participants’ expressed concern that forensic scientists would apply
algorithms operationally without fully understanding their limitations and the conditions upon
which they might not be appropriate while at the same time “blindly” relying on the output as if it
were factual. For example:

The greatest benefit would be is that you move away from unsupportable categorical claims
into something that has some empirical basis to it and that you would actually have a
number that's based on a valid statistical database, a population frequency database that
is transparent and known. ... [But,] I'm never not going to be concerned about proprietary
software being used in these circumstances (D#1).

I think, when algorithms replicate the ability of human examiners in their interpretation,
I'm much more comfortable with that use of an algorithm. ... [However, I am concerned
that] inevitably they will be used in the criminal justice system in a role that far exceeds
what I'm calling for (D#2).

When asked about concerns over how algorithms can be trusted for use in court, including
issues concerning the disclosure of source code, participants were consistent in their responses and
renewed their calls for transparency and greater oversight. All three participants asserted that
disclosure of source-code and access to the algorithm and underlying software application to
enable them to test was key to gaining trust. One participant went a step further calling for the
creation of an independent body of academic experts to assess the algorithm and oversee its
operation in casework (D#2). None of the participants expressed a viewpoint that proprietary
interests would be at risk if source-code were to be disclosed, particularly under conditions such
as a protective order from the court, and each of the participants pointed to civil litigation as an
example of courts applying disparate treatment of source-code disclosure in civil litigation versus
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criminal litigation. One participant expressed the viewpoint that prosecutors shouldn’t be using
software for which they cannot give access to the source-code and underlying software (D#3). For
example:

What would I need to be comfortable with widespread use and acceptance of an algorithm
in the criminal justice system? First, I would need source code. ... Developers should not
work in any forensic space where the results of their algorithm operation are intended as
evidence unless they are willing to publicly disclose their code. ... Second, I would need
some kind of oversight board—a team of neutral academic experts—provided with the time
and resources to analyze the code, stress test it, and publish understandable reports about
the assumptions underlying the code, the limits of operation based on stress testing,
recommendations for improvement, and recommendations for testimony caveats based on
their work. ... Third, a pilot period of years, during which a limited deployment in casework
is constantly reviewed by the neutral academic team to make sure that the system is being
used as intended and that experts do not misstate the value of the evidence in court (D#2).

If prosecutors are going to offer this service, then they should be prepared to turn over the
discovery, and the discovery that I'm talking about in this context is the access to source
code and the software, as well as all validation information and et cetera (D#3).

When algorithms are based on AI/ML, however, one participant found it challenging to envision
how these types of algorithms would be admissible (D#1). The other two participants, however,
did not expressly object to the use of these types of algorithms, but re-enforced their concerns over
the importance of transparency, accessibility, and oversight when these algorithms might be used
(D#2 and D#3). For example:

You can't have somebody who just turns on the machine and you're coming in and
testifying. If we don't know exactly how the machine works, why it works, what its error
rates are, how it was developed and why, then it should never be used in criminal court. ...
It is, in my view, a sixth amendment violation, no matter what—if you were denied your
right to confrontation, you were denied due process of law (D#1).

I think [admissibility] would have to be on a case-by-case basis. ... | think the complication
comes in when we try to find out what's behind the black box (D#3).

When asked about regulation of algorithms, all three participants referenced the need for
an independent oversight body responsible for assessing function, validation, operations, and
testimony. One participant suggested it should be a neutral government entity, similar to the
United States Food and Drug Administration (D#1). Participants also referenced standards set
forth by the Institute of Electrical and Electronics Engineers (IEEE), suggesting a similar type of
requirements should be established for the development and validation of software applications
developed for criminal justice purposes. Finally, all participants expressed strong rejections to the
idea of the legal system being an effective means of regulation. One participant went so far as to
claim the legal system has “utterly failed” to regulate forensic science in general and therefore
expressed no confidence it could not be trusted to effectively regulate algorithms (D#2). For
example:
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There should be independent bodies to assess their function, their validation, how they
operate, who should be able to review training data, who should be able to require the
appropriate caveats during testimony, who should be able to require that proper standards
are used to develop [the algorithms], whether it's IEEE standards or others. ... [The notion
that the legal system could regulate algorithms is] really a laughable position. The
criminal justice system has proven to be an utter failure as gatekeepers of forensic evidence
(D#2).

