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The 3-D structure of the Somma-
Vesuvius volcanic complex (Italy) 
inferred from new and historic 
gravimetric data
Niklas Linde  1, Tullio Ricci  2, Ludovic Baron1, Alexis Shakas1 & Giovanna Berrino  3

Existing 3-D density models of the Somma-Vesuvius volcanic complex (SVVC), Italy, largely disagree. 
Despite the scientific and socioeconomic importance of Vesuvius, there is no reliable 3-D density model 
of the SVVC. A considerable uncertainty prevails concerning the presence (or absence) of a dense body 
underlying the Vesuvius crater (1944 eruption) that is implied from extensive seismic investigations. We 
have acquired relative gravity measurements at 297 stations, including measurements in difficult-to-
access areas (e.g., the first-ever measurements in the crater). In agreement with seismic investigations, 
the simultaneous inversion of these and historic data resolves a high-density body that extends from 
the surface of the Vesuvius crater down to depths that exceed 2 km. A 1.5-km radius horseshoe-shaped 
dense feature (open in the southwestern sector) enforces the existing model of groundwater circulation 
within the SVVC. Based on its volcano-tectonic evolution, we interpret volcanic structures that have 
never been imaged before.

The Somma-Vesuvius volcanic complex (SVVC) is one of the volcanoes with the highest volcanic risk worldwide 
(it threatens 800,000 residents living on its slopes)1–4. The main volcanic hazards are pyroclastic flows and fallout, 
earthquakes, lahars, lava flows and floods. According to recent studies, the total economic impact of a subplinian 
eruption in the Vesuvian area, representing the reference scenario for the emergency plan5, 6, is estimated to 90 
billion Euro7. The SVVC is a Quaternary composite stratovolcano located 15 km southeast of Naples (southern 
Italy) in the Piana Campana semi-graben structure. It is bordered by Mesozoic carbonate shelves at the intersec-
tion of northwest-southeast and northeast-southwest trending oblique-slip faults and east-west trending normal 
fault systems8–11. The history of the SVVC began 0.3–0.5 million years ago12 and is characterized by periods of 
closed conduit rest lasting up to 1000 years that are interrupted by plinian and subplinian explosive eruptions13. 
These eruptions display the same eruptive and syn-eruptive phenomena, but they differ in terms of the volume 
of emitted magma and the energy of the eruption13. The SVVC is composed of a multistage and older summit 
caldera (Mt. Somma, 1132 m a.s.l.) and a nested younger cone (Mt. Vesuvius, 1281 m a.s.l.) (Fig. 1). In the last 
22 ka, four plinian caldera-forming eruptions (22 ka Pomici di Base, 9.7 ka Mercato, 4.3 ka Avellino, and AD 79 
Pompei) and at least three major subplinian eruptions occurred (17.6 ka Pomici Verdoline, AD 472 Pollena, and 
AD 1631)14. Each plinian eruption produced a summit collapse that modified the dimensions and shape of the 
Mt. Somma caldera, presently characterized by steep walls in the northern sector and a gentle morphology in the 
southern one15. SVVC products include lava flows and pyroclastics emitted from summit craters and calderas, 
as well as from parasitic lateral vents, eruptive fissures and exogenous tholoids that are related to both explosive 
and effusive eruptions. Pyroclastic deposits of plinian and subplinian eruptions blanket the northeastern sector of 
Mt. Somma with thicknesses up to 70 m in topographic depressions on the lower slopes, while the southwestern 
sector of the SVVC is mainly covered by historic lava flows16. Since the AD 1631 subplinian eruption, preceded 
by about 500 years of rest17, Vesuvius entered in an open conduit phase that lasted until March 1944 when, after a 
violent Strombolian eruption, the volcano entered in a new close conduit quiescence.
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Geophysical 3-D imaging may offer important insights about the history of the SVVC and provide geometric 
constraints on past magma feeding systems. Several 3-D gravimetric inversion studies have been performed in 
the surroundings of the SVVC18–22, but they strongly disagree among each other and some of them are inconsist-
ent with respect to other geophysical findings. For example, it is expected that the high-velocity zone underlying 
the Vesuvius crater that is prominent in seismic investigations23–25 should correspond to a high-density body with 
a clear and unambiguous gravimetric signature. A central anomalous body is also evidenced by aeromagnetic 
data and can be explained by a central highly magnetized body that extends from the surface down to at least 2 km 
below the sea level26. Nevertheless, the highest resolution 3-D gravimetric inversion study to date20 largely dis-
misses the seismic findings based on a density model that features a low-density body below the Vesuvius crater. 
This result contrasts with another 3-D density model21 that indicates a central high-density body, but the sparse 
station distribution used in the latter study yields a poor model resolution. It is important to better constrain and 
understand the origin of this central anomalous body as most of the present-day seismicity is confounded along 
its boundaries27, 28. Magnetic studies26 suggest that its top is located at shallow depths below the crater, while 
seismic studies disagree about its upper limit (e.g., 1.5 km depth29 or in the near subsurface18). It is recognized 
that the top interface is poorly defined by available seismic data and that the absence of a high-velocity body at 
shallow depths might simply be an artifact of the initial model used in the inversion29. The actual geometry of 
this high-velocity body, its origin and constitution is still uncertain. It is well-established that it takes its origin at 
depths that are considerably larger than the depth to the underlying carbonate basement23, which strongly sug-
gests that it has an intrusive magmatic origin. A survey of seismic and seismological studies at other volcanoes 
worldwide reveals that central high-velocity bodies are commonly interpreted as magmatic intrusions23. Initially, 
it was suggested that the high-velocity body was made up of slowly cooled magmatic dikes30, while later work has 

