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Background: Automation in microbiology laboratories impacts management, workflow,

productivity and quality. Further improvements will be driven by the development of

intelligent image analysis allowing automated detection of microbial growth, release of

sterile samples, identification and quantification of bacterial colonies and reading of AST

disk diffusion assays. We investigated the potential benefit of intelligent imaging analysis

by developing algorithms allowing automated detection, semi-quantification and identifi-

cation of bacterial colonies.

Methods: Defined monomicrobial and clinical urine samples were inoculated by the BD

Kiestra™ InoqulA™ BT module. Image acquisition of plates was performed with the BD

Kiestra™ ImagA BT digital imaging module using the BD Kiestra™ Optis™ imaging soft-

ware. The algorithms were developed and trained using defined data sets and their per-

formance evaluated on both defined and clinical samples.

Results: The detection algorithms exhibited 97.1% sensitivity and 93.6% specificity for mi-

crobial growth detection. Moreover, quantification accuracy of 80.2% and of 98.6% when

accepting a 1 log tolerance was obtained with both defined monomicrobial and clinical

urine samples, despite the presence of multiple species in the clinical samples. Automated

identification accuracy of microbial colonies growing on chromogenic agar from defined

isolates or clinical urine samples ranged from 98.3% to 99.7%, depending on the bacterial

species tested.

Conclusion: The development of intelligent algorithm represents a major innovation that

has the potential to significantly increase laboratory quality and productivity while

reducing turn-around-times. Further development and validation with larger numbers of

defined and clinical samples should be performed before transferring intelligent imaging

analysis into diagnostic laboratories.
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At a glance commentary

Scientific background on the subject

The introduction of laboratory automation has revolu-

tionized conventional clinical bacteriology from samples

inoculation to plates incubation and reading. With this

new technology, the reading of plates is performed on

digital images by technicians that can select microbial

colonies for subsequent follow-up work such as identi-

fication and antibiotic susceptibility testing.

What this study adds to the field

The study shows as a proof of concept that artificial in-

telligence may represent a driving innovation in diag-

nostic bacteriology. Intelligent algorithms for plates

analysis linked to expert systems may provide a fully

automated approach for microbial growth reading and

interpretation that could eventually replace and/or

support human-based decisions.
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For many years, diagnostic microbiology was not considered

as being adapted for laboratory automation due to the vari-

ability of the specimen types, the complexity of the various

analytical processes and a relatively low level of analytical

samples volume compared to other diagnostic units such as

chemistry and molecular biology. However, the gradual in-

crease in samples number, limited budget, personal shortage

and quality issues as well as laboratories consolidation and

liquid-based transport devices have triggered the develop-

ment and the introduction by different manufacturers of

laboratory automation solutions into diagnostic bacteriology

laboratories [1e4]. Several peer-reviewed publications have

demonstrated that laboratory automation have the potential

to greatly improve the diagnostic processes in bacteriology by

increasing the productivity, the quality and the throughput

but also by decreasing the time-to results and laboratory cost

[1,5e13]. Even though the indirect impact of lab automation

on patient management remained to be demonstrated in

objective, comparative and prospective clinical studies per-

formed by independent laboratories, the shortening of time-to

results observed after implementation of laboratory automa-

tion strongly suggests that automation will positively improve

the clinical management of patients suffering from infectious

diseases.

The partial automation available in bacteriology covers

four main laboratory processes: inoculation, plate manage-

ment, incubation and digital imaging [1]. However, a signifi-

cant part of diagnostic microbiology such as samples pre-

processing, microscopy, reading and follow-up work such as

identification (ID) and antibiotic susceptibility testing (AST) of

isolated colonies remain to be automatized to reach a true

total lab automation. Several manufacturers are working on

additional hardware solutions to further increase the level of

automation in bacteriology such as (1) sample input track, (2)

automated colony picking modules including automated

deposition of the samples on MALDI-TOF plates as well as
automated preparation of bacterial suspension for automated

or disk diffusion AST, (3) automated disk dispensing modules

and (4) broth incubators [1].

Even though these new technologies will further improve

laboratory automation with increased productivity, the next

revolution with a major impact on diagnostic microbiology

will likely arise from the development of intelligent algo-

rithms and applications linked to expert systems that may in

the future monitor several laboratory processes from inocu-

lation to ID/ASTwithout human intervention. To reach such a

level of intelligent automation, several algorithmic and

application tools need to be developed and validated before

being used by intelligent expert systems for the monitoring of

laboratory processes. Thus, further improvements will be

driven by the development of intelligent image analysis al-

gorithms allowing earlier detection of microbial growth,

automated detection and auto-release of sterile samples,

automated identification and quantification of bacterial col-

onies as well as automated reading of AST disk diffusion

assays.

We thus investigated the potential benefit of intelligent

imaging analysis by developing several algorithms and ap-

plications allowing automated detection, identification and

semi-quantification of bacterial colonies from both defined

and clinical urine samples.
Material and methods

Strains, media, and bacterial suspensions

Most bacterial and yeast strains used in this study (Tables

A.1eA.3) were selected according to the most prevalent

strains isolated in clinical urine samples in 2014 at the Uni-

versity Hospital of Lausanne (CHUV), Switzerland. The strains

were grown on Columbia agar with 5% sheep blood (Columbia

III agar; BD, Franklin Lakes, NJ, USA) at 37 �C in normal at-

mosphere or in 5% CO2 atmosphere incubators. Colonies of

each bacterial species were utilized to prepare a bacterial

suspension in saline solution adjusted to a 0.5 McFarland

turbidity measured with a DensiCheck densitometer instru-

ment (bioM�erieux, Marcy l'Etoile, France). The exact bacterial

concentration corresponding to a 0.5 McFarland were

assessed for each bacterial and yeast species and for each

experimental run by measuring the colony forming units

(CFU) on Columbia agar with 5% sheep blood (Table A.1).

