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Abstract— In cooperative multi-agent systems agents interact 3 [1], [3], [41, [5], [6], [7], [8],
to solve tasks. Global dynamics of multi-agent teams result 3 (91, [10], [11], [12], [13]
from local agent interactions, and are complex and difficult _ S o e e
to predict. Evolutionary computation has proven a promisig o & [14], [15], [16], [17], [18],
approach to the design of such teams. The majority of current 5 £ [17], [39] [19], [20], [21], [22], [23],
studies use teams composed of agents with identical controlg % [24], [25], [26], [27], [28],
rules (“genetically homogeneous teams”) and select behaviat £ [29], [30], [31], [32], [33]
the team level (“team-level selection”). Here we extend cuent 8 o e
approaches to include four combinations of genetic team com [34], [35], [36], [37], [38]
position and level of selection. We compare the performance %
of genetically homogeneous teams evolved with individudgvel @
selection, genetically homogeneous teams evolved with tea 3 [3], [17], [29], [39],
level selection, genetically heterogeneous teams evolvedth 5 2 [40], [41], [42], [43]
individual-level selection and genetically heterogenesuteams &G & ' ' ' '
evolved with team-level selection. We use a simulated forag © O [44], [43], [46], [47], (171, [24], [40]
task to show that the optimal combination depends on the amau 9 [48], [49], [50], [51],
of cooperation required by the task. Accordingly, we distirguish % [52], [53], [54]
between three types of cooperative tasks and suggest guinhels
for the optimal choice of genetic team composition and levebf
selection.

Individual Team

Index Terms— Multi-agent systems, artificial evolution, evolu- ]
tionary robotics, team composition, fitness allocation, ampera- Level of Selection

tion, altruism. . ] ]
Fig. 1. A sample of approaches to the evolution of multi-ageams. The

majority of work uses genetically homogeneous teams, lysuegated from

|. INTRODUCTION a cloned individual genome, with team selection. In someeg;aauthors

created behaviorally heterogeneous agents out of a siegie tgenome:

ULTI-AGENT SYSTEMS (MAS) span a large numberLuke [25], [26] decoded team genomes into six separate eaing with
of research fields, from software agents to robotic@ne or two identical players each. Other authors [11], [4@P], [28],

d ol k le i [ ind ial licati 3] decoded one team genome into different single agenbrgen. Yet
and play a key role in several industrial applications, SuGfisier approach was taken by work using distributed, emtoevolution

as ground and air vehicle control, supply chains or netwotk evolve heterogeneous teams [43], [50]-[54]. In thesesaelection and

routing. The design of control rules for muIti-agent Sysbemfeplication were entirely distributed among agents, withainics reminiscent
of the replicator dynamics observed in bacterial evolutjf] and game

IS Cha”engmg because agent behavior depends not Onlyt%retic models [56]. In some cases, teams were evolvad astontinuously
interactions with the environment, but also on the behawfor updated gene-pool rather than separate gene-pools foecauest generations
other agents. As the number of interacting agents in a te&gicady state evolution”) [45}-[47]. Finally some authdnave conducted
. . .. _.maqre detailed comparisons of the influence of genetic teamposition or
grows, or when agent behaviors become more SOphIStlcat@a” of selection alone: Martinoli [40] also consideredrsmoomplex methods
the design of suitable control rules rapidly becomes veby selection. Stanley et al. [49] clustered genetically isimindividuals

complex. This is especially true when agents are expected'l‘@ sub-t_ean_ﬁs that shared fitness, which r_esulted in ﬂarﬁeterogeneogs
dinat te t lectivel hi desiast. t teams. Mirolli et al. [39] also compared partially hetenegeus teams. Quinn

coor '_na eor coopera_e 0 collecuvely achieve a desimss. [29] evaluated individuals in different heterogeneousrigdo create robust

Evolutionary computation has been advocated as an eféectivmogeneous teams.

and promising strategy to generate control parameters and

decision rules for collective agents [1], [2].

In addition.to_ the methodological is_sues of evolving agents,ection may operate either on individuals (individueaddl
that operate in isolation [2], the evolution of agent teamssin selection) or on teams (team-level selection). In the sistpl
address two major issues: (1) It must determine optimal team

. _ se, one must decide between genetically homogeneous or
composition. Agents of a team may either share control ru'ﬁgterogeneous teams, and between selecting agents at the

(genet!cally homogeneous teams) or employ Q|ﬁerent oneSlividual or at the team level.
(genetically heterogeneous teams). (2) It requires a ldeita

method for selective reproduction of desired team behavior, F|gur§D shows a sample of previous work on _the erIL!t|on
of multi-agent systems in robotics, combinatorial optimiz

MW and DF are with the Laboratory of Intelligent Systems (LIScole tion, cellular automata, artificial life, genetic prograingm
Polytechnique Fédérale de Lausanne, Station 11, CH-L@dSanne, Switzer- gnd others plotted according to the chosen genetic team
land ] - . .