Figure 1. The main volcanic features of the SVVC14, 44, 45 with geographical names and topography produced 
from a digital elevation model57 using Surfer (version 14; http://www.goldensoftware.com/). Dashed lines refer 
to sectors of inferred plinian calderas that would have been removed by subsequent caldera forming events. The 
trajectories of the vertical sections shown in Fig. 3 are indicated by blue lines.

http://www.goldensoftware.com/
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argued that such an interpretation is incompatible with the time-scales associated with the magma cooling pro-
cess25. Instead, an alternative explanation was proposed in terms of very fast solidification by magma quenching25.

Using new (and old) gravimetric data and a recent inversion algorithm conceived for volcanic targets31, we 
present the most detailed density model of the SVVC to date. We have acquired and processed gravimetric data 
from 297 new stations (precisely positioned using differential Global Positioning System (DGPS)) with locations 
chosen to complement previous studies. Furthermore, we cover the summit area in much more detail than previ-
ously (the data set include the first gravimetric data within the Vesuvius crater). In the inversion, we account for 
the topography by incorporating a modern digital elevation model (DEM) based on light detection and ranging 
(LIDAR) data at a resolution of 5 m. We present this detailed 3-D density from the surface down to depths of 
1–2 km. The main objectives of this study are to (1) provide a definite answer concerning the presence or not of 
a dense body underlying the Vesuvius crater and (2) interpret our high-resolution 3-D density model in terms of 
the evolution and present structure of the SVVC.

Results
Local Bouguer anomalies provide a first visualization of the available gravimetric data (Fig. 2). In agreement with 
previous work32, we used a density of 2200 kg m−3 for topographic and Bouguer plate corrections. We referenced 
the local Bouguer anomalies to a base station that was located close to the historical building of the Osservatorio 
Vesuviano (Fig. 1). From these data, we removed a regional trend that was inferred as part of the inversion pro-
cess. Figure 2a presents the distribution of the historic data in a square of size 20 km × 20 km that is centered on 
the Vesuvius crater. These data (and additional data outside this region) have been used in previous 3-D inver-
sions21. Our new data set was acquired within the central 10 km × 10 km square region shown in Fig. 2a. It is clear 
that the coverage of the historic data is poor in this central region, partly because of the difficult access. The cov-
erage of our new data set (Fig. 2b) is comparatively homogeneous with a refinement in the summit area. This new 
data set also includes the first-ever gravity measurements in the Vesuvius crater. The new local Bouguer anomalies 
(Fig. 2b) clearly highlight that the central area of the SVVC is denser than 2200 kg m−3.

