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Genetic Team Composition and Level of Selection
in the Evolution of Cooperation
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Abstract— In cooperative multi-agent systems agents interact
to solve tasks. Global dynamics of multi-agent teams result
from local agent interactions, and are complex and difficult
to predict. Evolutionary computation has proven a promising
approach to the design of such teams. The majority of current
studies use teams composed of agents with identical control
rules (“genetically homogeneous teams”) and select behavior at
the team level (“team-level selection”). Here we extend current
approaches to include four combinations of genetic team com-
position and level of selection. We compare the performance
of genetically homogeneous teams evolved with individual-level
selection, genetically homogeneous teams evolved with team-
level selection, genetically heterogeneous teams evolvedwith
individual-level selection and genetically heterogeneous teams
evolved with team-level selection. We use a simulated foraging
task to show that the optimal combination depends on the amount
of cooperation required by the task. Accordingly, we distinguish
between three types of cooperative tasks and suggest guidelines
for the optimal choice of genetic team composition and levelof
selection.

Index Terms— Multi-agent systems, artificial evolution, evolu-
tionary robotics, team composition, fitness allocation, coopera-
tion, altruism.

I. I NTRODUCTION

M ULTI-AGENT SYSTEMS (MAS) span a large number
of research fields, from software agents to robotics,

and play a key role in several industrial applications, such
as ground and air vehicle control, supply chains or network
routing. The design of control rules for multi-agent systems
is challenging because agent behavior depends not only on
interactions with the environment, but also on the behaviorof
other agents. As the number of interacting agents in a team
grows, or when agent behaviors become more sophisticated,
the design of suitable control rules rapidly becomes very
complex. This is especially true when agents are expected to
coordinate or cooperate to collectively achieve a desired task.
Evolutionary computation has been advocated as an effective
and promising strategy to generate control parameters and
decision rules for collective agents [1], [2].

In addition to the methodological issues of evolving agents
that operate in isolation [2], the evolution of agent teams must
address two major issues: (1) It must determine optimal team
composition. Agents of a team may either share control rules
(genetically homogeneous teams) or employ different ones
(genetically heterogeneous teams). (2) It requires a suitable
method for selective reproduction of desired team behavior.
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Fig. 1. A sample of approaches to the evolution of multi-agent teams. The
majority of work uses genetically homogeneous teams, usually created from
a cloned individual genome, with team selection. In some cases, authors
created behaviorally heterogeneous agents out of a single team genome:
Luke [25], [26] decoded team genomes into six separate sub-teams with
one or two identical players each. Other authors [11], [20],[22], [28],
[33] decoded one team genome into different single agent genomes. Yet
another approach was taken by work using distributed, embodied evolution
to evolve heterogeneous teams [43], [50]–[54]. In these cases selection and
replication were entirely distributed among agents, with dynamics reminiscent
of the replicator dynamics observed in bacterial evolution[55] and game
theoretic models [56]. In some cases, teams were evolved using a continuously
updated gene-pool rather than separate gene-pools for subsequent generations
(“steady state evolution”) [45]–[47]. Finally some authors have conducted
more detailed comparisons of the influence of genetic team composition or
level of selection alone: Martinoli [40] also considered more complex methods
of selection. Stanley et al. [49] clustered genetically similar individuals
into sub-teams that shared fitness, which resulted in partially heterogeneous
teams. Mirolli et al. [39] also compared partially heterogeneous teams. Quinn
[29] evaluated individuals in different heterogeneous teams to create robust
homogeneous teams.

Selection may operate either on individuals (individual-level
selection) or on teams (team-level selection). In the simplest
case, one must decide between genetically homogeneous or
heterogeneous teams, and between selecting agents at the
individual or at the team level.

Figure 1 shows a sample of previous work on the evolution
of multi-agent systems in robotics, combinatorial optimiza-
tion, cellular automata, artificial life, genetic programming
and others, plotted according to the chosen genetic team
composition and level of selection. In addition to work cited in
Figure 1, some authors have used cooperative co-evolutionary
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algorithms (CCEAs, [57]) to evolve heterogeneous control
rules for teams of agents [58]–[61]. CCEAs are applied by
decomposing problem representations into subcomponents and
then creating a separate population of individuals for each
subcomponent. This approach allows teams to be composed
of specialized sub-groups and corresponds to the biological
co-evolution of multiple species. In their basic form, CCEAs
require the designer to manually decompose the multi-agent
task, and thus to solve part of the optimization problem
beforehand. Work that used machine learning techniques other
than evolutionary computation (e.g., reinforcement learning)
was not considered in this review.

Figure 1 suggests that the majority of current approaches
to the evolution of multi-agent systems use genetically homo-
geneous teams evolved with team-level selection. Where the
reasons for the choice of genetically homogeneous teams are
made explicit, it is argued that homogeneous teams are easy to
use [8], [36], require fewer evaluations [25], [32], scale more
easily [13] and are more robust against the failure of team
members [13], [62] than heterogeneous teams. Many other
approaches use genetically heterogeneous teams evolved with
individual-level selection. Genetically heterogeneous teams are
sometimes seen as providing more behavioral flexibility [25]
and as providing advantages in tasks that require specialization
[7], [25], [62], [63].