Finally, when asked what participants would describe as the greatest challenges facing the
operational use of computational algorithms for court purposes, participants referenced the need
for increased investment in education for practitioners that will be expected to use the algorithms
operationally, and for judges who will be expected to assess the admissibility of the algorithms.
For example:

[The greatest challenge] is these non-scientists understanding what this machine is doing
and the limitations of what the machine [and] results are. [Further,] having a forensic
examiner, very few of which have a background in computational . . . anything, explaining
accurately to these lay people what this machine is doing and the limitations of what this
machine is doing (D#3).

6.4.4 Judges

Background & Experience:

Three judges participated in the study—one male and two female. One participant (J#1) is
a sitting federal judge in a large metropolitan jurisdiction, having served for over 25 years as a
federal judge and presiding over a wide range of criminal and civil cases, including issues
concerning forensic evidence. Prior to being appointed as a federal judge, this participant served
as both a federal prosecutor and a criminal defense attorney. Additionally, this participant serves
as an adjunct professor at an lvy League law school, has co-authored books, published numerous
articles, delivered several presentations, and served on several professional committees, including
those related to forensic science. Another participant (P#2) is a sitting state district court judge,
having served six years of the current elected term*®. Prior to being elected as a state district court
judge, this participant served as a defense attorney, including experience as an assistance state
public defender, with extensive experience litigating complex felony cases largely involving
forensic science evidence—including issues related to the discovery of source code and
admissibility of alcohol breath testing instruments. This participant has provided several
presentations and trainings and has served on professional committees on issues related to the use
of forensic science in courts. The third participant (J#3) is a former federal judge in a large
metropolitan jurisdiction. This participant served as a federal judge for over seven years before
stepping down in late 2018 to return to private practice and focus on issues in commercial
litigation, including issues involving technology and artificial intelligence. Prior to serving as a

18 This participant, (J#2), was first appointed by the state Governor in 2015 to fill a vacancy and elected to start a new
term in 2016.
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federal judge, J#3 served as a litigator in private practice for over 20 years and as the deputy
assistant attorney general for the U.S. Department of Justice. While this participant has experience
presiding over a wide array of criminal and civil cases, this participant has specialized experience
on issues concerning artificial intelligence and algorithmic tools applied to the criminal justice
system, having authored a book on the topic, provided several presentations and trainings, and
served as an adjunct professor at a reputable law school on issues related to the use and presentation
of quantitative methods by litigators, courts and policymakers as they advocate legal and policy
positions.

Interpretation & Reporting Practices:

The two participants who provided responses to these questions, (J#1) and (J#2), expressed
the perspective that categorical reporting in pattern evidence disciplines using terms such as
“Identification” or “Individualization” was challenging because it conveyed a degree of certainty
that has not been well established.?® These two participants suggested categorical reporting was
akin to expressing an opinion “to a reasonable degree of scientific certainty,” and expressed the
concern that those statements do not have clear meaning to lay fact-finders and not only mask the
level of subjectivity involved in the examination, but also convey a level of certainty that exceeds
what can practically be achieved. One participant (J#1) goes further to suggest that the means by
which forensic science conclusions are reported is a factor that has contributed to the erroneous
conviction of innocent people. The other participant (J#2) expressed a view that categorical
statements involving source attribution could be acceptable provided that the examiner could
provide adequate foundation to support such a claim and the relevant uncertainties and limitations
of the examination are conveyed. However, this participant goes further and openly questions
whether it is practical to establish such a foundation and demonstrate that the uncertainty is such
that a categorical statement of a source attribution is warranted. For example:

As | think many people know, bad forensic science has been an element in the conviction
of innocent people. ... One of the reasons that those inaccuracies [in forensic science] came
about [was] because the science itself was much more subjective than was represented to
courts and to juries, [and] because they were presented as being certain conclusions. ...
There's almost no part of science that can claim certainty. If you talk to physicists or
chemists or whatever, they won't claim that. Yet here it is, in effect, being claimed by
forensic science (J#1).

| think it's very challenging to use [categorical statements] for purposes of how to report
a result. ... How do I know that there's the foundational science to be able to say that, as
we're doing this comparison, that | can make the statement, “yes, this impression came
from this source?” We get into [things] like, “well, it's a match.” Well, okay. It may be,
[but] how do you know that (J#2)?

19 The majority of the interview with this participant, (J#3), focused on issues related to the broader topic of
“computational algorithms” for court purposes. Many questions related to the broader topic of “interpretation and
reporting” were omitted and, therefore, are not discussed.

