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Abstract 

Background:  Smoking and alcohol consumption may compromise health by way of epigenetic modifications. 
Epigenetic signatures of alcohol and tobacco consumption could provide insights into the reversibility of phenotypic 
changes incurred with differing levels of lifestyle exposures. This study describes and validates two novel epigenetic 
signatures of tobacco (EpiTob) and alcohol (EpiAlc) consumption and investigates their association with disease 
outcomes.

Methods:  The epigenetic signatures, EpiTob and EpiAlc, were developed using data from the Swiss Kidney Project on 
Genes in Hypertension (SKIPOGH) (N = 689). Epigenetic and phenotypic data available from the 1921 (N = 550) and 
1936 (N = 1091) Lothian Birth Cohort (LBC) studies, and two publicly available datasets on GEO Accession (GSE50660, 
N = 464; and GSE110043, N = 94) were used to validate the signatures. A multivariable logistic regression model, 
adjusting for age and sex, was used to assess the association between self-reported tobacco or alcohol consumption 
and the respective epigenetic signature, as well as to estimate the association between CVD and epigenetic signa-
tures. A Cox proportional hazard model was used to estimate the risk of mortality in association with the EpiTob and 
EpiAlc signatures.

Results:  The EpiTob signature was positively associated with self-reported tobacco consumption for current or 
never smokers with explained variance ranging from 0.49 (LBC1921) to 0.72 (LBC1936) (pseudo-R2). In the SKIPOGH, 
LBC1921 and LBC1936 cohorts, the epigenetic signature for alcohol consumption explained limited variance in 
association with self-reported alcohol status [i.e., non-drinker, moderate drinker, and heavy drinker] (pseudo-R2 = 0.05, 
0.03 and 0.03, respectively), although this improved considerably when measuring self-reported alcohol consumption 
with standardized units consumed per week (SKIPOGH R2 = 0.21; LBC1921 R2 = 0.31; LBC1936 R2 = 0.41). Both signa-
tures were associated with history of CVD in SKIPOGH and LBC1936, but not in LBC1921. The EpiTob signature was 
associated with increased risk of all-cause and lung-cancer specific mortality in the 1936 and 1921 LBC cohorts.
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Introduction
Lifestyle exposures, such as smoking and alcohol con-
sumption, are known to play a major role in health and, 
as such, are often a focus in epidemiological studies and 
targeted health interventions. Unfortunately, given that 
such lifestyle exposures are usually collected by self-
report questionnaires they can be subject to information 
bias [1]. Biomarkers can aid in differentiating exposure 
status and thereby help mitigate potential biases, for 
example, urinary cotinine to assess exposure to smok-
ing [2]. However, individual biomarkers often require 
separate blood or urine assays that, in addition to clini-
cal sample collection, can contribute to financial burden 
at the study-level, but also patient-level burden. Moreo-
ver, while the status of the exposure (e.g., smoker versus 
non-smoker) matters, the extent of damage incurred at 
a molecular level may be what leads to disease and may 
vary across people depending on various genetic and/or 
environmental factors.

Smoking and alcohol consumption may compromise 
health by way of epigenetic modifications that alter gene 
expression and cellular function and can in turn cause 
changes to phenotype expression. One form of epigenetic 
modifications—DNA methylation—can be measured 
using genome-wide arrays. Depending on the location 
of the methylated DNA, these modifications can alter 
gene expression, including gene silencing. Importantly, 
epigenetic changes induced by DNA methylation can be 
reversible. Quantifying DNA methylation in white blood 
cells associated with lifestyle exposures is thus useful not 
only for risk-stratification, but also in relation to person-
alized medicine and developing dynamic, individualized 
prevention strategies.

Polyepigenetic risk scores—or epigenetic signa-
tures—of alcohol and tobacco consumption could pro-
vide insights into the reversibility of phenotypic changes 
incurred with differing levels and duration of lifestyle 
exposures. Moreover, epigenetic signatures of tobacco 
and alcohol consumptions could serve as biological prox-
ies for self-reported exposure status to avoid report-
ing bias and help enrich study data given the multitude 
of uses for epigenetic information once collected that 
goes beyond any single signature estimation. Using data 
from the SKIPOGH cohort—a population-based cohort 
study with extensive data on lifestyle exposures, genetic 

and epigenetic information—the objective of this study 
is to create two novel epigenetic signatures of tobacco 
(EpiTob) and alcohol (EpiAlc) consumption using evi-
dence from the literature and SKIPOGH data, to validate 
them using independent databases and to investigate 
their association with CVD and all-cause and cause-spe-
cific mortality.

