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A B S T R A C T

While attenuation at low frequencies remains highly desirable for industrial applications such as multistory
buildings or spacecraft propellant tanks, fluid-filled rocks can achieve this goal naturally by so-called local
flow in their heterogeneous pore structure. The present work aims at combining this natural phenomenon
with controlled instabilities in light-weight structures. Buckling of their pores is harnessed to break local
geometric symmetry and maximize the local-flow effect. A prototype structure with elliptical pores is analyzed
numerically. It does not show local flow or attenuation for the starting geometry, but reversibly switches into
an attenuating structure by imposing a critical buckling strain. The simulations reach inverse quality factors
larger than 0.3 around 5 Hz for material properties of air-filled silicone rubber. A key to high attenuation is
a tradeoff between the unstable structure and the pore fluid. If the solid is too soft, the fluid-filled pores are
not compressed and buckling is not triggered. If the solid is too stiff, most energy is stored elastically and
not dissipated by fluid flow. The proposed, fluid-filled structure allows for a scalable, light-weight material
exhibiting significant low-frequency attenuation.
1. Introduction

Materials and structures capable of effectively dissipating mechan-
ical energy play a crucial role in a wide range of systems, including
buildings, automobiles, aircrafts, and micro-scale electric devices. Al-
though several strategies have been proposed to achieve the desired
values of attenuation, dissipation at low frequencies still poses major
challenges. Internal resonances in structures or saturated porous me-
dia provide a significant amount of attenuation for special frequency
bands, but are typically restricted to higher frequencies or larger spatial
dimensions, e.g., air curtains (Würsig et al., 2000), foams (Chevillotte
et al., 2013) or oscillating fluid clusters (Kurzeja and Steeb, 2014a,b).
Also modern architectures such as auxetic metamaterials (Ungureanu
et al., 2015), phononic plates (Hedayatrasa and Kersemans, 2022) and
piezoelectric metamaterials (Jian et al., 2022) successfully aim at broad
and tunable bandgaps that yet do not reach seismic frequencies with
small sizes. Flow in open porous media can reach attenuation at low
frequencies but is not scalable, since it requires a connection to the
surrounding air or an additional reservoir for fluid exchange (Pierre
et al., 2014). Polymers generally combine favorable production condi-
tions with significant attenuation, which is however dependent on a
restricted temperature range (Gibson and Ashby, 1999; Pritz, 1994; Lu
et al., 1999; Kazakevičiūtė-Makovska et al., 2014). This is improved
in composites with visco-elastic fillers (Chung, 2001, 2003) and as-
phalt (Schüler et al., 2013; Dickinson and Witt, 1974), but again by
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paying the price of very large mass or size for significant low-frequency
damping. Finally, phase-transforming composites materials can rely
on damage that is not acceptable in many applications (Junker and
Kochmann, 2017).

Interestingly, a significant low-frequency attenuation mechanism
has been observed in fluid-filled rocks (Pimienta et al., 2015a,b; Subra-
maniyan et al., 2015; Borgomano et al., 2019; Chapman et al., 2019).
Local flow is triggered by the uneven deformation of fluid-filled regions
with different compliances, see Fig. 1(a) for illustration. A review of the
underlying fluid-flow related mechanisms can be found in (Müller et al.,
2010) and (Gurevich and Carcione, 2022). For example, local flow at
the pore scale is often referred to as squirt flow and is caused by fluid
displacement between interconnected compliant and stiff pores (Mavko
and Nur, 1975; O’Connell and Budiansky, 1977; Jones, 1986; Dvorkin
and Nur, 1993; Dvorkin et al., 1994; Gurevich et al., 2010; Adelinet
et al., 2011; Shapiro, 2013; Borgomano et al., 2019; Alkhimenkov and
Quintal, 2022a,b). For example, in the heterogeneous pore structure
of a Berea sandstone (Ohio, USA) (Fig. 1(b)), compliant pores are
represented by the grain contacts and the more isometric pores are the
stiff ones. In fractured media, local flow occurs between the cracks and
the porous host matrix or between differently oriented interconnected
cracks (Brajanovski et al., 2005; Rubino et al., 2013; Vinci et al., 2014;
Quintal et al., 2016). Variations in saturation constitute another origin
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Fig. 1. (a) Examples of systems prone to local flow. Compression induces heterogeneous volumetric changes of the fluid-filled regions and thus causes dissipative fluid flow between
them. (b) Pore structure of a dry Berea sandstone (Ohio, USA) from Madonna et al. (2013). Its porosity is approximately 20% and the width of the section is 650 μm. (c) Pores
in highly elastic structures cast from duplicating silicone Zhermack Elite Double 8.
for local-flow attenuation (White et al., 1975; Dutta and Odé, 1979a,b;
Tisato and Quintal, 2013; Quintal et al., 2011). Only few attempts have
yet been made to utilize local-flow in artificial materials. Its general
potential has been shown for large strains, e.g. Cohen et al. (2017), but
a detailed understanding on the pore level is yet missing.

It has been recently shown that mechanical instabilities can result
in dramatic pattern transformations. The diverse applications include
load-induced adaptions through shape morphing (Reksowardojo et al.,
2022), inverse metamaterial design (Dos Reis and Karathanasopoulos,
2022) or band gaps in elastomeric structures with periodic distributions
of holes (Bertoldi and Boyce, 2008a,b; Bertoldi et al., 2008; Overvelde
et al., 2012), see Fig. 1(c) for illustrating examples. In contrast to
rocks, elastomeric structures provide drastic and yet reversible shape
changes at much lower weight. Although mechanical instabilities in
geological formations are also known in the form of folding and neck-
ing (Ramsay and Huber, 1987; Hudleston and Treagus, 2010), buckling
with fold amplification (Schmalholz and Podladchikov, 1999) or high-
pore-pressure faulting (Miller, 2002; Geli et al., 2014), attenuation
modulation by non-linear deformation in architected materials just
opened as an opportunity (Cohen et al., 2017). Also other research
areas recently allowed for significant insights into the response of fluid-
filled structures such as batteries (Carlstedt et al., 2022) or bilayer
porous metamaterials (Esposito et al., 2022). A detailed understanding
of the fluid–structure interaction in instable structures however remains
to be fully explored. More specifically, an interesting question to ask
is whether local flow mechanisms can also be activated in highly
deformable porous structures and what is their effect.

The present work aims at numerically exploring the potential of
buckling pores with the highest possible attenuation. As most studies
employ local flow as a naturally predetermined process in their systems,
the present work turns the view to the following novel key questions:

• what conditions make structures susceptible to local flow?
• how can severely buckling pores amplify local flow?
2

• what geometric and material parameter settings eventually yield
the highest attenuation at low frequencies?