Different concentrations of monomicrobial suspensions were

prepared by doing serial 10-fold dilutions in saline solutions,

ranging from 1 to 10�5.

Clinical urine sample collection and processing

A total of 218 clinical urine samples were collected with

UriSwab™ tubes (Copan, Brescia, Italy) during a 2-months

period from outpatients and hospitalized patients at the

CHUV, without selection criteria. All clinical urine samples

were deidentified prior to testing. Selected urinary samples

were immediately processed or stored for maximum 8 h at

4 �C until inoculation. UriSwab™ contains preservative sub-

stances (boric acid and sodium formate) that both preserve

https://doi.org/10.1016/j.bj.2017.09.001
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the microbial viability and prevent microbial growth for up to

48 h.

Inoculation and incubation

For each bacterial strain, 6 different bacterial concentrations,

ranging from 1 to 10�5 dilutions of the starting inoculums

(Table A.1), were inoculated in duplicate on 3 different media

(BD CHROMagar™ Orientation (CHROM), BD Blood agar (COL)

and BD MacConkey agar (MAC)) for Gram negative bacteria

and on 2 different media (BD CHROMagar™ Orientation, BD

Blood agar) for Gram positive bacteria and yeasts. The clinical

urine samples were inoculated once on 3 different media

(CHROMagar™ Orientation, BD Blood agar, BD MacConkey

agar). All the samples were inoculated with the BD Kiestra

InoqulA BT module (BD Kiestra, Drachten, Netherlands) using

the #17 zig-zag streaking pattern and incubated at 37 �C in

normal atmosphere (BD CHROMagar™ Orientation, BD Mac-

Conkey agar) or in 5% CO2 atmosphere incubators (BD Blood

agar). All the samples processed in the BD laboratory (BD

Sparks, Baltimore, USA) for the training of the semi-

quantification and identification classifiers were inoculated

with the BD Kiestra InoqulA using the #4 zig-zag streaking

pattern.

Imaging time

The image acquisition was performed with the ImagA BT

using the OPTIS™ software (BD Kiestra, Drachten,

Netherlands). The 26 bacterial strains and 99 clinical urine

samples were imaged every 2 h from time 0 to time 24 h post

inoculation. Each defined and clinical urine samples were

processed in 2 runs, 0e12 h and 12e24 h. The first run was

inoculated at 8 h in the morning and imaged at times

0e2e4e6e8e10e12e24 h. The second run was inoculated at

20 h in the evening and imaged at times 0e12e14

e16e18e20e22e24 h. In addition, 119 clinical urine samples

were imaged in 1 run at times 0 h, 16 h, 20 h, and 24 h post

inoculation. For the algorithmic analysis, time 0 was chosen

as a reference of no growth or no detectable growth. Time 12 h

was chosen as an intermediate time point (since most mi-

crobial colonies are already detectable) allowing an increase in

algorithmic performance for growth prediction. Time 24 hwas

chosen as the imaging endpoint coinciding with most routine

laboratory first plate reading. Other time points were imaged

to provide the potential to develop additional applications or

to improve the applications presented in this study. Practi-

cally, for a time series to be considered as usable by the al-

gorithm, an image must have been captured for each of the

subsequent temporal windows: [0e4 h], [10e14 h], [23e25 h]. If

multiples time points were matching a temporal window, the

time point closest to the central time of the temporal window

was kept, others were discarded. Moreover, all samples not

captured at time 0 were discarded from the analysis since a

reference image at time 0was needed for algorithmic analysis.

Visual semi-quantification

The visual semi-quantification of the total growth on plate

images by technicians was performed using a reading
template composed of images of Escherichia coli inoculated at

concentrations ranging from 102 to 108 CFU/ml (Fig. C.1). The

visual semi-quantification was thus estimated according to

the most probable semi-quantification based on growth

pattern similarities. Visual semi-quantification was per-

formed in two rounds to establish the “final truth” (gold

standard). A first reading was performed and compared to

algorithmic prediction. All the images of isolates and clinical

urine samples exhibiting discordant results between visual

inspection and algorithmic prediction were read a second

time to check for possible major readingmistakes, whichmay

introduce a bias in the true performance of algorithmic pre-

diction. The second reading was performed in a blinded

manner to avoid the introduction of an important bias in the

study.

Then the algorithmic performance was established by

comparing algorithmic prediction to the human-based “final

truth”.

Identification of microbial colonies in clinical urine samples

Each distinct colony exhibiting a unique phenotypic,

morphological and color signature was identified by matrix-

assisted laser desorption ionization time of flight mass spec-

trometry (MALDI-TOF MS). These colonies were then manu-

ally annotated on images of clinical urine samples allowing

the training and the testing of classifiers for colony identifi-

cation. The characteristics (semi-quantification and identifi-

cation by MALDI-TOF) of these clinical urines on COL, CHROM

and MAC agar plates are summarized in Tables D.1 and D.2.

Image acquisition and image analysis

The major steps of sample image analysis are presented in

Fig. A.1. The system is described in the context of an auto-

mated sample streaking module (InoqulA BT) using a mag-

netic rolling bead to inoculate samples on agar plates along a

predefined streaking pattern (InoqulA BT pattern #17 in this

study).

To overcome classical SNR imaging limitation and to

optimize contrast, the BD Kiestra™ OPTIS™ image acquisition

software was used in this study to analyze imaged plates

which is designed to adjust and optimize in real time the

contrast and the SNR for each pixel in each red/green/blue

(RGB) channels by performing an acquisition session of mul-

tiple frames (22 images acquisition per plate) using several

illumination conditions and exposure times in a calibrated

and standardized manner. In addition, images were captured

using different incident lights (top, side and bottom) on black

or white backgrounds to maximize the contrast of the colony

to its background and thus the amount of information used to

discriminate the differentmicroorganisms growing on a plate.