The terms “homogeneous team” and “heterogeneous team”
used in the current literature cover many different aspects.
It is important to note that while all agents in genetically
homogeneous teams share the same genes, agents can never-
theless be behaviorally heterogeneous. This can happen when
agents differentiate during their lifetime, for example due
to varying initial conditions [30], or due to developmental
processes or learning [64]. This can also happen when agents
“activate” different parts of their genome, for example when
each agent’s behavior is controlled by a different section of
a single team genome [11], [22], [28], [33]. In this case,
agents can specialize on different functions, yet be genetically
identical, just like specialized cells in a biological organism.
Conversely, it is important to note that genetically heteroge-
neous teams are those in which agents are, on average, not
genetically more similar to team members than to agents in
the rest of the population [65], [66]. This means that teams
resulting from embodied evolution or common versions of
steady state evolution are usually genetically heterogeneous
although these algorithms often generate multiple offspring
from a single parent, resulting in genetically similar (butnot
identical) agents. In some cases, teams consist of clonal sub-
teams [25], [26] or of agents that share only part of their
genome. Teams with agents that are, on average, genetically
more similar (but not identical) to members of their team than
to members of the rest of the population are termed “partially
heterogeneous”. The effects of partial genetic heterogeneity on
the evolution of multi-agent teams are not yet fully explored in
evolutionary computation [39], but there is evidence that they
can lead to improved specialization [25], [26]. These effects
have been deeply studied in biology [67], [68].

The choice of level of selection is rarely discussed explic-
itly. Some research has addressed the related issue of credit

assignment for the evolution of multi-agent systems [40], [69].
In the context of multi-agent systems, credit assignment is
concerned with distributing fitness rewards among individual
agents. Fitness distribution leads to credit assignment problems
[70], [71] in many cooperative multi-agent tasks, because
individual contributions to team performance are often difficult
to estimate or difficult to monitor [72]. Selection is usually
performed on the basis of accumulated individual or team
fitness, which may be the result of many fitness rewards with
different types of credit assignment. Therefore an optimal
choice of level of selection is not only influenced by the type
of task but also by the types of credit assignment used.

Genetic team composition and level of selection have long
been identified as two important factors for the evolution
of biological multi-agent teams such as groups of genes,
cells, individuals or other replicators [67], [73]. In particular
the evolution of altruism [74], in which agents cooperate to
increase team fitness in spite of an individual fitness cost tothe
cooperator, has received a lot of attention [68], [75]. Herewe
define cooperation as a behavior that increases the fitness of
other agents, and altruistic cooperation (altruism) as a behavior
that increases the fitness of other agents and decreases the
cooperator’s fitness.

In this study, we focus on cooperative multi-agent tasks that
do not require specialization. We compare the performance of
robot teams evolved in four evolutionary conditions: geneti-
cally homogeneous teams evolved with team-level selection;
genetically homogeneous teams evolved with individual-level
selection; genetically heterogeneous teams evolved with team-
level selection; and genetically heterogeneous teams evolved
with individual-level selection. We evaluate the performance
of robot teams evolved in these four evolutionary conditions
for three classes of multi-robot tasks: a task that does not
require cooperation; a task that requires cooperation but does
not imply a cost for cooperators; and a task that requires
altruistic cooperation, i.e., a task that implies an individual
fitness cost for cooperators. Cooperative tasks that benefitfrom
specialization were not considered in this study.

II. EVOLUTIONARY CONDITIONS

The four possible combinations of genetic team composition
and level of selection were formalized into four evolutionary
algorithms (Figure 2). For the remainder of the paper we will
use the terms “homogeneous” and “heterogeneous” to desig-
nate genetically homogeneous and genetically heterogeneous
teams, respectively, and the terms “individual selection”and
“team selection” to designate teams evolved with individual-
level selection and team-level selection, respectively. We con-
sidered populations composed ofM teams, each composed
of N individuals. Population size and team sizes were kept
constant across generations. At each generation, the old popu-
lation was entirely replaced by a new population of offspring.
Individuals’ genomes were binary strings.

1) Algorithm 1 - Homogeneous teams, Individual selection:
Each of theM teams at generation 0 was formed by generating
one random genome and cloning itN − 1 times to obtain
N identical robot genomes (clones) per team. Teams were
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Fig. 2. The four evolutionary conditions. A population (large oval) was
composed of several teams (medium ovals), each of which was composed of
several robots (small circles) evaluated together. Genetic team composition
was varied by either composing teams of robots withidentical genomes(ho-
mogeneous, identical shading), ordifferent genomes(heterogeneous, different
shading). Level of selection was varied by selectingteams(team selection),
or selecting individuals, independent of their team affiliation (individual
selection).