In what follows, we first introduce the system of interest and the
methodology in terms of material modeling and numerical implementa-
tion in Section 2. Most promising dry structures are then identified with
respect to their ability to locally displace fluid in Section 3. Choosing
a prototype structure with elliptical pores, the peak attenuation and
its associated frequency are finally studied for various buckled states,
stiffness ratios and geometric modifications in Section 4. In Section 5,
we present our conclusions along with a comparison with other atten-
uation mechanisms and implications for fluid-filled artificial materials
with instabilities.

2. Methodology

2.1. The idealized unit cell

The system of interest is idealized in Fig. 2 and can be divided into
the elastic host matrix, the pore fluid and connections between the
pores. As the present study aims at harnessing the local-flow principle,
the solid material focuses on elastic structures that can be 3D-printed
or cast such as flexible filament or silicone rubber. The elastic solid
shall hence be described by a slightly compressible neo-Hookean model
(Ogden, 1997) with strain energy density

𝑊 =
𝜇s
2
(𝐼1 − 3) +

𝐾s
2
(𝐽 − 1)2, (1)

where 𝐅 is the deformation gradient, 𝐽 = det(𝐅), 𝐼1 = 𝐽−2∕3 tr(𝐅𝑇𝐅) and
𝜇s and 𝐾s are the solid’s initial shear and bulk modulus, respectively.

The pores are assumed to be filled with a barotropic fluid, so that
𝜕𝜌f =

𝜌f,0 , (2)

𝜕𝑝 𝐾f
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Fig. 2. Sketch of a reduced and idealized local-flow unit cell.

here 𝐾f is the fluid bulk modulus, 𝑝 is the pressure of the fluid inside
he pore and 𝜌f,0 and 𝜌f are the fluid density in the initial (i.e. at 𝑝 = 0)
nd deformed configuration.

The connections are assumed to allow laminar flow for fluid ex-
hange, e.g., in the form of a cylindrical puncture between the two
ores. Accordingly, we assume that pairs of neighboring pores can
xchange fluid and that the rate of mass exchange follows Poiseuille’s
aw
𝑑𝑚
𝑑𝑡

= −𝜌f 𝛾 𝛥𝑝, (3)

𝛾 = 𝜅 𝐴
𝑙 𝜂

, (4)

where 𝛥𝑝 is the fluid pressure difference between the two connected
pores, 𝜂 is the dynamic fluid viscosity and 𝜅, 𝐴 and 𝑙 denote the
permeability, cross sectional area and length of the connections. The
latter four can be combined to the conductivity parameter 𝛾. Note that
these connections are assumed not to interfere with the deformation,
e.g., in the form of small pores or channels that do not significantly
alter the solid deformation.

Inertia terms are artificially neglected in this study in line with
previous studies of local flow, i.e., wave propagation and resonance
effects are not accounted for. They exceed the scope of the present work
towards higher frequencies and would later require much smaller time
steps and computational costs. The relevant frequencies of maximum
attenuation are around 5 Hz with wave lengths in the order of 10
m. Non-linearities are especially considered for geometric modulation
of the buckling structure. Non-linear fluid behavior is nevertheless
assumed to be negligible, because of the small dynamic perturbations
used for subsequent attenuation measurements. Small Reynolds and
Womersley numbers are hence assumed in combination with the low-
frequency regime. This study focuses on two-dimensional simulations,
e.g., assuming extruded structures with connections in the form of holes
or channels distributed along the extrusion depth.

The initial material parameters throughout this paper are based on
a soft silicone rubber-air system with a single connecting pore per unit
meter depth of 0.6 mm diameter. The specific values read 𝜇s = 3.45
MPa, 𝐾s = 33.33 MPa, 𝐸s = 10.00 MPa, 𝐾f = 0.1 MPa, 𝜂 = 17.1 × 10−6

a s and 𝛾 = (𝜅 𝐴)∕(𝑙 𝜂) = 9.75 × 10−8 m3 Pa−1 s−1, unless scaled for
parameter tests.

2.2. An analytical approximation for a local-flow cell

In line with local flow in rocks, the so-called inverse quality factor
𝑄−1 will be used as a measure of attenuation and serves as a leading
focus of the present study. More specifically, two particular values
will be studied, the maximum value of the inverse quality factor 𝑄−1

max
and its associated frequency 𝑓max. 𝑄−1 depends on frequency 𝑓 and
various definitions can be found in literature (O’Connell and Budiansky,
3

1977; Graesser and Wong, 1991; Ursin and Toverud, 2002; Mavko
et al., 2009). Most definitions resemble the ratio of energy dissipated
to total energy stored at small amplitudes. As such 𝑄−1 is a relative and
dimensionless measure of attenuation. It shall be defined in the present
context as the absolute ratio of loss modulus ℑ(𝑀) and storage modulus
ℜ(𝑀), reading

𝑄−1(𝑓 ) =
|

|

|

|

ℑ(𝑀)
ℜ(𝑀)

(𝑓 )
|

|

|

|

. (5)

In order to guide the initial design of pore geometries exhibiting
ocal flow, we may first approximate the inverse quality factor for a
ocal-flow unit cell, cf. Fig. 2. The following notable assumptions shall
e summarized: a virtually incompressible hyperelastic solid, struc-
ural stiffness much lower than the solid bulk stiffness, a barotropic
luid, laminar flow through the connection but negligible within the
ores and a linearized perturbation for the dynamic analysis fitted
y a Standard-Linear-Solid rheology. These assumptions are clearly
implifying the situation in a rock matrix. The analytical approximation
ill nevertheless help to guide the design process and to understand

he limitations and opportunities of the resulting, regular prototype
tructure.

Combining the relationships from the above Section 2.1 eventually
ields the governing equation between a linear strain perturbation of
he overall unit cell 𝛥𝜀 and the pressure response in the first pore 𝛥𝑝1
see Appendix A for details)

�̇�1 + 𝛥𝑝1

[

2
𝐾f
𝑉0

𝛾
]

+ 𝛥�̇�
[

𝛥𝑉1
𝛥𝜀

𝐾f
𝑉0

]

+ 𝛥𝜀

[

𝛾
(

𝛥𝑉1 + 𝛥𝑉2
𝛥𝜀

)(

𝐾f
𝑉0

)2
]

. (6)

𝑉0 is the pores’ initial volume and the ratio 𝛥𝑉𝑗∕𝛥𝜀 describes the
susceptibility of volume changes in pores 𝑗 ∈ {1, 2}. Knowing the
pressure relaxation response allows to derive the associated moduli and
to add them to the elastic modulus of the solid frame 𝑀extra (see again
Appendix A for details). As an intermediate result, the entire local-flow
cell exhibits the rheological behavior of a Standard Linear Solid (SLS)-
model or Zener model (de Haan and Sluimer, 2001), which was also
confirmed by the simulations (cf. Appendix B). The corresponding static
modulus and dynamic modulus read

𝑀stat = 𝑀extra +
𝐾f

2𝑉 2
0 �̂�2

(

𝛥𝑉1 + 𝛥𝑉2
)2 , 𝑀dyn =

𝐾f

2𝑉 2
0 �̂�2

(

𝛥𝑉1 − 𝛥𝑉2
)2 .