Methods
Study population
This study used data collected from individuals included 
in the Swiss Kidney Project on Genes in Hyperten-
sion (SKIPOGH) study [3]. Briefly, SKIPOGH is a 
multi-center, family-based cohort study of participants 
recruited between 2009 and 2013; a follow-up (wave 
2 [W2]) occurred between 2012 and 2016 [3]. At both 
waves, data were collected on sociodemographic infor-
mation, health status (including medical history), lifestyle 
and sleeping habits, physical activity, as well as clini-
cal and anthropometric exam results. Inclusion criteria 
consisted of (1) written informed consent, (2) European 
descent, (3) 18  years of age or older, as well as (4) the 
additional inclusion of at least one first-degree family 
member [3]. Data on DNA methylation were only col-
lected for a sub-sample of participants at W2. The ana-
lytical sample of the present study is therefore restricted 
to information collected at W2.

Dependent variables of interest
Information on alcohol and tobacco consumption sta-
tus collected during the follow-up wave of SKIPOGH 
was used in the present study. Alcohol consumption 
was defined based on the Swiss Federal Public health 
guidelines on prevention of alcohol abuse (www.​addic​
tions​uisse.​ch) using the self-reported average number of 
recorded alcohol units (1-unit ≈ 10  g of pure alcohol) 
consumed per week. Self-reported alcohol consump-
tion status categorized into heavy (> 21 units per week 
for men, > 14 units for women), moderate (1–21 units 
for men, 1–14 units for women) and non-drinkers (less 
than 1 unit of alcohol consumed per week). Self-reported 
smoking status (including all forms of tobacco consump-
tion) was categorized into three categories: current 
smoker, ex-smoker, and non-smoker. Cardiovascular-
related disease (CVD) status (yes/no) was defined as ever 

Conclusions:  This study found the EpiTob and EpiAlc signatures to be well-correlated with self-reported exposure 
status and associated with long-term health outcomes. Epigenetic signatures of lifestyle exposures may reduce meas-
urement issues and biases and could aid in risk stratification for informing early-stage targeted interventions.
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having had a cardiovascular event, including coronary 
heart disease, stroke, or any other cardiovascular-related 
event (e.g., coronary disease, angina, infarct).

Covariates
Information collected during the follow-up wave of 
SKIPOGH on age, sex, body mass index (BMI), educa-
tional attainment, alcohol and tobacco consumption sta-
tus was used in the present study.

Pre‑processing of DNA methylation data
DNA was extracted from white blood cells of SKIPOGH 
participants using a bead-based KingFisher Duo robot 
extraction system (ThermoFisher, Waltham, Massachu-
setts), with 1.2  µg of DNA then treated with bisulfite 
using the EZ DNA Methylation© Kit (Zymo Research). 
Alternative incubation conditions (described in the EZ 
DNA Methylation™ Kit bisulfite conversion protocol, 
point 6 of the appendix) were used when performing 
the polymerase chain reaction (PCR) using the Illumina 
Infinium© Methylation Assay, and the final elution was 
carried out using 8 µl of M-Elution Buffer. DNA methyla-
tion levels were then assessed using genome-wide DNA 
methylation micro-array platforms Illumina Human-
BeadChip 450  K (HM450K) (N = 250) and EPIC 850  K 
(EPIC) (N = 480). Missing CpG data were imputed using 
the nearest averaging multiple imputation method, beta 
coefficients were then logit transformed [4, 5]. The CPA-
COR pipeline was used to normalize data and identify 
quality control issues [6]. Samples with issues identi-
fied in a quality control step, e.g., a call rate of less than 
95% were excluded from all analyses (p value < 10–16) 
(HM450k: N = 9; EPIC: N = 15). CpGs identified as 
being present across both the EPIC and HM450k arrays 
(N = 452,453) were subsequently used for all analyses and 
calculations of epigenetic signatures.

Epigenetic signatures for tobacco and alcohol 
consumption
Relevant CpG sites were identified in a scoping literature 
review of epigenome-wide association studies (EWAS)—
2019 or prior—published in the EWAS atlas [7], including 
all CpGs associated with the traits “smoking” or “alco-
hol consumption”; only those CpGs with Bonferroni-
level significance were retained for inclusion in models 
[8, 9]. Potential genetic confounding factors (i.e., single 
nucleotide polymorphisms [SNPs] in close proximity to 
CpG sites) were identified by testing whether SNPs were 
methyl-quantitative trait loci (mQTL) in SKIPOGH data 
according to associated GWAS [10]. As a result, 241 CpG 
loci and 22 associated methyl-quantitative trait loci SNPs 
were identified (according to methodology as described 
by Gonseth et al. [11]) for tobacco consumption, and 57 