To better appreciate the resolution of the gravimetric inversion results, we calculate the depth of investigation 
(DOI)33 based on inversion results with a 2000 kg m−3 and 2400 kg m−3 reference model, respectively. Two vertical 
slices (see Fig. 1) that cross in the Vesuvius crater demonstrate that the best-resolved region corresponds to the 

Figure 2. Local Bouguer anomaly of the (a) historic data and (b) new data set constructed using a density of 
2200 kg m−3. The region in (b) is represented by a black square in (a). The values are given with respect to the 
reference station of the new data set (indicated with a ×-sign). The maps were created using Matlab (version 
R2013b; www.mathworks.com).

http://www.mathworks.com
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central part of the SVVC (Fig. 3a,b). In this region, the DOI is below 0.6, while the resolution is poor at deeper 
depths and increasing horizontal distances. Consequently, we mainly limit our discussion and interpretation to 
model features from the sea level and upwards.

Two vertical sections (Fig. 3c,d) highlight some of the main features of the density model obtained from the 
gravity inversion. The region below the Vesuvius crater is markedly denser (>2450 kg m−3) than the surrounding 
flanks of the volcano (<2350 kg m−3). This central dense region appears continuous from the surface down to at 
least 2 km depth from the land surface, after which the model resolution is too poor to allow for definite state-
ments about its continuation. Another prevalent feature is the dense body (>2400 kg m−3) that is found 1.5 km 
to the east (Fig. 3c) and to the north (Fig. 3d) of the Vesuvius crater. This dense body appears to be connected 
with the central dense body at depth, even if this cannot be confirmed given the poor model resolution at depth 
(Fig. 3c,d). The geometry of this central dense body is in strong agreement with seismic results (e.g., published 
figures: Fig. 724, Fig. 1023 and Fig. 325), as well as with aeromagnetic investigations (e.g., published figure: Fig. 
1026). Its presence is also suggested by certain 3D gravity inversion results (published figures: Figs 621 and 721). A 
3-D rendering of the dense regions (Fig. 4) highlights the geometry of the two dense bodies and the comparatively 
low densities below the flanks of the Gran Cono (Fig. 1).

Discussion
The geological interpretation is based on representative horizontal slices at decreasing altitudes. The slice at 950 m 
(Fig. 5a) displays a central roughly circular high-density feature corresponding to the inner part of Gran Cono 
(Fig. 1) and is delimited by the 1906 crater. We attribute the high-density values to the feeder conduit and to dense 
(low porosity) lava layers emitted at the beginning of the 20th century (1906–191534; Fig. 119 in ref. 35) that over-
lap in correspondence to the buried rim. The porosity increases (density decreases) outside of the buried crater as 
lava flows are more scoriaceous and light ash, lapilli and scoriae deposits become more common. Moving to the 
north, a high-density feature is found that we attribute to the presence of abundant radial dikes and dense lava 
flows outcropping on the south wall in this sector of Mt. Somma36, 37.

At an altitude of 750 m (Fig. 5b), the high-density body is still positioned below the 1906–1944 tangent cra-
ters. It is surrounded by a roughly circular low-density body that hosts the shallow hydrothermal system of Mt. 
Vesuvius38–40. It consists of more porous material filling the depression created by the 1631 caldera-forming erup-
tion, and in older times by the 79 AD Pompei eruption. Outside of this low-density region is a horseshoe-shaped 
high-density body that is partially open in the southwestern sector (this is also clearly seen in the 450 m slice in 
Fig. 5c). This denser body is related to the presence of dikes and old lavas belonging to the Mt. Somma edifice, 
whose upper part, reaching 1900 m a.s.l.15, was destroyed by two plinian caldera-forming eruptions (the Mercato 
eruption in the northwest to northeastern sector and the Pompei eruption in the northeast to southeastern sec-
tor)14, 15. South of the Mt. Somma scar, the persistent high density (showing up as a plateau in Fig. 4) is likely a 
manifestation of the accumulation of lava flows in the up to 400 m deep and originally narrow Atrio del Cavallo 
and Valle dell’Inferno valleys41 (Fig. 1). Outside of the horseshoe-shaped high-density body, the inferred densities 