20 participant (J#3) did not provide a specific perspective on issues related to this topic.
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Participants considered probabilistic reporting as an improvement over categorical reporting;
however, participants cautioned that it may not necessarily address all of the concerns. One
participant (J#1) suggested probabilistic reporting is an improvement to categorical reporting, but
expressed a concern that lay fact-finders would not be able to meaningfully interpret what was
being conveyed or scrutinize the validity of the underlying statistical methodology upon which the
probabilistic statement was based. Another participant (J#2) expressed initial reactions of being
averse to probabilistic statements given the potential to be misunderstood. However, after
reflecting on the issue more, this participant expressed a view that probabilistic statements could
be advantageous to categorical reporting because they cause the fact-finders to pause and think
through the nuances of what is actually being conveyed rather than relying on familiar colloquial
definitions of terms that are often used when reporting categorically (despite such terms having a
specific technical definition in the respective forensic discipline). This participant went further,
however, to express the view that probabilistic statements should include numbers, and those
numbers should be accompanied by a statistical model to provide the source of those values. For
example:

Well, 1 think [probabilistic statements] would be an improvement, but | worry again about
two things. First, the ability of judges and juries to really scrutinize, in a meaningful way,
when someone says it's this probability or that probability. And secondly, the validity of
the underlying statistical methodology used, which varies considerably. ... Nevertheless, I
think expressing it as a probability would still be better than expressing it as a certainty.
But I do think it still has a great potential to confuse (J#1).

Overall, participants generally considered the benefits of categorical reporting as its simplicity of
the statements; however, they also expressed the concern that such statements are not well-defined
and are often interpreted to mean something that is not supportable. One participant (J#1) stated
“the greatest risk with categorical is it’s stated as a certain thing, and that’s just not true.” Another
participant (J#2) believed such statements “do not always align with what lay persons’
understanding of the definitions would be.” Participants viewed probabilistic reporting as being
an improvement over categorical reporting in the sense that probabilistic reporting is more
defensible and easier to define, but participants still expressed concern. One participant (J#1)
questioned whether statistical methods are appropriate when there is a high degree of subjectivity,
and also noted “that the recipients, the judges and juries who are hearing these opinions are very
rarely people of statistical sophistication and so they may give a greater weight than it really
deserves.” Another participant (J#2) cautioned that “probabilistic models have ways in which they
can be misconstrued.”

When one participant (J#1) was asked how such testimony should be permitted, the participant
responded, “it varies from discipline to discipline.” The participant elaborated by reference to a
prior case opinion they authored:

The best way to answer that is by talking about an opinion | wrote, United States v.
[REDACTED], where the question was whether there was a match between the marks on
the bullet and cartridge from the gun. ... Originally, I asked the expert, “what's your error
rate?” and he said “zero.” I said “zero?” And he said, “because I've never testified in a
case in which the defendant wasn't convicted.” ... Put[ting] aside that non-sequitur for the

171



moment. More to the point, in the end, what | allowed in that case was for the expert to
show great big blow ups of the marks on the bullet and cartridge and the marks on the gun,
and to point out some of the similarities between those and to then express the opinion that
it was more likely than not that this came from the same gun. That's as far as | felt one
could go without misleading the jury. I'm not sure today | would even go that far because
I've seen many more examples of wrong, inaccurate forensic science, but | certainly
wouldn't go any further than "it's more likely than not in my opinion that this bullet came
from that gun.” Of course, it depends on the forensic discipline. When you're talking about,
for example, microscopic hair analysis, the error rate is extremely high and | wouldn't
allow that in. I might have back at the time of [this case] considered allowing it in the
modified way | indicated, but no longer. So, it varies from discipline to discipline. [For
fingerprints in particular,] they are not bad forensic science, but they're not DNA either.
... 1 think I would not exclude it. ... I think that the evidence is there that fingerprint
evidence is not junk science and that with proper limitations, it can be received in evidence.
[For example, | would probably allow] the expert to blow up pictures of the two
fingerprints to be shown to the jury and point out some of the similarities between those
and then express the opinion that it was more likely than not that this [print] came from
the same [individual]. ... I [also] think maybe you should require as part of [the expert’s]
direct testimony, to say, “now I've arrived at that [opinion] through experience, not
through some sort of scientific formula™ (J#1).