LK is with the Department of Ecology and Evolution (DEE), Biwre, COMPpoOsition and level of selection. In addition to work dita

University of Lausanne, CH-1015 Lausanne, Switzerland Figure[1, some authors have used cooperative co-evolujiona
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algorithms (CCEAs, [57]) to evolve heterogeneous contraksignment for the evolution of multi-agent systems [489] [
rules for teams of agents [58]-[61]. CCEAs are applied by the context of multi-agent systems, credit assignment is
decomposing problem representations into subcomponedts aoncerned with distributing fitness rewards among indigldu
then creating a separate population of individuals for eaelgents. Fitness distribution leads to credit assignmexitiems
subcomponent. This approach allows teams to be compo$ed], [71] in many cooperative multi-agent tasks, because
of specialized sub-groups and corresponds to the biolbgi@adividual contributions to team performance are oftefidift
co-evolution of multiple species. In their basic form, CGEAto estimate or difficult to monitor [72]. Selection is usyall
require the designer to manually decompose the multi-aggerformed on the basis of accumulated individual or team
task, and thus to solve part of the optimization problefitness, which may be the result of many fitness rewards with
beforehand. Work that used machine learning techniques othifferent types of credit assignment. Therefore an optimal
than evolutionary computation (e.g., reinforcement lgayh choice of level of selection is not only influenced by the type
was not considered in this review. of task but also by the types of credit assignment used.
Figure[d suggests that the majority of current approachesGenetic team composition and level of selection have long
to the evolution of multi-agent systems use genetically ’iombeen identified as two important factors for the evolution
geneous teams evolved with team-level selection. Where tbfe biological multi-agent teams such as groups of genes,
reasons for the choice of genetically homogeneous teams eg#ls, individuals or other replicators [67], [73]. In pattlar
made explicit, it is argued that homogeneous teams are easyhe evolution of altruism [74], in which agents cooperate to
use [8], [36], require fewer evaluations [25], [32], scalerm increase team fitness in spite of an individual fitness cotteto
easily [13] and are more robust against the failure of teatwoperator, has received a lot of attention [68], [75]. Heee
members [13], [62] than heterogeneous teams. Many othisfine cooperation as a behavior that increases the fitness of
approaches use genetically heterogeneous teams evoltked wiher agents, and altruistic cooperation (altruism) ashavier
individual-level selection. Genetically heterogene@asiis are that increases the fitness of other agents and decreases the
sometimes seen as providing more behavioral flexibility] [2Zooperator’s fitness.
and as providing advantages in tasks that require spedtigiiz  In this study, we focus on cooperative multi-agent tasks tha
[71, [25], [62], [63]. do not require specialization. We compare the performaice o
The terms “homogeneous team” and “heterogeneous tearobot teams evolved in four evolutionary conditions: genet
used in the current literature cover many different aspectally homogeneous teams evolved with team-level selection
It is important to note that while all agents in geneticallgenetically homogeneous teams evolved with individuadile
homogeneous teams share the same genes, agents can nssfeiction; genetically heterogeneous teams evolved witint
theless be behaviorally heterogeneous. This can happem wleel selection; and genetically heterogeneous teamsedol
agents differentiate during their lifetime, for exampleeduwith individual-level selection. We evaluate the performa
to varying initial conditions [30], or due to developmentabf robot teams evolved in these four evolutionary condiion
processes or learning [64]. This can also happen when ageoisthree classes of multi-robot tasks: a task that does not
“activate” different parts of their genome, for example wherequire cooperation; a task that requires cooperation bas d
each agent's behavior is controlled by a different sectibn aot imply a cost for cooperators; and a task that requires
a single team genome [11], [22], [28], [33]. In this casesltruistic cooperation, i.e., a task that implies an indial
agents can specialize on different functions, yet be gealti fitness cost for cooperators. Cooperative tasks that berumfit
identical, just like specialized cells in a biological ongEm. specialization were not considered in this study.
Conversely, it is important to note that genetically hegero
neous teams are those in which agents are, on average, not
genetically more similar to team members than to agents in
the rest of the population [65], [66]. This means that teams The four possible combinations of genetic team composition
resulting from embodied evolution or common versions a@fnd level of selection were formalized into four evolutipna
steady state evolution are usually genetically heterogame algorithms (Figuré&l2). For the remainder of the paper we will
although these algorithms often generate multiple offgpri use the terms “homogeneous” and “heterogeneous” to desig-
from a single parent, resulting in genetically similar (matt nate genetically homogeneous and genetically heterogesneo
identical) agents. In some cases, teams consist of cloibal steams, respectively, and the terms “individual selectiand
teams [25], [26] or of agents that share only part of thefteam selection” to designate teams evolved with individua
genome. Teams with agents that are, on average, geneticlljel selection and team-level selection, respectively.dh-
more similar (but not identical) to members of their tearmthasidered populations composed 8f teams, each composed
to members of the rest of the population are termed “paytialbf N individuals. Population size and team sizes were kept
heterogeneous”. The effects of partial genetic heterdgeme constant across generations. At each generation, the pla-po
the evolution of multi-agent teams are not yet fully exptbire lation was entirely replaced by a new population of offsgrin
evolutionary computation [39], but there is evidence thayt Individuals’ genomes were binary strings.
can lead to improved specialization [25], [26]. These affec 1) Algorithm 1 - Homogeneous teams, Individual selection:
have been deeply studied in biology [67], [68]. Each of thelM teams at generation 0 was formed by generating
The choice of level of selection is rarely discussed explione random genome and cloning it — 1 times to obtain
itly. Some research has addressed the related issue of cr@diidentical robot genomes (clones) per team. Teams were