The plates were analyzed in real time to evaluate the best

exposure times required to capture all pixel related informa-

tionmatching a given illumination and background condition.

Depending on media and growth, the OPTIS™ analysis engine

selected the set of exposure times leading to optimized

contrast dynamic range and SNR.

In order to maximize the information, a contrast gathering

algorithm was used to generate an optimal contrasted image

https://doi.org/10.1016/j.bj.2017.09.001
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of the plate to detect microbial colonies. Furthermore, images

of the plate were captured at different time points during in-

cubation time (time series) to measure the growth kinetic and

to image the evolving phenotypic pattern of growing colonies.

Isolated colonies were counted using time series images of

plates during the incubation process. For each detected colony

at a given time point (e.g. at incubation time ¼ 24 h), the

program analyzed earlier time points (e.g. at incubation

time ¼ 12 h) to verify if the analyzed colony was previously

only a single CFU or if this area was previously composed of

multiple CFUs that became confluent at the analyzed time

point due to increased size of the colonies.

At a given time point, objects with a sufficient strong

spatial or temporal contrast such as colonies, dust, artifacts,

air bubbles were detected. A microbial object classifier was

developed to allow segregation of microbial and non-

microbial objects. Then, microbial objects were analyzed to

estimate the microbial load contained in the sample either by

directly counting colonies when the number of colonies on a

plate was �100 CFU or with the bead model count when the

number of CFUs was �100 (see supplementary material and

method A.1).

The bead model or direct count, together with overall

contrast measures over the entire media and derivative fea-

tures relating changes as a function of time serve as input to

the semi-quantification classifier, which ultimately predicts

the actual CFUs/ml buckets (<102 (no growth), 102e103,

103e104, 104e105 and �105) for sample on a given media.

Semi-quantification and identification classifiers

Random forest classifiers were used at three different stages

to perform: (1) microbial vs non microbial objects classifica-

tion, (2) semi-quantification and (3) presumptive identifica-

tion. The parameterization of each classifier including

number of trees, number of nodes and number of features

used at each split was chosen to minimize and level off out-

of-bag error and to avoid over fitting [14]. The features used

as input to the random forest algorithm were chosen as the

20 most important features detected using the Boruta algo-

rithm (R package Boruta) and confirmed with VSURF R

package as providing a good balance between out-of-bag

error, classification performance, computation speed and

classifier object storage size [15,16]. For each classifier, algo-

rithm update test performance was assessed and compared

to baseline performance in a regression testing to ensure that

unanticipated effects do not appear. Only algorithm updates

showing performance improvement were selected. Training

of the classifiers was performed on an entirely separate

dataset ensuring that the performance reported here corre-

sponds to the test performance of a cross-validation process.

The training of the semi-quantification classifiers was per-

formed on a dataset generated at the BD laboratory (BD

Sparks, Baltimore, USA) composed of serial 10-fold dilutions

ranging from 10�2 to 10�7 of a 0.5 McFarland bacterial sus-

pension of 5 defined microbial strains for each of 11 different

selected bacterial species, of 20 mixed samples composed of

2e3 defined microbial strains and of 200 clinical urines (Table

A.2). The semi-quantification classifiers were tested on the

CHUV dataset composed of 26 microbial strains and 138
clinical urines (Tables A.1 and A.3). For the identification

classifiers, a microbial objects dataset was generated from 8

defined microbial strains of the BD laboratory (Table A.2), 15

defined microbial strains and 41 clinical urines of the CHUV

laboratory (Table A.3).

One semi-quantification classifier was developed per

media, each providing a probability for each plate to be within

ordered count buckets <102 (no growth), 102e103, 103e104,

104e105 and �105. Growth detection was performed when

comparing the <102 category to the four other count cate-

gories. Classification performance was assessed with agree-

ment, agreement with 1 logarithmic tolerance, sensitivity

(growth detection only) and specificity (growth detection

only). Two-sided 95% confidence intervals were computed by

bootstrapped percentile method [17].

Two inputs were used to train and test presumptive iden-

tification. The first input was the manually annotated images

of clinical urine samples. The second input was mono-

microbial strains samples where all objects classified as mi-

crobial objects were considered as microbial objects

corresponding to inoculated microbial isolate (Tables A.2 and

A.3). For the identification classifiers, 582 plates were used.

Out of these 582 plates, 1.5 � 106 microbial objects were

identified in the whole incubation imaging window [0e25 h],

but only 212,682 microbial objects belonged to the [23e25 h]

window, which is the time frame used for algorithmic classi-

fication. After randomization, the complete set of 212,682

objects was divided into 2 populations: 80% were used for

training and 20% for testing. For each object, color and

morphometric features were extracted to train and test the

identification classifiers.

Multi-reader and imaging algorithm comparisons

Readings from 10 independent technicians and prediction

from the algorithm were compared over a set of 150 images

randomly selected from the data set to assess the agreements

percentage. The algorithm was considered as one indepen-

dent reader and agreements were evaluated in two condi-

tions, with orwithout algorithmas part of the reader's dataset.
Global agreement between readers was calculated by per-

mutation obtained among 2 to 10 readers, with and without

algorithm results, with 0, 1 and 2 logarithmic tolerances. Two-

sided 95% confidence intervals were obtained by bootstrapped

percentile method performed on reviewed plates during the

reader permutation process [17].

