Manuscript title

The value of quantitative environmental DNA analyses for the management of invasive and endangered native fish.

Running title

Value of quantitative eDNA in management.

Keywords

eDNA; Species interactions; Conservation; Fishes; Quantitative PCR

Target journal

Freshwater Biology

Authors

Jack Rojahn ${ }^{1,2^{*}}$, Luke Pearce ${ }^{3}$, Dianne M. Gleeson ${ }^{1,2}$, Richard P. Duncan ${ }^{1}$, Dean M. Gilligan ${ }^{4}$, Jonas Bylemans ${ }^{1,2,5}$
jack.rojahn@canberra.edu.au; luke.pearce@dpi.nsw.gov.au; dianne.gleeson@canberra.edu.au; richard.duncan@canberra.edu.au; dean.gilligan@dpi.nsw.gov.au; jonas.bylemans@unil.ch
${ }^{1}$ Centre for Conservation, Ecology and Genetics, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia; ${ }^{2}$ Centre for Invasive Species Solutions, University of Canberra, Canberra, ACT 2617, Australia; ${ }^{3}$ NSW Department of Primary Industries - Fisheries,

Albury, NSW 2640, Australia, ${ }^{4}$ NSW Department of Primary Industries - Fisheries, PO Box 17, Batemans Bay, NSW 2536, Australia, ${ }^{5}$ Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne 1015, Switzerland

* Corresponding author

Abstract

1. Environmental DNA monitoring is a useful tool for species detection but its use to address management questions remains scarce. One factor limiting the use of eDNA as routine monitoring tool is uncertainty around the potential of eDNA data to estimate species abundance. While several confounding factors limit the ability of eDNA data to estimate absolute abundances at large spatial and temporal scales, eDNA data have the potential to estimate relative species abundances patterns at smaller scales, and this information can assist management. 2. Environmental DNA and conventional monitoring surveys were conducted in the Abercrombie River catchment (Australia) where an incursion of the invasive redfin perch (Perca fluviatulis) threatens the survival of a population of endangered Macquarie Perch (Macquaria australasica). Species-specific assays were used to quantify eDNA concentrations from water samples and estimate the relative abundance of both species. Electrofishing and fyke netting surveys were used to validate key observations from the eDNA survey. 3. Environmental DNA of both species was detected at all sites except one, where redfin perch DNA was not detected. Between species comparisons of eDNA concentrations revealed a clear negative relationship between the eDNA concentrations of both species, consistent with other evidence of redfin perch having a negative impact on Macquarie perch populations. Between site comparisons of redfin perch eDNA concentrations showed evidence of a novel incursion of the species in the upper reaches of the Abercrombie River and conventional monitoring in the following year confirmed the pattern of increased redfin perch abundances from downstream to upstream sites. 4. Relative comparisons of eDNA concentrations of aquatic species can be used to assess species interactions and reveal unexpected species abundance patterns (e.g. allowing inferences of novel incursions of invasive species). This information is critical to evaluate current, and design future, management strategies. Consequently, while deriving absolute species abundances from quantitative

eDNA data may remain challenging, the use of quantitative eDNA surveys can provide relative abundance patterns valuable to the conservation and management of invasive and endangered species. 5. The quantitative nature of eDNA survey data has been debated extensively in the current literature because of potential confounding influences. Current study results show that these confounding influences may be less problematic at small spatial scales and quantitative eDNA data can be effective to monitor relative species abundances patterns.

Introduction

Ever since it was recognised that trace DNA fragments left behind by organisms in the environment (environmental DNA or eDNA) can be used to monitor rare, cryptic and invasive biodiversity (Ficetola, Miaud, Pompanon, \& Taberlet, 2008), interest in the research field has increased along with the number of scientific publications (Jarman, Berry, \& Bunce, 2018). While methods for eDNAbased biodiversity monitoring continue to be improved (Geerts, Boets, Van den Heede, Goethals, \& Van der heyden, 2018; Hinlo, Gleeson, Lintermans, \& Furlan, 2017; Sepulveda et al., 2019; Thomas, Nguyen, Howard, \& Goldberg, 2019; Tsuji, Takahara, Doi, Shibata, \& Yamanaka, 2019), the use of eDNA-based methods to address questions relevant to environmental managers remains underutilised.