Il. EVOLUTIONARY CONDITIONS
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Level of Selection
Individual Team

evaluated in the task, and for each team, a team fithess was
determined as the sum of the individual fitnesses of/ll
robots. For a new generation, each of thenew teams was
created from two oldeamsselected using roulette wheel selec-
tion. The two genomes of the selected teams were recombined
(one-point crossover, crossover probability of 0.05) toduce

one new genome. The resulting new genome was mutated by
Soear oot Soeat flipping the value of each bit with a probability of 0.05 and
individuals then clonedN — 1 times to obtain theV robot genomes of

the new team. Teams evolved using this evolutionary canditi
were thus geneticallipomogeneous

Homogeneous

Team composition

Algorithm 3 Heterogeneous teams, Individual selection

for each of M new teamsdo
for each of N new team memberdo
Select best Select select two individuals from all old teams
individuals best teams . .
recombine their genomes to create one new genome

. . " . mutate new genome
Fig. 2. The four evolutionary conditions. A population ¢Jaroval) was
composed of several teams (medium ovals), each of which wmpased of add new genome to new team
several robots (small circles) evaluated together. Gerteim composition end for
was varied by either composing teams of robots vdéntical genomesgho- end for
mogeneous, identical shading), different genomeéheterogeneous, different
shading). Level of selection was varied by selecttagms(team selection),

gélesglig(r:]t)ing individuals independent of their team affiliation (individual 3) Algorithm 3 - Heterogeneous teams, Individual selection

' Each of theM teams at generation 0 was formed by generating
Algorithm 1 Homogeneous teams, Individual selection N random genomes. Teams were evaluated in the task and an
individual fitness determined for each of tté robots. For
a new generation, each of thé x M new individuals was
created from twandividualsselected among all individuals of
all old teams in the population using roulette wheel sedecti
The two genomes of the selected individuals were recombined
(one-point crossover, crossover probability of 0.05) toduce
one new genome. The resulting new genome was mutated by
flipping the value of each bit with a probability of 0.05. This
evaluated in the task and an individual fitness determined fJOC€SS was repeatédx M/ —1 times to form\/ new teams of
each of theN robots. For a new generation, each of the N individuals each. In th|s evolutlonary gondmon robotsreve
new teams was created from timdividuals selected among N0 On average, genetically more similar to team members
all individuals of all old teams in the population using reité than to robpts in the rest of the population, and thus teams
wheel selection. The two genomes of the selected individu¥fere geneticaliyheterogeneous
were recombined (one-point crossover, crossover prababil _ i
of 0.05) to produce one new genome. The resulting negorithm 4 Heterogeneous teams, Team selection
genome was mutated by flipping the value of each bit with afor each of A/ new teamsio
probability of 0.05 and then clonel —1 times to generate the for each of V new team memberdo
N robot genomes of the new team. Teams evolved using this ~ Select two old teams

Heterogeneous

for each of M new teamslo
select two individuals from all old teams
recombine their genomes to create one new genome
mutate new genome
clone new genome to obtaiN genomes for new team
end for

evolutionary condition were thus geneticaipmogeneous randomly select two old team members
recombine their genomes to create one new genome
Algorithm 2 Homogeneous teams, Team selection mutate new genome
for each of M new teamslo add new genome to new team
select two old teams end for

recombine their genomes to create one new genome __ end for
mutate new genome
clone new genome to obtaiN genomes for new team  4) Algorithm 4 - Heterogeneous teams, Team selection:
end for Each of thel teams at generation 0 was formed by generating
N random genomes. Teams were evaluated in the task, and
2) Algorithm 2 - Homogeneous teams, Team selectionfor each team, a team fitness was determined as the sum of
Each of thel teams at generation 0 was formed by generatitige individual fitnesses of alV robots. For a new generation,
one random genome and cloning it — 1 times to obtain each of theV x M individuals was created from two otdams
N identical robot genomes (clones) per team. Teams weselected using roulette wheel selection. Two genomes, each
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randomly selected among the members of a selected te&wtm and a linear camera were mounted higher on the robot,
were recombined (one-point crossover, crossover prdbabiloverlooking tokens but sensitive to other robots and walls.

of 0.05) to produce one new genome. The resulting new

genome was mutated by flipping the value of each bit with

a probability of 0.05. This process was repealéck M —1 B. Control and Genetic Architecture

times to formM new teams ofN individuals each. In this

evolutionary condition robots were not, on average, geaki Robots were controlled by a feed-forward neural network

more similar to team members than to robots in the rest of théth a single layer of three hidden neurons (Figlire 4 right)

population, and thus teams were genetichliyerogeneous and a sigmoid activation functiontdnh). The inputs were
given by the activation values of five infrared sensors, two

vision sensors, and a constant bias value df Infrared sensor

I1l. EXPERIMENTAL METHOD activation values were scaled in the rari@el]. Vision sensors
were an average of three equi-distally spread camera pixels
spanning a field of view of 18°, for the left or right side of

The experimental setup (FiguTk 3) consisted of a50cn?  the image, respectively. The averages were thresholdedltb y
arena with 10 micro-robots and two types of tokens, small addfor a white or 1 for a black arena wall. Using the average
large. We chose to study a foraging task, because foragivgue of three pixels rather than a single pixel allowed aisbb
combines several aspects of multi-agent tasks (distiibutgetection of the white foraging target area in spite of the
search, coordinated movement, transportation) and setate presence of other robots in the field of view. The two output
many real-world problems [76], [77]. In addition, foragii®) units were used to control the left and right wheel motors.
a wide-spread and well-studied behavior of many biologic@he activation values in the rande1;1] were mapped into
societies [78]-[80]. Experiments were conducted in sitiota  speeds in the range-4; 4] cm/s, with speeds in the interval of
of micro-robots and evolved controllers were transfercethe  [—2.5;2.5] cm/s set td) because of unreliable motor response
real robots (see Secti@n I D). at low speeds.