CpG loci and 2 SNPs for alcohol consumption. Models 
were then generated to include random combinations 
of seven CpG sites at a time, including one CpG and its 
associated SNP; the CpG sites and SNPs were included as 
exposure variables and the trait (i.e., smoking or alcohol 
consumption status) as the outcome. CpGs were selected 
from an initial list of 325 CpGs for tobacco consumption, 
and 63 for alcohol consumption. Models were restricted 
to a binary outcome of smoking status (smoker versus 
never smoker) and drinking status (non-drinker versus 
drinker). The model that maximized the goodness-of-
fit for each respective trait of interest—according to the 
Bayesian Information Criterion (BIC) —was chosen to 
create the final epigenetic signature, with the hypothesis 
being that the model with the best fit will have the great-
est biological relevance. Three separate CpG sites were 
identified for the epigenetic signature of alcohol con-
sumption (EpiAlc), namely: cg06690548, cg03497652, and 
cg00716257. For the epigenetic signature of tobacco con-
sumption (EpiTob), five different CpG sites were identi-
fied: cg05575921, cg26703534, cg23480021, cg08118908, 
cg00336149. No SNP was identified for inclusion in 
either of the final predictive models. The number of iden-
tified CpGs is due to the initial restriction of a maximum 
of seven included CpGs, whereby the resulting number 
of CpGs being fewer than seven is a consequence of the 
regression approach used, and the inclusion of only those 
CpGs identified as being significantly associated with the 
outcome of interest.

Validation cohorts
Two external validation datasets and data from two inde-
pendent cohort studies were used to validate the epige-
netic signatures for tobacco and alcohol consumption 
developed with SKIPOGH data. Relevant replication 
datasets were identified in the Gene Expression Omnibus 
data repository: the “GSE50660” (tobacco consumption) 
(Illumina Infinium HumanMethylation450 BeadChip) 
and the “GSE110043” (alcohol consumption) (Illumina 
InfiniumEPIC Human Methylation Beadchip) datasets. 
Included in the GSE50660 dataset is information on 
DNA methylation from 464 people of European descent 
who were identified based on participation in a coronary 
artery disease study across three different centers (Paris, 
France; Leicester and Cambridge, England) [12]. Mean-
while, the GSE110043 cohort includes 47 cases of indi-
viduals admitted consecutively for alcohol detoxification 
to one of three substance use treatment organizations 
(Iowa, U.S.A.) and 47 abstinent controls, or individuals 
who abstained from drinking during the year preced-
ing study inclusion [8]. Whole blood DNA samples were 
acquired upon study inclusion, which occurred between 
1 and 7 days post-admittance for cases [8].
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Data from the Lothian Birth Cohorts of 1921 
(LBC1921) and 1936 (LBC1936) [9] were used to (a) vali-
date the epigenetic signatures as a biomarker of exposure, 
and (b) assess the validity and replicability of associa-
tions observed in the SKIPOGH cohort study between 
individual epigenetic signatures and disease outcome. 
Most of the people included in both LBC cohorts are of 
European descent. The present study uses DNA methyla-
tion in white blood cells, clinical and questionnaire vari-
ables of self-reported exposures collected during the first 
follow-up for each cohort (Wave 1) [10]. Normalization 
of the DNA methylation data was performed according 
to internal controls and background subtraction [15]. In 
both the 1921 and 1936 cohorts, units of alcohol con-
sumption and tobacco consumption were similarly cat-
egorized as described above. CVD was defined in the 
Lothian birth cohorts as “history of cardiovascular dis-
ease” (yes/no) and based on the question “Have you ever 
had a heart attack, angina, heart valve problem, abnormal 
heart rhythm, or any other heart problem?” Information 
on vital status up until February 2021 was acquired via 
linkage to the National Health Service Central Register 
in Scotland. Cause-specific mortality was classified based 
on the primary ICD-10 (International Classification of 
Disease, revision 10) code recorded. ICD-10 codes for 
cardiovascular disease- and lung cancer-related mortal-
ity can be found in the additional files (Additional file 1). 
Due to differences in data collection, population charac-
teristics and variable availability, data for the two LBC 
cohorts were analyzed separately.

Statistical analyses
Descriptive statistics of SKIPOGH participant character-
istics are provided stratified according to the availability 
of DNA methylation data. Characteristics of the analyti-
cal sample (i.e., excluding those without DNA methyla-
tion data or with missing data related to the smoking or 
alcohol exposure) are provided stratified according to 
cohort. To assess the relationship between self-reported 
tobacco or alcohol consumption and the respective 
epigenetic signature (EpiTob and EpiAlc), a multivari-
able logistic regression model was used, including self-
reported exposure as the binary dependent variable and 
the epigenetic signature as the independent variable of 
interest; models were adjusted for age and sex. McFad-
den’s pseudo-R2 is reported to measure the explained 
variation [11].

Logistic regression models were used to investigate the 
association between EpiTob and EpiAlc and CVD, indi-
vidually. Model diagnostics included (a) ensuring the lin-
ear effect of the continuous exposure on the outcome, (b) 
checking for influential values using Cook’s distance, and 
(c) multicollinearity. When using SKIPOGH data, mixed 

effects models that included center and family ID as fixed 
effects, separately, were used in a sensitivity analysis to 
ensure that center and potential family-level exposures 
did not change results. In addition, inverse probability 
weights (IPWs) based on availability of epigenetic data 
for SKIPOGH participants were used in a sensitivity 
analysis to ensure that potential selection bias did not 
affect conclusions.

