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dependent stationary sequences is derived under some mild asymptotic conditions. In this paper we ad-

dress additionally the case of incomplete samples assuming that the average proportion of incompleteness
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and the minima of both complete and incomplete samples. It turns out that the maxima and the minima

are asymptotically independent when P is a deterministic constant.
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1 Introduction

The asymptotic behaviour of extremes of random samples is a topic of interest in many theoretical and

applied research fields. As for the case of sample mean, under certain assumptions the limit distribution of

maxima of random samples can be shown to converge weakly after a linear transformation to a random

variable (rv) which is either Gumbel, Fréchet or Weibull, see the classical monographs [8, 9, 16, 22].

In many cases, for instance if we consider an independent random sample X1, . . . , Xn with underlying

N(0, 1) distribution, both maxima Mn = max1≤i≤nXi and minima mn = min1≤i≤nXi converge weakly

to a Gumbel rv, see below for technical details. For any fixed n both mn and Mn are dependent rvs,

however, maxima and minima are asymptotically independent. Surprisingly, as shown in [7, 19, 24]

under mild conditions this is the case also if {Xn, n ≥ 1} is a strictly stationary random sequence. The

asymptotic independence of minima and maxima is crucial in statistical application, see for instance

[4, 17].

When dealing with real data, missing or censored observations are very common. Results for the joint

asymptotic behaviour of maxima of complete and incomplete samples were initially derived in [14] and

[18]; several authors followed these contributions see e.g., [6, 12, 20, 21, 23].

In our context the random sample X1, . . . , Xn becomes incomplete if observations are missing. The

probabilistic model governing the missing of the observations studied in this paper is that of [18], i.e., we

shall consider independent Bernoulli rvs εn, n ≥ 1 independent of Xi’s so that εi is the indicator of the

event that Xi is observed. Thus Sn =
∑n
i=1 εi is just the number of observed rvs from {X1, . . . , Xn}.

The main restriction on εi’s imposed in this paper is that

Sn
n

:=

∑n
i=1 εi
n

→ P ∈ [0, 1] (1.1)
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holds in probability as n→∞. For the incomplete sample define the maxima Mn(ε) as

Mn(ε) =

{
max{Xi, εi = 1, i ≤ n}, if

∑n
i=1 εi ≥ 1,

inf{x|F (x) > 0}, otherwise,

where F shall denote the common distribution of Xi’s and define similarly the minima mn(ε).

The seminal article [18] derived the joint asymptotic behaviour of Mn and Mn(ε) considering P to be

non-random, see (2.2) below for details. The more general case that P is random is established in [14].

Based on the latter contribution, in this paper we consider additionally the sample minima deriving the

joint asymptotic behaviour of (mn,mn(ε),Mn,Mn(ε)) when (1.1) holds with some random P imposing

some mild conditions on the strictly stationary random sequence {Xn, n ≥ 1}.
Our main result shows that (Mn(ε),Mn) and (mn(ε),mn) are asymptotically independent if P is a

deterministic constant. This fact is interesting and somewhat expected since the incompleteness of the

data influences both maxima and minima, and therefore the asymptotic independence is not always

possible.

Brief organisation of the paper. In the next section we present our main result and then apply it to some

interesting cases of stationary sequences in Section 3. Proofs together with auxiliary results are displayed

in Section 4.

2 Main Result

We shall consider below a strictly stationary random sequence {Xn, n ≥ 1} with marginal distribu-

tion F , i.e., all Xi’s have the same distribution F , and (Xn+1, . . . , Xn+j) has the same distribution as

(Xn+k+1, . . . , Xn+k+j) for any j, k, n ∈IN . Suppose that there exist sequences an > 0, cn > 0, bn, dn ∈IR
and non-degenerate distributions G and H such that (write next F = 1− F,H = 1−H)

lim
n→∞

Fn(un(x)) = G(x), lim
n→∞

(F (vn(y)))n = H(y), (2.1)

where un(x) = anx + bn and vn(y) = cny + dn, x, y ∈ IR. Under the well-known asymptotic conditions

D(un, vn) and D′(un) in [18] it was shown that (2.1) implies

lim
n→∞

P {Mn(ε) ≤ un(x),Mn ≤ un(y)} = F(x, y;P) =: GP(x)G1−P(y) (2.2)

for any x < y, provided that (1.1) holds with P a deterministic constant. In [14] it was shown that

(2.2) still holds if P is a rv with F(x, y;P) = E
{
GP(x)G1−P(y)

}
. Since we shall consider also the

minima, both dependence conditions D(un, vn) and D′(un) assumed in the aforementioned references are

not sufficient for our investigation. Therefore, we shall impose below the stronger dependence conditions

introduced by Davis [7]. Throughout in the sequel zn(x,y) := (un(x1), un(x2), vn(y1), vn(y2)) are given

constants.