Algorithm 1 Homogeneous teams, Individual selection
for each ofM new teamsdo

select two individuals from all old teams
recombine their genomes to create one new genome
mutate new genome
clone new genome to obtainN genomes for new team

end for

evaluated in the task and an individual fitness determined for
each of theN robots. For a new generation, each of theM
new teams was created from twoindividualsselected among
all individuals of all old teams in the population using roulette
wheel selection. The two genomes of the selected individuals
were recombined (one-point crossover, crossover probability
of 0.05) to produce one new genome. The resulting new
genome was mutated by flipping the value of each bit with a
probability of 0.05 and then clonedN−1 times to generate the
N robot genomes of the new team. Teams evolved using this
evolutionary condition were thus geneticallyhomogeneous.

Algorithm 2 Homogeneous teams, Team selection
for each ofM new teamsdo

select two old teams
recombine their genomes to create one new genome
mutate new genome
clone new genome to obtainN genomes for new team

end for

2) Algorithm 2 - Homogeneous teams, Team selection:
Each of theM teams at generation 0 was formed by generating
one random genome and cloning itN − 1 times to obtain
N identical robot genomes (clones) per team. Teams were

evaluated in the task, and for each team, a team fitness was
determined as the sum of the individual fitnesses of allN
robots. For a new generation, each of theM new teams was
created from two oldteamsselected using roulette wheel selec-
tion. The two genomes of the selected teams were recombined
(one-point crossover, crossover probability of 0.05) to produce
one new genome. The resulting new genome was mutated by
flipping the value of each bit with a probability of 0.05 and
then clonedN − 1 times to obtain theN robot genomes of
the new team. Teams evolved using this evolutionary condition
were thus geneticallyhomogeneous.

Algorithm 3 Heterogeneous teams, Individual selection
for each ofM new teamsdo

for each ofN new team membersdo
select two individuals from all old teams
recombine their genomes to create one new genome
mutate new genome
add new genome to new team

end for
end for

3) Algorithm 3 - Heterogeneous teams, Individual selection:
Each of theM teams at generation 0 was formed by generating
N random genomes. Teams were evaluated in the task and an
individual fitness determined for each of theN robots. For
a new generation, each of theN × M new individuals was
created from twoindividualsselected among all individuals of
all old teams in the population using roulette wheel selection.
The two genomes of the selected individuals were recombined
(one-point crossover, crossover probability of 0.05) to produce
one new genome. The resulting new genome was mutated by
flipping the value of each bit with a probability of 0.05. This
process was repeatedN×M−1 times to formM new teams of
N individuals each. In this evolutionary condition robots were
not, on average, genetically more similar to team members
than to robots in the rest of the population, and thus teams
were geneticallyheterogeneous.

Algorithm 4 Heterogeneous teams, Team selection
for each ofM new teamsdo

for each ofN new team membersdo
select two old teams
randomly select two old team members
recombine their genomes to create one new genome
mutate new genome
add new genome to new team

end for
end for

4) Algorithm 4 - Heterogeneous teams, Team selection:
Each of theM teams at generation 0 was formed by generating
N random genomes. Teams were evaluated in the task, and
for each team, a team fitness was determined as the sum of
the individual fitnesses of allN robots. For a new generation,
each of theN×M individuals was created from two oldteams
selected using roulette wheel selection. Two genomes, each
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randomly selected among the members of a selected team,
were recombined (one-point crossover, crossover probability
of 0.05) to produce one new genome. The resulting new
genome was mutated by flipping the value of each bit with
a probability of 0.05. This process was repeatedN × M − 1
times to formM new teams ofN individuals each. In this
evolutionary condition robots were not, on average, genetically
more similar to team members than to robots in the rest of the
population, and thus teams were geneticallyheterogeneous.

III. E XPERIMENTAL METHOD

A. Scenario

The experimental setup (Figure 3) consisted of a 50×50 cm2

arena with 10 micro-robots and two types of tokens, small and
large. We chose to study a foraging task, because foraging
combines several aspects of multi-agent tasks (distributed
search, coordinated movement, transportation) and relates to
many real-world problems [76], [77]. In addition, foragingis
a wide-spread and well-studied behavior of many biological
societies [78]–[80]. Experiments were conducted in simulation
of micro-robots and evolved controllers were transferred to the
real robots (see Section III-D).

Robots foraged tokens by transporting them into a 4 cm
wide region at one side of the arena marked by a white wall.
A single robot was sufficient to transport a small token. At
least two robots were required to transport a large token, thus
retrieval of large tokens required cooperation. Cooperating
agents had to coordinate their behaviors to successfully align
their positions before and during token transport.