By virtue of the extended follow-up and comprehen-
sive vital status assessment in the LBC cohorts, Cox pro-
portional hazard models were used to assess the risk of 
mortality in association with lifestyle exposures. Haz-
ard ratios (HRs) and 95% confidence intervals (CIs) are 
reported. Potential violations of the proportional hazard 
assumption were assessed via the visual inspection of 
Kaplan–Meier curves and testing of scaled Schoenfeld 
residuals. In case of violations, potential nonlinearity of 
continuous variables was assessed using penalized splines 
[pspline in R] and three degrees of freedom. Competing 
risk analyses were carried out using the mstate package 
using a transition matrix composed of two absorbing 
states: (1) the cause-specific outcome of interest and (2) 
all other causes of death. Subhazard ratios (sHRs) are 
reported with 95% confidence intervals [17]. The pro-
portional hazard assumption using the same methodol-
ogy as described above. Regression results for the EpiTob 
and EpiAlc signatures are presented as standardized val-
ues, such that a one-unit increase in the signature corre-
sponds to an increase in one standard deviation.

Analyses were carried out using R Studio (R version 
4.0.2) [18].

Results
Descriptive statistics
Epigenetic signatures were estimated for 701 SKIPOGH 
participants (of 1034; 67.8%), of which 689 had available 
data on alcohol or tobacco consumption. In comparison 
to excluded participants, participants were older and 
had a higher BMI (p < 0.05), with a greater proportion of 
smokers or past smokers (Additional file 1). No differ-
ences were observed according to alcohol consumption 
or sex. Compared to the validation cohorts, SKIPOGH 
participants were younger, had a lower BMI, included a 
greater proportion of females, current or past smokers, 
and had an overall lower average number of alcohol units 
consumed per week (Table 1).

Goodness‑of‑fit in SKIPOGH
Among SKIPOGH participants, the epigenetic signa-
ture for tobacco consumption was positively associated 
with self-reported tobacco consumption for current or 
never smokers (McFadden’s pseudo-R2 = 0.51) (Fig.  1). 
When adjusting for age and sex, the epigenetic signature 
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demonstrated a high capacity to distinguish between 
smokers and non-smokers in SKIPOGH (AUC = 0.92; 
95% CI 0.90–0.95). In comparison, the EpiAlc signature 
had limited goodness-of-fit when distinguishing alcohol 
consumption non-drinkers to drinkers in the SKIPOGH 
(McFadden’s pseudo-R2 = 0.04), although this improved 
when restricting to heavy versus non-drinkers (McFad-
den’s pseudo-R2 = 0.24), and also in relation to stand-
ardized units consumed per week (SKIPOGH, adjusted 
R2 = 0.21).

Validation
In comparison to the SKIPOGH cohort, the goodness-
of-fit for EpiTob was even higher for the GSE50660 

validation cohort (pseudo-R2 = 0.72), as well as the 
LBC1936 cohort (pseudo-R2 = 0.72). Goodness-of-fit for 
the LBC1921 cohort was like that observed in the SKIP-
OGH cohort (pseudo-R2 = 0.49) (Fig. 1). A high capacity 
for distinguishing between smokers and non-smokers 
was demonstrated for the LBC1936 cohort (AUC = 0.97; 
95% CI 0.95–1.00). When comparing non-drinkers to 
drinkers in the LBC1921 and LBC1936 cohorts, the 
EpiAlc signature had limited goodness-of-fit (pseudo-
R2 = 0.03 and 0.03, respectively) (Fig.  2), although this 
again improved when considering the standardized 
units consumed per week (LBC1921 R2 = 0.15; LBC1936 
R2 = 0.21). The goodness-of-fit was considerably higher 
in the GSE110043 validation cohort when discriminating 

Table 1  Study Characteristics of analytical sample, stratified by cohort

LBC1921 (N = 550) LBC1936 (N = 1091) SKIPOGH (N = 689)

Age (years)

Mean (SD) 79.3 (0.6) 69.73 (0.8) 52.5 (15.5)

Q1, Q3 78.9, 79.7 69.1, 70.4 41.2, 65.3

Missing 0 0 0

Sex

Male 238 (41.8%) 548 (50.2%) 330 (48.1%)

Female 331 (58.2%) 543 (49.8%) 356 (51.9%)

Body mass index (kg/m^2)

Mean (SD) 26.2 (4.2) 27. 8 (4.4) 25.64 (4.7)

Q1, Q3 23.4, 28.5 24.9, 30.3 22.3, 28.2

Missing 6 2 1

Alcohol unit(s) consumed per week

Mean (SD) 8.7 (10.1) 10.5 (14.2) 6.4 (9.0)