Robots foraged tokens by transporting them into a 4 cmThe neural network connection weights were in the range
wide region at one side of the arena marked by a white wadff [—2; 2] and coded on 8 bits. The genome of one individual
A single robot was sufficient to transport a small token. Akas thus 8x32 bits long.
least two robots were required to transport a large tokers th
retrieval of large tokens required cooperation. Coopegati
agents had to coordinate their behaviors to successfuliy alc collective Tasks
their positions before and during token transport.

The micro-robots [81] were small {2x4 cn?), two- We devised three types of foraging tasks that differed in the
wheeled robots equipped with three infrared distance sens@mount of cooperation required from agents.
at the front and one at the back, which could sense objectdl) Task 1 - Individual Foraging:The arena contained 6
up to 3 cm away and allowed robots to distinguish betweamall tokens, which each awarded 1 fitness point to the
small and large tokens (Figuké 4 left). An extension moduferaging robot. This task did not require cooperation, bsea
with a fourth infrared distance sensor with a range of up #single agent was sufficient to transport a small token.

A. Scenario

(Y .
> ]

ﬁ o) o >
/////////////////Fﬂ////g;;/////

Fig. 3. Left: The experimental setup for task 3, the alticisboperative foraging task. Ten micro-robots (black sgsavith arrows) searched for small and
large tokens and transported them to the target area (lthtolea at bottom) under the white wall (the other three wallsevblack). An identical setup was
used in the other two tasks, except that the arena contaitteet enly small tokens in task 1, or only large tokens in t@skRight: Three micro-robots in
task 3, the altruistic cooperative foraging task. The rahdhe background could transport the small token by itsSEtfe robot at the left could not transport
the large token by itself and needed to wait for the arrivahafecond robot (blurred in the picture due to its rapid movertmvards the large token).
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Fig. 4. Left: Side and top-view schematics of a simulatedreafobot. The robot was equipped with four infrared (IR)taice sensors (three at the front,
one at the back) to detect tokens, and a camera to identifyatiget area. A fifth infrared distance sensor (high IR) wasimbed higher on the robot and
thus overlooked tokens. This allowed robots to distinguatens from walls and other robots. Right: The neural netvwaschitecture, a feed-forward neural
network with a single layer of three hidden neurons. Inpuéengiven by the activation values of five infrared (IR) seasand two vision sensors with
activation values computed from left and right camera pixXske text).

2) Task 2 - Cooperative ForagingThe arena contained To compare the efficiency of the four evolutionary condi-
4 large tokens, which each awarded 1 fithess point to eadtns, we re-evaluated the best teams at generation 300 for
team member, irrespective of its participation in the toketD00 times and compared their team fitness. Fitness values
foraging. This corresponded to a situation where the iddigi were analyzed using Wilcoxon rank sum tests. All fitness
contributions to team performance were not known, i.e.,values were normalized for each task, with 0 being the mihima
situation with credit assignment problems [70], [71], whic possible fithess and 1 the theoretical maximum value.
is the case for many cooperative multi-agent tasks [72]s Thi
task required cooperation because it could not be acconeglis IV. RESULTS

by a single agent. A. Task 1 - Individual Foraging

3) Task 3 - Altruistic Cooperative ForagingThe arena Successful foraging behavior evolved for all four evolatio

contained 6 small and 4 large tokens. Small tokens eagé, conditions (Figur&l5). After 300 generations of artifici

awarded 1 fitnes; point to.the foraging robot and Iarge toke volution, heterogeneous teams evolved with individulcse
each awarded 1 fitness point to each team member, wrewecltilgn collected all 10 tokens in most evaluations and achieve

of their .part|C|pat|on Im fthe_ quk%n floratg)]lng. In th('js ILaSl?itness values close to the maximum value achievable. These
cooperation was costly for individuals, because IndVI8Uaiy,qss yalues were higher than those of homogeneous teams

that did not cooperate always had higher fitness than thglr, e with individual selection and homogeneous teams
cooperating team mates. This meant that cooperators Sdﬁeévolved with team selection (Wilcoxon rank sum tet— 38,

a relative individual fitness cost and therefore this taskiired P < 0.001 and P < 0.006, respectively). A possible reason