The micro-robots [81] were small (2×2×4 cm3), two-
wheeled robots equipped with three infrared distance sensors
at the front and one at the back, which could sense objects
up to 3 cm away and allowed robots to distinguish between
small and large tokens (Figure 4 left). An extension module
with a fourth infrared distance sensor with a range of up to

6 cm and a linear camera were mounted higher on the robot,
overlooking tokens but sensitive to other robots and walls.

B. Control and Genetic Architecture

Robots were controlled by a feed-forward neural network
with a single layer of three hidden neurons (Figure 4 right)
and a sigmoid activation function (tanh). The inputs were
given by the activation values of five infrared sensors, two
vision sensors, and a constant bias value of−1. Infrared sensor
activation values were scaled in the range[0; 1]. Vision sensors
were an average of three equi-distally spread camera pixels
spanning a field of view of 18°, for the left or right side of
the image, respectively. The averages were thresholded to yield
0 for a white or 1 for a black arena wall. Using the average
value of three pixels rather than a single pixel allowed a robust
detection of the white foraging target area in spite of the
presence of other robots in the field of view. The two output
units were used to control the left and right wheel motors.
The activation values in the range[−1; 1] were mapped into
speeds in the range[−4; 4] cm/s, with speeds in the interval of
[−2.5; 2.5] cm/s set to0 because of unreliable motor response
at low speeds.

The neural network connection weights were in the range
of [−2; 2] and coded on 8 bits. The genome of one individual
was thus 8x32 bits long.

C. Collective Tasks

We devised three types of foraging tasks that differed in the
amount of cooperation required from agents.

1) Task 1 - Individual Foraging:The arena contained 6
small tokens, which each awarded 1 fitness point to the
foraging robot. This task did not require cooperation, because
a single agent was sufficient to transport a small token.

Fig. 3. Left: The experimental setup for task 3, the altruistic cooperative foraging task. Ten micro-robots (black squares with arrows) searched for small and
large tokens and transported them to the target area (hatched area at bottom) under the white wall (the other three walls were black). An identical setup was
used in the other two tasks, except that the arena contained either only small tokens in task 1, or only large tokens in task2. Right: Three micro-robots in
task 3, the altruistic cooperative foraging task. The robotin the background could transport the small token by itself.The robot at the left could not transport
the large token by itself and needed to wait for the arrival ofa second robot (blurred in the picture due to its rapid movement towards the large token).
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Fig. 4. Left: Side and top-view schematics of a simulated micro-robot. The robot was equipped with four infrared (IR) distance sensors (three at the front,
one at the back) to detect tokens, and a camera to identify thetarget area. A fifth infrared distance sensor (high IR) was mounted higher on the robot and
thus overlooked tokens. This allowed robots to distinguishtokens from walls and other robots. Right: The neural network architecture, a feed-forward neural
network with a single layer of three hidden neurons. Inputs were given by the activation values of five infrared (IR) sensors and two vision sensors with
activation values computed from left and right camera pixels (see text).

2) Task 2 - Cooperative Foraging:The arena contained
4 large tokens, which each awarded 1 fitness point to each
team member, irrespective of its participation in the token
foraging. This corresponded to a situation where the individual
contributions to team performance were not known, i.e., a
situation with credit assignment problems [70], [71], which
is the case for many cooperative multi-agent tasks [72]. This
task required cooperation because it could not be accomplished
by a single agent.

3) Task 3 - Altruistic Cooperative Foraging:The arena
contained 6 small and 4 large tokens. Small tokens each
awarded 1 fitness point to the foraging robot and large tokens
each awarded 1 fitness point to each team member, irrespective
of their participation in the token foraging. In this task
cooperation was costly for individuals, because individuals
that did not cooperate always had higher fitness than their
cooperating team mates. This meant that cooperators suffered
a relative individual fitness cost and therefore this task required
altruistic cooperation [68].

D. Evolutionary Experiments

Due to the large number of evaluations required for the
evolution of robot behaviors, all evolutionary experiments
were conducted using a physics-based 2D simulator [82],
which is available as part of an open evolutionary framework
[83]. All simulation parameters, including robot size, shape,
speed and weight, as well as collision dynamics, friction forces
and sensor and actuator modalities, were based on the micro-
robots described in Section III-A.

We evolved teams of robots under the four evolutionary
conditions separately for each of the three tasks, making a total
of 12 experimental lines. Evolutionary experiments lastedfor
300 generations. Twenty independent runs were performed for
each experimental line. Populations consisted of 100 teamsof
10 agents each. Each team was evaluated 10 times for three
minutes with random token and robot starting positions and
orientations. Fitness was averaged over the 10 evaluations.

To compare the efficiency of the four evolutionary condi-
tions, we re-evaluated the best teams at generation 300 for
1000 times and compared their team fitness. Fitness values
were analyzed using Wilcoxon rank sum tests. All fitness
values were normalized for each task, with 0 being the minimal
possible fitness and 1 the theoretical maximum value.