When responding to concerns raised by practitioners as it relates to probabilistic reporting,
participants agreed that probabilistic reporting would be more confusing to lay fact-finders, but
they did not express the view that the issues were insurmountable.?> One participant (J#1)
suggested that the risks for confusion, which probabilistic reporting might entail, would be less
worrisome than the view fact-finders often take with categorical reporting. The other participant
(J#2), while recognizing the potential for confusion, expressed the view that, on the other hand,
probabilistic reporting might be useful to cause people to pause and think through the nuances
rather than rushing to judgment based on colloquial uses of terms that experts use categorically.
For example:

Well, 1 do think there is a potential for confusion, but it's not as bad as the view that the
jury will take otherwise, that it's an absolute fact. When the jury hears the opinion it's a

match, their natural reaction is to say, “okay, it's been scientifically found that it's a match.
Period.” (J#I).

At first, when | started working with them, | was like, this is way too confusing and there's
no way we're going to be able to do this in a way that's meaningful to people, but in some
ways, | think there are some things about it that makes it more approachable (J#2).

However, participants were less sympathetic to practitioners’ expressing concerns that defense
attorneys would use probabilistic reporting to create “reasonable doubt.”?? Participants disagreed
with the practitioners’ concern and expressed concern that it would be a factor taken into
consideration. One participant (J#1) suggested that this indicates practitioners do not have faith in

2L participant (J#3) did not provide a specific perspective on issues related to this topic.
22 participant (J#3) did not provide a specific perspective on issues related to this topic.
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juries and offered a reminder that the determination of reasonable doubt is what the judicial system
is all about. The other participant (J#2) suggested that this indicates a general fear practitioners
have for defense attorneys. For example:

I'm not sure what is meant by the objection that this might create a reasonable doubt. Well,
that's what the system is all about, is finding out whether there is, or is not, a reasonable
doubt. It sounds like those respondents didn't have much faith in juries (J#1).

I think we would need to stop being afraid of defense attorneys. | really do think that we
just need to stop that nonsense. These numbers can be misused by everybody because they
aren't being understood properly. | don't think a lot of it is even intentional. | just think that
it is what it is. So, | think misuse happens for all sorts of reasons and it doesn't have to do
with what side you're on. So no, | don't think that it should be a reason that we should not
look at [probabilistic reporting] (J#2).

When responding to questions raised about the role and duties of experts and the limits of
their testimony, participants expressed the view that results should be reported in an accurate
manner with appropriate foundation to base such conclusions and that the experts should be
forthright about the error rate and limitations of the findings. As one participant noted, without
being forthright about this information “the jury is deprived of information that is available, that
is out there” (J#1).

When asked about whether participants find it acceptable for experts to express their
opinion in court without disclosing the underpinnings or statistical data to support those opinions,
one participant (J#1) stated “no” without further elaboration. Another participant (J#2) admitted
to have struggled with this question, stating that the rules of court require the expert to provide the
foundational support for their opinions, but experts should be answering the questions put to them
by the lawyers. Instead, this participant, suggested that experts should be more proactive about
disclosing these foundational issues earlier, such that it is laid out before the court process, such
as on the report that is provided to both parties, which, in turn, would enable either party to further
discuss during court as they deem appropriate. The third participant, (J#3), stressed throughout
the interview that “the means to the end matter”—»both as it relates to expert testimony and the use
of algorithms—and that an opinion that is expressed without the reasons for that opinion would be
considered ipse dixit and cannot be relied upon. For example:

My view is that [would be] called ipse dixit—"it is because I said it is,” and, under the
Daubert standards, the Supreme Court standard for the admissibility of an expert opinion,
that’s not allowed. ... Every judge should require that an opinion be backed up by the
reasons for the opinion and that, if an expert gets up there and says, “based upon my
experience, this is just the way itis,” ... I would say that that's an unreliable opinion (J#3).

Finally, when asked what participants would describe as the greatest challenges facing the
pattern and impression evidence disciplines as it relates to examination and reporting methods,
participants pointed to multiple issues.” One participant, (J#1), responded with the need for
“good, blind, scientific testing” to strengthen the scientific rigor underlying many forensic science

23 participant (J#3) did not provide a specific perspective on issues related to this topic.

173



disciplines. This participant, (J#1), elaborated that the “greatest failing” is that many forensic
sciences, with the exception of DNA, have been developed by police as investigative tools and
began to be introduced as hard evidence without subjecting it to serious testing. The other
participant, (J#2), expressed the view that the greatest challenge is to ensure, irrespective of how
those results are reported, that everyone understands how to properly interpret the value of the
evidence.