altruistic cooperation [68]. could be the disparities in genome evaluation in homogesneou
and heterogeneous teams. For a team size of N agents,
D. Evolutionary Experiments heterogeneous teams evaluated N times more genomes than
Due to the large number of evaluations required for tHtomogeneous teams. This was because each heterogeneous
evolution of robot behaviors, all evolutionary experingenteéam consisted of N different genomes, whereas homogeneous
were conducted using a physics-based 2D simulator [SH,amS consisted of N identical genomes. On the other hand,
which is available as part of an open evolutionary framewoR@mogeneous teams evaluated each genome N times more
[83]. All simulation parameters, including robot size, paa often than heterogeneous teams. This was because each team
Speed and Weight, as well as collision dynamicsy frictiocdés evaluation evaluated an identical genome N times. Ourtesul
and sensor and actuator modalities, were based on the mi&éggest that higher evaluation accuracy may have been less
robots described in Secti¢iIITA. important than a larger number of different genomes in this
We evolved teams of robots under the four evolutionafsk. The larger number of genomes may have allowed hetero-
conditions separately for each of the three tasks, makintph t 9eneous teams to discover solutions faster than homogeneou
of 12 experimenta| lines. Evo|utionary experiments ladmd teams, which could explain the steep initial fitness inaelts
300 generations. Twenty independent runs were perfornred f8dy also have allowed heterogeneous teams to discover bette
each experimental line. Populations consisted of 100 tesfmssolutions than homogeneous teams, which could explain the
10 agents each. Each team was evaluated 10 times for tHuigher final fitness obtained with this evolutionary corutiti
minutes with random token and robot starting positions arl@ test whether these disparities in genome evaluationecaus
orientations. Fitness was averaged over the 10 evaluationsthe high team performance of heterogeneous teams evolved
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Fig. 5. Task 1 - Individual Foraging. Left: Evolution of thedi team fitness averaged over the best teams in 20 independsgutionary runs over 300
generations. Right: The best team at generation 300 of efattte 0 independent experiments per evolutionary conditind per task was evaluated 1000
times. The mid line in the box is the median, while the box espnts the upper and lower quartile above and below the metilee bars outside the
box generally represent the max and min values, except wieme f@re outliers, which are shown as crosses. We definersudls data points which differ
more than 1.5 times the interquartile range from the bordiéhe box. The notches represent the uncertainty in therdiffee of the medians for box-to-box
comparison. Boxes whose notches do not overlap indicatethieamedians differ at the 5 % significance level [84]. In ttask, which did not require
cooperation, heterogeneous teams evolved with individection performed best, followed by homogeneous teamlvexl with individual selection and
homogeneous teams evolved with team selection. Heterogsrteams evolved with team selection performed significambrse than all other evolutionary
conditions.
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Fig. 6. Task 2 - Cooperative Foraging. Left: Evolution of thest team fitness averaged over the best teams in 20 indepenaéutionary runs over 300
generations. Right: The best team at generation 300 of efattte 0 independent experiments per evolutionary conditind per task was evaluated 1000
times. Homogeneous teams performed significantly bet@r tleterogeneous teams. Boxplot explanations see Hibure 5.
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Fig. 7. Task 3 - Altruistic Cooperative Foraging. Left: Entibn of the best team fitness averaged over the best tean imd&pendent evolutionary runs
over 300 generations. Right: The best team at generatiorof388ch of the 20 independent experiments per evolutionamgliton and per task was evaluated
1000 times. Homogeneous teams performed significantlgbttan heterogeneous teams. Boxplot explanations seeelfigu
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with individual selection we performed a set of additional e  Without disparities in genome evaluation, heterogeneous

periments (see additional experiments without these diggm teams evolved with individual selection performed sinlar

in the next section). to homogeneous teams evolved with individual selection and
Performance of homogeneous teams evolved with individdadmogeneous teams evolved with team selection (all three

selection and homogeneous teams evolved with team selectid > 0.597). Heterogeneous teams evolved with team selection

did not differ significantly ¢ = 0.337). This was because performed worse than all other evolutionary conditiond (al

with roulette wheel selection, the probability of a team tthree P < 0.001), because the efficiency of selection was not

be selected was the same as the sum of the probabilitiesafiected by the changes in genome evaluation.

each individual team member to be selected. Since all team

members of homogeneous teams shared the same genome, (a) (b)

selection probabilities for a given genome were equal for 1 ==

both homogeneous evolutionary conditions. It should beahot

however, that this is not necessarily true for other types 0.8 g 8 8
£
-

of selection. Selection mechanisms where the fithess of a
genome is not directly proportional to its probability to be
; . 0.6
selected (e.g., truncation or rank-based selection) ey te -
differences in the number of selected individuals with aegiv g
genotype and consequently affect the relative performance 0.4
L

Team fitness

of homogeneous teams evolved with individual selection and +
homogeneous teams evolved with team selection. In these 0.2
cases individual selection may select for genomes thatttead

higher maximum but lower average individual performance. 0
However, additional investigations using truncation stde Hom.,  Hom., Het., Het.,

(selection of best 30% of the population; all other experitak Ind. Sel. Team Sel. Ind. Sel. Team Sel.
parameters identical) did not find such performance diffees

in any of the three types of tasi(= 0.350/0.903/0.394 for  Fig. 8. Task 1 - Individual Foraging without disparities ier@me evaluation.