IV. RESULTS

A. Task 1 - Individual Foraging

Successful foraging behavior evolved for all four evolution-
ary conditions (Figure 5). After 300 generations of artificial
evolution, heterogeneous teams evolved with individual selec-
tion collected all 10 tokens in most evaluations and achieved
fitness values close to the maximum value achievable. These
fitness values were higher than those of homogeneous teams
evolved with individual selection and homogeneous teams
evolved with team selection (Wilcoxon rank sum test,df = 38,
P < 0.001 and P < 0.006, respectively). A possible reason
could be the disparities in genome evaluation in homogeneous
and heterogeneous teams. For a team size of N agents,
heterogeneous teams evaluated N times more genomes than
homogeneous teams. This was because each heterogeneous
team consisted of N different genomes, whereas homogeneous
teams consisted of N identical genomes. On the other hand,
homogeneous teams evaluated each genome N times more
often than heterogeneous teams. This was because each team
evaluation evaluated an identical genome N times. Our results
suggest that higher evaluation accuracy may have been less
important than a larger number of different genomes in this
task. The larger number of genomes may have allowed hetero-
geneous teams to discover solutions faster than homogeneous
teams, which could explain the steep initial fitness increase. It
may also have allowed heterogeneous teams to discover better
solutions than homogeneous teams, which could explain the
higher final fitness obtained with this evolutionary condition.
To test whether these disparities in genome evaluation caused
the high team performance of heterogeneous teams evolved
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Fig. 5. Task 1 - Individual Foraging. Left: Evolution of the best team fitness averaged over the best teams in 20 independent evolutionary runs over 300
generations. Right: The best team at generation 300 of each of the 20 independent experiments per evolutionary condition and per task was evaluated 1000
times. The mid line in the box is the median, while the box represents the upper and lower quartile above and below the median. The bars outside the
box generally represent the max and min values, except when there are outliers, which are shown as crosses. We define outliers as data points which differ
more than 1.5 times the interquartile range from the border of the box. The notches represent the uncertainty in the difference of the medians for box-to-box
comparison. Boxes whose notches do not overlap indicate that the medians differ at the 5 % significance level [84]. In thistask, which did not require
cooperation, heterogeneous teams evolved with individualselection performed best, followed by homogeneous teams evolved with individual selection and
homogeneous teams evolved with team selection. Heterogeneous teams evolved with team selection performed significantly worse than all other evolutionary
conditions.
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with individual selection we performed a set of additional ex-
periments (see additional experiments without these disparities
in the next section).

Performance of homogeneous teams evolved with individual
selection and homogeneous teams evolved with team selection
did not differ significantly (P = 0.337). This was because
with roulette wheel selection, the probability of a team to
be selected was the same as the sum of the probabilities of
each individual team member to be selected. Since all team
members of homogeneous teams shared the same genome,
selection probabilities for a given genome were equal for
both homogeneous evolutionary conditions. It should be noted,
however, that this is not necessarily true for other types
of selection. Selection mechanisms where the fitness of a
genome is not directly proportional to its probability to be
selected (e.g., truncation or rank-based selection) may lead to
differences in the number of selected individuals with a given
genotype and consequently affect the relative performance
of homogeneous teams evolved with individual selection and
homogeneous teams evolved with team selection. In these
cases individual selection may select for genomes that leadto
higher maximum but lower average individual performance.
However, additional investigations using truncation selection
(selection of best 30% of the population; all other experimental
parameters identical) did not find such performance differences
in any of the three types of task (P = 0.350/0.903/0.394 for
tasks1/2/3 respectively; see Figure S4 in the supplementary
material1).

Heterogeneous teams evolved with team selection per-
formed significantly worse than all other evolutionary con-
ditions (all threeP < 0.002). This was because, unlike all
other three evolutionary conditions, this evolutionary condition
did not allow a direct link between the performance of a
genome and its probability to be selected. Instead, selection
of good genomes could only happen indirectly, by selecting
those teams that contained a better mix of genomes than other
teams. Since good genomes could be part of bad teams or bad
genomes part of good teams, selection for good individual
genomes was inefficient. This explains the slow initial fitness
increase and the lowest final fitness of heterogeneous teams
evolved with team selection.

B. Task 1 - Individual Foraging: Disparities in genome eval-
uation and credit assignment

To test the hypothesis that the high team performance of
heterogeneous teams evolved with individual selection was
caused by disparities in genome evaluation, we performed a
set of additional experiments. First, we evolved homogeneous
teams in the same task, but used only 1 evaluation per team
rather than 10 evaluations (Figure 8 (a)). Second, we evolved
heterogeneous teams in the same task, but used only 100
agents per population rather than 1000 agents (Figure 8 (b)).
In this set of experiments homogeneous and heterogeneous
teams therefore evaluated the same number of genomes and
had the same number of evaluations per genome.