Statistical software

Statistical analyses were performed with R 3.3.1 [18].
Results

Detection

The algorithmic detection of growth was assessed at 24 h post

inoculation. The algorithmic performance was compared to

human visual inspection of the plates, which was defined as

the final truth. The sensitivity (Se), specificity (Sp), positive

https://doi.org/10.1016/j.bj.2017.09.001
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predictive value (PPV), negative predictive value (NPV) and the

ROC curve (Se/1-Sp) of the algorithmic detection of both

defined isolates and clinical urine samples were thus calcu-

lated compared to the final truth (Table 1 and Fig. B.1). An

overall 97.1% Se, 93.6% Sp, 99.0% PPV and 82.6% NPV were

measured for all samples types on all tested media plates. No

significant difference in Se was observed between microbial

isolates and clinical urine samples with a Se ranging from

98.8% to 100% on the BD Blood agar (COL) and BD MacConkey

agar (MAC) media, respectively, and a lower Se ranging from

92.5% to 93.9% on BD CHROMagar™ Orientation agar

(CHROM). A Sp ranging from 90% to 100% was observed on

CHROM and MAC but a lower Sp of 80e84.2% was obtained on

COL agar with the two sample types. The PPV was superior to

97% for both microbial isolates and clinical urine samples on

all media types except for clinical urine samples, which

exhibited a 90% PPV on MAC. On all media types, a better NPV

was observed with clinical urine samples than with microbial

isolates with an average of 93.2% (77.1e100%) and of 72.2%

(36.4e85.7%), respectively. Moreover, on overall, a NPV supe-

rior to 74.8% was obtained except with microbial isolates on

COL plates which exhibited a low NPV performance of 36.4%.

The ROC curve showed that the overall accuracy of the algo-

rithmic detection is slightly higher with bacterial isolates than

with clinical urine samples, especially on CHROM agar

(Fig. B.1). Finally, 0.8% (15/1796) false positives (FP) and 2.6%

(46/1796) false negatives (FN) were obtained following algo-

rithmic detection prediction compared to visual inspection of

plate images (Table 2 and Figs. D.1eI.1). Overall, 80.4% (37/46)

of FNs were observed on CHROM agar plates, 8/46 (17.4%) on

COL agar and 1/46 (2.2%) on MAC agar (Table 2). For both mi-

crobial isolates and clinical urine samples, a visual inspection

of the FNs plate images showed that FNs could be classified

into different categories: (1) microbial colonies not detected by

the algorithms, (2) detected microbial colonies wrongly clas-

sified as non microbial objects, (3) microbial colonies located

on the extreme edges of the plate, which is a zone not

included in image analysis and (4) possible false positive re-

ported by the technician (Table 2 and Figs. G.1eI1).

Semi-quantification

The accuracy of algorithmic semi-quantification was deter-

mined by comparing algorithmic to visual semi-quantification

performed by laboratory technicians based on a reading

template (Table 3 and B.1). The global accuracy of the exact

match was equal to 80.2% for all sample types on all media

types with an accuracy ranging from 72.2% to 93.8% depend-

ing on the sample and media types. However, the global ac-

curacy was significantly improved to 98.6%, ranging from

96.1% to 100% depending on the sample and media types, by

allowing a 1 log tolerance to the results reported by the algo-

rithms. On a total of 1796 analyzed images, 1440 (80.2%), 330

(18.4%), 19 (1.0%), 5 (0.3%) and 2 (0.1%) plate images were

quantified by the algorithm with a difference of 0 log (no dif-

ference), 1 log, 2 log, 3 log and 4 log, respectively, compared to

visual quantification on plate images. All plate images except

2 cases with a difference �2 log compared to visual semi-

quantification were underestimated by the algorithm. A

semi-quantification of �100,000 was predicted by the

https://doi.org/10.1016/j.bj.2017.09.001
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Table 3 Evaluation of the Algorithm to semi-quantify microbial growth (<102 to ≥105).

Sample type Media N Accuracy CI Accuracy.pm1 CI pm1

All All 1796 80.2 (78.3, 82) 98.6 (97.9, 99.1)

All CHROM 701 78.9 (75.6, 81.9) 96.9 (95.6, 98.1)

All COL 727 75.9 (72.8, 78.8) 99.7 (99.3, 100)

All MAC 368 91 (88, 93.8) 99.5 (98.6, 100)

Isolates All 1392 76.9 (74.6, 79.2) 98.3 (97.6, 98.9)

Isolates CHROM 565 76.5 (72.7, 80) 96.1 (94.5, 97.7)

Isolates COL 589 72.2 (68.6, 75.7) 99.7 (99.2, 100)

Isolates MAC 238 89.5 (85.7, 92.9) 100 (98.4, 100)

Urines All 404 91.6 (88.4, 94.3) 99.5 (98.8, 100)

Urines CHROM 136 89 (83.8, 94.1) 100 (97.3, 100)

Urines COL 138 92 (87, 96.4) 100 (97.3, 100)

Urines MAC 130 93.8 (89.2, 97.7) 98.5 (96.2, 100)

Abbreviations: All: all sample types or all media types; CHROM: BD BBL CHROMagar Orientation; COL: BD Columbia Agar with 5% Sheep Blood;

MAC: BD MacConkey II Agar; N: Number of analyzed samples; CI: 95% confidence interval; Accuracy.pm1: accuracy with a plus or minus 1 log

difference tolerance; CI.pm1: 95% confidence interval for the accuracy.pm1.

Table 2 Discordant results: False positives and false negatives.

Sample type Media Number Comments

False positives

Urines CHROM 3 � Dust or agar artefacts wrongly considered as microbial objects by the algorithm

� False negative reported by the technician

See Figs. D.1eF.1

Urines COL 3

Urines MAC 5

Isolates CHROM 3

Isolates COL 1

Total 15

False negatives

Urines CHROM 8 Plates containing between 1 and 3 colonies were not detected by the algorithms (see Figs. G.1

and H.1).