Q1, Q3 2.0, 13.0 0.5, 15.0 0.0, 9.1

Missing 0 0 0

Alcohol status

Non-drinker 137 (24.9%) 211 (19.3%) 204 (29.9%)

Moderate drinker 333 (60.5%) 686 (62.9%) 413 (60.6%)

Heavy drinker 80 (14.5%) 194 (17.8%) 65 (9.5%)

Smoking status

Non-smoker 238 (43.4%) 501 (45.9%) 288 (42.0%)

Past smoker 271 (49.4%) 465 (42.6%) 224 (32.7%)

Current Smoker 40 (7.3%) 125 (11.5%) 174 (25.4%)

ES: tobacco

Mean (SD) − 0.1 (2.3) 0.8 (2.8) − 1.5 (2.6)

Q1, Q3 − 1.4, 1.1 − 1.0, 2.0 − 3.0, − 0.6

Missing 115 196 0

ES: alcohol

Mean (SD) 7.2 (6.6) 7.6 (7.4) 8.0 (4.8)

Q1, Q3 3.4, 9.7 2.8, 10.8 5.1, 9.4

Missing 115 196 0

History of CVD

No CVD 382 (81.3%) 823 (75.4%) 560 (79.3%)

CVD history 88 (18.7%) 268 (24.6%) 146 (20.7%)
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between heavy drinkers versus non-drinkers (pseudo-
R2 = 0.29) (only adjusting for sex due to data availability). 
Finally, adjusting for age and sex, the epigenetic signa-
ture for alcohol consumption had a high capacity to dis-
criminate between non-drinkers versus heavy drinkers 
(AUC = 0.74; 95% CI 0.67–0.81), which was slightly lower 
when discriminating between current drinking status 
(yes/no) (AUC = 0.64; 95% CI 0.60–0.68) in the SKIP-
OGH cohort.

Association with cardiovascular disease
Results from the logistic regression models of the asso-
ciation between EpiTob and EpiAlc with CVD are sum-
marized in Fig.  3, stratified by cohort. When adjusting 
for age, sex, BMI, self-reported drinking status and edu-
cation, a one standard deviation increase in the EpiTob 
signature was associated with a 31% higher odds of CVD 
in the SKIPOGH cohort (OR = 1.31, 95% CI 1.04–1.64), 
and a 16% increased odds in the LBC1936 cohort, albeit 
not significant (OR = 1.16, 95% CI 0.99–1.35). In con-
trast, a one standard deviation increase in the epigenetic 
signature for alcohol consumption was associated with 
a 28% increased odds of CVD in the SKIPOGH cohort 
(OR = 1.28, 95% CI 1.04–1.56), and a 22% increased odds 
in the LBC1936 cohort (OR = 1.22, 95% CI 1.04–1.43) 
(adjusting for self-reported smoking status) (Fig.  3). 
No statistically significant association was observed 
in the LBC1921 cohort for either alcohol or tobacco 

consumption (p value > 0.05), although higher levels of 
the ES for tobacco appeared to be associated with lower 
odds of reported CVD history (Fig.  3). In a sensitivity 
analysis restricting to individuals 70  years or older—to 
facilitate comparability between the SKIPOGH and LBC 
cohorts—the ES of tobacco consumption was no longer 
associated with CVD (OR = 1.07, 95% CI 0.89–1.27). 
Finally, inclusion of inverse probability weights did not 
modify the direction of results in the SKIPOGH cohort, 
but rather augmented the effect size for the ES of tobacco 
consumption (OR = 1.24, 95% CI 1.16–1.32).

Risk of mortality
An increase in the epigenetic signature for tobacco con-
sumption was associated with an increase in all-cause 
mortality in Cox regression models for both the LBC1921 
and LBC1936 cohorts (centered at 0) (Fig. 4). Following 
adjustment for smoking status, the epigenetic signature 
for alcohol consumption was not associated with all-
cause mortality.

A secondary analysis using the competing risk frame-
work, increasing scores of the EpiTob signature were 
associated with an increasing mortality due to lung 
cancer in the LBC1936 cohort (Fig.  5). For example, a 
one standard deviation increase in the EpiTob signa-
ture was associated with a nearly two times higher risk 
of lung cancer-associated mortality (sHR = 1.95, 95%CI 

Fig. 1  Distribution of SKIPOGH participants categorized by smoking status in function of their epigenetic signature.  A Using data from the 
SKIPOGH cohort, B using data from the external validation cohort GSE50660, C using data from the LBC1921 cohort, and D the LBC1936 cohort. All 
reported pseudo-R2 values are from logistic regression models adjusting for age and sex
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Fig. 2  Distribution of SKIPOGH participants categorized by drinking status in function of their epigenetic signature.  A Using data from the 
SKIPOGH cohort, B using data from the external validation cohort GSE110043, C using data from the LBC1921 cohort, and D the LBC1936 cohort. All 
reported pseudo-R2 values are from logistic regression models adjusting for age and sex (except for the GSE110043 cohort, which only includes sex)

