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Abstract 

Artificial intelligence (AI) has gained major attention with a rapid increase in the number of 

published articles, mostly recently. This review aims at providing a general understanding of 

how AI can or will be useful to the musculoskeletal radiologist. After a brief technical 

background on AI, machine learning and deep learning, we will illustrate, through examples 

from the literature, potential AI applications in the various steps of musculoskeletal radiology 

workflows, from managing the request to communication of results. The implementation of 

AI solutions does not go without challenges and limitations, these will be also discussed, as 

well as the trends and perspectives.  
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Introduction 

Artificial intelligence (AI) was introduced with the early advances of computer technologies 

in the 1950s and has gained tremendous popularity in the past half-decade, springing to 

public attention with some recent advances resulting in above-human performance, in 

particular with the AI algorithm AlphaGo, developed by Google DeepMind, which defeated 

the world Go champion in 2016 and garnered much attention in the popular press.1-3 Using 

sophisticated or deceptively simple AI algorithms, machines are now able to mimic human 

intelligence and cognitive functions in some areas.4 AI is used as an umbrella term including 

machine learning, which itself comprises deep learning. Machine learning, a branch of 

mathematics and computer science, is based on letting algorithms learn from data without 

the exact relationship between input data and output predictions being explicitly 

programmed.5 Machine learning includes supervised learning problems, as well as 

unsupervised learning problems. In supervised classification, the algorithm is given labeled 

data (for example the diagnosis of osteoporosis attached to each patient in the database), 

based on which it predicts the presence or absence of osteoporosis in a new patient. In 

unsupervised learning techniques, labels are not available. Unsupervised learning includes 

clustering, in which case the algorithm learns the inherent structure of the data, by searching 

for common characteristics among them. For example, it is possible to group patients in a 

dataset with the same bone density and cartilage volume. Unsupervised techniques can be 

used for instance for subtyping patients. 

Machine learning algorithms are categorized as either classical (or shallow) or deep (Figure 

1). In classical machine learning, features of interest are defined by the practitioner, and are 

referred to as “handcrafted features”. 



In contrast, deep learning, a subset of machine learning, relies on end-to-end learning, 

meaning that the features of interest (the data representation) are computed automatically 

by the algorithm, for instance from a magnetic resonance (MR) image. Deep learning 

algorithms are implemented as neural networks, which can learn highly non-linear functions 

of the input data. Convolutional neural networks are a type of neural network used for image 

recognition and classification. This type of model has gained enormous popularity in the 

engineering community due to record-setting performance in open competitions on large-

scale natural image recognition, which quickly outperformed human level.6,7 “Deep” in this 

context does not directly imply a “deeper understanding”, but means that the input data goes 

through several steps (layers) of non-linear transformations, giving the network very high 

expressive power.8,9 The notion of depth therefore refers to the succession of the different 

layers. To illustrate, a deep network using radiographs of the ankle for fracture detection will 

be trained on a large number of images, which have been labeled by radiologists as being 

normal or as having a fracture, and automatically learn data representations which allow it to 

minimize the error on the task of classifying an ankle image into these two categories. 

Although the applications of deep learning in medical imaging are growing exponentially, the 

applications of AI to musculoskeletal imaging specifically are still limited.10 A search in 

PubMed of original papers in the English literature including the search items (“artificial 

intelligence” OR “machine learning” OR “deep learning”) AND “musculoskeletal” AND 

(“imaging” OR “radiology”), published until December 31st 2018 retrieved 64 entries, of which 

30 pertained to the practice of radiology. This paper will focus on these specific applications 

of AI to musculoskeletal radiology. Applications of AI in research in the field of 

musculoskeletal disorders is beyond the scope of this review. 



In musculoskeletal imaging, just as in any other imaging subspecialty, AI may assist the 

radiologist in every step of the workflow, from receiving the request to communication of 

results. In this paper, we will illustrate applications of the many tools and models offered by 

AI to these different steps in the process of the musculoskeletal radiologist’s workflow. Based 

on examples taken from the musculoskeletal literature, we will illustrate how different AI 

models can be applied to the management of the radiological request, the protocoling and 

production of images, their interpretation, as well as the communication of the results to the 

referring clinician (Table 1). 

It goes without saying that the implementation of AI faces numerous challenges and 

limitations that we will describe. Finally, we will briefly present the trends and future 

perspectives of the application of AI.  