� Colonies considered as non microbial objects (dust, artifacts, …)

� Colonies located on the edges of the plate, which is a zone not included in image analysis

� Colonies not detected

Urines COL 1

Isolates CHROM 29 Some plates containing Lactobacillus fermentum (8), Candida albicans (6),Corynebacterium striatum

(5), Micrococcus luteus (2), Streptococcus mitis group (2), Staphylococcus saprophyticus (2),

Staphylococcus haemolyticus (1), Staphylococcus epidermidis (1), Aerococcus urinae (1) and

Pseudomonas aeruginosa (1) were not detected by the algorithms (see Fig. G.1).

� The growth of some bacterial species on CHROM agar produced lawns of tiny faint colonies

after 24 h incubation in normal atmosphere that were not detected by the algorithm (see

Fig. G.1, C. striatum, L. fermentum)

� Colonies considered as non microbial objects (dust, artifacts, …).

� Colonies located on the edges of the plate, which is a zone not included in image analysis (ex

Fig. G.1,#16)

� Colonies not detected

� Possible false positive reported by the technician (see Fig. G.1,#23/27/28/38/42)

Isolates COL 7 Some plates containing between 1 to 4 colonies of Candida albicans (5), Streptococcus mitis group

(1) and Pseudomonas aeruginosa (1) were not detected by the algorithms (see Fig. H.1).

� Colonies considered as non microbial objects (dust, artifacts, …)

� Colonies located on the edges of the plate, which is a zone not included in image analysis

� Colonies not detected

Isolates MAC 1 A plate containing one colony of Pseudomonas aeruginosawas not detected by the algorithm. The

colony was located on the edge of the plate, which is a zone not included in image analysis (see

Fig. I.1).

Total 46
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algorithm on one MAC plate with no growth but with agar

artefacts that were classified as microbial object and quanti-

fied by the algorithms. To estimate the accuracy of human

visual semi-quantification used to determine the final truth,
the analytical variation of visual semi-quantification by lab-

oratory technicians was assessed by submitting 150 plate

images to 10 different laboratory technicians and to the al-

gorithms. The 150 plate images were composed of 10 images

https://doi.org/10.1016/j.bj.2017.09.001
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Table 4 Percentage agreement of semi-quantification by 10 technicians and by the algorithms compared to the final truth
determined by manual reading of 150 plate images.

nBoot Reader Accuracy CI Accuracy.pm1 CI pm1

10,000 Algorithms 78.0 (71.3, 84.6) 98.7 (96.7, 100.0)

10,000 Reader 1 84.7 (78.7, 90.0) 98.7 (96.7, 100.0)

10,000 Reader 2 80.0 (73.3, 86.0) 98.7 (96.7, 100.0)

10,000 Reader 3 81.3 (74.7, 87.3) 98.7 (96.7, 100.0)

10,000 Reader 4 83.3 (77.3, 88.7) 98.7 (96.7, 100.0)

10,000 Reader 5 79.3 (72.7, 86.0) 98.0 (95.3, 100.0)

10,000 Reader 6 82.7 (76.0, 88.7) 98.7 (96.7, 100.0)

10,000 Reader 7 78.0 (71.3, 84.7) 99.3 (98.0, 100.0)

10,000 Reader 8 82.0 (76.0, 88.0) 98.0 (95.3, 100.0)

10,000 Reader 9 77.3 (70.7, 84.0) 98.7 (96.7, 100.0)

10,000 Reader 10 82.0 (76.0, 88.0) 98.7 (96.7, 100.0)

Abbreviaitons: nBoot: number of bootstrap samples to compute the 95% CI; CI: Confidence interval; Accuracy.pm1: accuracy with a plus or

minus 1 log difference tolerance; CI.pm1: 95% confidence interval for the accuracy.pm1.
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for each of the 5 concentrations ranging from <102 to

�105 CFU/ml on each COL,MAC and CHROMmedia plates. The

reading accuracy of the 10 technicians and of the algorithms

was assessed by comparing the results to the final truth

determined by visual reading of plate images (Table 4). A

similar performance was observed between human and

algorithmic semi-quantification compared to the final truth

with an accuracy ranging from 77.3 to 84.7% and an accuracy

ranging from 98.0% to 99.3% with a 1 log tolerance. Moreover,

the global agreement between 2 and 10 readers was calculated

with 0, 1 and 2 logarithmic tolerances (Fig. 1). The global

agreement between human readers ranged from 83.7%, 99.6%,

99.7% (2 Readers) to 56.9%, 97.6% and 98.7% (10 Readers) with

logarithmic tolerances of 0, 1 and 2, respectively.
Fig. 1 Global agreement between human readers to report growth

quantification was calculated with a tolerance of 0 (strict quantifi

truth”. Solid line: estimated value, dashed lines: 95% CI.
Identification

The performance of algorithmic identification was assessed

on both defined microbial strains (Tables A.1eA.3) and

manually annotated clinical urine samples. The identification

algorithm ability to correctly classify bacterial species and

groups (Table C.1 and Fig. J.1) listed in the product information

of the CHROMagar™ Orientation medium as well as Staphy-

lococcus aureus was assessed on 212,682 microbial objects

derived from microbial strains and clinical urine samples.

Among the 212,682 microbial objects, 80% (170,145) were used

for training of the algorithms and 20% (42,537) for testing.

A correct classification superior or equal to 96.4% was ob-

tained for E. coli, Staphylococcus saprophyticus, group Proteus
semi-quantification. The global agreement to report semi-

cation), 1 log or 2 log difference as compared to the “final

https://doi.org/10.1016/j.bj.2017.09.001
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Table 5 Performance of the algorithmic identification in percentage correct classification (manual reference and percentage
computed per column).