1An electronic supplement for this paper is available onlineat
http://lis.epfl.ch/documentation.php

Without disparities in genome evaluation, heterogeneous
teams evolved with individual selection performed similarly
to homogeneous teams evolved with individual selection and
homogeneous teams evolved with team selection (all three
P > 0.597). Heterogeneous teams evolved with team selection
performed worse than all other evolutionary conditions (all
threeP < 0.001), because the efficiency of selection was not
affected by the changes in genome evaluation.
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Fig. 8. Task 1 - Individual Foraging without disparities in genome evaluation.
(a) Homogeneous teams evolved with 1 evaluation per team (instead of
10) and (b) heterogeneous teams evolved with 100 agents per population
(instead of 1000). Heterogeneous teams evolved with individual selection
performed similarly to homogeneous teams evolved with individual selection
and homogeneous teams evolved with team selection in this task. Boxplot
explanations see Figure 5.

C. Task 2 - Cooperative Foraging

Successful foraging behavior evolved for all four evolution-
ary conditions (Figure 6). The experiments with a cooperative
task led to a change in the relative performance of the four
evolutionary conditions. Performance of homogeneous teams
evolved with individual selection and homogeneous teams
evolved with team selection was significantly higher than that
of heterogeneous teams evolved with individual selection and
heterogeneous teams evolved with team selection (all four
P < 0.001), with the best fitness values in homogeneous teams
up to 70% higher than those in heterogeneous teams. One
possible reason are disparities in genome evaluation between
homogeneous and heterogeneous teams (see next section).
Another possible reason is that selection of good genomes
could only happen indirectly in this task, which may have
led to inefficient selection just as in heterogeneous teams
evolved with team selection in task 1 (Section IV-B). This
could have been because fitness in this task was assigned to
all team members, irrespective of their participation in the
token foraging.

Performance of homogeneous teams evolved with individual
selection and homogeneous teams evolved with team selection
did not differ significantly (P = 0.839). This was because
fitness in this task was assigned to all team members, irre-
spective of their participation in the token foraging. For the

http://lis.epfl.ch/documentation.php
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same reason, performance of heterogeneous teams evolved
with individual selection and heterogeneous teams evolved
with team selection did not differ significantly (P = 0.365).

D. Task 2 - Cooperative Foraging: Disparities in genome
evaluation and credit assignment

To test the hypothesis that the differences in performance
of heterogeneous teams evolved with individual selection
and homogeneous teams evolved with individual selection
and team selection were caused by disparities in genome
evaluation or by the fitness assignment to all team members,
we performed two sets of additional experiments. First, we
again corrected for the disparities in genome evaluation.
However, correcting for this factor alone did not eliminatethe
performance differences (see Figure S2 in the supplementary
material1). Second, we performed experiments where we again
corrected for the disparities in genome evaluation and where
fitness was only assigned to team members that participated in
the token foraging. In these experiments, each of the 4 large
tokens awarded 5 fitness points to each of the two transporting
robots, rather than 1 fitness point to each of the 10 team
members. This second additional set of experiments therefore
corresponded to a situation where the individual contributions
to team performance were known, i.e., a situation without
credit assignment problems.

Without the disparities in genome evaluation and without
credit assignment problems, heterogeneous teams evolved
with individual selection outperformed heterogeneous teams
evolved with team selection (P < 0.001). This was because
selection of good genomes could now happen directly, which
allowed for efficient selection. However, the performance of
heterogeneous teams evolved with individual selection re-
mained lower than that of homogeneous teams evolved with
individual selection and homogeneous teams evolved with
team selection (P < 0.001 and P < 0.002, respectively,
Figure 9). A possible reason is that heterogeneous teams had
to solve a more complex optimization task than homogeneous
teams. Successful cooperation in heterogeneous teams required
individuals to evolve behaviors to coordinate their actions with
N − 1 different team members, while individuals in homoge-
neous teams only had to evolve behaviors to coordinate with
a single type of team member. In other words, homogeneous
teams led to a smaller search space because all team members
were per definition identical, and thus only a subset of the total
number of possible team compositions was considered in these
teams. Furthermore, individuals in heterogeneous teams were
not just different in a team, but team members changed from
one generation to the next. Both factors may have hindered
the evolution of cooperative behavior in heterogeneous teams.

The performance of homogeneous teams evolved with in-
dividual selection and homogeneous teams evolved with team
selection did not differ significantly (P = 0.441) in this second
additional set of experiments.

Heterogeneous teams evolved with team selection per-
formed worse than all other evolutionary conditions due to
inefficient selection (all threeP < 0.001).
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Fig. 9. Task 2 - Cooperative Foraging without disparities ingenome
evaluation and without credit assignment problems. (a) Homogeneous teams
evolved with 1 evaluation per team (instead of 10) and (b) heterogeneous
teams evolved with 100 agents per population (instead of 1000). The perfor-
mance of heterogeneous teams evolved with individual selection was higher
than the performance of heterogeneous teams evolved with team selection, but
did not reach that of homogeneous teams in this task. Boxplotexplanations
see Figure 5.