Radiological Request and scheduling 

A large number of requests limits the ability to directly communicate with each and every 

referring physician. The ordered modality may not be the most appropriate for the specific 

clinical condition, or the clinical information given on the request may be insufficient to make 

a specific diagnosis. AI may support in ordering decisions by retrieving pertinent patient 

information including allergies to contrast media, MRI-sensitive devices or implants, which 

are ideally automatically gathered from an electronic radiological request or the digital 

medical record, and by alerting the system to schedule the exam in the best conditions.11-14  

In musculoskeletal radiology, investigations for computed tomography (CT) or magnetic 

resonance imaging (MRI) in patients with metal hardware in the requested anatomic area 

should be ideally filtered by an electronic system, obtaining pertinent information from the 

request, from the latest radiograph or from previous reports to automatically schedule the 

patient at dedicated scanners, e.g. dual-energy CT or 1.5 T MRI. Ideally, automated procedure 

selection algorithms are based on established guidelines such as American College of 

Radiology (ACR) appropriateness criteria or European Society of Radiology (ESR) iGuide 

considering efficiency, costs and risks of various possible procedures.15,16 

Appointments could be given according to the severity of the indication and in arrangement 

with the follow-up appointment at the referring physician. Information documents could be 

sent electronically to the patient and returned before the radiological investigation to ensure 

any constraint or contraindication, such as claustrophobia, and are taken care before the 

scheduled appointment. Automated text messages could remind patients about their 

pending appointment. 

For these applications, natural language classification algorithms could have many 

applications. Promising results were shown for example to automatically determine whether 



intravenous contrast was required in musculoskeletal MR investigations using IBM Watson 

natural language classifier on the free text clinical indication of the study, reaching an 

accuracy of 83%.13 This clinical decision support tool could help to improve efficiency and to 

decrease scheduling errors among other advantages. 

  



Protocoling and Image Production 

Radiology scanner hardware has greatly improved in the past 25 years, whereas software-

related algorithms have been slower to develop. If algorithms can capture information on 

patients and prior imaging studies, this gap may be bridged for several applications including 

protocoling, image acquisition and postprocessing. 

With this, scan protocols for radiographs, CT and MRI, embedded in the electronic scheduling 

system, may be automatically proposed based on the clinical information and indication given 

in the request. Lee recently demonstrated the benefit of a deep-learning convolutional neural 

network for automatically choosing between routine or tumor musculoskeletal MRI 

protocols.14 Accuracy of automated MRI protocoling reached 94%, enabling the radiologists 

to easily confirm the recommendation.14 Using these techniques, scan protocols could be 

automatically tailored to each individual patient. Image quality checks, especially important 

for MRI, may be performed by technical quality assurance programs identifying severe 

artefacts, such as inadequate fat saturation, motion or pulsation artefacts, and propose 

protocol modifications. Additional sequences may be proposed by the machine based on 

certain pathological findings, such as contrast-enhanced sequences in case of an incidental 

bone lesion.  

AI can potentially increase the speed of reconstruction and be used for automated 

reconstruction algorithm, whether in CT or high-resolution three-dimensional (3D) MRI to 

reduce repetitive, time-consuming, strenuous work for the technicians providing more time 

for patient care. Chaudhari et al. developed a deep learning-based super-resolution method 

generating thin-sliced MR images of the knee from thicker slices.17 With this DeepResolve 

technique, image acquisition time can be decreased, motion artifacts reduced by the 

acquisition of fast low-resolution images with increased image resolution, and finally a higher 



throughput per scanner could be obtained. Others have investigated the potential of such 

generative models (algorithms able to generate new data, as opposed to the classical models 

of deep learning that process or classify data) to generate new sequence weightings based on 

another, or even to generate MR images based on radiographs.18 Although preliminary, these 

works could lead to interesting applications in the future. 

Ideally, image reconstruction of 3D MRI sequences or CT should be performed automatically 

by the system to accelerate the time to finalize the report and decrease the waiting time for 

patients at the emergency department or the outpatient clinic. 

  



Image Interpretation 

In terms of image analysis and interpretation, the most common benefits of AI that come to 

mind comprise the detection of abnormalities (e.g. a fracture) and the diagnosis of 

abnormalities (e.g. a tumor) (Table 2).19,20 Rather than a pure replacement of the radiologist, 

the use of AI for these applications should instead help the radiologist optimize its workflow. 