Figure 3. Depth of investigation (DOI) and vertical sections of the 3-D density model obtained with model 
regularization in terms of an isotropic roughness and damping constraints around 2200 kg m−3: (a) DOI for the 
west-east section at a latitude of 4519050 m and (b) the south-north section at a longitude of 451580 m; (c,d) 
corresponding density models. In (c,d), the DOI values are used to provide a qualitative (using transparency) 
assessment of how the model resolution decreases with depth. These sections also highlight how the inversion 
grid cells adapt to conform to the topography of the land surface at a resolution of 5 m. The locations of the 
two transects are highlighted in Fig. 1. The vertical sections were created using Matlab (version R2013b; www.
mathworks.com).

http://www.mathworks.com
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decrease due to the increasing thickness of more porous products downslope16. Many of the parasitic vents 
located on the southeastern limit of the Mercato caldera are characterized by high-density values. In contrast to 
the general model of shallow and low-angle dike propagation at Vesuvius42, 43, our results rather suggest for most 
of those parasitic vents, as well as for the 1937 exogenous tholoid (Fig. 1), a deep and sub-vertical migration of 
magma from the source to the surface (c.f., Fig. 3c,d).

In the slice at 450 m (Fig. 5c), we still find the central conduit and the horseshoe-shaped dense body that 
marks the buried structures of the Mercato and Pompei calderas. On the northwestern rims of the Pompei and 
Mercato calderas, there is no clear high-density evidence of the conduits feeding the Pomici Verdoline vent, 
the 472 AD subplinian eruption14 or the 1895–1899 eruption of the Colle Umberto exogenous tholoid (Fig. 1). 
The lack of denser structures delimiting the Avellino caldera is explained by the fact that the remnants of that 
eruption are low-density tuffs originating from a giant tuff cone15. Within the Avellino caldera center, a denser 
body is seen that might be related to the shallow dike intrusion feeding the 1794 and 1861 eruptive parasitic vents 
located downslope and aligned along east-west striking fissures16, 44, 45. The high-density body located north of the 
Avellino caldera is explained by the accumulation, in a topographic depression, of thick layers of lavas erupted 
during 4 eruptions between 1855 and 194446 and possibly in previous eruptive events. In the northern and eastern 
sectors of Mt. Somma, several radial higher-density bodies could indicate the presence of sub-horizontal radial 
dikes feeding presently buried parasitic vents developed more than 16.1 ka ago47.

The shape of the high and moderately high density region (green, yellow and red) in the −50 m slice (Fig. 5d) 
highlights the complex tectonic setting of the SVVC. The most pronounced feature is associated with an elonga-
tion in the northwest-southeast direction that corresponds to a major regional fault system (see. Fig. 2 in ref. 10). 
A similar elongation in the northeast-southwest direction coincides with another major regional fault system (see. 
Fig. 2 in ref. 10). These results underline how the development of the SVVC has been influenced by the tectonic 
Plio-Quaternary Campanian Plain depression that is buried 2 km below a polygenic filling39. Part of this filling 
surrounding the high-density body and laying on top of the Mesozoic carbonate basement15, 48 is represented by 
the 37 ka old deposit of Campi Flegrei Campanian Ignimbrite49. At this depth, the remnants of the ring structures 
produced by the four Plinian eruptions are either absent or unresolved.

We now discuss our results in terms of the hydrogeological setting of the SVVC, notably to provide constraints 
indicating if the SVVC is hydrogeologically connected to its surroundings or if it is closed by impervious caldera 
rims. This has important consequences in terms of groundwater geochemistry and flow. A hydrogeochemical 
study50 suggests that groundwater circulation within the SVVC is largely dependent on the volcano-tectonic 
structures10, 48 and the asymmetric topography of Mt. Somma16, 51. In the south-southwestern sector of Mt. 
Vesuvius, their sampled groundwater suggests strong interaction between volcanic aquifers and the main degas-
sing system of the volcano, while no such intense interaction appears in groundwater samples from the Mt. 
Somma sector. This suggests that Mt. Somma acts as a barrier to groundwater flow in the northwestern sector. Mt. 
Vesuvius groundwater receives only a negligible contribution from Tyrrhenian seawater and thermal water, indi-
cating an essentially meteoric origin and a predominant south-southwest flow direction. The proposed model of 