Environmental DNA has proven valuable for monitoring single species at low densities (Ficetola et al., 2008; Ikeda, Doi, Tanaka, Kawai, \& Negishi, 2016; Sigsgaard, Carl, Møller, \& Thomsen, 2015); with applications that include improving species distribution estimates of invasive and endangered species (Bylemans, Furlan, Pearce, Daly, \& Gleeson, 2016; Doi, Katano, et al., 2017; Gold et al., 2020; Mauvisseau et al., 2020; Smart, Tingley, Weeks, Van Rooyen, \& McCarthy, 2015), evaluating eradication efforts (Davison, Copp, Créach, Vilizzi, \& Britton, 2017; Furlan, Gleeson, Wisniewski, Yick, \& Duncan, 2019; Robinson, Garcia de Leaniz, Rolla, \& Consuegra, 2019),
monitoring reintroductions and post-release survival of species (Hempel et al., 2020; Rojahn, Gleeson, \& Furlan, 2018) and determining the timing and location of reproductive activity (Bylemans et al., 2017; Erickson et al., 2016). Environmental DNA can also be used to obtain information on community composition through eDNA metabarcoding. Metabarcoding has been used successfully to monitor temporal shifts in community composition (Bista et al., 2017), assess the ecological health of water bodies (Li et al., 2018) and to determine population genetic diversity (Sigsgaard et al., 2016). For both single and multiple species, several studies have indicated that data on eDNA concentration can be used to estimate species abundances (Evans et al., 2015; Knudsen et al., 2019; LacoursièreRoussel, Côté, Leclerc, \& Bernatchez, 2015; Ushio et al., 2018). However, correlations between eDNA concentrations and species abundances in natural systems are generally weak compared to laboratory studies (Yates, Fraser, \& Derry, 2019), particularly in riverine systems (Hinlo, Lintermans, Gleeson, Broadhurst, \& Furlan, 2018; Spear, Groves, Williams, \& Waits, 2015). In addition to the different processes that influence eDNA shedding and degradation rates (e.g. seasonality, temperature, pH, etc.) (Sassoubre, Yamahara, Gardner, Block, \& Boehm, 2016; Strickler, Fremier, \& Goldberg, 2014; Tsuji, Ushio, Sakurai, Minamoto, \& Yamanaka, 2017), a quantitative interpretation of eDNA data in riverine systems is further complicated by water flow, eDNA transport and eDNA retention in the substrate (Fremier, Strickler, Parzych, Powers, \& Goldberg, 2019; Jane et al., 2015; Shogren et al., 2018; Shogren, Tank, Egan, Bolster, \& Riis, 2019). Nevertheless, it may be possible to compare relative eDNA concentrations among species at the same or similar sites where the influence of confounding factors (i.e. turbidity, pH , temperature, etc.) are likely reduced.

A system of particularly high conservation value where quantitative eDNA data can provide useful information for future management is the Abercrombie River catchment in central-west New South Wales (NSW) (Australia). The Abercrombie River is part of the Lachlan River catchment which historically supported a large population of the national endangered Macquarie perch
(Macquaria australasica, Percichthyidae) (Gilligan, McGarry, \& Carter, 2010). Currently, the catchment remains one of the last strongholds for Macquarie perch, as habitat degradation and the spread of the invasive redfin perch (Perca fluviatulis, Percidae) have caused dramatic declines and the likely extirpation of the adjacent Lachlan River Macquarie perch population (Gilligan et al., 2010; Lintermans, 2007). However, recent surveys have reported the presence of redfin perch in the lower reaches of the Abercrombie River (Figure 1) and the further spread of redfin perch may threaten the long-term survival of the remnant Macquarie perch population. A captive breeding program was initiated by NSW Department of Primary Industries to establish a refuge population in the Retreat River, a side tributary of the Abercrombie River. The Retreat River contains sufficient Macquarie perch habitat to support a population and a series of waterfalls in its lower reaches (2-3 km upstream from the confluence of the Retreat and Abercrombie River) form a natural barrier reducing the chances of redfin perch invasions (Figure 1) (Gilligan et al., 2010; Pearce, 2013). From 2010 to 2014, more than 19,000 Macquarie perch fingerlings were released into the Retreat River (Pearce, 2013). Subsequent monitoring of the Retreat River population has shown that Macquarie perch have persisted (recaptures of released fish) and have bred successfully (capture of several wild born fingerlings in 2017 and 2018).