E. Task 3 - Altruistic Cooperative Foraging

Successful foraging behaviors evolved for all four evolution-
ary conditions (Figure 7). Team performance in the altruistic
cooperative foraging task was systematically lower than inthe
cooperative foraging task. This may seem surprising because
the larger number of tokens in the arena increased the total
number of fitness points available. A possible reason is that
the increased number of tokens led to more clutter in the
arena, which made successful token transport more difficult
(see video supplied with supplementary material1).

Homogeneous teams achieved significantly higher fitness
values than heterogeneous teams (all fourP < 0.001). Possi-
ble reasons are disparities in genome evaluation and inefficient
selection for the foraging of large tokens because fitness points
gained from large tokens were assigned to all team members,
irrespective of their participation in the token foraging (see
next section).

Performance of homogeneous teams evolved with individual
selection and homogeneous teams evolved with team selection
did not differ significantly (P = 0.310). This was because
selection probabilities for a given genome were again equal
for both homogeneous evolutionary conditions.

Performance of heterogeneous teams evolved with indi-
vidual selection and heterogeneous teams evolved with team
selection did not differ significantly (P = 0.490). However,
the four evolutionary conditions resulted in different foraging
strategies in this task (Figure 10): While homogeneous teams
evolved with individual selection and homogeneous teams
evolved with team selection as well as heterogeneous teams
evolved with team selection collected a significantly higher
proportion of large tokens than small tokens (all threeP <
0.001), heterogeneous teams evolved with individual selection
collected a significantly higher proportion of small tokens
than large tokens (P < 0.001). In comparison to the other
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three evolutionary conditions, heterogeneous teams evolved
with individual selection collected the significantly highest
proportion of small tokens (all threeP < 0.001), but the
significantly lowest proportion of large tokens of all four
evolutionary conditions (all threeP < 0.003).
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Fig. 10. Task 3 - Altruistic Cooperative Foraging. The plot shows the average
proportion of the six small tokens and four large tokens collected by the best
teams at generation 300 for each of the 20 independent experiments and for
each of the four evolutionary conditions. Heterogeneous teams evolved with
individual selection pursued a different foraging strategy than teams of the
other three evolutionary conditions, collecting very few large tokens but most
small tokens.

F. Task 3 - Altruistic Cooperative Foraging: Disparities in
genome evaluation and credit assignment

To test the hypothesis that the differences in performance
of heterogeneous teams evolved with individual selection
were caused by disparities in genome evaluation or by the
fitness assignment to all team members, we performed two
sets of additional experiments similar to those described in
Section IV-D. First, we again corrected for the disparitiesin
genome evaluation. However, correcting for this factor alone
did not eliminate the performance differences (see Figure S3
in the supplementary material1). Second, we again performed
experiments where we corrected for the disparities in genome
evaluation and for credit assignment problems.

Without the disparities in genome evaluation and with-
out credit assignment problems heterogeneous teams evolved
with individual selection outperformed heterogeneous teams
evolved with team selection (P < 0.001). This was because
selection of good genomes could again happen directly, which
allowed for efficient selection. However, the performance of
heterogeneous teams evolved with individual selection re-
mained lower than that of homogeneous teams evolved with
individual selection and homogeneous teams evolved with
team selection (P < 0.015 and P < 0.003, respectively,
Figure 11). This may have been because heterogeneous teams
had to solve a more complex optimization task.

In this second additional set of experiments, the perfor-
mance of homogeneous teams evolved with individual selec-

tion and homogeneous teams evolved with team selection did
not differ (P = 0.133).

Heterogeneous teams evolved with team selection per-
formed worse than all other evolutionary conditions due to
inefficient selection (all threeP < 0.001).
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Fig. 11. Task 3 - Altruistic Cooperative Foraging without disparities in
genome evaluation and without credit assignment problems.(a) Homogeneous
teams evolved with 1 evaluation per team (instead of 10) and (b) hetero-
geneous teams evolved with 100 agents per population (instead of 1000).
The performance of heterogeneous teams evolved with individual selection
was higher than the performance of heterogeneous teams evolved with team
selection, but did not reach that of homogeneous teams. Boxplot explanations
see Figure 5.

Importantly, the altruistic cooperative foraging task ledto
the evolution of a different foraging strategy in heterogeneous
teams evolved with individual selection than in the other three
evolutionary conditions (Figure 10). A possible reason is that
cooperation to collect large tokens now implied a cost for
individuals. To test this hypothesis we performed additional
experiments with this evolutionary condition. First we repeated
the experiments with a setup identical to that of task 3,
i.e., with 1000 agents per population and 10 evaluations per
team, but with known individual contributions to large token
foraging, i.e., a situation without credit assignment problems.
Each of the 4 large tokens awarded 5 fitness points to each
of the two transporting robots, rather than 1 fitness point
to each of the 10 team members. Then, at generation 300,
we changed the fitness assignment and assumed unknown
individual contributions to large token foraging, i.e., a situation
with credit assignment problems. Each of the 4 large tokens
awarded 1 fitness point to each team member, irrespective of
their participation in token foraging.