Figure 4. 3D representation using Blender (version 2.78c; www.blender.org) of the comparatively low densities 
found between the Vesuvius cone and Mt. Somma. The rendered orange surface indicates a body with a density 
above 2370 kg m−3 and the denser red body a density above 2440 kg m−3. The present surface topography is 
represented by a black mesh and a satellite image from the same point of view is provided in the inset (Imagery 
©2017, Map data ©2017 Google).

http://www.blender.org
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groundwater circulation (their Fig. 1350) is fully consistent with our horseshoe-shaped anomaly (Figs 4 and 5c,d) 
that suggests more porous and permeable subsurface deposits in the southwestern sector of the SVVC.

We now attempt to explain the main underlying reasons for the strong differences between our 3-D density 
model and previously published 3-D density models. A previous 3-D study20 at a similar scale and resolution as 
in our study led to a completely different density model. In that model, the region below the Vesuvius crater is 
comparatively light and the flanks of Gran Cono are comparatively dense. Given the expected positive relation 
between density and seismic velocity, these results were used to question seismic evidence23–25 of a high-velocity 
central quasi-spherical body below the crater surrounded by rocks of lower seismic velocities. We suggest that 
this discrepancy is rather explained by the use of a far too coarse DEM in this gravimetric study20. For example, 
by comparing our vertical profiles (Fig. 3c,d) with their corresponding figures (their Figs 1220 and 1320), it appears 
as if they do not account for the topography of the 300 m deep crater (i.e., the crater is absent in their profiles). 
This omission will inevitably force the smoothness-constrained inversion to compensate by introducing a large 
region of artificially low densities. It is also likely to introduce a surrounding halo of comparatively higher den-
sities (in accordance with their results)20. Another illustration of the coarseness of their DEM is that they do not 
account for the strong topography of the Mt. Somma flank (compare the topography of their Fig. 1220 with the 
one in our Fig. 3d). Based on these arguments (and given that the results are inconsistent with extensive seismic 
investigations), we argue that this model20 is unreliable in regions affected by strong topography (i.e., throughout 
the SVVC).

Another study21 used a similar-sized model domain as in our study based on 400 of the historic data presented 
in Fig. 2a. The resulting density model is partly consistent with our results (e.g., a central high-density body and a 
structure that appears to be related with our horseshoe shaped dense body are found; see the slice at −1000 m in 
their Fig. 621), but the results suffer from a low model resolution due to the very coarse station distribution in the 
central part of the SVVC (see Fig. 2a). If one would use their inversion approach with a finer discretization (pos-
sible today due to increased computing capabilities) and our new data, this would most likely make their results 
more comparable with our results. Nevertheless, their inversion cells do not conform to the surface topography, 
which leads to very limited information about the density distribution above the sea level (their presented depth 
slices are given from the sea level and downwards, while the peak of Mt. Vesuvius is at 1281 m a.s.l.). We stress 
that the focus of ref. 21 was placed on deeper structures and that it is largely complementary to our present study.

Figure 5. Horizontal slices of the 3-D density model at different altitudes with respect to the sea level: (a) 
950 m, (b) 750 m, (c) 450 m and (d) −50 m. The overlain geological features are detailed in Fig. 1. The maps were 
created using Matlab (version R2013b; www.mathworks.com).

http://www.mathworks.com
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A more recent study22 resolves two dense bodies with locations that coincide with the northern and southern 
parts of the horse-shaped dense body. Unfortunately, this model appears to be adversely affected by the coarse 
model discretization used (815 m × 800 m in the horizontal dimensions compared to 100 m × 100 m with local 
adaptation to account for surface topography at a resolution of 5 m in our model). Such a coarse discretization will 
inevitably lead to a poor model resolution and the risk of introducing inversion artifacts. This may also explain 
the corresponding data misfit that is 7 times larger than for our inversion model.