ESCCOL Group Enterococcus STASAP STRAGA Group KESC Group PMP STAAUE

ESCCOL 96.4% 0.0% 1.3% 0.0% 0.0% 0.0% 0.0%

Group Enterococcus 0.0% 93.8% 0.0% 0.0% 0.5% 0.0% 0.0%

STASAP 2.5% 0.1% 97.6% 0.1% 0.1% 0.4% 0.1%

STRAGA 0.0% 0.2% 0.0% 94.8% 0.1% 0.0% 0.0%

Group KESC 0.5% 5.7% 0.6% 4.7% 98.9% 1.1% 0.4%

Group PMP 0.7% 0.1% 0.3% 0.3% 0.4% 97.6% 0.3%

STAAUE 0.0% 0.1% 0.2% 0.0% 0.0% 0.9% 99.2%

Abbreviations: ESCCOL: Escherichia coli; KESC: Klebsiella spp./Enterobacter spp./Serratia spp./Citrobacter spp.; PMP: Proteus spp./Morganella spp./

Providencia spp.; STAAUE: Staphylococcus aureus; STASAP: Staphylococcus saprophyticus; STRAGA: Streptococcus agalactiae.
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spp./Morganella spp./Providencia spp. (PMP), group Klebsiella

spp./Enterobacter spp./Serratia spp./Citrobacter spp. (KESC) and

S. aureus (Table 5). A 93.8% correct classification was obtained

for Enterococcus spp., with 5.7% incorrect classification of them

in the group KESC. Similarly, the Streptococcus agalactiae

exhibited a correct classification of 94.8% with 4.7% incorrect

classification in the group KESC. Interestingly, the Enterococcus

spp., S. agalactiae and the group KESC all exhibit a chromatic

phenotype located in the blue color space (Fig. J.1). E. coli and

the group Enterococcus spp were identified by the algorithm

with a 96.4% and 93.8% Se and a 99.9% and 99.8% Sp, respec-

tively (Table 6). The product information of the BD CHROMa-

gar™ Orientation medium states that E. coli and enterococci

can be identified without confirmatory testing based on col-

ony color and morphology with a sensitivity and specificity of

97.0% and 99.0%, respectively, for E. coli, and a sensitivity and

specificity of 99.0% and 97.0%, respectively, for Enterococcus

spp. Thus the performance of the algorithmic identification

for E. coli was in line with the performance that can be ex-

pected by visual inspection of BD CHROMagar™ Orientation

medium and was slightly reduced compared to an expected

visual identification for the enterococci group. The other mi-

crobial groups were correctly identified by the algorithm with

a Se � 94.8%, a Sp � 97.9%, a PPV �95.4% and a NPV �99.2%,

which is an excellent performance for bacterial species and

groups that can only be presumptively identified by visual

inspection on BD CHROMagar™ Orientation medium before

confirmatory tests such as MALDI-TOF ID.

Overall, a higher identification performance was obtained

by algorithmic classification than by visual inspection of

bacteria growing on BD CHROMagar™ Orientation medium.
Discussion

This study is demonstrating, as a proof of concept, that

automated image analysis has the potential to further

improve laboratory automation in bacteriology by introducing

software-based analysis of growth detection, growth semi-

quantification and colony identification based on microbial

phenotype,morphology and color. The overall performance of

the algorithm prediction for all samples and all media types

was robust with (1) a detection Se of 97.1%, a Sp of 93.6%, a PPV

of 99.0% and a NPV of 82.6%, (2) an exact semi-quantification

accuracy � 80.0% and a semi-quantification accuracy � 98%
with a 1 log tolerance, and (3) a correct identification at species

or group level� 93.0% of bacterial colonies growing on CHROM

agar.

Image acquisition and image analysis was designed (1) to

detect microbial growth, (2) to determine themicrobial load in

clinical samples such as urine samples by an automated

method based on colony distribution analysis on plates and (3)

to identify microbial species or group of species based on

morphology and color features.

Counting colonies on plates using streaking patterns

designed to generate isolated colonies regardless of the initial

microbial load is challenging. Depending on the level of

growth, the semi-quantification of the microbial load in the

sample is based on the counting of colonies, or on the analysis

of the distribution of isolated colonies using a model of the

CFU releasing process linked to the streaking system (see

rolling bead model), or from pattern similarities with known

growth pattern references (Fig. C.1). When microbial growth

cannot be partially or entirely distinguished into single CFUs,

the exact counting is impossible and growth has to be esti-

mated (semi-quantification) using plate global features (e.g.

growth region area and intensity related to the dispensing

origin) and/or physical models of growth when reproducible

automated inoculation systems are used (see rolling bead

model in material and methods section 2 and supplementary

material and methods A.1).

Colony detection is strongly dependent on the contrast over

the background [contrast¼ (signal e background)/

(signal þ background)] which is increasing with the size of the

colonies. An object can thus be detected in an image if it is

significantly different in brightness, color and/or texture from

its surroundings (i.e. the background). In addition, colony

detection in an image ismainly dependent on the area covered

by a colony in the sensor space and not by the number of pixels

used to image the colony. Moreover, the quality and the con-

fidence of a measurement are characterized by the signal-to-

noise ratio (SNR) of the measurement. Thus, colonies detec-

tion limitations are strongly linked to colony size and contrast

(the smaller the colonies and the lower the contrast) which are

dependent of the background, and thus of both the morpho-

logical traits of colonies and media plates. The BD Kiestra™

OPTIS™ image acquisition softwarewas used tomaximize SNR

and contrast for each pixel in each RGB channel of the plate

image in order to collect multi-sources standardized data in-

formation for subsequent image analysis. Due to the internal

https://doi.org/10.1016/j.bj.2017.09.001
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calibration, correction and normalization, images acquired on

different systems (ImageA BT and ReadA Compact) by the

OPTIS™ image acquisition software are similar.