(7)

The moduli and the SLS-rheology of the local-flow cell allow to finally
approximate its inverse quality factor by

𝑄−1(𝑓 ) =
(𝑓∕𝑓𝑐 )𝛥𝑉 2

𝑐 + (𝑓∕𝑓𝑐 )2
(

𝑐 + 𝛥𝑉 2)
. (8)

This format explicitly depends on three key properties. Firstly, the
volume exchanged between both pores

𝛥𝑉 = 𝛥𝑉1 − 𝛥𝑉2, (9)

secondly, the analytical characteristic frequency

𝑓𝑐 =
1
𝜋
𝐾f
𝑉0

𝛾 (10)

and thirdly

𝑐 = 2𝑉 2
0 𝛥𝜀2

𝑀extra
𝐾f

+ (𝛥𝑉1 + 𝛥𝑉2)2 = 𝑀stat
𝐾f

2𝑉0 𝛥𝜀2
. (11)

Consistent with the linear approach and with well-accepted approx-
imations for local-flow in literature, the analytical characteristic fre-
quency 𝑓𝑐 is not influenced by the amount of volume changed. It
is proportional to the ratio of elasticity to viscosity and the geo-
metric properties typically scale with an exponent between 2 and 4
(O’Connell and Budiansky, 1977; Dvorkin and Nur, 1993; Ciz et al.,
2006; Gurevich et al., 2010; Alkhimenkov and Quintal, 2022a,b). The
presented analytical approximation will thus serve as a reference for

interpretation of the subsequent analysis. The term 𝑐 accounts for the
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remaining static resistance to cell deformation 𝛥𝜀, normalized by the
fluid’s compressibility-volume ratio.

An important conclusion can be made at this point by specifying
goals for harnessing local flow for attenuation at low frequencies —
even though the sensitivites to deformation of the pores (𝛥𝑉𝑗∕𝛥𝜀) and
the solid structure (𝑀extra) have not yet been specified. In general,
low-frequency attenuation is potentially pronounced for soft structures
(small 𝑐 and small 𝐾f∕𝑉0) with low conductivity (small 𝛾) displacing
much fluid (large 𝛥𝑉 ). Architected materials with mechanical insta-
bilities offer a promising framework for local flow because of their
dramatic shape changes and low stiffness. The first key focus of this
study will be the maximization of 𝛥𝑉 between dry pores before the
most promising, fluid-filled geometry will be examined in detail.

2.3. Test setup and loading conditions

2.3.1. Dry pore structures
Three classes of pore structures will be first examined with respect

to local pore volume changes 𝛥𝑉 under compression in Section 3. This
property is emphasized first as it provides high potential for improving
the local-flow effect in artificial structures by design.

2.3.2. Prototype unit cell
A structure with elliptical pores will be chosen as a prototype for

the fluid-filled investigations, see Fig. 3 for illustration. Both infinitely
periodic structures and finite-sized structures are considered. Starting
from a relaxed system, two vertical loading conditions are applied con-
secutively for a finite pre-compression 𝜀pre = 0%, −1%, −2%, … , −10%:

1. non-linear, quasi-static step: to achieve pre-compression at 𝜀pre
2. linear, dynamic perturbation: to evaluate 𝑄−1

The pre-compression is increased stepwise to test when and how buck-
ling instabilities turn the pore architecture into a mode allowing for
local flow. The small dynamic perturbation is used to determine the
attenuation at these pre-compressed states.

For the periodic unit cell, the macroscopic deformation gradient,
𝐅 = 𝐞1 ⊗ 𝐞1 + (1 + 𝜀) 𝐞2 ⊗ 𝐞2 + 𝐞3 ⊗ 𝐞3, is imposed on the cell boundaries
y periodic boundary conditions (Danielsson et al., 2002; Bertoldi and
oyce, 2008b)
𝐴𝑖
𝛼 − 𝑢𝐵𝑖

𝛼 = (𝐹 𝛼𝛽 − 𝛿𝛼𝛽 )(𝑋
𝐴𝑖
𝛽 −𝑋𝐵𝑖

𝛽 ), 𝑖 = 1, 2, … ., 𝑁 (12)

where 𝛿𝛼𝛽 is the Kronecker delta, 𝑢𝐴𝑖
𝛼 and 𝑢𝐵𝑖

𝛼 (𝛼 = 1, 2) are displace-
ments of points periodically located on the boundary of the unit cell.
Moreover, 𝑁 denotes the number of pairs of nodes periodically located
on the boundary of the unit cell. Also note that another (horizontal)
compression direction would induce a different buckling pattern with
equal volume changes in all pores, which is not useful to trigger local
flow.

2.4. Numerical implementation

The nonlinear finite-element code Abaqus Standard 6.14-2 is used
to pre-compress the structures as well as for dynamic perturbations in
order to investigate the ability of the predeformed systems to dissipate
energy in the small-strain regime. For all the analyses, 2D finite element
models are constructed using four-node plane strain elements (Abaqus
element type CPE4R) and the accuracy of the mesh is ascertained
through a mesh refinement study. The dynamic response is simulated
in the time domain (Quintal et al., 2011, 2016) conducting dynamic
implicit simulations (∗DYNAMIC module in Abaqus). Fluid flow is
implemented by additional interaction conditions inside and between
the pores. More specifically, the state inside the pores is determined
from the linearized pressure-volume relationship in Eq. (2). The mass
flow between two pores is calculated from their pressure difference
4

g

with the proportionality factor as stated in Eq. (3) assuming laminar
fluid exchange.

To focus on the effect of local flow, we make use of the following
assumptions to reduce the computational effort (Quintal et al., 2011,
2016; Vinci et al., 2014; Jänicke and Steeb, 2015). Firstly, a uniform
pressure distribution is assumed in each pore. Pressure-driven viscous
flow is much more dominant in the connections between the pores and
not within the larger pores. Secondly, the flow is assumed to be laminar
due to the small frequencies and cross-sectional area yielding small
Reynolds and Womersley numbers. Thirdly, inertia terms are artificially
neglected by lowering the fluid and solid densities to the order of 𝜌f,0 =

kg/m3 and 𝜌s,0 = 0.005 kg/m3, i.e., wave propagation and resonance
ffects are not resolved as they exceed the scope of the present work.
ote that these assumptions do not overestimate attenuation.