Definition: Condition D(zn(x,y)) is satisfied, if for any n and all A1, A2, B1, B2 ⊂ {1, . . . , n}, such

that A1 ∩A2 = ∅, B1 ∩B2 = ∅ and b− a ≥ ln, where a ∈ A1 ∪A2 and b ∈ B1 ∪B2 we have that∣∣∣∣∣∣P
 ⋂
j∈A1∪B1

{vn(ỹ2) < Xj ≤ un(x̃2)} ∩
⋂

j∈A2∪B2

{vn(ỹ1) < Xj ≤ un(x̃1)}


−P

 ⋂
j∈A1

{vn(ỹ2) < Xj ≤ un(x̃2)} ∩
⋂
j∈A2

{vn(ỹ1) < Xj ≤ un(x̃1)}
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× P

 ⋂
j∈B1

{vn(ỹ2) < Xj ≤ un(x̃2)} ∩
⋂
j∈B2

{vn(ỹ1) ≤ Xj ≤ un(x̃1)}


∣∣∣∣∣∣ ≤ αn,ln ,

where limn→∞ αn,ln = 0 for some sequence ln →∞ with ln/n→ 0 and x̃i = xi + I · ∞, ỹi = −(1− I)J ·
∞+ yi, i = 1, 2, I, J ∈ {0, 1} (set 0 · ∞ := 0).

Definition: Condition D′(un(x), vn(y)) is satisfied for a real sequence {un(x), vn(y), n ≥ 1} if

lim sup
n→∞

n

[n/k]∑
j=1

[
P {X1 > un(x), Xj+1 > un(x)}+ P {X1 > un(x), Xj+1 ≤ vn(y)}

+P {X1 ≤ vn(y), Xj+1 > un(x)}+ P {X1 ≤ vn(y), Xj+1 ≤ vn(y)}
]

= o(1)

as k →∞.

We state next our main result.

Theorem 2.1 Let {Xn, n ≥ 1} be a strictly stationary random sequence with underlying distribution

F . Suppose that (2.1) holds for un(x), vn(y), x, y ∈ IR. Assume further that both D′(un(x), vn(y))

and D(un(x1), vn(y1), un(x2), vn(y2)) hold for x2 < x1, y1 < y2. If the indicator random sequence

ε = {εn, n ≥ 1} is independent of {Xn, n ≥ 1} and further (1.1) is satisfied, then

lim
n→∞

P {vn(y2) < mn(ε) ≤Mn(ε) ≤ un(x2), vn(y1) < mn ≤Mn ≤ un(x1)}

= E
{
GP(x2)(H(y2))PG1−P(x1)(H(y1))1−P} .

Remarks: a) Under the conditions of Theorem 2.1 for y1 < y2 we have

lim
n→∞

P {mn(ε) > vn(y2),mn > vn(y1)} = E
{

(H(y2))P(H(y1))1−P} .
Further,

lim
n→∞

P {Mn(ε) ≤ un(x2),Mn ≤ un(x1)} = E
{
GP(x2)G1−P(x1)

}
holds with x2 < x1.

b) Theorem 2.1 implies for any x, y ∈IR

lim
n→∞

P {vn(y) < mn(ε) ≤Mn(ε) ≤ un(x)} = E
{
GP(x)(H(y))P

}
.

Hence, if P is a constant, then the maxima and the minima are asymptotically independent.

c) Our result shows in particular the joint asymptotic convergence of (mn(ε),mn) (and similarly for

(Mn(ε),Mn)). We have thus(
mn(ε)− dn

cn
,
mn − dn

cn

)
d→ (M∗,M), n→∞

and consequently, (
mn(ε)−mn

cn
,
mn − dn

cn

)
d→ (M∗ −M,M), n→∞.

A similar result is given in [15] for the case that P is a deterministic constant.
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3 Examples

In this section we present four illustrating examples.