This study aimed to assess the value of quantitative eDNA data in guiding future management of redfin and Macquarie perch in the Abercrombie and Retreat Rivers. If quantitative eDNA data accurately reflects relative species abundance patterns it can be predicted that: 1) the current upstream expansion of redfin perch will create a gradient of decreasing eDNA concentration from the lower to upper sites in the Abercrombie River; and 2) the negative interactions between redfin and Macquarie perch would result in a negative correlation between the observed eDNA concentrations of the two species. Finally, the general benefits of quantitative eDNA surveys are discussed as well as the specific management implications.

Materials and methods

Environmental DNA monitoring

Environmental DNA samples were collected from seven sites in the Abercrombie River and two sites in the Retreat River over a four-day period in May 2018 (Figure 1). Both rivers are located within the Abercrombie River National Park which is characterised by steep terrain and limited access along river corridors, partly due to extensive vegetation and remnant bushland. During the sample period, river systems varied in size and flow with some smaller river segments dry. Sample sites were therefore selected based on current knowledge of the target species' distributions, accessibility, and suitability (i.e. presence of large pools). Samples were collected beyond the currently known distribution limits of redfin perch as previous studies have indicated that conventional monitoring surveys generally underestimate the distribution of species compared to eDNA surveys (Figure 1) (Bylemans et al., 2016; Jerde, Mahon, Chadderton, \& Lodge, 2011). Sites in the Retreat River were situated below and above the waterfalls to assess the potential effectiveness of this natural migration barrier.

Eight water samples (1 L) were collected per site using clean DNA-free Nalgene bottles (i.e. treated with a 20% bleach solution and rinsed with UV-treated tap water). At most sites a single pool was sampled from either the main river channel or isolated pool, with sampling focussed on areas containing vegetation (i.e. redfin perch habitat) (Lintermans, 2007; Westrelin, Roy, Tissot-Rey, Bergès, \& Argillier, 2018). If vegetation was lacking or difficult to access, samples were collected at approximate evenly spaced intervals around the edge of the pool. For two sites where water levels were low and a single large sampling pool could not be identified, samples were collected from two smaller pools. One blank field control (BFC) was included per site consisting of a 1 L bottle filled with UV-treated water which was opened on site, exposed to the air for $c a .1 \mathrm{~min}$, closed and submerged. Samples were stored on ice and eDNA was captured within 12 hours using $1.2 \mu \mathrm{~m}, 47$
mm cellulose-nitrate filter papers (Sarstedt, Nümbrecht, Germany). Prior to filtering, all equipment was cleaned using the protocol described earlier and negative equipment controls (NEC) were obtained by filtering 0.5 L of UV-treated tap water before processing eDNA samples. A maximum of three individual filter papers was used per sample to maximize the total volume of filtered water. Filter papers were stored in 5 mL tubes, placed on ice during the sampling campaign (≤ 4 days) and stored at $-20^{\circ} \mathrm{C}$ after returning to the University of Canberra (ACT, Australia). Environmental DNA was extracted from filter papers in a dedicated trace DNA laboratory at the University of Canberra. During each batch extraction, BFCs and NECs were included to monitor potential crosscontamination. The Qiagen DNeasy ${ }^{\circledR}$ kit (Qiagen, Hilden, Germany) was used to extract eDNA with slight modification to the protocol (Hinlo et al., 2017; Renshaw, Olds, Jerde, McVeigh, \& Lodge, 2015). Environmental DNA extracts were eluted in $100 \mu \mathrm{~L}$ of Buffer AE and stored at $-20^{\circ} \mathrm{C}$ until further analyses.