; . ; ; Homogeneous teams evolved with 1 evaluation per teaste@id of
taSk31/2/3 respecuvely, see Figure S4 in the supplementa@) and (b) heterogeneous teams evolved with 100 agents qerigion

matenaﬂ)- (instead of 1000). Heterogeneous teams evolved with iddali selection
Heterogeneous teams evolved with team selection peerformed similarly to homogeneous teams evolved withviddal selection

formed significantly worse than all other evolutionary cor"d homogeneous teams evolved with team selection in this Boxplot
L . . explanations see Figuf@ 5.

ditions (all threeP < 0.002). This was because, unlike all

other three evolutionary conditions, this evolutionarpdition

did not allow a direct link between the performance of a ] )

genome and its probability to be selected. Instead, setectC: Task 2 - Cooperative Foraging

of good genomes could only happen indirectly, by selecting Successful foraging behavior evolved for all four evolntio

those teams that contained a better mix of genomes than othagr conditions (Figurgl6). The experiments with a coopeegati

teams. Since good genomes could be part of bad teams or task led to a change in the relative performance of the four

genomes part of good teams, selection for good individuaolutionary conditions. Performance of homogeneous $eam

genomes was inefficient. This explains the slow initial e evolved with individual selection and homogeneous teams

increase and the lowest final fitness of heterogeneous teawuslved with team selection was significantly higher theat th

evolved with team selection. of heterogeneous teams evolved with individual selectimh a
heterogeneous teams evolved with team selection (all four

B. Task 1 - Individual Foraging: Disparities in genome evall’ < 0.001), w@th the best fithess _vaIues in homogeneous teams

up to 70% higher than those in heterogeneous teams. One

ssible reason are disparities in genome evaluation leetwe

mogeneous and heterogeneous teams (see next section).

other possible reason is that selection of good genomes

uation and credit assignment

To test the hypothesis that the high team performance %g
heterogeneous teams evolved with individual selection WRS

caused by_ _disparities _in genome evaluation, we performeq:guld only happen indirectly in this task, which may have
set of additional experiments. First, we evolved homogaeeqed to inefficient selection just as in heterogeneous teams

teams in the same task, but used only 1 evaluation per teaMved with team selection in task 1 (SectiGIV-B). This
rather than 10 evaluations (Figuik 8 (a)). Second, we exloly blld have been because fitness in this task was assigned to

heterogeneous teams in the same task, but used only team members, irrespective of their participation ie th
agents per population rather than 1000 agents (Figure 8 (l? en foraging

ln this tiet (;f expenlmetntj tr;omogeneous band Petemgeneouﬁerformance of homogeneous teams evolved with individual
heazjnli eretore evg ua ? le St‘?‘me number ot genomes églgction and homogeneous teams evolved with team selectio
ad the same number of evaluations per genome. did not differ significantly £ = 0.839). This was because

1An electronic supplement for this paper is available onliag¢ fltnes§ in this t_aSk WaS a§S|gned to all team mgmbers, irre-
http://11s.epfl.ch/ documentation. php spective of their participation in the token foraging. Fhe t
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same reason, performance of heterogeneous teams evolved @) (b)
with individual selection and heterogeneous teams evolved 0.8
with team selection did not differ significantly?(= 0.365). 0.7 .
0.6 -
8 | :

D. Task 2 - Cooperative Foraging: Disparities in genome e 05 T —
evaluation and credit assignment “E 0.4 8 g '

To test the hypothesis that the differences in performance § 0.3 - - g
of heterogeneous teams evolved with individual selection 02 . é
and homogeneous teams evolved with individual selection
and team selection were caused by disparities in genome 0.1 -
evaluation or by the fitness assignment to all team members, 0
we performed two sets of additional experiments. First, we Hom.,  Hom., Het., Het.,
again corrected for the disparities in genome evaluation. Ind. Sel. Team Sel. Ind. Sel. Team Sel.

However, correcting for this factor alone did not elimin#te
performance differences (see Figure S2 in the supplementgig. 9.  Task 2 - Cooperative Foraging without disparitiesgenome

; ; luation and without credit assignment problems. (a) bfgeneous teams
matena})' Second, we performed experiments where we agaﬁé\Y/iglved with 1 evaluation per team (instead of 10) and (bgriogieneous

cprrected for the dis_parities in genome evaluation and Wh%gms evolved with 100 agents per population (instead 0®)L0khe perfor-
fitness was only assigned to team members that participatechance of heterogeneous teams evolved with individual Seteevas higher

; ; the performance of heterogeneous teams evolved with $election, but
the token foragmg' In these experiments, each of the 4 larﬁ?nnot reach that of homogeneous teams in this task. Box@planations

tokens awarded 5 fitness points to each of the two transigortife Figurdls.

robots, rather than 1 fitness point to each of the 10 team

members. This second additional set of experiments therefo

corresponded to a situation where the individual contiimg E. Task 3 - Altruistic Cooperative Foraging