Example 1. (Gaussian sequence) We consider the case that {Xn, n ≥ 1} is a centered stationary

Gaussian sequence with correlations ρn = E {X1Xn+1} < 1, n ≥ 1 such that E
{
X2

1

}
= 1. With the

choice of constants

an = cn =
1√

2 lnn
, bn = dn =

√
2 lnn− ln lnn+ ln 4π

2
√

2 lnn
(3.1)

condition (2.1) holds where un(x) = anx + bn, vn(y) = −cny − dn and H(x) = G(x) = exp(− exp(−x))

if further the Berman condition

lim
n→∞

ρn lnn = 0 (3.2)

is valid, see e.g., [2, 3]. Note in passing that (2.1) also holds if∑
n≥1

|ρn|p <∞ (3.3)

for some p > 1, see [7]. In view of [16], both D(zn(x,y)) and D′(un(x), vn(y)) are satisfied under (3.2)

or (3.3), and hence the claim of Theorem 2.1 holds for such stationary Gaussian sequences.

Example 2. (Gaussian linear processes) An important class of stationary sequences is that of the linear

processes (see e.g., [5, 8]), which have an infinite moving average representation

Xn =

∞∑
j=−∞

ψjZn−j ,

where {Zn, n ≥ 1} is an iid sequence and
∑
j ψ

2
j <∞. We also assume that {Zn, n ≥ 1} have mean zero

and finite variance σ2
Z . If {Zn, n ≥ 1} is Gaussian, so is {Xn, n ≥ 1}. In particular, for autoregressive-

moving average (ARMA) processes, the coefficients ψj decrease to zero at an exponential rate. As a

consequence, for such sequences the Berman condition (3.2) holds. Therefore we conclude that Theorem

2.1 is applicable to Gaussian ARMA processes.

Example 3. (Scaled Gaussian sequence) Define rvs X∗n = TnXn, n ≥ 1 where Xn is as in Example

1 or Example 2; here Tn is a positive rv which scales Xn. Our assumption is that T, Tn, n ≥ 1 are

independent rvs with a common distribution Q being further independent of the stationary Gaussian

sequence {Xn, n ≥ 1}. Suppose that the distribution Q has upper endpoint equal to 1 and for any

u ∈ (ν, 1) with ν ∈ (0, 1)

P {Tτ > u} ≥ P {T > u} ≥ P {Tγ > u}

holds with Tγ , Tτ two non-negative rvs. Let Q−1
1 be the generalised inverse of the distribution Q1 of

T1X1. With the choice of constants

bn = dn = Q−1
1

(
1− 1

n

)
, an = cn =

1

bn

if further Tγ and Tτ have regularly varying tails at 1 with non-negative indexes γ and τ , respectively and

the modified Berman condition

lim
n→∞

ρn(lnn)1+∆ = 0 (3.4)
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holds for some ∆ > 2(γ − τ), then in view of Theorem 1.2 in [13] the assumptions of Theorem 2.1 hold

for such scaled Gaussian sequence. We note in passing that if for some α, c positive

P {T > 1− 1/u} ∼ cu−α

as u→∞, then instead of (3.4) we can assume the Berman condition (which is weaker).

Similarly, if T has a Weibullian-type tail as defined in [1], according to Theorem 2.1 in [11] the claim of

Theorem 2.1 holds under the Berman condition.

Example 4. (FGM random sequence) A stationary Farlie-Gumbel-Morgenstern (FGM) random sequence

is defined by the common univariate marginal F , and a symmetric function a(j, l) which depends on j, l

only through their difference, i.e., a(j, l) =: α(|j−l|), for all j 6= l, such that the joint distribution Hi1,...,in

of Xi1 , . . . , Xin is given by the FGM distribution

Hi1,...,in(x1, . . . , xn) =

n∏
h=1

F (xh)

1 +
∑

1≤j<l≤n

α(|ij − il|)F̄ (xj)F̄ (xl)

 .

The function α(·) is admissible if for every n ≥ 1 and indices {i1, . . . , in} the inequalities

1 +
∑

1≤j<l≤n

ςij ςilα(|ij − il|) ≥ 0

hold for all ςij taking values ±1.

If we assume that for the normalizations un(x) and vn(y) the condition (2.1) is satisfied, then it follows

that the condition D′(un(x), vn(y)) is valid. If further

lim
n→∞

sup
l>n
|α(l)| = 0, (3.5)

then the condition D(zn(x,y)) is also satisfied (for a detailed proof see Appendix). Hence the claim of

Theorem 2.1 holds for such stationary FGM random sequence.