By prompting prescreened images or flagged critical findings, AI should help us increase our 

speed to provide a report for the most urgent cases, improve our diagnostic accuracy, prevent 

errors and observer fatigue (e.g. in reading large numbers of postoperative radiographs), and 

improve the quality of the image interpretation task. Additionally, AI may be beneficial as a 

decision support system for studies performed after office-hours, in remote areas or in 

teleradiological services, where radiologists are not attending in person.  

 

But image interpretation by a radiologist is not limited to the act of making a diagnosis based 

on the images being viewed. It also consists of other actions, such as prompt and easy access 

to relevant clinical data, comparison to previous studies, production of a report comprising 

the relevant information. Many AI application may help optimize these tasks. For example, 

by uploading the relevant previous exams, and by automatically synchronizing these using 

registration tools.21 The analysis of clinical data could also be greatly improved by natural 

language processing algorithms.13  

Finally, AI should help us in the task of providing semi-quantitative (i.e. the grading of certain 

pathological findings such as lumbar canal stenosis, disc pathology, Kellgren-Lawrence grades 

on knee radiographs or semi-quantitative grading systems on knee MRIs, etc) as well as 

quantitative analyses in our reports. These can be quite cumbersome to perform and their 

automatization should allow the growth of this valuable type of information.  



Following are examples of AI applications to the interpretation of images (Table 2). 

 

Automatic Lesion Detection 

Fracture Detection 

The increasing number of skeletal radiographs in high-level trauma units as well as remote 

hospitals without 24/7-radiological services necessitate automated fracture detection to 

accelerate diagnosis and treatment decisions. Several research groups addressed automated 

fracture detection using deep learning algorithms.22-25 Accuracies reached up to 83% for a 

variety of peripheral fracture detection with equal results as compared to orthopedic 

readers.23 Similar results were presented by Lindsey et al. in a similar study including over 

130000 peripheral annotated radiographs.22 Machine-assisted fracture detection was most 

helpful for emergency medicine clinicians, which are typically less exposed to radiographic 

readings compared to specialized orthopedic surgeons. A deep learning algorithm specifically 

designed for distal radius fractures tested on 695 positive radiographs showed an even higher 

detection rate with a sensitivity of 90% and specificity of 88%.24 One limitation of the applied 

open-source machine-learning algorithms in the study by Olczak et al. was that only one 

image of a whole series of radiographs could be analyzed, even though the fracture may not 

be visible on that particular image orientation.23 Utilizing all available radiographic projections 

could potentially further increase the accuracy of fracture detection. 

 

Knee Pathology Detection 

AI may assist in diagnosing abnormal findings of the knee joint as shown by Bien et al.26 Their 

algorithm was able to accurately detect abnormalities, meniscal tears and anterior cruciate 

ligament (ACL) tears achieving an area under the curve of 0.937, 0.965 and 0.847, respectively 



on 1370 knee MRI. Accuracies were comparable to radiologists for detection of abnormalities 

and ACL tears, however, was slightly inferior for the detection of meniscal tears. Similar 

results were obtained by Stajduhar et al. on MRI diagnosed partial and complete ACL tears 

with an area under the curve of 0.894 for partial tears and 0.943 for complete tears.27 

  

Automatic Diagnosis 

Bone Tumor Diagnosis 

Bone tumors are rare and typically present with a variety of morphological imaging 

characteristics, thereby posing difficulties in image interpretation among general radiologists. 

In 1980 Lodwick published a landmark paper on determining computed-based radiographic 

bone tumor destruction.28 Based on his work, following researchers developed computed 

models to aid in diagnosing bone tumors.29-31 However, attempts were limited to 10 bone 

tumor entities, although the World Health Organization defines more than 20.32 To overcome 

this, a Bayesian model was developed to predict bone tumor diagnosis and differentials on 

710 annotated pathological radiographs.33 The accuracy in predicting the correct diagnosis 

reached up to 62% and the accuracy for a correct diagnosis out of three differentials reached 

up to 80%. The system has the potential benefit to aid non-musculoskeletal radiologists, since 

bone tumors are frequently detected as incidental findings. 