The numerical implementation of all loading steps adds extra re-
axation periods to reach equilibrium before the other step continues.
he numerical time stepping scales inversely to the approximated
haracteristic frequency 𝑓𝑐 in Eq. (10) to accurately resolve the physical
henomenon. The numerical steps or durations, considering a finite
re-compression 𝜀pre = 0%, −1%, −2%, … , −10%, are:

1. Quasistatic pre-compression step

∙ apply 𝜀pre by linear ramp (duration: 30 𝑓−1
𝑐 )

∙ let the new configuration relax (duration: 20 𝑓−1
𝑐 )

2. Dynamic perturbation step

∙ apply perturbation 𝛿𝜀 = −0.001% by linear ramp (duration:
≈ 0.035 𝑓−1

𝑐 )
∙ hold perturbation to relax (duration: ≈ 3.5 𝑓−1

𝑐 )

ote that the characteristic frequency adopts automatically to the
aterial and geometric variations of the parameter studies. The time

caling of the dynamic steps, however, has been fine-tuned around
he approximative values given above, because 𝑓𝑐 is an idealized ap-
roximation that does not account for boundary effects in finite-size
tructures, for instance.

The inverse quality factor is finally calculated from the stress re-
ponse of the dynamic strain perturbation by a fast fourier transfor-
ation (FFT). This result is double checked with a rheological fit

cf. Appendix B). Furthermore, the numerical settings were tested care-
ully in a sensitivity study including mesh size, perturbation amplitude
nd relaxation time (cf. Appendix C).

. Pore structures with maximum potential for fluid volume ex-
hange

While rock formations naturally show the ability for local fluid flow,
e will instead choose pores that show more significant morphology

hanges when buckling to explore new potentials in pore architectures.
he goal is to maximize the potential fluid exchange between pores
easured by volume 𝛥𝑉 . Focusing on the role of the structure first,
e will compute the volume changes in dry pores from finite element

imulations as described in Section 2.4.
Three types of periodic cells with different, characteristic pores are

nvestigated. Demonstrators have been cast for previous illustration in
ig. 1(c) and are color-coded in Fig. 4 from bottom to top: perpendic-
lar ellipses (blue), circular pores (red) and parallel ellipses (black).
he first one is an idealized representation for basic, natural local flow,
.g., cracks or elongated cavities that may appear with different orien-
ations (Müller et al., 2010; Collet and Gurevich, 2016; Adelinet et al.,
011; Gurevich and Carcione, 2022) and has also been used in artificial
esign (Cohen et al., 2017) and pressure polarization analysis (Shafiro
nd Kachanov, 1997). The second type is a regular array of circular
oles, which is a well-known representation of buckling structures in

eneral. The third type is a regular array of elliptical pores, which is a



International Journal of Solids and Structures 285 (2023) 112508P. Kurzeja and B. Quintal
Fig. 3. (a) Sketch of the undeformed prototype cell, (b) vertically compressed periodic prototype cell, (c) undeformed finite prototype structure, and (d) vertically compressed
finite prototype structure. Each consecutive pair of vertically adjacent pores is connected by a channel, which is indicated by thin black lines in the finite prototype structure.
Fig. 4. Normalized volumes of adjacent pores in three periodic, dry structures under finite vertical pre-compression: parallel elliptical pores (black), circular pores (red) and
perpendicular elliptical pores (blue). The goal for maximized local fluid displacement is a large volume difference between two adjacent pores, 𝛥𝑉 , which is illustrated on the right
side of the graph. Initial and deformed geometry are shown on the left and right, respectively. All unit cells have a width of 60 mm and a ligament thickness of 2 mm between
the pores. The pore diameters are: 28 mm × 7 mm (black parallel ellipses), 28 mm × 28 mm (red circles) and 42 mm × 10.5 mm (blue perpendicular ellipses). The center to
center distances are (vertical/horizontal): 30 mm/9 mm, 30 mm/30 mm and 60 mm/30 mm and the initial porosities are 57%, 68% and 19%, respectively.
buckling structure that stood out with large 𝛥𝑉 during numerical tests
and test runs of fabrication as illustrated by the cast silicone structures
in the introductory Fig. 1(c).

Moderate values of 𝛥𝑉 are expected and observed for elongated
perpendicular pores that resemble a typical situation in rock forma-
tions. The volume difference in both pores increases with larger pre-
compression and may thus be more pronounced in reservoir depths.
Virtually no 𝛥𝑉 appears in circular pores, though. Despite their se-
vere deformations, all pore volumes shrink equally and thus would
not trigger any fluid exchange. The most drastic volume difference is
eventually achieved for a regular array of parallel elliptic pores. After
reaching the buckling threshold, neighboring elliptical pores close and
open, respectively. This strong contrast in their volumetric evolution
can trigger the largest fluid exchange among the basic geometries,
which makes them ideal candidates to harness the local-flow mecha-
nism for high attenuation. While these three architectures allow for a
basic distinction of dry pore types, a more detailed parameter study
will be performed for fluid-filled pores. We will focus on the parallel
elliptical pores (black model in Fig. 4) in the following as a prototype
model.
5

4. Harnessing buckling pores for local flow: parameter study of a
prototype cell

The following parameter study demonstrates advantages and pe-
culiarities of harnessing buckling pores for the local-flow mechanism.
It uses the periodic silicone rubber-air prototype system described in
Section 2 and Fig. 3 for variations of deformation state, geometry
and materials. This discussion aims at the understanding of the pro-
cesses with an emphasis on generalized findings before our conclusion,
where we will compare the system specifically to values of alternative
attenuation mechanisms.

4.1. Effect of pre-buckling on local-flow attenuation

Remarkably and specific to buckling structures, the attenuation can
be switched on and off by modulation of the deformation state. No
attenuation occurs for the homogeneous starting geometry and for
moderate pre-compression states before buckling, see Fig. 5. Significant
attenuation is however triggered at the critical pre-compression 𝜀pre =
−6% and further rises to a value in the range 0.3 < 𝑄−1 < 0.4. Employing
a structural instability thus allows direct attenuation control by strain,
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Fig. 5. Maximum attenuation given as the inverse quality factor 𝑄−1
max and corresponding frequency 𝑓max normalized by the analytical approximation 𝑓𝑐 in Eq. (10) at different

compressive pre-strain. The frequency 𝑓max is only plotted if attenuation is larger than the numerical accuracy.
since local flow is activated by symmetry breaking. This stabilization
of the local-flow effect with increasing pre-compression is moreover
indicated by the course of the frequency of maximum attenuation
determined from the simulations, 𝑓max. At higher pre-compression,
𝑓max rises towards the analytical approximation, 𝑓𝑐 , and hence towards
the situation of the idealized local-flow cell, Fig. 5. The following
analyses are performed for a pre-compression of −10%, if not otherwise
noted, which is slightly before the pores begin to close under contact.