Use of Algorithms:

The judges offered generally consistent perspectives as it relates to the use of algorithms
in court and the benefits and limitations of them. All three participants expressed views that
algorithms can be helpful—particularly for purposes of augmenting the expert to reduce the degree
of subjectivity in the analysis and performing tasks that humans would otherwise be incapable of
doing. However, participants also expressed caution about the desire to rely on algorithms without
ensuring that there is transparency into how the algorithms operate and clear understanding of the
limitations of the systems. One participant (J#1) expressed concerns citing the lack of
transparency, logistical, and financial challenges often prohibiting defense counsel to meaningful
scrutinize algorithms used in the criminal justice system. Another participant (J#2) expressed the
view that the lack of transparency around these algorithms not only creates the opportunity for
misuse, but also perpetuates a culture of distrust that already pervades the adversarial system,
which ultimately “erodes confidence in the analysis as well as potentially in the system itself.”
The third participant (J#3) suggested there needs to be a national conversation on how to create
trustworthy and reliable algorithms, and what that means, as it relates to uses for individual liberty
determinations. For example:

| think algorithms can be helpful, to a degree, if they are totally transparent. ... I think
really good algorithms could reduce the subjective portion of the analysis. ... [However,]
some companies are obscuring inquiry through trade secrecy laws, but even where that
doesn't operate it's very hard for even defense counsel [to review]. ... Even in those states
where the trade secrecy law objection is overruled, they have to hire an expert ... [but
often] there's no money available to hire that kind of expert (J#1).

| think that algorithms are here to stay. ... There's a great potential [with algorithms], [if]
done correctly, to create criminal justice reform to a degree that we've never seen before.
... [T]hey have an ability to take out some of the human biases that have plagued the
criminal justice system. ... [B]ut there are certain risks. ... What we need is a national
conversation on what that means and how to create trustworthy and reliable algorithms
that can be used for individual liberty determinations. That's where the rubber meets the
road (J#3).

When asked about concerns over how algorithms can be trusted for use in court, including
issues concerning the disclosure of source code, participants were consistent in their views,
echoing their prior concerns about transparency and asserting the need for access to source code.
Participant (J#3) expanded on the concept of trustworthiness by pointing not only to reliability
testing, but also whether the design of the system corresponds to a concept of “fairness.” This
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participant argues, on a Constitutional basis, that “the means to the end matter” and the “means”
are contained within the source code. For example:

| think [source code] absolutely should be disclosed in every case. | don't see how you can
tell the judge, let alone the defense lawyer, [they] can evaluate whether it's a good
algorithmic approach or not if you don't know how what went into the source code and
what its components were, how they were arrived at it, and so forth. And, give me a break
about trades secrets. | appreciate that companies like to make money, but we're talking
about human liberty here, and that has to trump any concerns over trade secrets (J#1).

| personally think that it should be open source codes, period. ... I respect the fact that
there's intellectual property issues and so forth that's around that, but I think that we have
mechanisms to assist in protecting that (J#2).

| think that what it means to be trustworthy is very close to what it means to be reliable,
but I think it incorporates something else. Reliability is simply, “does the tool work as it is
intended to work?” ... Trustworthy certainly incorporates that, but it [also] incorporates
something else, which is a concept of fairness. ... In my view, if an algorithm is going to be
used for a liberty-based decision, a criminal defendant is entitled to have access to the
source code, and | would say for an adequate defense, just as a criminal defendant is
entitled to the experts that he or she can demonstrate are needed to put on an adequate
defense, that same individual is entitled to an expert who can then help them analyze the
algorithm (J#3).

When algorithms are based on AI/ML, however, participants were not completely opposed to their
use; however, they did express views that were even more cautious given the lack of transparency.
When asked whether the opaqueness of these types of algorithms could present an issue from a
Constitutional dimension, such as Due Process or Confrontation, two participants (J#1 and J#2)
did not believe, in general, it would be wholly excluded, but did express concern over their use
nevertheless. The third participant, (J#3), expressed the view that understanding the design of the
algorithm is absolutely critical, and in the absence of such information the evidence generated by
the algorithm should be excluded. Ultimately, this participant was unwilling to accept that the
conceptual innerworkings and design of the system is incomprehensible, despite the apparent black
box nature of the source code file itself that is often the case with AI/ML algorithms, and expressed
the view that giving up the ability to understand these issues would be giving up important
Constitutional principles. For example:

At a minimum you need to know what the error rate is. ... But, also, I'm a little suspicious
about any notion in the legal system where we say, “we don't know why X causes Y, but we
know it does.” ... 1think a lot of scientists, a lot of lawyers, would be very skeptical about
the use of that because ultimately the law depends on reason, not on assumptions. ... So, |
am skeptical of the black box approach (J#1).