 

Automatic Classification of Images 

Semi-quantitative Analysis of Cartilage and Osteoarthritis Imaging 

AI has potentially very interesting applications in the field of OA. Indeed, research in this field 

is mainly based on the assessment and follow-up of large cohorts of patients. The availability 

of these repositories opens the opportunity to perform descriptive analyses, with the hope 



of developing predictive and prescriptive models in the future, which motivates the 

development of AI-based algorithms to achieve these tasks. Although the imaging modality 

of reference for the assessment of OA has for long been radiography, MRI is currently the 

imaging technique of reference for all articular components involved in the development of 

OA. MRI provides morphological datasets as well as compositional techniques, in particular 

T2 mapping, allowing the assessment of tissue structure, both of which can now be achieved 

at high-resolution in 3D.34-37 Currently, the analysis of MRI examinations is mainly based on 

semi-quantitative assessments of morphological sequences. These semi-quantitative scoring 

systems are extremely time-consuming, and therefore costly, which also limits their use in 

clinical practice. Having a tool to automatize these analyses and integrate the data provided 

by compositional imaging techniques would be quite beneficial to the field. In this context, 

machine learning represents a great opportunity to improve our understanding of this 

disease, and the assessment of new therapeutic options. 

Usually, the image interpretation algorithms contain a segmentation step followed by a 

second classification network to detect lesions. Using a deep convolutional neural network, 

Tiulpin et al. have reached a quadratic kappa coefficient of 0.83 compared to clinical experts 

in grading the severity of OA based on 3000 randomly selected radiographs from the 

Osteoarthritis Initiative (OAI) cohort.38 Besides, the algorithms present attention maps 

highlighting the radiological features leading to the decision. A similar study by Norman et al. 

on grading the severity of OA on knee radiographs have led to similar results.39 Xue et al. 

investigated the presence of OA on 420 pelvic radiographs, achieving sensitivity/specificity of 

95%/91% and an accuracy of 93%.40 Their model showed comparable results to a senior 

radiologist. 

 



Liu et al. showed that 2D convolutional neural networks could achieve high sensitivities and 

specificities of about 81 to 88% in automatically detection of femorotibial cartilage lesions.41 

3D convolutional neural networks were also able to detect meniscus and patellofemoral 

cartilage lesions on 3D MRI datasets, with a sensitivity/specificity of 90/82% and 80/80%, 

respectively, compared to clinical experts. The algorithm could also grade the severity of the 

lesions with accuracies above 75%. 

All of these studies compare the diagnostic ability of AI algorithms to expert radiologists, 

which most of the time provide the closest evaluation of the truth available. Considering the 

low interobserver agreement and moderate diagnostic performance of clinical radiologists to 

perform some of these tasks, it would be interesting to compare AI techniques to a validated 

gold-standard such arthroscopic results, whenever available.42,43 

 

Semi-quantitative Analysis of the Spine 

The imaging of spine MRI may be cumbersome for radiologists due to the number of levels to 

be analyzed, as well as the number of parameters (e.g. disc pathology, foraminal or central 

canal stenosis, etc.). Jamaludin et al. have shown that AI can help automate the grading of 

disc pathology on MRI using various classifications with an accuracy of 95.6% in terms of disc 

detection and labeling.44 This system would be of much help to alleviate the radiologist 

workload considering the number of spine MRIs performed. 

 

Automatic Determination of Bone Age 

Estimating bone age of pediatric hand radiographs is cumbersome and time-consuming. A 

study by Tajmir et al. on 280 hand radiographs showed that AI improves bone age 



interpretation compared to radiologists alone. Best values were reached when AI 

complemented the radiologist with an accuracy of 68% to improve performance.45 

The RSNA Pediatric Bone Age Machine Learning Challenge consisted of more than 14000 hand 

radiographs from 48 different users utilizing different machine learning algorithms to 

determine bone age.46 The five best algorithms showed similar results in age determination 

with a mean absolute distance to the reference standards of 4.2-4.5 months.  

 

Automatic Quantitative Analysis of Images 

Analysis of Spinal Deformity 

Any type of quantitative analysis, although essential to clinical routine or research, is both 

time-consuming for the radiologist, and subject to interobserver variability. Having a reliable 

tool to automatize these analyses would be highly beneficial. Many applications are possible, 

one of which is the automatic measurement of spinal deformity that could be achieved with 

high accuracy using artificial neural network.47 

 

Peripheral Nerve Segmentation 

Quantitative analysis of any structure requires prior segmentation. Manual segmentation of 

peripheral nerves for quantitative analysis can be particularly time-consuming due to the 

extensive scan size. Deep learning methods were shown to segment peripheral nerves much 

faster, and with similar accuracy than manual segmentation.48 The ischial nerve in 42 patients 

with sciatic neuropathy and 10 healthy volunteers on non-fat suppressed T2-weighted MR 

images could be fully automated segmented in less than 1 second as compared to a time-

consuming manual segmentation of 19 minutes. With this method, the deep neural network 



separated the nerve from background tissue. This AI-based automated postprocessing allows 

quantitative imaging such as diffusion weighted-imaging and magnetization transfer imaging 

to further assess the extent. Non-standardized imaging protocols, restricted contrast 

between the nerve and the surrounding soft tissue and motion artefacts limit the ability of 

automatic segmentation. 