4 Further Results and Proofs

In order to prove the main theorem, we need some auxiliary results. Let β = {βn, n ≥ 1} be a non-random

sequence taking values in {0, 1}. Given an index set I ⊂ {1, . . . , n} we shall define

M(I,β) =

{
max{Xi, βi = 1, i ∈ I}, if

∑
i∈I βi ≥ 1;

inf{x|F (x) > 0}, otherwise

and similarly for m(I,β) where we consider instead of the maximum, the minimum of Xi’s. If J is

another index set we shall put d̃(I, J) := mini∈I,j∈J |i − j|. Let k be a fixed positive integer, t = [n/k]

and define

Ks = {j : (s− 1)t+ 1 ≤ j ≤ st}

for 1 ≤ s ≤ k. For a rv P ∈ [0, 1] write we shall write

Br,k =

{
ω : P(ω) ∈

{
[0, 1

2k ], r = 0,

( r
2k ,

r+1
2k ], 0 < r ≤ 2k − 1

}
and then set

Br,k,β,n = {ω : εi(ω) = βi, 1 ≤ i ≤ n} ∩Br,k.
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Lemma 4.1 If condition D(un(x1), vn(y1), un(x2), vn(y2)) holds for x2 < x1, y1 < y2, then for I1, . . . , Ik

non-empty subsets of {1, . . . , n} we have∣∣∣∣∣P
{

k⋂
s=1

vn(y2) < m(Is,β) ≤M(Is,β) ≤ un(x2), vn(y1) < m(Is) ≤M(Is) ≤ un(x1)

}

−
k∏
s=1

P {vn(y2) < m(Is,β) ≤M(Is,β) ≤ un(x2), vn(y1) < m(Is) ≤M(Is) ≤ un(x1)}

∣∣∣∣∣
≤ (k − 1)αn,ln , (4.1)

provided that min1≤i<j≤k d̃(Ii, Ij) ≥ ln.

Proof of Lemma 4.1 For k = 2, the inequality (4.1) is just the conditionD(un(x1), vn(y1), un(x2), vn(y2)).

Suppose that (4.1) holds for arbitrary index sets I1, . . . , Ik−1 such that the distance between any two

index sets is not less then ln. Define

A(I) = {vn(y2) < m(I,β) ≤M(I,β) ≤ un(x2), vn(y1) < m(I) ≤M(I) ≤ un(x1)}

for any interval I ∈ {1, . . . , n}. By induction and the condition D(un(x1), vn(y1), un(x2), vn(y2)) we have

that ∣∣∣∣∣P
{

k⋂
s=1

A(Is)

}
−

k∏
s=1

P {A(Is)}

∣∣∣∣∣ ≤
∣∣∣∣∣P
{

k⋂
s=1

A(Is)

}
− P

{
k−1⋂
s=1

A(Is)

}
P {A(Ik)}

∣∣∣∣∣
+

∣∣∣∣∣P
{
k−1⋂
s=1

A(Is)

}
−
k−1∏
s=1

P {A(Is)}

∣∣∣∣∣P {A(Ik)}

≤ αn,ln + (k − 2)αn,ln

= (k − 1)αn,ln ,

establishing the proof. �

Lemma 4.2 Under the assumptions of Lemma 4.1 we have∣∣P {vn(y2) < mn(β) ≤Mn(β) ≤ un(x2), vn(y1) < mn ≤Mn ≤ un(x1)}

−
k∏
s=1

P {vn(y2) < m(Ks,β) ≤M(Ks,β) ≤ un(x2), vn(y1) < m(Ks) ≤M(Ks) ≤ un(x1)}
∣∣

≤ (k − 1)αn,ln + (4k + 2)ln(F (un(x2)) + F (vn(y2))).

Proof of Lemma 4.2 Define Nn = {1, . . . , n} for any positive integer n. For large n we can choose a

positive integer ln such that k < ln < t. Let

Ntk =

k⋃
s=1

Ks and Ks = Is ∪ Js,

where Is = {(s− 1)t+ 1, . . . , st− ln} and Js = {st− ln + 1, . . . , st} for s = 1, . . . , k.