4.2. Frequency tuning by fluid and pore connection

The attenuation of the periodic prototype structure shown in Fig. 3
has a maximum at 5.5 Hz. The corresponding frequency from the
simulations, 𝑓max, scales directly with the analytical characteristic fre-
quency, 𝑓𝑐 , in Eq. (10). They are thus presented as a dimensionless
ratio. Note that both frequencies do not match perfectly due to a
different constant prefactor of their definitions, though. Additional
deviation can occur if assumptions of the idealized local-flow cell
are not fulfilled or if the local-flow mechanism is not fully triggered
(Fig. 5, right). The frequency of maximum attenuation in natural rock
formations can, for instance, deviate from the approximation because of
their highly heterogeneous pore-size distribution or saturation (White
et al., 1975; Dutta and Odé, 1979a,b; Quintal et al., 2011), which will
lead to a broad frequency-dependent attenuation curve. The derived
characteristic frequency 𝑓𝑐 nevertheless provides a valid approximation
for the present prototype system, because the latter involves only two
pore sizes and a single time scale for the flow process. This allows
to derive capable strategies for frequency tuning once buckling is
triggered.

The fluid is a key element to control the frequency of maximum
attenuation. A smaller fluid bulk elasticity 𝐾f and larger viscosity 𝜂
shift the response to lower frequencies. Note that strong control on the
fluid bulk modulus can be achieved, for example, by injecting small
amounts of gas in a liquid, allowing for a reduction of the fluid’s bulk
modulus by several orders of magnitude with only few percent of gas
according to the Reuss average (Mavko et al., 2009). A second option
to achieve attenuation at low frequencies is a reduction of permeability
𝜅, that is, of the cross-sectional area 𝐴 of the pore connections, e.g., by
reducing the width or number of connecting channels. Increasing the
connection length is another option but also probably a more intricate
possibility considering fabrication. Harnessing the local character of the
local-flow principle thus opens a number of possibilities to optimize
low-frequency attenuation without changing the structure’s size or
shape.

4.3. Porosity and finite-size boundary effects

The key to maximized attenuation has been shown to be a geometry
that is susceptible to deformations with opposite volume changes in
neighboring pores, cf. Fig. 4. Buckling pores may trigger such substan-
tial geometrical changes, but their efficiency depends on an optimal
geometrical design. Regarding the pore size, 10% less porosity (or 5%
smaller ellipse diameters, respectively) already reduce the attenuation
6

by more than 13%, see Fig. 6 (left). The optimum porosity of 57% has
been used for the initial prototype geometry.

Turning the view to application of finite-size systems, they are often
known to perform less ideally compared to a perfectly periodic cell.
This is confirmed as an array of 2 × 2 pores does not show the desired
asymmetric deformation at all because of the fixed boundaries of the
present setup, see Fig. 6 (right). Buckling that is prone to local flow
nevertheless evolves for larger structures and tends towards the peri-
odic case for at least 6 × 6 pores. Larger structures up to 12 × 12 pores
almost reach 80% of the periodic case or 𝑄−1 ≈ 0.3. The frequency of
maximum attenuation can slightly drop due to the boundary influence
to around 3 Hz. The scaling ability of the local-flow principle and
modern printing or casting techniques of elastic structures thus support
approaching the periodic attenuation by stacking of local-flow cells. It
suffices to connect only pairs of neighboring pores.

4.4. Material combination and conflicting design goals

The material combination of solid and fluid shows a conflicting
design goal that could not be anticipated from traditional local-flow
theories or approximations such as Eqs. (8) and (10). In general, a
soft structure should yield higher attenuation, which corresponds to
minimizing static modulus 𝑐 in Eq. (8). Less elastic energy is then stored
during deformation and the ratio of dissipated to total energy is higher.

On one hand, raising the structural stiffness via the solid’s Youngs
modulus (or 𝐸s∕𝐾f, respectively) does diminish attenuation as ex-
pected, cf. the right slope of 𝑄−1 in Fig. 9. A softer structural frame
should be thus favorable. On the other hand, however, reducing the
stiffness does not unconditionally increase attenuation as it starts to
decrease again for very soft structures, cf. the left slope of 𝑄−1 in Fig. 9.
This can be explained only when analyzing the fluid–structure interac-
tion on the pore scale. The simulations showed that buckling is not fully
triggered in these cases. External loading cannot be transformed into
the desired buckling mode if the solid is too compliant. The comparably
rigid fluid hinders asymmetric buckling that is required for dissipative
fluid exchange. The evolution of 𝑓max over 𝐸s∕𝐾f (Fig. 7) supports this
finding. The frequency of maximum attenuation 𝑓max approaches the
analytical characteristic frequency 𝑓𝑐 only if the solid is stiff enough to
impose the buckling mode upon the fluid.

Eventually, choosing the solid and fluid elastic moduli must be a
careful compromise — elasticity must be just high enough to impose
buckling and yet small enough to transform as much remaining energy
as possible into dissipative flow. The peak ratio of 𝐸s∕𝐾f = 102 was
therefore used as a starting material combination and motivated the
corresponding silicone rubber-air prototype system.

4.5. Comparison with dissipation in natural rocks

The inverse quality factor of the presented structure exceeds largely
that of natural squirt flow or local flow (Müller et al., 2010; Gurevich
and Carcione, 2022; Dvorkin and Nur, 1993) due to its mechanical
peculiarities. The static modulus is much lower, e.g., three orders of
magnitude smaller than in sandstone (Wang, 2000), see the values for
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Fig. 6. Maximum attenuation given as the inverse quality factor 𝑄−1
max of the prototype structure for different porosities of a periodic cell and for non-periodic structures of finite

size at −10% pre-compression.
Fig. 7. Maximum attenuation given as the inverse quality factor 𝑄−1
max and corresponding frequency 𝑓max normalized by 𝑓𝑐 in Eq. (10) of the prototype structure for different