  



Communication of Results 

Algorithms integrated in image interpretation that quickly identify negative and positive 

examinations may enable prompt communication of critical findings to the referring physician 

after being reviewed by the radiologist. Communication of imaging results, especially in a 

hospital environment, needs to be prompt to ensure an adequate and efficient patient 

management.8 Radiology reports are usually communicated via phone, however, reaching the 

responsible physician can sometimes be challenging. An electronic system, connecting the 

radiological report and medical record would allow flagging patients charts to prompt urgent 

attendance. Audio alerts automatically sent out to the referring physician could help reduce 

repetitive distracting phone calls. This would leave more valuable time to focus on reporting 

or to communicate with the relevant corresponding physicians and the patient. 

Structured reports could automatically be generated and include semi-quantitative and 

quantitative data. 

  



Limitations and Challenges of AI 

Despite the implementation of various useful AI algorithms, several limitations must be 

acknowledged. First, AI algorithms need to be integrated seamlessly into clinical workflow 

and need to be able to interface with varying current information technology environments 

as well as Picture Archiving and Communications Systems (PACS) and Radiological 

Information System (RIS). Only very few reports have been published on how AI actually 

affects the workflow of a radiologist in daily practice.13,14 Second, reproducing results of 

recently published studies is challenging, mainly because a) training data, and b) the code to 

reproduce the investigation are rarely released. However, improvements have already been 

achieved in medical publications, and code release is now standard in engineering 

publications. Third, future AI research investigations require anonymized data exchange 

between large radiology institutions to gain high volume image databases, which need to be 

standardized, annotated and of high-quality, although methods to deal with multi-site 

imaging data are increasingly being developed.49 All of these developments require careful 

consideration of major privacy and ethical issues. Fourth, with the increasing amount of 

radiological investigations witnessed over the past decade, one may assume that a sufficient 

amount of data is available to train algorithms. However, in reality, this data is not prepared 

for training. Data cleaning and image selection with equivalent image kernel or contrast, and 

consistent annotations are a prerequisite to training algorithms, although much work is 

currently focusing on making algorithms more resilient to unwanted variations in images. 

Lastly, sufficient computational power is needed to run the most complex algorithms. If no 

special processor (graphics processing unit (GPU)) is available, it may require several tens of 

seconds to process and analyze an image. Without a special GPU, algorithm training is 

unfeasible in practice. 



 

Along with these obstacles, several unsolved challenges inherent to AI have to be mentioned. 

First, current machine learning systems have no means of understanding what they are 

seeing. If fed with the wrong images, they still try to find patterns they are trained on. Users 

need to be aware of the limitations of these systems. Second, machine learning algorithms 

lack common sense. The algorithm should be comprehensive enough to deal with failures and 

uncertain cases. This also entails that legal liability is ultimately assigned to a human 

authority, and the radiologist should take full responsibility. Third, machine learning 

algorithms are typically unable to address more than one task at a time. That is, an algorithm 

for fracture identification will not be usable for bone age estimation. Thus, hospitals face the 

prospect of having to deal with a zoo of algorithms, each with their specific performance limits 

and failure modes. How to train radiologists to use these tools appropriately and calibrate 

their expectation is an open issue. Fourth, different readers may have different opinions of 

an image, and the algorithms will reflect the opinion of the annotations provided by the 

reader it is trained from. Tentative solutions include requiring several readers for annotations, 

but this is expensive. Finally, and most importantly, patients may want to have an image 

interpreted and a diagnosis made by a human expert rather than a machine. In other words, 

patient may be comforted by the presence of a pilot in the plane. How to produce trustable 

and fair machine learning results is an area of active investigation in the machine learning 

community, but recurring scandals involving data usage and sale on web platforms such as 

social media giants may, by association, undermine patients trust in machine learning 

techniques. 