Fig. 3  Odds ratios and 95% confidence intervals for the association 
between epigenetic signatures and CVD, stratified by cohort.  
Cohorts are organized according to the average age of the cohort. 
Average age of cohort participants for SKIPOGH = 50.9 years; 
LBC1936 = 69.7 years; LBC1921 = 79.3 years. Presented odds ratios 
correspond to the standardized signatures

Fig. 4  Risk of mortality according to level of epigenetic 
signature. Presented hazard ratios correspond to the standardized 
signatures. Dashed lines represent deaths from all-cause mortality 
at individual values of the epigenetic signature (so-called rug plot), 
whereby lines along the top of the figure correspond to deaths 
observed in the LBC1921 cohort, and along the bottom deaths 
observed in the LBC1936 cohort
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1.45–2.64), but was non-significant for CVD (sHR = 1.18, 
95% CI 0.93–1.51). A similar pattern was observed in 
the LBC1921 cohort, for which a one standard deviation 
increase in the ES of tobacco consumption was associ-
ated with a two-fold higher risk of lung-cancer associ-
ated mortality (sHR = 2.02, 95%CI 1.41–2.90). However, 
no association was observed between EpiTob or EpiAlc 
and CVD-associated mortality in the LBC1921 cohort 
(p > 0.05).

Discussion
This study describes and validates two novel epigenetic 
signatures of lifestyle exposures. Moreover, the epige-
netic signature for tobacco consumption was associated 
with an increased odds of self-reported CVD, as well as 
an increased risk of all-cause and lung cancer-related 
mortality in an independent cohort. Although the sig-
nature for alcohol consumption was also associated with 
an increased odds of reported CVD, it was not associ-
ated with all-cause or cause-specific mortality in the LBC 
cohorts.

The EpiTob and EpiAlc signatures generally required 
fewer CpGs and had a similar if not higher correla-
tion with their associated self-reported phenotype (i.e., 
tobacco and alcohol consumption, respectively) in com-
parison with previously published epigenetic signa-
tures. For example, Liu et  al. proposed four epigenetic 
signatures for alcohol consumption (grams per day + 1) 
that were based on 5, 23, 78 and 144 CpGs [8]. Ignor-
ing results based on the initial training dataset, the sig-
nature composed of 144 different CpGs explained the 

most variance (difference in reported R2 between the 
model with and without the epigenetic signature = 13.8) 
(data from the Atherosclerosis Risk in Communities 
study [19]), while the maximum variance explained by 
the five CpG-based signature was about 10% when using 
data from the LBC1936 cohort (R2 = 10.4). In compari-
son, the three CpG-based EpiAlc signature accounted for 
13% of the explained variance when also using data from 
the LBC1936 cohort (adjusting for age, sex and BMI as 
done in the study by Liu et  al. [8]). Directly comparing 
to the methylation scores of tobacco consumption esti-
mated using the EpiSmokEr package [20], the EpiTob sig-
nature had a similarly high performance (Additional file 
1). For example, using data from the LBC1936 cohort, the 
187-CpG signature proposed by Elliott et  al. explained 
72% of the variance, while the 4-CpG score from Zhang 
et  al. explained 77% [21, 22]. Notably, there was no dif-
ference in the predictive capacity of these signatures 
in comparison to the EpiTob signature (p > 0.05, adjust-
ing for age and sex). There was similarly no difference 
between the predictive capacity (p value > 0.05) of the 
EpiTob signature—nor the signatures proposed by Elli-
ott et al. or Zhang et al. —in comparison with the single-
CpG approach (cg05575921)for the LBC1936 cohort [23]. 
Notably, included in the EpiTob signature is the same 
AHRR-associated CpG, cg05575921. Additional research 
is needed to determine whether the inclusion of addi-
tional CpGs beyond cg05575921 contributes to increased 
stability over time, lending to a more stable signature 
required for longitudinal assessments of exposure.

Biological interpretation
The five CpGs for the signature of tobacco consump-
tion were located on three genes (NDE1, CACNA1D, 
and AHRR), while the three CpGs composing the sig-
nature of alcohol consumption were located on two 
genes (SLC7A11, JDP2). The CpG sites included in both 
epigenetic signatures were initially identified through a 
literature search of published EWAS results that iden-
tified upwards of 3,000 CpGs (alcohol and tobacco 
consumption combined). In creating these epigenetic 
signatures, the models were maximized to ensure parsi-
mony with the least amount of variables possible, while 
concurrently ensuring the greatest variance explanation 
as possible. Thus, the selected CpGs likely only capture 
a small portion of the whole, representing a few cogs 
in a greater physiologic machinery, and so it is unsur-
prising that the Gene Enrichment analysis identified 
neither significant terms nor necessarily relevant terms 
(see Additional file  1: Table). However, with respect 
to the annotated genes, the aryl hydrocarbon receptor 
repressor (AHRR) gene encodes a protein involved in 
the aryl hydrocarbon receptor (AhR) signaling cascade, 