stiffness ratios of solid Young’s modulus to fluid bulk modulus 𝐸s∕𝐾f.
the periodic prototype structure in Fig. 8(a). One reason for that low
modulus is the soft bulk solid material in the range of soft rubbers
with a shear modulus of 3.45 MPa and a Young’s modulus of 10 MPa
in the reference setting. Variations of the duplicating silicone used for
the samples in Fig. 1 (Zhermack Elite Double) can even reach elastic
moduli below 1 MPa (Babaee et al., 2015; Kurzeja and Tang, 2015).
Additionally, the high porosity reduces the effective stiffness of the dry
structure even further to the order of 1 MPa. The deformation modes
are mainly related to shape changes and thus to the shear modulus
of the bulk material. Buckling further reduces the stiffness, which is
clearly noticeable but not vital for the aim of maximized attenuation
(compare the moduli between the unbuckled and the buckled state
in Fig. 8(a)). Attenuation is already high in the post-buckling regime,
the buckling transition itself is not required. The main purpose of the
instability is to trigger a deformation mode beforehand, which allows
for local flow. It is the dynamic perturbation that is triggering local
flow. Utilizing the strongly non-linear buckling transition can offer an
increased effect but exceeds the scope of the present focus on linear be-
havior and the comparison with typically wave-induced dispersion. The
fluid contributes to both the static modulus and the dynamic modulus.
The dynamic influence is however amplified due to the large volume
exchange 𝛥𝑉1 − 𝛥𝑉2 between the pores. Considering the postbuckling
regime (−0.06 > 𝜀pre ≥ −0.10), yields relative volume changes of two
adjacent pores of 𝛥𝑉1∕𝑉0 = −33% and 𝛥𝑉2∕𝑉0 = +19%, cf. Fig. 4. The
total relative volume change of both pores is 0.5 (𝛥𝑉1 + 𝛥𝑉2)∕𝑉0 = −7%
and thus approximately in the same order of the compressive strain of
𝛥𝜀 = −4%. It is the total relative volume exchange between the pores
that determines the dissipative effect, though. This exchange amounts
to 0.5 (𝛥𝑉1 − 𝛥𝑉2)∕𝑉0 = −26%. This strengthens the fluid’s effect on the
dynamic modulus, despite the relatively small stimulating strain and
fluid’s bulk modulus.

The large attenuation effect of the presented structures can also
be observed in the strong dispersion of the inverse quality factor and
phase velocity, see Fig. 8(b). The phase velocity starts at 40 m/s in
the low-frequency limit and reaches 58 m/s at higher frequencies,
underlining the large change in the associated stiffnesses. It has been
determined from the complex modulus 𝑀(𝑓 ) and the averaged density
of the mixture 𝜌mixture = 502 kg/m3 (based on a rubber bulk density of
1050 kg/m3 and 10% pre-compression). The phase velocity dispersion
7

is dictated by the Kramers–Krönig relations and was calculated by the
formula in Ursin and Toverud (2002) as

𝑣phase(𝑓 ) =

√

2 |𝑀|

2

𝜌mixture (𝑀real + |𝑀|)
. (13)

It should be noted that a homogenized treatment of the unit cell’s
density and effective stiffness is supported by scale separation, because
the relevant wave length is in the order of 10 m and thus much larger
than the characteristic pore size. Effects such as scattering or resonance
band gaps are not accounted for, however, and will of course superpose
the predicted behavior at higher frequency regimes. Moreover, the FFT
evaluation matches the fit to an SLS-rheology very well (compare the
𝑄−1 predictions in Fig. 8(b)), which supports the assumption of a single
time scale in the architected structure of regular arrays. The complex
microstructure in natural materials, in contrast, yields a more complex
dispersion and time scales involved (Müller et al., 2010).

5. Conclusions and comparison with other attenuation mecha-
nisms

We have shown that buckling pores can allow for substantial at-
tenuation at low frequencies. First, we examined that elliptical pores
amplify the fluid exchange that is required for dissipation based on
the principle of local flow as observed in fluid-saturated rocks. Second,
we showed that the corresponding frequencies can be reduced not only
by geometric properties such as permeability or pore sizes but also by
the viscosity and compliance of fluids or fluid mixtures. Inverse quality
factors up to 0.38 at 5.5 Hz (periodic) and 0.30 at 3.0 Hz (finite size)
are numerically observed for air-filled elliptical pores in soft rubber
under 10% pre-compression. Attenuation is directly controlled by the
state of pre-compression via asymmetric pore buckling, which allows
for dissipative flow.

The mechanism studied along with the presented prototype struc-
ture stands out compared to other attenuating mechanisms especially in
terms of the inverse quality factor in the low-frequency regime (Fig. 9).
It exceeds Biot flow and natural local flow in saturated rock, which
constituted the starting point of the present study. Also polysterene,
PMMA, polyester, plastic foam, rubber, shape memory polymers and
damage in composites do not reach that performance at comparable
frequencies. Pure polyutherane, polypropylene, PVC and fracture flow
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Fig. 8. (a) Quasi-static stress–strain response with static and dynamic moduli at selected deformation states of the periodic prototype structure. (b) Dispersion relations of the
local-flow effect at 10% precompression of the periodic structure. The inverse quality factor is shown as determined from an FFT and from an SLS-fit.
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without finite-size effects also do not achieve the 𝑄−1-value of buckling-
induced local flow, while attenuation in foams of comparable size starts
at much larger frequencies. Candidates rivaling the presented proto-
type example in the low-frequency range are based on heavy-weight
solids that also rely on microscopic shearing of viscous components,
e.g., asphalt and concrete. Also note that the presented results can
be superposed by other, potentially dissipative effects in the entire
frequency spectrum such as solid viscosity, resonance band gaps or
scattering.

Local flow in buckling pores opens a new avenue to tune low-
frequency attenuation by contrasting existing mechanisms that were
designed for complementary operation purposes such as broader fre-
quency bands, electronic band-gap control or fluid-free attenuation. Its
unique and important features can be summarized as:

• porous, light-weight structure
• maximized attenuation at seismic frequencies by buckling
• pore fluid properties changed to tune attenuation frequency
• scalable and small unit cells
• attenuation can be switched on and off reversibly by

pre-compression

Due to their intentionally low stiffness, nevertheless, the presented
buckling structures cannot bear large weights themselves and attenu-
ation depends on the deformation direction. They can hence perform
as ideal candidates to support existing constructions as deformation-
controlled low-frequency dampers. Their attenuation works in a con-
figured orientation, the pores show reversible folding capabilities and
can be saturated with different fluids. Future exploration of three-
dimensional examples and laboratory experiments will take the promis-
ing design in this fundamental feasibility study closer to devising
light-weight, flexible materials that employ disspative flow on a local
scale.
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Appendix A. Linear solution of pressure relaxation between two
pores

In the following, we will derive the inverse quality factor for two
connected fluid-filled pores inside an elastically deformable host matrix
comprising an idealized unit cell for local flow. The properties of the
two pores are indicated by subscripts 𝑗 ∈ {1, 2}. Initial values are
indicated by a subscript 0, while the initial pore volumes 𝑉0 and pore
fluids are assumed to be equal. The analysis is concerned with fully
linear perturbations.