Quantitative Real-Time PCR (qPCR) was used to determine the presence/absence of target DNA and simultaneously quantify target eDNA concentrations. A redfin perch specific Taqman ${ }^{\mathrm{TM}}$ assay was previously designed and validated (Furlan \& Gleeson, 2016a) while the Macquarie perch assay consisted of previously designed and validated primers and a newly designed minor groove binding hydrolysis probe (5^{\prime} - ACAGCCCAAAACGTCAGGTCGAGG-3') (Bylemans et al., 2017). For each target, six qPCR replicates were performed per sample and a generic fish assay was included to evaluate the sample processing workflow and assess the occurrence of PCR inhibition (Furlan \& Gleeson, 2016b). For three sites by species combinations the initial PCR replicates showed low levels of amplification for either assays and thus an additional six PCR replicates were performed (Table 1). PCR setups were performed in a physically separated room with positive air pressure within the Trace DNA laboratory to minimise contamination risk. An epMotion ${ }^{\circledR} 5075$ Liquid Handling Workstation (Eppendorf, Hamburg, Germany) was used to setup qPCR reactions in a 384 well plate
format. Individual reactions contained $7.5 \mu \mathrm{~L}$ of Taqman ${ }^{\mathrm{TM}}$ Environmental Master Mix 2.0, the target-specific assay (1 x), the generic fish assay $(0.75 \mathrm{x}), 2 \mu \mathrm{~L}$ of template eDNA and DEPC water to a final volume of $15 \mu \mathrm{~L}$. Each setup included a 6-point standard curve consisting of target specific PCR amplicons with concentrations ranging from 3,000,000 to 30 copies per reaction. Furthermore, non-template controls (NTC) were included during each setup to assess potential cross contamination. The ViiA ${ }^{\text {TM }} 7$ Real-Time PCR machine (Applied Biosystems, Foster City, USA) was used to run qPCR analyses with cycle conditions set at $95^{\circ} \mathrm{C}$ for 10 mins followed by 55 cycles of $95^{\circ} \mathrm{C}$ for 15 sec and $60^{\circ} \mathrm{C}$ for 30 sec . Results were visually inspected, and reactions were only considered valid if a clear exponential amplification curve could be observed for at least one of the assays (i.e. a failed amplification for both assays indicates improper sample processing or the presence of PCR inhibitors).

Conventional monitoring

Conventional fish monitoring surveys were conducted at 12 sites during April 2018 (8 sites) and May 2019 (8 sites) (Table 2). During both years, the primary purpose of the survey was to assess the status of the Macquarie perch population in the Retreat River and consequently most sites were located in this tributary (all 8 sites surveyed in 2018 and 5 out of 8 sites surveyed in 2019). However, in the 2019 survey 3 sites were sampled in the upstream section of the Abercrombie River to help validate some the results of the eDNA survey.

Fish sampling protocols used were those developed for the Murray-Darling Basin Authority's Sustainable River Audit - Fish theme (Davies, Stewardson, Hillman, Roberts, \& Thoms, 2012). Electrofishing consisted of eight 150 second (power-on time) single-pass operations with a SmithRoot model LR24 backpack electrofishing unit (Smith-Root Inc, Vancouver, USA). In addition to electrofishing, 5 fyke nets (single wing, 5 meters, 6 hoops with a front 'D' 60 cm drop and 19 mm mesh) were set overnight for a minimum period of 12 hours at 4 sites (1 site in 2018 and 4 sites in
2019). All captured fish were identified to species level, length measurements were taken to the nearest millimetre and the weight of individuals $>100 \mathrm{~mm}$ in length was measured to the nearest gram.

Data analyses

The eDNA survey results were summarized to show the total number of PCR replicates, and the number of valid and positive PCR replicates for each site and species. The conventional monitoring results were summarized to show the total number of Macquarie perch and redfin perch caught at each site for each method.