Since tk ≤ n < (t+ 1)k < tk + ln, we get |Nn\Ntk| < k < ln. Define sets Ik+1 and Jk+1 as

Ik+1 = {tk − t+ ln + 1, . . . , tk − 1, tk},

Jk+1 = {tk + 1, . . . , tk + ln − 1, tk + ln}.
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Then |Ik+1| = t − ln and |Jk+1| = ln. The set Ik+1 is a subset of Ntk and the set Jk+1 contains the set

Nn\Ntk. The maxima (minima) on the sets I1, I2, . . . , Ik are weakly dependent, and the small intervals

J1, J2, . . . , Jk, Jk+1 can be essentially neglected.

Let

∆1 = P

{
k⋂
s=1

A(Is)

}
− P {A(Nn)} , ∆2 = P

{
k⋂
s=1

A(Is)

}
−

k∏
s=1

P {A(Is)}

and

∆3 =

k∏
s=1

P {A(Is)} −
k∏
s=1

P {A(Ks)} ,

where A(I) is defined as in Lemma 4.1. The first term ∆1 is non-negative and further

∆1 ≤
k+1∑
s=1

(P {m(Js,β) ≤ vn(y2)}+ P {un(x2) < M(Js,β)})

+(k + 1)(P {m(J1) ≤ vn(y1)}+ P {un(x1) < M(J1)})

≤ 2(k + 1)ln

(
F (vn(y2)) + F (un(x2))

)
.

By Lemma 4.1 we have

|∆2| ≤ (k − 1)αn,ln .

Next since |
∏k
s=1 as −

∏k
s=1 bs| ≤

∑k
s=1 |as − bs| holds for all |as| ≤ 1, |bs| ≤ 1, s = 1, . . . , k we obtain

0 ≤ ∆3 ≤
k∑
s=1

(P {m(Js,β) ≤ vn(y2)}+ P {un(x2) < M(Js,β)})

+k(P {m(J1) ≤ vn(y1)}+ P {un(x1) < M(J1)})

≤ 2kln

(
F (vn(y2)) + F (un(x2))

)
and thus the claim follows. �

Proof of Theorem 2.1 Define in the following Ψn(z1, z2) = F (un(z1)) + F (vn(z2)),

P (Ks, ε) = P {vn(y2) < m(Ks, ε) ≤M(Ks, ε) ≤ un(x2), vn(y1) < m(Ks) ≤M(Ks) ≤ un(x1)}

for 1 ≤ s ≤ k and

P (n, ε) = P {vn(y2) < mn(ε) ≤Mn(ε) ≤ un(x2), vn(y1) < mn ≤Mn ≤ un(x1)} .

We have the following upper bound∣∣∣∣∣P (n, ε)− E

{
k∏
s=1

[
1− PnΨn(x2, y2) + (1− P)nΨn(x1, y1)

k

]}∣∣∣∣∣
≤

2k−1∑
r=0

∑
β∈{0,1}n

E

{∣∣∣∣∣P (n,β)−
k∏
s=1

[
1− PnΨn(x2, y2) + (1− P)nΨn(x1, y1)

k

]∣∣∣∣∣ I(Br,k,β,n)

}
≤ E1 + E2 + E3,

where

E1 =

2k−1∑
r=0

∑
β∈{0,1}n

E

{∣∣∣∣∣P (n,β)−
k∏
s=1

P (Ks,β)

∣∣∣∣∣ I(Br,k,β,n)

}
,
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E2 =

2k−1∑
r=0

∑
β∈{0,1}n

E

{∣∣∣∣∣
k∏
s=1

P (Ks,β)−
k∏
s=1

[
1−

r
2knΨn(x2, y2) + (1− r

2k )nΨn(x1, y1)

k

]∣∣∣∣∣ I(Br,k,β,n)

}

and

E3 =

2k−1∑
r=0

∑
β∈{0,1}n

E

{∣∣∣∣∣
k∏
s=1

[
1−

r
2knΨn(x2, y2) + (1− r

2k )nΨn(x1, y1)

k

]

−
k∏
s=1

[
1− PnΨn(x2, y2) + (1− P)nΨn(x1, y1)

k

]∣∣∣∣∣ I(Br,k,β,n)

}
.