This change in fitness assignment resulted in a drastic
change in foraging strategy (Figure 12). While at generation
300 heterogeneous teams evolved with individual selection
collected a significantly higher proportion of large tokensthan
small tokens (P < 0.001), at generation 500 they collected a
significantly lower proportion of large than small tokens (P <
0.001). As a direct result of this change, team performance
decreased significantly (P < 0.001) between generation 300
and generation 500. This was because after the introductionof
credit assignment problems, fitness points gained from large



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX XXXX 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  100  200  300  400  500
 0

 0.2

 0.4

 0.6

 0.8

 1
T

e
a

m
 f

it
n

e
s
s

P
ro

p
o

rt
io

n
 o

f 
to

k
e

n
s
 c

o
lle

c
te

d

Generation

Team fitness
Small tokens
Large tokens

Fig. 12. Task 3 - Altruistic Cooperative Foraging in heterogeneous teams
evolved with individual selection. For the first 300 generations, individual
contributions to the cooperative foraging of large tokens were known (no credit
assignment problems). From generation 300 onward individual contributions
to the foraging of large tokens were presumed unknown (credit assignment
problems). The introduction of credit assignment problemsled to the rapid
collapse of cooperation and a decrease in team fitness.

tokens were assigned to all team members, and therefore
individuals collecting small tokens gained a fitness advantage
over their team mates. This led to the selection of individuals
that foraged for small tokens and resulted in fewer and
fewer individuals foraging for large tokens. The observed
drop in team fitness also implies a drop in average individual
fitness. This illustrates that fitness is a relative measure of
performance and therefore evolution selects for performance
increase relative to the performance of competitors, rather than
for absolute performance. The simplicity of the neural network
controllers did not allow individuals to accurately discriminate
large and small tokens, which explains the incomplete collapse
of large token foraging.

In contrast, the foraging strategy in homogeneous teams
evolved with individual selection and in homogeneous teams
evolved with team selection was not affected by the costs
implied in large token foraging (see Figures S5 and S6 in
the supplementary material1). This was because relative fitness
differences between team members could not have an influence
on the selection of genomes when individuals were genetically
identical.

Foraging strategy in heterogeneous teams evolved with team
selection was not affected by the costs implied in large token
foraging (see Figures S5 and S6 in the supplementary mate-
rial1). This was because relative fitness differences between
team members did not have an influence on selection of
genomes when selection acted at the level of the team.

V. CONCLUSION

This study provides an experimental demonstration of how
the choice of genetic team composition and level of selection
influences the performance of multi-agent systems in tasks
with varying levels of cooperation that do not provide a benefit
for specialization. We have identified three different types of
multi-agent tasks depending on the amount of cooperation

required between team members. Our results demonstrate that
different combinations of genetic team composition and level
of selection lead to significant performance differences. No
combination achieved optimal performance in all three types
of task.

We have identified and studied three different types of multi-
agents tasks depending on the amount of cooperation required
between team members.

In tasks that did not require cooperation, heterogeneous
teams evolved with individual level selection achieved the
highest team performance. Team heterogeneity allowed to
evaluate a high number of different genomes in parallel,
and individual selection allowed efficient selection of good
genomes. However, these teams performed poorly in tasks
that required cooperation and in tasks with credit assignment
problems.

For multi-agent tasks that required cooperation, the highest
team performance was achieved by homogeneous teams. These
teams led to efficient cooperation between team members
and they were not affected by credit assignment problems
or costs associated with cooperation. Our results suggest that
homogeneous teams are a safe choice in tasks that do not
benefit from specialization when the requirements for agent
cooperation are difficult to estimate. Compared to hetero-
geneous teams, homogeneous teams evaluate less genomes,
which may result in premature convergence to sub-optimal
solutions. Our experimental results indicate that a simpleway
to prevent this problem is to use populations made of a large
number of homogeneous teams.

Heterogeneous teams evolved with team selection were in-
efficient at selecting for good performance in all three types of
tasks studied here and and therefore cannot be recommended
for cooperative tasks that do not require specialization.

Converging evidence towards these guidelines was recently
found in a study on the evolutionary conditions for the emer-
gence of communication in societies of robots with different
morphology and sensing abilities than those described in this
paper [17].

However, it should be noted that evidence from both studies
has two notable limitations. First, it did not address tasksthat
benefit from specialization in addition to cooperation. There is
evidence that behavioral heterogeneity can lead to significant
performance advantages for such tasks [29], [63], [85]–[88].
Second, it does not consider teams with intermediate genetic
similarity. Biological research has shown that such teams can
overcome individual fitness costs of cooperation [55], [89],
thus combining the best of both worlds, enhanced genetic
diversity with readiness to adopt altruistic behaviors. A good
understanding of those conditions will require significantfur-
ther research.
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