  



Future Perspectives 

With high-volume digitalized radiological data, AI is having a transformational impact on 

radiology departments and with the integration of further information technology services of 

the entire healthcare system. The few musculoskeletal publications illustrate first descriptive 

and diagnostic models which, as soon as they are ready to be incorporated into clinical 

practice, will support work efficiency, productivity and optimize cumbersome workflows. AI 

will increase the quality of our work and value and ensures that radiologists are able to focus 

on meaningful tasks. These include verifying reports, making decisions and managing 

multidisciplinary board meetings, tasks that increase radiologists’ value. In this regard, AI 

should increase our personal satisfaction. 

As of today, it is not clear how AI will eventually aid in our daily workflow, as current 

technology is still a few steps away from being successfully implemented into practice. 

However, there is room for optimism and confidence, as shown by a recent analysis of the 

trends in social media, or by the fact that Facebook received 1 million knee MRIs from the 

Radiology Department of New York University.50,51 Indeed, constantly dealing with new 

challenges is part of the radiologist`s DNA. Over the last 40 years or so, we have had to adopt 

new imaging modalities in our practice (e.g. ultrasonography, CT, MRI) or technology that has 

revolutionized our workflow (e.g. PACS and RIS).  

Based on existing publications in musculoskeletal imaging, present-day AI algorithms have 

not yet been able of performing the complex tasks a human is able to accomplish. Therefore, 

we believe that AI will not replace radiologists, but that in the near future it will rather help 

radiologists augment their performance and keep up with their ever-increasing workflow. 
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Table 1: List of AI techniques and how they might impact the radiologist workflow, which 

consists of management of the radiological request, the protocoling and production of 

images, their interpretation, as well as communication of results to the referring clinician. 

Models that are not included in this table are those used in research, in the analysis of large 

cohorts of patients (i.e. in the field of OA). These consist of descriptive models (analyzing 

what has happened, such as correlations between factors and disease progression), 

predictive models (predicting what could happen, such as evolution of disease based on the 

presence of risk factors) and prescriptive models (optimizing parameters to obtain an 

outcome, such as what actions to take in order to prevent a disease from developing). All 

these techniques have seen significant advances in the past decade with the advent of deep 

learning. 

AI techniques Examples taken from 
literature 

Radiologist task that it 
might impact 

Natural language processing 
algorithms 

Analysis of requests, digital 
medical data, including 
previous reports, etc. 

Protocoling, image 
interpretation, 
communication of 
results 

Generative models Super-resolution MRI, 
sequence generation 

Production of images 

Segmentation algorithms Automatic segmentation of 
cartilage, menisci, bone (bone 
mineral density), peripheral 
nerves, etc.  for image 
diagnosis and quantitative 
analysis  

Image interpretation 

Classification models Bone tumors Image interpretation 
Regression models  Automatic grading of the 

severity of OA on knee 
radiographs or MRI 
Determination of bone age 

Image interpretation 
 

 

  



Table 2: Examples of artificial intelligence applications to the interpretation of 
musculoskeletal images, taken from the literature (papers published until 31st of 
December 2018): 

Authors Organ structure Task assisted by artificial 
intelligence 

Lindsey R et al. 201822 Wrist radiographs Distal radius fracture detection  

Olczak J et al. 201723 Hand, wrist and ankle 
radiographs 

Fracture detection 

Kim DH, Mac Kinnon T 
201824 

Wrist radiographs Distal radius fracture detection 

Urakawa T et al. 201925 Hip radiographs Intertrochanteric fracture 
detection 

Do BH et al. 201731 Skeletal radiographs Predicting bone tumor diagnosis 

Bien N et al. 201826 Knee MRI Detection of pathologies with 
emphasis on meniscal and 
anterior cruciate ligament tears 

Stajduhar I et al. 201727 Knee MRI Detection of anterior cruciate 
ligament tears 

Xue Y et al. 201740 Pelvic radiographs Grading hip osteoarthritis 

Tiulpin A et al. 201838 Knee radiographs Grading osteoarthritis 

Norman B et al. 201839 Knee radiographs Grading osteoarthritis 

Liu F et al. 201841 Knee MRI Detection of cartilage lesions 

Jamaludin A et al. 201744 Lumbar spine MRI Detection and labeling of 
vertebral bodies; Grading of 
segmental pathologies 

Tajmir SH et al. 201945 Hand radiographs Estimating bone age 

Halabi SS et al. 201946 Hand radiographs Estimating bone age 

Lin H 200847 Spine radiographs Analysis of spinal deformity 

Balsiger F et al. 201848 Sciatic nerve MRI Nerve segmentation  



Figure 1: Diagram showing the difference between classical machine learning and deep 
learning techniques. 
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