Since by the assumptions

lim
n→∞

nΨn(x2, y2) = − lnG(x2)− lnH(y2),

and

lim
n→∞

αn,ln = 0, lim
n→∞

ln/n = 0,

then Lemma 4.2 implies

E1 ≤ (k − 1)αn,ln + (4k + 2)
ln
n
nΨn(x2, y2)→ 0 (4.2)

as n→∞. Next, for 0 ≤ r ≤ 2k − 1[
1− rt

2k
Ψn(x2, y2) + t

(
1− r

2k

)
Ψn(x1, y1)

]
+

[∑
j∈Ks

βj

t
− r

2k

]
tFn(x,y)

≤ P (Ks,β)

≤
[
1− rt

2k
Ψn(x2, y2) + t

(
1− r

2k

)
Ψn(x1, y1)

]
+t

t∑
j=2

P {As1, Asj}+

[∑
j∈Ks

βj

t
− r

2k

]
tFn(x,y),

where

Fn(x,y) = F (un(x2))− F (un(x1))− F (vn(y2)) + F (vn(y1))

and

Asj = {X(s−1)t+j > un(x2)} ∪ {X(s−1)t+j ≤ vn(y2)}, j ∈ {1, . . . , t}.

Hence, Lemma 3 in [14] implies

E2 ≤
2k−1∑
r=0

∑
β∈{0,1}n

k∑
s=1

E
{∣∣∣∣P (Ks,β)−

[
1−

r
2knΨn(x2, y2) + (1− r

2k )nΨn(x1, y1)

k

]∣∣∣∣ I(Br,k,β,n)

}

≤
2k−1∑
r=0

∑
β∈{0,1}n

k∑
s=1

E


∣∣∣∣∣∣
∑
j∈Ks

βj
t
− r

2k

∣∣∣∣∣∣ nkFn(x,y) I(Br,k,β,n)

+ n

t∑
j=2

P {A11, A1j}

≤
2k−1∑
r=0

k∑
s=1

E


∣∣∣∣∣∣
∑
j∈Ks

βj
t
− r

2k

∣∣∣∣∣∣ I(Br,k)

 n

k
Fn(x,y) + n

t∑
j=2

P {A11, A1j}

≤
k∑
s=1

[
2(2s− 1)

(
d

(
Sts
ts
,P
)

+ d

(
St(s−1)

t(s− 1)
,P
))

+
1

2k

]
n

k
Fn(x,y) + n

t∑
j=2

P {A11, A1j} ,

where d(X,Y ) = inf{ε,P {|X − Y | > ε} < ε}. Since limt→∞ d
(
Sts

ts ,P
)

= 0 and

lim
n→∞

nFn(x,y) = lnG(x2)− lnG(x1) + lnH(y2)− lnH(y1)
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taking the limit as n→∞ and then as t→∞, we get

lim sup
n→∞

E2 ≤
1

2k
[lnG(x2)− lnG(x1) + lnH(y2)− lnH(y1)] + ko(

1

k
). (4.3)

Further, as n→∞

E3 ≤
2k−1∑
r=0

∑
β∈{0,1}n

k∑
s=1

E
{∣∣∣ r

2k
− P

∣∣∣ n
k

(2− F (un(x2)) + F (vn(y2))− F (un(x1)) + F (vn(y1))) I(Br,k,β,n)
}

=

2k−1∑
r=0

E
{∣∣∣ r

2k
− P

∣∣∣ I(Br,k)
}
n(2− F (un(x2)) + F (vn(y2))− F (un(x1)) + F (vn(y1)))

≤ 1

2k
n(2− F (un(x2)) + F (vn(y2))− F (un(x1)) + F (vn(y1)))

→ 1

2k
[− lnG(x2)− lnG(x1)− lnH(y2)− lnH(y1)],

which together with (4.2) and (4.3) imply∣∣∣∣∣lim sup
n→∞

P (n, ε)− E
(

1− − lnGP(x2)− ln(H(y2))P − lnG1−P(x2)− ln(H(y2))1−P

k

)k∣∣∣∣∣
≤ ko

(
1

k

)
+
− lnG(x1)− ln(H(y1))

2k−1
.

The proof is then established by letting k →∞. �

5 Appendix

We show below that the stationary FGM random sequence in Example 4 satisfies both conditions

D(zn(x,y)) and D′(un(x), vn(y)).