to team performance were known, i.e., a situation without gccessful foraging behaviors evolved for all four evainti
credit assignment problems. ary conditions (Figur€l7). Team performance in the altiwist
Without the disparities in genome evaluation and Witho%operative foraging task was Systema‘[ica”y lower thathén
credit assignment problems, heterogeneous teams evolég@perative foraging task. This may seem surprising becaus
with individual selection outperformed heterogeneousntea the larger number of tokens in the arena increased the total
evolved with team selection{ < 0.001). This was because number of fithess points available. A possible reason is that
selection of good genomes could now happen directly, whighe increased number of tokens led to more clutter in the
allowed for efficient selection. However, the performan€e @rena, which made successful token transport more difficult
heterogeneous teams evolved with individual selection regee video supplied with supplementary matéyial
mained lower than that of homogeneous teams evolved withHomogeneous teams achieved significantly higher fitness
individual selection and homogeneous teams evolved wijg|ues than heterogeneous teams (all fBux 0.001). Possi-
team selection ® < 0.001 and P < 0.002, respectively, ple reasons are disparities in genome evaluation and iieeffic
Figure[®). A possible reason is that heterogeneous teams Bagction for the foraging of large tokens because fitnesepo
to solve a more complex optimization task than homogeneayisined from large tokens were assigned to all team members,
teams. Successful cooperation in heterogeneous teanisa@qyrrespective of their participation in the token foragirgpé
individuals to evolve behaviors to coordinate their acdianth  next section).
N —1 different team members, while individuals in homoge- performance of homogeneous teams evolved with individual
neous teams only had to evolve behaviors to coordinate w§Blection and homogeneous teams evolved with team selectio
a single type of team member. In other words, homogeneayig not differ significantly £ = 0.310). This was because
teams led to a smaller search space because all team memégiesction probabilities for a given genome were again equal
were per definition identical, and thus only a subset of the tofor both homogeneous evolutionary conditions.
number of possible team compositions was considered i@thesperformance of heterogeneous teams evolved with indi-
teams. Furthermore, individuals in heterogeneous teams Weidual selection and heterogeneous teams evolved with team
not just different in a team, but team members changed froggjection did not differ significantly ¥ = 0.490). However,
one generation to the next. Both factors may have hindergg four evolutionary conditions resulted in differentdging
the evolution of cooperative behavior in heterogeneousisea strategies in this task (FiguEel10): While homogeneous seam
The performance of homogeneous teams evolved with igvolved with individual selection and homogeneous teams
dividual selection and homogeneous teams evolved with teayolved with team selection as well as heterogeneous teams
selection did not differ significantly{ = 0.441) in this second evolved with team selection collected a significantly highe
additional set of experiments. proportion of large tokens than small tokens (all thiee<
Heterogeneous teams evolved with team selection pérd01), heterogeneous teams evolved with individual selection
formed worse than all other evolutionary conditions due tpollected a significantly higher proportion of small tokens
inefficient selection (all thre€” < 0.001). than large tokensK < 0.001). In comparison to the other
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three evolutionary conditions, heterogeneous teams egoltion and homogeneous teams evolved with team selection did
with individual selection collected the significantly hi&gt not differ (P = 0.133).

proportion of small tokens (all thre& < 0.001), but the Heterogeneous teams evolved with team selection per-
significantly lowest proportion of large tokens of all fouformed worse than all other evolutionary conditions due to

evolutionary conditions (all thre® < 0.003). inefficient selection (all threé> < 0.001).
(a) (b)
0.8
S 06 [ Small 0.7
% . 1 Large | 0.6 ~ :
@ n 1
» = |
£ o + ][ . = 04 Q ‘
(@] o) 1
o 0.3 ' .
5 09 ' = | | Q
S 02 . e e <
o 0.1 1
8- 0.1 i o
o 0
0 Hom., Hom., Het., Het.,
Hom., Hom., Het., Het., Ind. Sel. Team Sel. Ind. Sel. Team Sel.

Ind. Sel. Team Sel. Ind. Sel. Team Sel.

Fig. 11. Task 3 - Altruistic Cooperative Foraging withoushrities in
Fig. 10. Task 3 - Altruistic Cooperative Foraging. The plobws the average genome evaluation and without credit assignment problémisiomogeneous
proportion of the six small tokens and four large tokensextdld by the best teams evolved with 1 evaluation per team (instead of 10) dmdhétero-
teams at generation 300 for each of the 20 independent expeis and for geneous teams evolved with 100 agents per population #ithsbé 1000).
each of the four evolutionary conditions. Heterogeneoasngeevolved with The performance of heterogeneous teams evolved with thaiviselection
individual selection pursued a different foraging strgtégan teams of the was higher than the performance of heterogeneous teamgedvalith team
other three evolutionary conditions, collecting very femge tokens but most selection, but did not reach that of homogeneous teams. |8oagplanations
small tokens. see Figurélb.

Importantly, the altruistic cooperative foraging task ked
the evolution of a different foraging strategy in heterogguns
teams evolved with individual selection than in the othee¢h
evolutionary conditions (FigulfeIL0). A possible reasorhist t

To test the hypothesis that the differences in performaneeoperation to collect large tokens now implied a cost for
of heterogeneous teams evolved with individual selectigndividuals. To test this hypothesis we performed addiion
were caused by disparities in genome evaluation or by tegperiments with this evolutionary condition. First weeaped
fitness assignment to all team members, we performed tt@ experiments with a setup identical to that of task 3,
sets of additional experiments similar to those descrilved iie., with 1000 agents per population and 10 evaluations per
Section[IV2D). First, we again corrected for the disparities team, but with known individual contributions to large toke
genome evaluation. However, correcting for this factomalo foraging, i.e., a situation without credit assignment peats.
did not eliminate the performance differences (see Figle 8ach of the 4 large tokens awarded 5 fitness points to each
in the supplementary materiy Second, we again performedof the two transporting robots, rather than 1 fitness point
experiments where we corrected for the disparities in genono each of the 10 team members. Then, at generation 300,
evaluation and for credit assignment problems. we changed the fitness assignment and assumed unknown