A strain perturbation 𝛥𝜀 shall be applied on the cell, e.g., a plane-
train compression in the present case. The corresponding modulus

can be split into a volumetric part 𝑀vol including fluid-pressure
hanges and a remaining part 𝑀extra related to extra stresses solely
aptured by the solid frame. Starting with the volumetric change of
he fluid-filled cell (𝛥𝑉 cell), it is first divided into a volume change
f the fluid (𝛥𝑉 f) and two volume changes of the solid due to fluid
ressure (𝛥𝑉 p,s) and due to the extra pressure in the frame (𝛥𝑉 extra,s),
espectively,

𝑉 cell = 𝛥𝑉 f + 𝛥𝑉 p,s + 𝛥𝑉 extra,s = 𝛥𝑉 f − 𝛥𝑝
𝑉 f
0

𝐾s

1 − 𝜙0
𝜙0

+ (1 − 𝛽)𝛥𝑉 cell.

he solid deformation induced by fluid pressure (the second term in
he above equation) is related to a factor based on initial porosity of
he cell 𝜙cell

𝑗,0 = 𝑉 f
0 ∕(𝑉

f
0 + 𝑉 s

0 ) and the bulk modulus of the solid bulk
aterial 𝐾s (not to be confused with the bulk modulus of the porous

olid frame). It results from the volumetric compression of the solid by
ressure as 𝛥𝑉 p,s∕𝑉 s

0 = −𝛥𝑝∕𝐾s and reformulation via the porosity.
The proportionality factor 𝛽 in the last term of the above equation

determines how an external load is distributed between fluid pressure
(as discussed above) and extra stresses. See, for instance, (Ortiz et al.,
2013) and (Vinci et al., 2014) and the Biot-Willis coefficient for dry
structures in poroelasticity for more details on the distribution between
fluid pressure and extra stresses (Mavko et al., 2009; Wang, 2000). In
the present case, this volumetric contribution of extra stresses in the
frame will be considered implicitly in the static modulus 𝑀extra.

The solid frame is furthermore assumed to show a purely elastic,
rate-independent response and to be more compliant than the bulk
solid. This accordingly yields to slow wave propagation speeds in highly
porous, soft structures (Kurzeja and Tang, 2015). As one result, the so-
called rigid-grain approach (Steeb, 2010), with 𝐾s → ∞, is a reasonable
assumption compared to the stiffness of the fluid and the porous frame.
Eventually, in the present case of gas-filled soft structures, volumetric
changes are dominated by compression of the pore fluid. It will be used
frequently in the following derivation to simplify the relationships.
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Fig. 9. Comparison between the presented prototype structure (periodic and finite size at pre-compression of −10% indicated by sketches) and other attenuation mechanisms.
Literature data is shown as characteristic maximum peaks at the lowest frequency reported and taken from: Pritz (1994, plastic foam), Pritz (1998, rubber, longitudinal),
Kazakevičiūtė-Makovska et al. (2014, shape memory polymer), Schüler et al. (2013, bitumen asphalt), Dickinson and Witt (1974, asphalt, shear), Quintal et al. (2011, partially
saturated rock), Pujol et al. (1998, rock-fluid interaction), Herbert et al. (2008, PVC), Gibson and Ashby (1999, PMMA, polyester, polystyrene, polypropylene), Mott et al. (2002,
polyurethane rubber, shear), Pierre et al. (2014, liquid foam), Chung (2003, concrete-polymer composite), Dvorkin and Nur (1993, squirt flow + Biot flow), Vinci et al. (2014,
fracture flow) and Junker and Kochmann (2017, damage in composites).
𝑇𝑗 is an auxiliary proportionality factor that defines the pressure-
induced volume change of each cavity under compression with respect
to strain changes as

𝑇𝑗 =
𝛥𝑉 p

𝑗

𝛥𝜀
=

𝛥𝑉 f
𝑗 + 𝛥𝑉 p,s

𝑗

𝛥𝜀
𝐾f≪𝐾s≈

𝛥𝑉 f
𝑗

𝛥𝜀
.

Local flow further requires fluid mass exchange �̇�f
𝑗 between the two

cavities that can be approximated in the linear case by

−�̇�f
2 = �̇�f

1 = 𝛥�̇� f
1 𝜌

f
0 + 𝑉 f

1,0 𝛥�̇�
f1 = 𝜌0𝛾 (𝛥𝑝2 − 𝛥𝑝1), 𝛾 = 𝜅 𝐴

𝑙 𝜂
.

To complete the set of equations, we use the conservation of mass and
the equation of state for barotropic fluids in the linear form as

𝛥𝑉 f
1 𝜌

f
0 + 𝑉 f

1,0 𝛥𝜌
f1 + 𝛥𝑉 f

2 𝜌
f
0 + 𝑉 f

2,0 𝛥𝜌
f2 = 0 and 𝛥𝜌f

𝑗 =
𝜌f
0

𝐾f
𝛥𝑝𝑗 .

The previously stated equations can then be finally combined to the
partial differential equation

𝛥�̇�1 + 𝛥𝑝1
[

𝜒
(

𝑆eff
1 + 𝑆eff

2
)]

+ 𝛥�̇�
[

𝑇1𝑆
eff
1
]

+ 𝛥𝜀
[

𝜒 𝑆eff
1 𝑆eff

2
(

𝑇1 + 𝑇2
)]

= 0.

Therein, we introduced the effective cavity stiffness

𝑆eff
𝑗 =

𝐾f

𝑉 f
𝑗,0

𝐾s𝜙𝑗,0

𝐾s𝜙𝑗,0 +𝐾f(1 − 𝜙𝑗,0)
𝐾f≪𝐾s≈

𝐾f

𝑉 f
𝑗,0

,

which is a combination of fluid and solid bulk modulus, 𝐾f and 𝐾s,
and weighted by the initial cavity volume 𝑉 f

0 and initial porosity of the
entire unit cell 𝜙cell = 𝑉 f∕(𝑉 f + 𝑉 s).
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𝑗,0 0 0 0
Combining these definitions and the relationships introduced for the
material description in 2.1 into the mass balance, yields the governing
relationship between the pressure change in the first pore (𝛥𝑝1) and
the external strain perturbation (𝛥𝜀) in the form of a partial differential
equation

𝛥�̇�1 + 𝛥𝑝1

[

𝛾 2
𝐾f
𝑉0

𝐾s𝜙0∕2
𝐾s𝜙0∕2 +𝐾f(1 − 𝜙0∕2)

]

+𝛥�̇�
[

𝐾f
𝑉0

𝐾s𝜙0∕2
𝐾s𝜙0∕2 +𝐾f(1 − 𝜙0∕2)

𝛥𝑉1
𝛥𝜀

]

+𝛥𝜀

[

𝛾
(

𝐾s𝜙0∕2
𝐾s𝜙0∕2 +𝐾f(1 − 𝜙0∕2)

)2 𝛥𝑉1 + 𝛥𝑉2
𝛥𝜀

]

= 0.