Fig. 5  Cause-specific subhazard ratios for CVD and lung 
cancer-associated mortality. Each line corresponds to a separate 
model. Both models were adjusted for: age at entry, sex, BMI, years 
of education, and alcohol consumption. Presented hazard ratios 
correspond to the standardized signatures. Dashed lines represent 
cause-specific deaths at individual values of the epigenetic signature 
(so-called rug plot), whereby lines along the top of the figure 
correspond to CVD-related death, and along the bottom lung 
cancer-related death
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which links environmental chemical stimuli (e.g., 
smoking) with adaptive responses [24]. In terms of the 
EpiAlc signature, the Solute Carrier Family 7 Mem-
ber 11 (SLC7A11) gene is involved in the transport of 
cysteine and glutamate. A recent study by Lohoff et al. 
[25] used data from a population-base cohort, a case–
control study, a postmortem mRNA analysis of human 
brain samples, and an mRNA analysis of liver tissues 
from mice, to provide evidence for the downregulation 
of SC7A11 in association with alcohol consumption; 
such downregulation has also been linked to increased 
oxidative stress. Moreover, Lohoff et al. [25] also identi-
fied CpGs annotated to the c-Jun-dimerization protein 
2 (JPD2) gene in association with alcohol consumption.

Utility of epigenetic signatures in epidemiological research
Cohort studies are often hindered by the type of data 
collected, unmeasured confounding, reliability of self-
reported data and its associated biases (e.g., recall 
or response bias), as well as duration and intensity of 
exposure. Epigenetic signatures of lifestyle exposures, 
health conditions, and as predictors for disease risk 
and progression have the potential to assuage such 
issues in epidemiological research. Currently, objec-
tive biomarkers of exposure are available that measure 
self-reported exposure to tobacco consumption (e.g., 
cotinine levels with a half-life of 12–20  h) or alcohol 
consumption (e.g., ethyl-glucuronide [EtG] with a half-
life of about 2–3 h) [26–29]. However, these biomarkers 
require additional tests, independent from one another, 
that can contribute to participant burden. Importantly 
for prospective cohort studies, participant burden can 
play a role in study attrition, which in turn may lend 
to a loss of power or even bias study results resulting 
in erroneous conclusions [30]. Moreover, measuring 
at a mechanistic level—or biological level—the impact 
of an exposure can aid in refining risk stratification in 
epidemiological studies, and in turn improve the iden-
tification of individuals most susceptible to developing 
disease.

Utility of epigenetic signatures in clinical setting
Epigenetic signatures could become means to track 
intervention effectiveness of behavioral changes at an 
individual-level, which would be relevant in the clinical 
management of tobacco and alcohol use disorders, by 
providing a call for action and motivational tools. The 
EpiTob and EpiAlc signatures were created to maximize 
prediction and minimize the number of CpGs included; 
thus, although the choice to restrict to seven CpGs was 
arbitrary, the main goal was to drastically minimize the 
number of included CpGs. To this point, in terms of 

clinical utility, a parsimonious signature is advantageous 
as it can use less expensive techniques than chip arrays. 
Advancements in technology that are already underway 
(such as those by Oxford Nanopore technologies® and 
MassARRAY®) could facilitate measurement of only 
those CpG sites of interest, helping drive down costs and 
ensure accessibility. However, usage of these signatures 
to track the effectiveness of behavioral changes would be 
dependent on the plasticity of measured CpGs to changes 
in exposure. Although the plasticity of the epigenetic sig-
natures could not directly be demonstrated in the present 
analysis, there are arguments for its existence. For exam-
ple, in a longitudinal analysis Dugué et al. observed that 
changes in the reported alcohol intake were associated 
with changes in methylation levels for 513 CpG sites; 
within which two of the three CpGs (cg06690548 and 
cg00716257) encompassed within the EpiAlc signature 
were included [30]. In a separate analysis using data from 
the Framingham Heart Study, Liu et  al. observed that 
methylation levels among heavy drinkers revert to that 
of non-drinkers by four years [8]. However, these results 
were based on samples taken at roughly four-year inter-
vals, which makes it difficult to quantify a precise time-
line of signature plasticity.