The plates streaking processwith the InoqulA BT generates

a non randomuniform pattern characterized by a CFU density

gradient along the streaking pathway to produce isolated

colonies regardless of the original concentration of CFUs in the

sample. The rolling magnetic bead spread the inoculated

sample generating thus a print out of what was loaded on the

bead. The bead model count (supplementary material and

methods A.1) relies on the analysis of the CFU distribution

along the streaking pattern allowing an estimation of the mi-

crobial load on the bead, which in case of a highmicrobial load

leading to CFUs confluence, represented the best estimation of

the microbial load carried on the magnetic bead and thus of

the bacterial load contained in defined or clinical samples.

The detection prediction performance was characterized

by an overall Se and PPV greater than Sp and NPV for both

microbial isolates and clinical urine samples. These results

may have been impacted by an inclusion bias since a high

prevalence of positive samples was observed in this study,

which directly favored the PPVs over the NPVs. In addition, the

number of samples analyzed for Sp and for NPV was very low

for some sample types inoculated on some media types,

which resulted in large 95% CI (Table 1). The high prevalence

of positive samples with microbial isolates is originating from

the experimental setup which was designed to obtain a

growth on all media types inoculated with microbial loads

ranging from 108 to 103 CFU/ml. Thus, for instance, only a

36.4% NPV was obtained on COL agar with microbial isolates

exhibiting a 98.8% Se and 80.0% Sp, but with a prevalence of

99.2% (Table 1). Similarly, positive clinical urine samples were

less prevalent than positivemicrobial isolates, exhibiting thus

a better NPV (Table 1).

The CHROM and MAC media plates have a high degree of

transparency compared to COL which enhances the contrast

of dust and agar artefacts detected by the algorithms and in

some cases wrongly classified as microbial objects, resulting

thus in 15 FPs (0.8%) (Table 2) and in decreased PPVs (see Figs.

D.1eF.1). Overall, 46/1796 (2.6%) FN samples were observed. A

subsequent visual inspection of the images on a data screen

did not allow to discriminate reliably between microbial and

non microbial objects for some of the FN plates (see images

#23, 27, 28, 38, and 42 in Fig. G.1), thus indicating that some

plates may have been wrongly considered as positive in the

“final truth”, which was determined based on visual inspec-

tion of plate images. Moreover, the growth of some bacterial

species on CHROM agar produced lawns of tiny and faint

colonies after 24 h incubation in normal atmosphere thatwere

not detected, or detected but not considered as microbial ob-

ject by the algorithms, and thus reported as negative (see

Corynebacterium striatum and Lactobacillus fermentum in

Fig. G.1), representing 45% (13/29) FN cases on CHROM agar.

This result was probably caused by an absence of these

growth patterns in the database and/or in the training set of

the algorithms, underlying how important it will be to enrich

and train the algorithmswith themost exhaustive possible set

of strains presenting unique growth patterns. Thanks to

cloud-based informatics technology, a solution for continuous

improvement of detection Se and Sp over time could be to

https://doi.org/10.1016/j.bj.2017.09.001
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automatically enrich the training databases with samples

identified as wrongly assessed by the algorithms during

manual reviews of routine cases. Finally, dust, agar artefacts

and fingerprints generated by manual plate handling and

image acquisition with the ImagA BT created objects inter-

fering in the training and testing of microbial and non-

microbial objects classifiers that likely decreased the perfor-

mance of algorithmic detection of true microbial objects,

affecting thus negatively the detection Se and Sp. Thus, a

greater sensitivity and specificitywith a reduced percentage of

FPs and FNs are expected with automated systems.

A performance of semi-quantification with 85.9% exact

accuracy and 98.7% accuracy with a 1 log tolerance was ob-

tained in this study. The final truth semi-quantification was

determined by visual inspection of the plate based on growth

pattern similarities with a reading template containing inoc-

ulation of samples ranging from 102 to 108microorganisms/ml

(thus 0 to 106 inoculated microorganisms in 10 ml) (Fig. C.1).

This method of semi-quantification is greatly dependent on

the visual interpretation of the reading template by techni-

cians, especially at microbial concentration �104 CFU/ml

where the total number of colonies cannot be counted but

may only be estimated. In addition, the visual semi-

quantification based on a reading template is dependent on

colonies traits such as morphology, size, color and pheno-

types, which can significantly influence both human percep-

tions of growth patterns but also the growth gradient pattern

per se. The reading accuracy of 10 laboratory technicians was

similar to the performance of algorithmic prediction (Table 4).

Moreover, the global agreements between human readers

indicated that the reported visual semi-quantification is

inaccurate below a 1 logarithmic tolerance [Fig. 1]. Together,

these results suggest that the final truth determined following

human visual semi-quantification is probably correct in a 1

logarithmic range around the true value, suggesting that the

performance of algorithmic semi-quantification prediction is

likely comprised between the exact accuracy (80.2%) and the

accuracy obtained with a 1 log tolerance (98.6%) (Table 3).

Regarding classifiers development and prediction, these re-

sults indicate that human limitations in providing the true

quantification value have to be considered by introducing a

certain degree of uncertainty during the algorithmic training

and validation tests processes.