The rigid-grain approach yields Eq. (6) for 𝐾s → ∞.
As a next step, we derive the dynamic modulus for the fluid’s

pressure-induced response from a stress relaxation problem. Assuming
an instantaneous strain perturbation 𝛥𝜀 = �̂�𝐻(𝑡) with 𝐻(𝑡) being
the unit step function, the instantaneous volume changes are 𝛥𝑉𝑗 =
(𝛥𝑉𝑗∕𝛥𝜀) �̂�𝐻(𝑡). This yields the following pressure solution for 𝑡 > 0
and 𝑗 ∈ {1, 2}

𝛥𝑝𝑗 (𝑡) = (𝑝𝑗,start − 𝑝end)𝑒−2𝜋𝑓𝑐 𝑡 + 𝑝end, 𝑝𝑗,start = −
𝛥𝑉𝑗
𝛥𝜀

𝑉0
𝐾f

�̂�,

𝑝end = −
𝛥𝑉1 + 𝛥𝑉2

2𝛥𝜀
𝑉0
𝐾f

�̂�

in the time domain and

𝛥𝜀(𝑓 ) = �̂�1
(

1 + 𝛿(𝑓 )
)

, 𝛥𝑝𝑗 (𝑓 ) =
(𝑝𝑗,start − 𝑝end)
2 𝜋𝑖𝑓 2𝜋𝑓𝑐 + 2𝜋𝑖𝑓
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Fig. B.10. (a) Strain evolution and (b) stress response over time during intermittent quasi-static pre-compression and dynamic perturbation for the example of the 12 × 12 finite
prototype structure. (c) Inverse quality factor over frequency as calculated from an FFT analysis and an SLS-fit, respectively, for the same structure.
Fig. C.11. Sensitivity study of mesh size, perturbation amplitude, perturbation time and relaxation time of the dynamic step for the example of the periodic structure under
pre-compression of 𝜀pre = −10%. Shown are values of maximum inverse quality factor and the associated frequency derived from an FFT evaluation and from an SLS fit.
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+ 𝑝end
1
2

(

1
𝜋 𝑖 𝑓

+ 𝛿(𝑓 )
)

in the frequency domain with 𝑖 =
√

−1, 𝛿(𝑓 ) being the Dirac delta
istribution and the characteristic frequency 𝑓𝑐 defined in (10).

The solution describes a simple relaxation process that is similar
o the rheology of a Standard Linear Solid (SLS)-model (also known as
he Zener-model) (de Haan and Sluimer, 2001). This allows us to derive
he frequency-dependent moduli from the energy derivative 𝜕2 𝛥(𝑝1𝑉1+
𝑝2𝑉2)∕𝜕 �̂�2 for the fluid pressure-induced deformation. Adding them to
the purely elastic extra modulus of the frame yields the static and
dynamic moduli for the entire unit cell as given in Eq. (7).

The frequency-dependent dynamic modulus and inverse quality
factor for this case of an SLS-rheology read

𝑀(𝑓 ) = 𝑀stat +𝑀dyn

(

(𝑓∕𝑓𝑐 )2

1 + (𝑓∕𝑓𝑐 )2
+ 𝑖

(𝑓∕𝑓𝑐 )
1 + (𝑓∕𝑓𝑐 )2

)

,

𝑄−1(𝑓 ) =
|

|

|

|

ℑ(𝑀)
ℜ(𝑀)

(𝑓 )
|

|

|

|

=
(𝑓∕𝑓𝑐 ) (𝑀dyn∕𝑀stat)

1 + (𝑓∕𝑓𝑐 )2 (1 + (𝑀dyn∕𝑀stat))
.

At the frequency of maximum attenuation, 𝑓max =
𝑓𝑐∕

√

1 + (𝑀dyn∕𝑀stat), the inverse quality factor peaks at the value

of 𝑄−1
max = 0.5 (𝑀dyn∕𝑀stat)∕

√

1 + (𝑀dyn∕𝑀stat). Inserting the specific
static and dynamic moduli of (7) finally yields the inverse quality
factor in terms of volume exchange, characteristic frequency and static
stiffness contribution in Eqs. (8)–(11).

Appendix B. Calculation of the inverse quality factor from stress
response

The inverse quality factor is determined by a Fast Fourier Trans-
formation of the integrated stress and strain rates of the dynamic
perturbation response, 𝛥�̇�(𝑓 ) and 𝛥�̇�(𝑓 ), as (Quintal et al., 2011)

𝑄−1(𝑓 ) = −
Im (𝛥�̇�(𝑓 )∕𝛥�̇�(𝑓 ))
Re (𝛥�̇�(𝑓 )∕𝛥�̇�(𝑓 ))

In addition to an evaluation via FFT, the normal stress perturbation in
vertical direction 𝛿𝜎(𝑡) is monitored and fitted to the response of an
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SLS rheology with

𝛥𝜎SLS(𝑡) = 𝑀stat 𝛥𝜀 +𝑀dyn 𝛥𝜀 𝑒
−2𝜋𝑓c 𝑡.

he static modulus, the dynamic modulus and the characteristic fre-
uency then allow to double check the frequency-dependent inverse
uality factor (Ursin and Toverud, 2002; O’Connell and Budiansky,
977).

The results of the FFT analysis and the SLS fit show a very good
atch, see Fig. B.10 for an example and Fig. C.11 of the sensitivity

tudy below. Significant deviations were only observed when no local
low is triggered and attenuation falls in the regime of numerical
ncertainties or for compression states that exceed closure of the pores.
hese states were accordingly excluded from attenuation measurements
nd discussion. A single SLS-fit is not as feasible for finite size struc-
ures, since the pore deformation deviated in the boundary region
nd comprise a broader, more complex frequency spectrum — yet a
onsistent single peak could be clearly identified. The match of FFT
nd SLS approach supports the analytical solution used in Eqs. (8) and
10) and also indicates the choice of the correct time scale.

ppendix C. Sensitivity study

A comprehensive sensitivity study of the initial system is employed
o evaluate the values of maximum inverse quality factor and the
ssociated frequency, see Fig. C.11. Mesh independence is asserted by
mesh convergence study. The perturbation amplitude was chosen

s a compromise between numerical sensitivity and linearity in the
erturbation step. The variations of perturbation and relaxation time
re tested for large variations to explore the limits of too small time
cales (yielding inertia effects and incomplete relaxation) and too large
ime scales (yielding quasistatic creep) that exceed the scope of this
ork. The time scale of loading for linear perturbation (≈ 0.035 𝑓−1

𝑐 ) has
been determined from iterative testing for the combination of structural
stiffness to viscosity effects at hand, which is in agreement with obser-
vations of local flow in natural materials. For moderate variations of

the numerical setting up to ±5%, all expected deviations remain in the
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regime of single-digit percentage. Exceptions appear where numerical
uncertainties dominate or where evaluation is not feasible. Respective
values have consequently been omitted, for example, characteristic
frequencies for unbuckled structures.

Appendix D. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijsolstr.2023.112508.
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