Similar to epigenetic changes induced by alcohol con-
sumption, epigenetic changes following smoking ces-
sation also appear to be relatively dynamic [32]. For 
example, using data from the Generation Scotland: Scot-
tish Family Health Study—a large, population-based 
cohort—McCartney et  al. [33] found that among light 
(so-called low-dose) smokers, only prolonged exposure 
to tobacco consumption induced epigenetic changes that 
could adequately characterize smoking status. Addition-
ally, while it took less than a year for the methylation pro-
file of low-dose ex-smokers to convert to that of a never 
smoker, it took up to nine years for high-dose ex-smok-
ers [33]. Further demonstrating this plasticity, a recent 
study of adolescents observed that methylation levels of 
the cg05575921 CpG site (included in the EpiTob signa-
ture) remained stable over the course of two years among 
non-smokers, but diminished for smokers observed even 
within a 6-month period [34]. However, while the current 
evidence base is promising in terms of the clinical util-
ity of EpiAlc and EpiTob to track progress of cessation 
efforts results, additional research is needed to prove the 
plasticity of these signatures and better understand the 
dose–response relationship. A final note regarding the 
utility of these—as well as other—epigenetic signatures in 
the clinical setting is the need to address ethical concerns 
surrounding the use of this sensitive information, most 
notably with regards to privacy and confidentiality [35]. 
While many countries have legislation in place that pro-
tects genetic information garnered from widely accessible 
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genetic testing, such laws may need to be updated to 
address concerns unique to epigenetic information.

Strengths and limitations
The epigenetic signatures included in the present 
manuscript were initially created using data from the 
SKIPOGH cohort. The SKIPOGH cohort is a population-
based cohort including participant pairs or families with 
shared genetics. The genetic homogeneity and limited 
size of the SKIPOGH study population may be a poten-
tial limitation to the present study as it could have con-
tributed to the lack of identification of relevant SNPs for 
inclusion in the final signatures, particularly given that 
genetic associations generally have very small effect sizes 
and hence would require a much larger sample size [36]. 
Similarly, the cohorts included in the present study are 
primarily composed of European populations. Recent 
evidence points towards an influence of ancestry on the 
epigenetic architecture that is largely driven by genetics, 
and has also evidenced differential methylation patterns 
according to ancestry [37], 38. As such, additional vali-
dation in a diverse population is necessary to ensure the 
generalizability to populations of non-European descent.

A strength of the present study is the validation of 
epigenetic signatures in independent samples with 
varied populations in terms of inclusion criteria, 
mean sample age, and background. To this effect, with 
respect to mean sample age, comparisons across the 
SKIPOGH and LBC cohorts may provide insights into 
the influence of bias on study outcomes. For example, 
while the epigenetic signatures for alcohol and tobacco 
consumption were associated with self-reported CVD 
in the SKIPOGH cohort, the strength of these associa-
tions appeared weaker in the LBC1936 cohort, and was 
non-existent in the LBC1921 cohort. The diminishing 
strength of association across the three cohorts may 
be influenced by the higher average age, and as such a 
result of survivor bias. This is similar to the observed 
fact that epigenetic age increases at a slower rate than 
chronological age, especially among older individu-
als, which is likely a consequence of survival bias [39]. 
Moreover, both LBC cohorts have proportionally fewer 
smokers at baseline, which is also likely influenced by 
the older age of cohort participants. Another potential 
limitation of the present study that may have affected 
comparability across studies was that normalization 
techniques of the DNA methylation data were not 
standardized across the included studies and sam-
ples, nor did all included samples use the same meth-
ylation profiling array. For example, DNA methylation 
data for the Lothian Birth Cohorts was obtained using 
the Infinium® HumanMethylation450 BeadChip assay 

[13], while the majority of the SKIPOGH participant 
methylation data was obtained using the Infinium® 
Methylation EPIC BeadChip. However, regardless of 
the array used, replication results suggest that the sig-
natures are robust to the potential added noise associ-
ated with varying normalization techniques. Finally, 
self-reported levels of alcohol and cigarette consump-
tion were used to assess the relationship between 
self-reported tobacco or alcohol consumption and the 
respective epigenetic signature. No validation study for 
either the SKIPOGH or LBC cohorts has confirmed 
the reliability of self-reported alcohol or tobacco con-
sumption. Therefore, as self-reported data are subject 
to self-report or recall bias, e.g., smokers may underre-
port their tobacco intake levels, effect estimates may be 
over- or underestimated. This could have contributed 
to a less than optimal choice of CpGs selected for inclu-
sion in the signature. However, the association of the 
included epigenetic signatures with long-term health 
outcomes such as self-reported CVD or mortality sug-
gests the validity of the included CpGs as biomarkers 
for the long-term effects, although they are based on 
self-reported exposures.

Conclusion
This study shows the potential of two novel simple epi-
genetic signatures to measure self-reported exposure 
status and their clinical relevance given the association 
with long-term health outcomes. Measurement of life-
style exposures via epigenetic signatures may assuage 
measurement issues and biases experienced in cohort 
studies and, perhaps more importantly, could aid in 
risk stratification for informing targeted interventions. 
However, future research is needed to clarify the exter-
nal validity of these novel epigenetic signatures and 
also ensure the generalizability of these signatures to 
populations of non-European descent.
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