An integrated modeling and inversion study that considered both seismic and gravimetric data18 constituted 
the first 3-D density model of the SVVC. The emphasis of that study was large-scale structures (e.g., they use inter-
polated gravity data every 2.5 km) and their 3-D model is based on the interpolation of 2-D results. Furthermore, 
their algorithm relies on the assumption of a strong and known relationship between seismic P-wave velocity 
and density. Despite these caveats, their model (their Fig. 818) seems to indicate a denser body below the crater 
and lighter material on the sides. These results were improved by considering full 3-D modeling and inversion19 
(albeit with a very coarse discretization of 2 km × 2 km × 0.5 km). The results confirm the presence of a thick and 
dense intrusion beneath the Vesuvius crater that they attribute to solidified dikes. An underlying assumed rela-
tionship between seismic velocity and density implies that this structure is not resolved by the gravity data alone.

Methods
Modeling and inversion framework. Our gravimetric data consist of relative variations of the vertical 
acceleration of gravity with respect to a base station (see Fig. 2b). These relative gravimetric data are mainly 
sensitive to the density distribution below the survey area. After appropriate data processing, it is possible to use 
them to obtain (by inversion) a 3-D density model. Traditionally, gravimetric data are interpreted in terms of 
density variations around a pre-defined background model. This is a sound approach for flat topography given 
that the acquired gravimetric data will then not carry any information about the mean density of the subsurface. 
Luckily, the pronounced topography of most volcanoes can be used to infer realistic density values (not only 
density variations). This was recently demonstrated at Stromboli volcano, Italy, in which a targeted processing 
flow and inversion provided, without any prior assumptions on density values, a density distribution that was in 
good agreement with density measurements on representative rock samples31. In this work, we largely follow this 
methodology31.

We discretize the SVVC and the surrounding region in terms of parallelepipeds and compute their for-
ward responses using an analytic solution52. The parallelepipeds making up the central and interior part of the 
modeling domain are discretized with side-lengths of 100 m. Model cells that intersect the topography or the 
bathymetry of the Mediterranean Sea are refined to account for the topography at a spatial resolution of 5 m. The 
horizontal extent of the modeling domain over which topography is accounted for is 30 km × 30 km. The model 
cell dimensions grow towards the sides and with depth. A total of 564,988 model cells are used in the inversion.

There is an infinite number of density models that can explain a given gravimetric data set53. To obtain a 
unique solution, it is necessary to add penalties on how model parameters vary in magnitude and space (this is 
termed model regularization). Here, we rely on traditional isotropic roughness constraints in each spatial direc-
tion to ensure that the inferred density varies smoothly. Repeated inversions are performed (by trial-and-error) 
to find the regularization weight, λ, that provides a model with a forward response that explains the observed data 
to a user-defined error level. This procedure enables us to avoid obtaining a model that fits the data poorly (yield-
ing a too smooth model) or a model that overfits the data (yielding a too rough model with inversion artifacts). 
Most inversion algorithms are based on a least-squares formalism54. After a first least-squares inversion step, we 
employ an additional iteration using iteratively reweighted least-squares55. By mimicking l1-norms (i.e., assuming 
underlying symmetric exponential distributions of the data misfit and model roughness), we decrease the sensi-
tivity to data outliers and image sharper density contrasts. Compared with previous work at Stromboli volcano31, 
we also employ sensitivity scaling56 to enhance the imaging of structure at depth. This is achieved by scaling the 
regularization weight of every model cell to its accumulated sensitivity to all gravity data (i.e., the sum of absolute 
values). This ensures that model cells with a high data sensitivity will have strong roughness constraints. The 
sensitivity scaling leads to slightly lower density variations close to the surface (where the sensitivity is very high) 
and enhanced imaging of structures at larger depths. Nevertheless, the results are overall similar to those obtained 
without sensitivity scaling.

Another methodological addition is that we also incorporate a model regularization term that weakly penal-
izes deviations (so-called damping constraints) from a homogeneous pre-defined density model. By performing 
several inversions with different reference densities, we can assess to what extent the data (and not the model 
regularization) determines the inferred density values. This is achieved by using the concept of depth of investi-
gation (DOI)33 that is widely used in geoelectrical studies to quantify model resolution in non-linear inversions. 
This approach is used herein to highlight the regions of the inversion model that are the most reliable. The DOI 
is obtained by performing two separate inversions with damping constraints around two different homogeneous 
reference models. The DOI for a given model cell is given by the difference between the two inversion results 
divided by the difference between the two reference models. A DOI of 0 suggests that the inferred density value 
is very well resolved (the inversion result is insensitive to the reference model), while a value of 1 suggests that 
the inferred density value is completely unresolved (the reference model wholly determines the inferred value).