Detailed analysis of the quantitative eDNA data was performed using an occupancy-detection model modified from a previously published hierarchical Bayesian model used to estimate eDNA concentration from PCR replicates (see Supporting Information) (Furlan, Gleeson, Hardy, \& Duncan, 2016). We used this approach to estimate the probability of species presence and the concentration of eDNA at each site conditional on presence, accounting for the patchy distribution of eDNA in the water samples. Briefly, the eDNA copy numbers per PCR replicate were modelled as drawn from a Poisson distribution with mean proportional to the total number of eDNA molecules in each water sample. The number of molecules per water sample were modelled as drawn from a negative binomial distribution with mean proportional to the concentration of eDNA at a site conditional on species presence and the volume of water filtered. If a species eDNA was detected in a sample, the probability of species presence at a site was one and the proportion of samples with positive detections could be used to estimate the detection probability. Given the detection probability, the probability of false negative detections (i.e. the species was present but remained undetected) could then be estimated. The distribution of positive detections among samples and PCR replicates allowed an estimate of the concentration and dispersion of eDNA at each sample site (see Furlan et al., 2016). The model was fitted to the data in R using the package jagsUI (Kellner, 2015; R Development Core Team, 2010).

Relatively uninformative priors (parameters were given flat normal priors with mean $=0$ and variance $=100)$ were specified to allow the data to drive parameter estimation.

The Bayesian model produced posterior distributions describing the estimated concentration of eDNA for each species at each site. Posterior distributions were summarized using the mean and 95% quantiles to generate 95% credible intervals. For all sites within the main Abercrombie River channel, the estimated concentrations were used to test for a negative correlation between redfin and Macquarie perch abundances. The estimated Macquarie perch eDNA concentrations were plotted against the redfin perch eDNA concentrations, and a generalized linear model was fitted to the logtransformed mean eDNA concentrations.

Results

Environmental DNA monitoring

All negative controls performed as expected except for one NTC replicate which amplified for redfin perch. The PCR well that produced this positive amplification was located directly adjacent to a well containing the standard curve reactions. Consequently, this positive amplification is likely the result of cross contamination when loading the standard curve samples on the plate. None of the other negative controls (BFC and NEC) in the same run produced a positive amplification, indicating the contamination was localized.

The percentage of valid PCR replicates for each site and target species ranged from 25-100\% (Table 1). Positive amplification of the Macquarie perch assay was observed at all sites, with the percentage of positive PCR replicates ranging from 35.71-100\%. Amplification of redfin perch DNA occurred at all but one site, with the percentage of positive PCR replicates ranging from 36.36-100\%. The only site at which redfin perch DNA was not detected was also the only site located above the
waterfalls in the Retreat River. The model indicated a 0.08 probability of redfin perch being present at this site even though no eDNA was detected.

Macquarie perch standard curves indicated an average PCR efficiency of $84.48 \%(\pm 19.94)$ and an R^{2} value of $0.993(\pm 0.003)$ while redfin perch standard curve samples showed an average PCR efficiency of $81.14 \%(\pm 3.74)$ and an R^{2} value of $0.997(\pm 0.003)$. The posterior estimates of eDNA concentrations showed overall higher redfin perch eDNA concentrations in the Abercrombie River relative to Macquarie perch eDNA concentrations (Figure 2), with a general increase in redfin perch eDNA concentrations from downstream to upstream sites (Figure 2). In contrast, Macquarie perch eDNA concentrations in the Abercrombie River tended to decrease from downstream to upstream sites (Figure 2). These contrasting trends in eDNA concentrations were also evident in the regression analysis, which revealed a clear negative relationship between redfin and Macquarie perch eDNA concentrations (Figure 3).

Conventional monitoring

Conventional monitoring results from the 12 sites sampled in 2018 and 2019 are summarized in Table 2. Surveys in the Retreat River showed no evidence of the invasive redfin perch while Macquarie perch were caught at six out of the nine sites (Table 2). In two out the three sites surveyed in the upper Abercrombie River in 2019 (i.e. Binacrombie and Jerrong), high numbers of redfin perch were caught. Macquarie perch were only caught in the most upstream site (i.e. Binacrombie) within the Abercrombie River, this is however further upstream than they have previously been detected (Figure 1). When evaluating the capture success of both methods used, the most notable pattern is the higher success rate of capturing Macquarie perch using fyke nets compared to electrofishing (Table 2).