Without the disparities in genome evaluation and withindividual contributions to large token foraging, i.e. ituation
out credit assignment problems heterogeneous teams evolwdéth credit assignment problems. Each of the 4 large tokens
with individual selection outperformed heterogeneousntea awarded 1 fitness point to each team member, irrespective of
evolved with team selection”{ < 0.001). This was because their participation in token foraging.
selection of good genomes could again happen directly,iwhic This change in fitness assignment resulted in a drastic
allowed for efficient selection. However, the performante ehange in foraging strategy (Figurel 12). While at genenatio
heterogeneous teams evolved with individual selection r890 heterogeneous teams evolved with individual selection
mained lower than that of homogeneous teams evolved witbllected a significantly higher proportion of large tokeiman
individual selection and homogeneous teams evolved wimall tokens P < 0.001), at generation 500 they collected a
team selection # < 0.015 and P < 0.003, respectively, significantly lower proportion of large than small tokeds £
Figure[I1). This may have been because heterogeneous teaud®l). As a direct result of this change, team performance
had to solve a more complex optimization task. decreased significantly?( < 0.001) between generation 300

In this second additional set of experiments, the perfoand generation 500. This was because after the introduation
mance of homogeneous teams evolved with individual selegedit assignment problems, fitness points gained fromelarg

F. Task 3 - Altruistic Cooperative Foraging: Disparities in
genome evaluation and credit assignment
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0.6 ' ' ' ' — 1 required between team members. Our results demonstrate tha
E different combinations of genetic team composition anellev
05 | 108 & of selection lead to significant performance differences. N
04 'S combination achieved optimal performance in all three sype
g 7 log & oftask
f'cj e We have identified and studied three different types of multi
"'E 03 ! f agents tasks depending on the amount of cooperation relquire
S oo ; 104 2 petween team members. _ _
= T T iyt 2 In tasks that did not require cooperation, heterogeneous
102 § teams evolved with individual level selection achieved the
0.1 ‘ Eﬁiﬁ? 132232 — 09_ highest team_ performance. Tgam heterogeneity_ allowed to
0 ‘ ‘ _ Large tokens ----: | ¢ evaluate a high number of different genomes in parallel,

and individual selection allowed efficient selection of doo
genomes. However, these teams performed poorly in tasks
that required cooperation and in tasks with credit assigrime

Fig. 12.  Task 3 - Altruistic Cooperative Foraging in heterogous teams problems. . . . .

evolved with individual selection. For the first 300 genieras, individual For multi-agent tasks that required cooperation, the tighe
contributions to the cooperative foraging of large tokersesknown (no credit team performance was achieved by homogeneous teams. These

assignment problems). From generation 300 onward indiidontributions teams led to efficient cooperation between team members
to the foraging of large tokens were presumed unknown (ciEsiignment

problems). The introduction of credit assignment probldetsto the rapid and they were not affected by credit assignment problems
collapse of cooperation and a decrease in team fitness. or costs associated with cooperation. Our results suggast t

homogeneous teams are a safe choice in tasks that do not

) benefit from specialization when the requirements for agent
tokens were assigned to all team members, and therefgggneration are difficult to estimate. Compared to hetero-

individuals collecting small tokens gained a fithess acwgat geneous teams, homogeneous teams evaluate less genomes
over their team mates. This led to the selectionlof indivisluapich may result in premature convergence to sub-optimal
that foraged for small tokens and resulted in fewer angytions. Our experimental results indicate that a simgg
fewer individuals foraging for large tokens. The observeg prevent this problem is to use populations made of a large
drop in team fitness also implies a drop in average individugl,mber of homogeneous teams.
fitness. This illustrates that fithess is a relative measidre o Heterogeneous teams evolved with team selection were in-
performance _and therefore evolution selects for perfon@ansticient at selecting for good performance in all three ty/pg
increase relative to the performance of competitors, ratfe@  a5ks studied here and and therefore cannot be recommended
for absolute performance. The simplicity of the neural e for cooperative tasks that do not require specialization.
controllers did not allow individuals to accurately disomate  converging evidence towards these guidelines was recently
large and small tokens, which explains the incomplete pséa found in a study on the evolutionary conditions for the emer-
of large token foraging. _ gence of communication in societies of robots with diffeéren
In contrast, the foraging strategy in homogeneous teamgphology and sensing abilities than those describedidn th
evolved with individual selection and in homogeneous teargaper [17].
evolved with team selection was not affected by the costsyowever, it should be noted that evidence from both studies
implied in large token foraging (see Figures S5 and S6 Kys two notable limitations. First, it did not address tatbiet
the supplementary materil This was because relative fitnesgenefit from specialization in addition to cooperation. fEhis
differences between team members could not have an influeggRience that behavioral heterogeneity can lead to signific
on the selection of genomes when individuals were gengticaberformance advantages for such tasks [29], [63], [85]-[88
identical. Second, it does not consider teams with intermediate geneti
Foraging strategy in heterogeneous teams evolved with tegfjlarity. Biological research has shown that such teaars ¢
selection was not affected by the costs implied in largenok@yercome individual fitness costs of cooperation [55], [89]
foraging (see Figures S5 and S6 in the supplementary majgys combining the best of both worlds, enhanced genetic
riall). This was because relative fitness differences bEtwe@iOersity with readiness to adopt altruistic behaviors. dod

team members did not have an influence on selection @iderstanding of those conditions will require significant
genomes when selection acted at the level of the team.  ther research.

0 100 200 300 400 500
Generation
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