We consider relative gravity data from which the influence of instrumental drift, earth tide, latitude, the accel-
eration of the sea mass for a known bathymetric model and the free-air effects have been removed53. The latitude 
and free-air corrections (associated with the normal gravity at the observation points) are made with respect to 
the reference station. This is done because our forward code provides relative responses of the density model with 
respect to the local reference, and not with respect to the normal reference ellipsoid. These local free-air anom-
alies with the sea effect removed that are used for inversion are only affected by the mass distribution below the 
discretized topographic surface31. We invert these residual anomalies on the topographic surface and account for 
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the density distribution within our model domain that is bounded on the top by the irregular topography. This 
is the reason that we do not (and should not) make any topographic corrections to our data prior to inversion. 
The local Bouguer anomalies presented in Fig. 2 are not used for inversion, only for visualization. The inversion 
algorithm finds the most appropriate density value of each model cell together with parameters that describe a 
linear trend in the gravity data. This linear trend estimate is used to partly remove the influence of deep structures 
that we cannot resolve with our station distribution. The bathymetry is described by a bathymetric model with a 
resolution of 20 m57, while the land surface is described by an upscaled (5 m) version of a high-resolution (1 m) 
DEM obtained from LIDAR data (Digital Terrain Model by INGV-Osservatorio Vesuviano). This high-resolution 
DEM does not cover the whole area of interest and the topography of some of the external areas of the model 
domain is represented using the 20 m resolution DEM57.

Data acquisition and processing. The new gravimetric data were acquired during the time period of 
October 5–20, 2014. The survey was designed to obtain a rather uniform distribution within a radius of 10 km 
from the Vesuvius crater with a refinement in the summit area and other areas of particular interest (see Fig. 2b). 
The relative gravimeter (CG-5, Scintrex) used returned the average response after measuring 30 s at 5 Hz. At each 
station, this sequence was repeated five times and the median value was retrieved for further analysis. The drift of 
the gravimeter was estimated by performing measurements at our local base station before and after the survey of 
each day. In addition, a network of additional reference stations was used to tie the measurements with the data from 
the previous days. The average drift correction each day was on the order or 0.03 mGal. The measurement locations 
and heights were obtained using DGPS (Topcon GR-5) and the local continuous GPS monitoring network58. It was 
sometimes difficult to obtain accurate positions for stations in the lower-lying areas located within pine forests. To 
improve the positioning capacity, we used the DGPS to search for station locations in the vicinity of the intended 
measurement point that had the best satellite configuration. The agreement between the DEM altitude and the one 
obtained by the DGPS was nevertheless not always good. To avoid inversion artifacts, we had to discard 25 stations 
with poor positioning accuracy. These points are mainly found in the forested landscape and it is likely that both the 
DGPS and the DEM positioning are less accurate in such regions. This leaves us with 297 new data points that were 
used in the subsequent inversion after the processing described above (free-air anomalies with sea effect removed).

The processed data set was merged with historic data21 that had previously been referenced to an absolute 
gravity station in Naples59. By occupying repeated points of the gravimetric monitoring network60, it was 
possible to link our relative measurements to the absolute gravity and, thus, to the historic data. The meas-
urement locations of these old data are not very precisely determined as the data were acquired before the 
advent of DGPS. We assume uncorrelated data errors and that the combined errors of our new data have a 
mean deviation of 0.1 mGal. We assigned a mean deviation of 1 mGal for the historic data even if the actual 
errors might be slightly lower. For example, previous works suggest that the offshore data have a standard 
deviation below 0.7 mGal32 and the historic land-based data have been fitted to a standard deviation of 
0.36 mGal21. Our reasoning for choosing the relatively high error level in the historic data was to force 
the inversion to resolve large-scale regional features and trends by including the larger survey area of the 
historic data (Fig. 2a), while ensuring that the new data (Fig. 2b) carry most of the weight in resolving the 
structure below the SVVC. For the new data, we have complete control and knowledge of the acquisition, 
positioning and processing.
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