Since for the normalization un(x) and vn(y) the condition (2.1) holds, we have

lim
n→∞

nF (un(x)) = − lnG(x), lim
n→∞

nF (vn(y)) = − lnH(y) (5.1)

and further

lim
n→∞

F (un(x)) = 0, lim
n→∞

F (vn(y)) = 0. (5.2)

For any I ⊂ {1, . . . , n} with m elements

P {Xi ≤ un(x), i ∈ I} = Fm(un(x))

1 +
∑
j<l∈I

α(l − j)F 2
(un(x))

 ,

P {Xi > vn(y), i ∈ I} = F
m

(vn(y))

1 +
∑
j<l∈I

α(l − j)F 2(vn(y))

 . (5.3)

By some tedious (but straightforward calculations) we establish also the following

P {vn(y) < Xi ≤ un(x), i ∈ I} = (F (un(x))− F (vn(y)))m

1 +
∑
j<l∈I

α(l − j)(∆nx, y)2

 , (5.4)

with ∆n(x, y) = F (un(x))− F (vn(y). By Lemma 1 in [10] for any I, J ⊂ {1, . . . , n} we obtain

|P {Xi ≤ un(x), i ∈ I ∪ J} − P {Xi ≤ un(x), i ∈ I}P {Xi ≤ un(x), i ∈ J} | → 0 (5.5)
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as n→∞. Using similar arguments as Lemma 1 in [10], since (3.5) holds, for any ε > 0 and with suitable

l0 such that |α(l− j)| < ε for l− j > l0, the absolute value of the double sum in (5.3) can be bounded by∑
j<l∈I,l−j≤l0

|α(l − j)|F 2(vn(y)) +
∑

j<l∈I,l−j>l0

εF 2(vn(y))

= O
(
l0nF

2(vn(y))
)

+O
(
εn2F 2(vn(y))

)
.

Using (5.1) and (5.2) this double sum converges to 0 as n→∞. Thus

|P {Xi > vn(y), i ∈ I ∪ J} − P {Xi > vn(y), i ∈ I}P {Xi > vn(y), i ∈ J} |

≤
∏
i∈I∪J

F (vn(x))(1 + o(1)− (1 + o(1))2)→ 0 (5.6)

as n→∞. Similarly, the absolute value of the double sum in (5.4) can be bounded by∑
j<l∈I,l−j≤l0

|α(l − j)|(∆n(x, y))2 +
∑

j<l∈I,l−j>l0

ε(∆n(x, y))2

= O
(
l0n(∆n(x, y))2

)
+O

(
εn2(∆n(x, y))2

)
.

Using (5.1) and (5.2) again, we have

|P {vn(y) < Xi ≤ un(x), i ∈ I ∪ J} − P {vn(y) < Xi ≤ un(x), i ∈ I}P {vn(y) < Xi ≤ un(x), i ∈ J} |

≤
∏
i∈I∪J

(F (un(x))− F (vn(y)))(1 + o(1)− (1 + o(1))2)→ 0 (5.7)

as n→∞. Consequently, (5.5)-(5.7) establish condition D(zn(x,y)).

Next we need to prove that for such stationary FGM random sequence the condition D′(un(x), vn(y))

holds. We only prove the first sum in the condition D′(un(x), vn(y)) tending to 0, the proof of the other

sums tending to 0 are the same. By (5.1)

lim sup
n→∞

n

[n/k]∑
j=1

P {X1 > un(x), Xj+1 > un(x)}

= lim sup
n→∞

n

[n/k]∑
j=1

F
2
(un(x))(1 + α(j)F 2(un(x)))

≤ lim sup
n→∞

n2

k
F

2
(un(x))(1 + α∗F 2(un(x)))

=
1

k
(lnG(x))2(1 + α∗),

where α∗ = maxj≥1 α(j). Letting k → ∞, this limit tends to 0. Hence, the condition D′(un(x), vn(y))

holds.

Acknowledgments. We would like to thank the referees for numerous comments and suggestions which

significantly improved this contribution. E. Hashorva acknowledges support from the Swiss National

Science Foundation grant 200021-140633/1; Z. Weng has been supported by the Swiss National Science

Foundation Project under grant 200021-134785 and by the project RARE -318984 (a Marie Curie FP7

IRSES Fellowship).

References
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[9] M. Falk, J. Hüsler, and R.-D. Reiss. Laws of Small Numbers: Extremes and Rare Events. In DMV

Seminar, volume 23, page 3rd edn. Birkhäuser, Basel, 2010.
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