They fascinate me and scare me all at the same time. | can't say that access to the source

code is the “be all and end all” of anything. ... [BJut | don't even know how to begin to
assess that stuff. ... I really think that if we're going to start using them, that we need to
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figure out what it is that we do need for purposes of making sure that there's essentially
buy-in from everybody, that this is why this is working and that we can have some check
on the fact that it is working in the way that we believe that it's working (J#2).

Understanding how the instrument was designed is absolutely critical to understanding the
calibration of the instrument and the choices. ... [Ultimately,] I think there are serious due
process issues with a defendant being denied access to understanding information that
underlies a tool being used for liberty decision (J#3).

When asked about regulation of algorithms, the participants expressed views that spanned
across the forensic sciences more broadly, not just algorithms, that there should be regulation.
Although participants had different views on who and how that regulation should be done,
participants did not feel the legal system was effective as-is. For example:

Yes, [but] not just algorithms. I think there is a real need for an Institute of Forensic
Science staffed by a high-level scientists who could tell us with the neutrality that we
deserve, this is good forensic science, this is bad forensic science, this is possible forensic
science but it has to be improved and here's how to go about improving it. ... | don't think
the legal system, ultimately, is well positioned to regulate forensic science. Judges know
beans about science. Lawyers know beans about science. The natural thing when you have
that kind of problem is to turn it over to the people who do know about science, the
scientists (J#1).

Yes, [but] the by whom and how is a much harder question. ... [Whether the legal system
is an appropriate means of regulating forensic science,] no, [but] I will also say I'm not
sure the federal government is the place to regulate it either (J#2).

In my view, there should be a form of regulation that is for any liberty-based decision. It's
a broad question in terms of algorithms and any kind of forensic science, ... [but] if it's
going to be used for a liberty-based decision for a human being, then they need to meet the
constitutional standards, so they should be regulated. ... The, how, | think, is
extraordinarily complicated, but I don't accept that it can't be done (J#3).

6.4.5 Other (Academic Scholars)

Background & Experience:

Three “other” stakeholders (i.e., academic scholars) participated in the study—two male
and one female. One participant (O#1) has over 30 years of experience performing research in
forensic science, with the specific aim to provide a more structured foundation to case assessment,
evaluation, and interpretation, and served for several years in a chief government role establishing
policy governing forensic science practices on a national level?*. Another participant (O#2) has
over 30 years of experience as an academic scholar at an vy League university, primarily focused
on research involving human judgment and decision making from a multidisciplinary perspective,

24 This participant, (O#1), was the only non-U.S. centric participant.
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including law, psychology, biology, and statistics. The third participant (O#3) has over 35 years
of experience as an academic scholar at an vy League university, primarily focused on physical
sciences, mathematics, and general scientific issues of public interest. This participant has also
served as the president of a large scientific organization. All three participants are respected in the
general scientific community, have doctoral degrees in scientific disciplines, have numerous
scientific publications, and have experience serving in senior advisory roles on issues affecting
forensic science practices on a national scale.

Interpretation & Reporting Practices:

All three participants expressed the perspective that categorical reporting in pattern
evidence disciplines using terms such as “Identification” or “Individualization” was inappropriate
and conveyed a level of certainty that was unsubstantiated and outside the realm of what scientific
principles can support. One participant recognized the effort that would be involved with
promoting such a transition and expressed a perspective that categorical reporting, in the interim,
should be accompanied by statements about the limitations of such claims (O#1). The other two
participants expressed a much more rigid perspective, suggesting such claims were not
scientifically justified and were an overstatement of what can be empirically supported (O#2 and
O#3). One participant took it a step further and expressed the view that such claims violated the
trust that fact-finders place in forensic scientists and was “immoral” if they made such claims
under the auspice of “science” (O#3). For example:

| think it’s clearly not justified scientifically. It’s an overstatement of the value of the
evidence. We know it’s simply not plausible for a discipline, like fingerprinting, that a
trained examiner can determine the rarity of the set of features observed [based solely on
human judgment] with the precision necessary to know whether it’s probability in the
population is low enough to support the claim that it’s a unique observation (O#2).

I think it is wrong. I think it’s immoral to stand in front of a jury and make categorical
statements if you are a forensic scientist because the word “scientist” confers in the minds
of the jury that you are, well, one way that | heard it expressed is that the words have
totemic power. | think it’s wrong to abuse that level of trust. ... Look, the way | view it, we
can make categorical statements, but don 't claim it’s backed up by science (O#3).