In addition, the semi-quantification classifier was devel-

oped using a slightly different zig-zag streaking pattern (#4)

than the one used in this study (#17). Even though some fea-

tures could be normalized to be pattern independent, other

features such as overall plate growth are dependent of the

streaking pattern and accounted for some decreased level of

performance. The future imaging applications will therefore

be pattern dependant. The rolling bead model requires the

detection of single colonies to generate a semi-quantification

prediction. When only a bacterial lawn with no detectable

single colonies was observed such as growth of Lactobacillus

spp., Corynebacterium spp. andAerococcus spp. on CHROM agar,

the algorithmic prediction of semi-quantification has to rely

exclusively on overall plate growth derived features contained

in the training dataset. Thus, in this case, inaccurate semi-

quantification prediction was generated in absence of

similar growth patterns in the database. Finally, the
algorithmic semi-quantification prediction is based on a

classification probability of the detected growth into 5

“buckets”, <102 (no growth), 102e103, 103e104, 104e105 and

�105 (Fig. D.1eI.1). Whereas a clear classification with a high

probability confidence for one bucket was obtained in most

cases, several samples generated close probability classifica-

tion between two buckets or more. Even though the bucket

with the highest probability was selected by the algorithms,

the degree of confidence of these quantitative results was

significantly reduced. Moreover, the pattern of predicted class

probabilities generated following random forest classification

may provide a more valuable representation of the true value

than the bucket with the highest probability. Thus, the future

integration in routine diagnostic of automated detection and

semi-quantification algorithmic solutions should be imple-

mented with confidence level indicators to estimate the

robustness of the prediction to properly interpret and validate

the results. The uncertainty of the true value as illustrated in

the reading accuracy between the 10 technicians further in-

dicates the need to report confidence level indicators and/or

classification probability distributions.

A correct identification classification �93.8% with an ac-

curacy �98.3% was obtained following algorithmic identifica-

tion of bacterial species and group growing on CHROM agar

(Tables 5 and 6). The smallest performance was observed with

the group Enterococcus spp. and S. agalactiae, which exhibited a

5.7% and 4.7% misclassification, respectively, of the colonies

in the KESC Group. The KESC and enterococci groups as well

as S. agalactiae are located in the blue color space, which likely

explained that some colonies of the group Enterococcus spp.

and of S. agalactiaewere incorrectly classified by the algorithm

in the KESC group. The identification classifiers included

multiple features to optimize the identification performance

including color intensity, morphology (shape, circularity, col-

ony area, perimeter, …) and contextual information on local

density (number of objects, distance from other colonies,

distance along the streaking pattern, local temporal and

spatial contrast). However, the features could be enriched

with additional information to further improve the classifi-

cation performance on the bacterial species and groups listed

in this study but also to investigate the possibility to identify

bacterial specieswithin the KESC, PMP and Enterococcus groups

as well as other microbial species that may have distinct

phenotypic signatures on CHROM agar or on other media

types such as COL and MAC.

The identification features used by the classifiers were

extracted from microbial isolates colonies but also from

manually annotated clinical urine samples plates for which

each distinct phenotypic sister colonies were identified by

MALDI-TOF. The manual annotation from clinical urine

samples allowed thus to enrich the database with microbial

intraspecies morphology and color variations and with fea-

tures belonging to bacterial species not included in the mi-

crobial isolates used in this study.

Finally, the performance of the object classification into

microbial and non-microbial object affected the identification

performance since each non-microbial object such as dust

considered as microbial object were analyzed by the identifi-

cation algorithms, which generated wrong identification pre-

diction based on the features used by the classifiers.

https://doi.org/10.1016/j.bj.2017.09.001
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This study demonstrates that intelligent imaging applied

to diagnostic bacteriology has the potential to significantly

improve laboratory workflow by automating software-based

decision making processes that are nowadays human-

dependent. Imaging applications may provide the possibility

to reach full automation in bacteriology by automating and

standardizing samples preparations, management and anal-

ysis from sample reception to analytical results. These algo-

rithms can easily be adapted to develop applications as

surveillance (MRSA, VRE) [19,20], alert of positivity for nor-

mally sterile samples such as cerebrospinal fluids, pleural

fluids, joints, prosthetic material and deep wounds, but also

clinical urine applications associated to expert systems that

may be used in the future in conjunction with automated

colony picking and AST modules to deliver more efficiently

and earlier complete identification and AST results. In routine

practice, plate management and handling by the robotic sys-

tems and not image acquisition and algorithmic analysis will

be the limiting factor regarding imaging throughput. In addi-

tion, the algorithms presented in this study are requiring

images taken at 3 incubation timewindows ([0e4 h], [10e14 h],

[23e25 h]), which is compatible with the throughput perfor-

mance of modern automated incubators which can image

their entire plates content in about 4 h.

The manual process of data collection has proven to

generate more artefacts than usually observed on automated

systems, which introduced an additional level of complexity

in image analysis and likely a reduced performance of algo-

rithmic prediction. Thus, these algorithms will be further

optimized to operate on very standardized fully automated

sample processes including inoculation, incubation and im-

aging. Moreover, this study demonstrated the importance to

develop these algorithms on specific media plates from

defined manufacturers in order to guarantee the robustness

and reliability of algorithmic detection, semi-quantification

and identification, despite obvious interest to later adapt

these algorithms to in-house made media plates or to media

from other manufacturers. We also consider important that

imaging application solutions should be delivered with a high

degree of flexibility to provide the possibility to the user for

adjusting the performance of Se and Sp of the algorithms, for

instance according to the sample types, with confidence level

indicators to facilitate the technical validation of the results.

In addition, imaging applications should be linked to expert

rules that could be defined and adjusted by the users to

modulate the use and the settings of such applications to

different samples types and/or microbial species identifica-

tion and to help the users for the interpretation of the

analytical results. Finally, the number of defined and clinical

samples that should be used before transferring intelligent

imaging analysis into diagnostic laboratories should be larger

than the number used to train the algorithms in this study,

indicating that extensive validation studies remained to be

performed by the manufacturers.

In conclusion, the development of intelligent algorithms

represents a driving innovation that will likely further in-

crease laboratory quality and productivity while significantly

reducing turn-around-times. Indeed, these algorithms are

required to reach a real level of full automation in

bacteriology.
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