Participants were not completely consistent with endorsing probabilistic reporting, however. One
participant expressed strong views that probabilistic reporting was the path forward (O#1).
However, another participant seemed to support probabilistic reporting simply because of the lack
of any reasonable alternative and that categorical reporting was not acceptable (O#2). This
participant seemed to accept probabilistic reporting as the path forward, but was more interested
in how to most effectively articulate probabilistic results to lay fact-finders to maximize their
comprehension of the information—a topic that this participant believes still requires more
research. The third participant, however, expressed views that seemed to reject both categorical
reporting (as it is traditionally practiced) and probabilistic reporting (O#3). This participant
expressed concern that probabilistic reporting, albeit superior than categorical reporting from a
scientific standpoint, would not be well understood by fact-finders. Instead, this participant
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suggested black-box testing of examiners’ performance was the optimal approach, so that
examiners’ conclusions can be accompanied by an empirical measure of certainty based on error
rate data (O#3). For example:

| strongly believe that [probabilistic reporting] is the appropriate approach to take. ... It
is much more scientifically correct and defensible to acknowledge that uncertainty in a
probabilistic form (O#1).

| have problems with [probabilistic reporting] too, but the problems don't lie on the side
of the forensic science community, it lies on the side of the triers of fact. [For example,] |
know for a fact, most people don't understand fractions ... So, I'm not sure if probabilistic
is better, but | know a lot of people are in favor [of it] (O#3).

Overall, participants generally considered the benefits of categorical reporting as its simplicity to
express and understand; however, they all acknowledged that ease of understanding is at a cost of
being scientifically valid and transparent about the uncertainty. Participants viewed probabilistic
reporting, on the other hand, as being scientifically more defensible, but at the same time, more
challenging for lay people to understand and at an increased risk of erroneous interpretations.

When responding to concerns raised by practitioners as it relates to probabilistic reporting,
all three participants were sympathetic to the concern that probabilistic reporting would be
confusing to lay people. Although one participant (O#3) responded in a way that suggested
probabilistic reporting was not the ideal path forward (versus black box testing to derive empirical
error rates), the other two participants (O#1 and O#2) did not believe the confusion that would
accompany probabilistic reporting was insurmountable or a strong enough reason not to pursue it.
For example:

| think they are right. It may be confusing to a lot of people, but | don't think that's a
sufficient reason to go back to an unjustifiable alternative form of reporting (O#2).

[1 agree,] just ask someone on the corner and say, “I have this problem with fractions. [
want you to solve it” and see what kind of reaction you get. So that informs me that for the
average person who finds themselves on the jury, a deep understanding of probability is
it's like asking them to solve Einstein's equations. It's just not going to occur (O#3).

Participants were also understanding of practitioners’ expressing concerns that defense attorneys
would use probabilistic reporting to create “reasonable doubt;” however, participants did not view
it as a reason to oppose probabilistic reporting. To the contrary, participants suggested it bolstered
the reason to pursue probabilistic reporting if it more effectively represented the certainty of the
findings. One participant (O#1) expressed concern that this indicates a deeper cultural challenge
that forensic scientists are averse to talking about anything that might undermine the certainty of
their findings. Another participant (O#2) noted the irony in the question and highlighted the fact
that it is the very job of defense attorneys to highlight anything that should cause fact-finders to
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doubt the evidence—particularly if the doubt is “reasonable”?®. The third participant (O#3) agreed
with the practitioners’ concerns recognizing probabilistic reporting creates an opportunity to for
defense attorneys to abuse it and bolster their arguments, but also suggested categorical reporting
that does not acknowledge the uncertainties also creates opportunities for prosecutors to abuse it
to bolster their arguments. Considering the risk for both parties to abuse each type of reporting
methods, this participant, (O#3), echoed their perspective that empirical measures of accuracy
through black box testing is a way to put boundaries around these issues. For example:

| think they don't want doubt introduced, [and] it scares me actually. It scares me that
forensic scientists don't feel confident to talk through uncertainties and anything that is
below a hundred percent. We, as scientists, should be comfortable in talking about the
limitations of our analysis as much as the strengths of our analysis. It's the job of defense
attorneys to introduce reasonable doubt, but it's our job to be sufficiently transparent to
allow them to scrutinize the evidence (O#1).

[First of all,] creating reasonable doubt is what defense lawyers are supposed to be doing.
If there's some reasons to doubt the finding, then the jury should know about them. ...
[Second,] from my perspective, this portrays a mindset, which is that the goal of forensic
science is to produce convictions and anything that gets in the way of producing
convictions is a bad thing. | just have a totally different perspective on this (O#2).

When responding to questions raised about the role and duties of experts and the limits of
their testimony, all three participants expressed the view that experts’ number one priority should
be ensuring their results that are reported are scientifically defensible. Two of the participants
define this in terms of transparency about the uncertainty that might exist to ensure the court has
the requisite information to make an informed decision (O#1 and O#2). The other participant
(O#3) defines this in terms of ensuring testimony is grounded by measures of repeatability and
reproducibility. For example:

I think the role of a forensic science expert is to assist the court, not the prosecution or the
defense but the court, in its evaluating evidence and to use their skill and knowledge that
lay people don't have to help evaluate the scientific findings in a way that is helpful to the
court—that is transparent about strengths and limitations. ... | think it is the role of the
court to conduct that final reasoning in the light of the uncertainty that exists (O#1).

| think the first duty is to get it right—to say things that are justified scientifically [and] to
not go beyond their expertise and not claim more than the science will support. That's duty
number one. Do not make unjustifiable claims. Then duty number two is, once you've
identified the various claims that might be justifiable, try and choose among them in a way
that promotes better understanding for a wider range of people. When in doubt, maybe
present the evidence in multiple alternative ways and focus on transparency and a fair
characterization of uncertainty (O#2).

% This participant noted the awkwardness of the question to suggest the doubt be “reasonable.” The wording of the
question was intentional and correctly represented how it was phrased in the survey to practitioners—as “reasonable
doubt.” See [51] for the wording of the question as phrased to practitioners.

179



When asked about whether participants find it acceptable for experts to express their
opinion in court without disclosing the underpinnings or statistical data to support those opinions,
two participants flat out stated “no” without further elaboration or exception (O#2 and O#3). The
other participant (O#1) expressed the view that disclosing the underpinnings of the expert opinion
is important, but also recognized the dynamics that affect testimony in a court setting.
Nevertheless, this participant suggested the foundations for the expert’s opinion should be
disclosed in the case file so that it is documented and available, if needed. For example:

| think it is really important to disclose the basis of your opinion. | think when it comes to
the actual courtroom, [however,] it depends on so many things—what you actually say in
testimony. When it comes to your written statement of evidence and your case file, that
contains all your notes, [however,] I think that underpinning has got to be disclosed so at
least it should be available for scrutiny by whoever in the court process wants to scrutinize
it. I think that when we just give unqualified opinions, it is almost impossible to challenge
really, because if you're not giving a reason for your opinion then it just comes down to,
“well, that's my opinion” (O#1).

Finally, when asked what participants would describe as the greatest challenges facing the
pattern and impression evidence disciplines as it relates to examination and reporting methods,
participants’ responses were quite varied. One participant (O#1) pointed to an on-going narrative
that forensic sciences are “in crisis” and implications that they are useless unless perfect. This
participant expressed the view that such an aspiration of perfection is unrealistic and fails to
recognize the value that many pattern evidence disciplines can give, provided that there is
transparency around the limitations and imperfections of the disciplines. Another participant
(O#2) pointed to the need for on-going validation of the examination methods and recognition of
the limitations of those methods as revealed by validation studies. This participant expressed the
view that these validation studies should be on-going and ideally be incorporated into routine
casework through blind testing. The other participant (O#3) pointed to resources as the greatest
challenge facing the forensic sciences. This participant suggested that the conditions that many
forensic scientists are working under is conducive to errors, and calls for greater investment and
support of the forensic science community to provide the resources necessary to perform at the
level that society expects and needs. For example:

The greatest challenge that I've observed is actually resources. ... I have had a chance to
see the conditions that real forensic scientists work under. They're not the conditions that
Hollywood tells the public about. The real conditions are often overworked people [and]
under-resourced people with no time to get the results out. | mean, that's the real world.
To me, that's the greatest challenge to forensic science, to convince our society to put in
the resources so that people can do the best job, so that this intuitive expertise that |
[believe forensic scientists have], is actually allowed to work without having the pressure
that can induce errors (O#3).
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Use of Algorithms:

The academic scholars offered generally consistent perspectives as it relates to the use of
algorithms in court and the benefits and limitations of them. All three participants expressed
favorable views of algorithms, in general, but with caveats. One participant (O#1) expressed very
favorable views of algorithms for which the underlying operation is understandable and
explainable