Discussion

We aimed to assess the value of a quantitative eDNA survey to guide management of an invasive fish that is impacting on a native endangered fish species. Data revealed a clear negative relationship between eDNA concentrations of each species, consistent with other evidence highlighting a negative impact of invasive redfin perch on the remaining Macquarie perch populations. Furthermore, while conventional surveys conducted prior to this study indicated that invasive redfin perch are actively moving upstream in the Abercrombie River, the quantitative eDNA data provides evidence of a new incursion as redfin perch eDNA concentrations generally increased in more upstream sites. These findings give valuable insights into the ecological interpretation of quantitative eDNA data while also providing detailed background information to guide future management actions in the study system.

Evaluating the relationship between eDNA concentrations and species abundance has received considerable attention in current literature (Doi, Inui, et al., 2017; Knudsen et al., 2019; Lacoursière-Roussel et al., 2015). However, the value of quantitative eDNA data to provide estimates of absolute species abundance (i.e. biomass or number of individuals) remains questionable due to multiple confounding influences (Hinlo et al., 2018; Shogren et al., 2019). Nonetheless, the results of this study show that quantitative eDNA data can reveal relative species abundance patterns within a river system. Firstly, comparisons of between species eDNA concentrations show evidence of a negative impact of redfin perch on the abundance of Macquarie perch. While this negative interaction between the two target species is not novel per se (Arthington \& McKenzie, 1997; Lintermans, 2007), it highlights the value of quantitative eDNA data to infer species interactions. However, caution is needed when interpreting regression analyses as the existence of a correlation does not necessary indicate a causal relationship. For example, sites able to support high numbers of one species may be ecologically unsuitable for the other species and vice versa and thus the observed relationship may only reflect differences in habitat requirements. Secondly, between site comparisons of redfin perch
eDNA concentrations indicate, in contrast to prior expectations, a higher abundance or redfin perch in the upstream sites in the Abercrombie river. A possible explanation for this observed pattern is the occurrence of a relatively recent and novel redfin perch incursion in the upper section of the Abercrombie River. Conventional monitoring efforts in the subsequent year provided further support for this explanation as a high number of redfin perch were captured in two out of three upstream sites while surveys from 2014 to 2018 only indicated a low abundance of redfin perch in low sections of the Abercrombie river (data not shown). These results show the ability of quantitative eDNA data to reliably estimate relative species abundance patterns within a riverine system.

The results also give valuable insights from a conservation management perspective. The absence of redfin perch detections in the Retreat River above the waterfalls, strongly indicates they are currently absent in this river section. However, future redfin perch incursions are a realistic threat and should be considered in management through, for example, increased community awareness to avoid future deliberate/accidental releases of redfin perch. Current threats to the Abercrombie River Macquarie perch populations also significantly increases the conservation value of the Retreat River refuge populations (Pearce, 2013). In particular, the Lachlan River Catchment Macquarie perch populations have been found to be genetically divergent from the rest of the MDB and the Abercrombie River population is likely to serve as source for the any re-colonisation of the Lachlan River (Faulks, Gilligan, \& Beheregaray, 2011; Pavlova et al., 2017). The further decline of the Abercrombie River population could thus lead to the overall disappearance of the Macquarie perch from the Lachlan River catchment and the loss of unique genetic diversity. While some of this diversity would be preserved in the refuge population it is well known that captive breeding programs typically reduce genetic diversity through founder effects and genetic drift (Rourke, McPartlan, Ingram, \& Taylor, 2009; Ryman \& Laikre, 1991). It is highly recommended that future management strategies are designed to maximize the preservation of the genetic diversity of the Macquarie perch
populations in the broader Lachlan River catchment. Re-establishing a captive breeding program and establishing additional refuge populations may be possible avenues but detailed genetic/genomic monitoring would be needed.

Conclusion

Environmental DNA monitoring requires reliable methods and interpretation of data to provide outcomes useful to management. In particular, the interpretation of quantitative eDNA may be challenging as direct correlations between eDNA concentrations and a species abundance can be questionable. Here we showed that relative comparisons of quantitative eDNA data (i.e. between site and species comparisons) can indeed reveal relative species abundance patterns. The information gained from this data provided insights into species dynamics which in turn can guide future management decisions for both invasive and endangered native species.

Acknowledgments

We thank Jerom Stocks, Felicity Sturgiss, Erin Lake, Justin Stanger, Karen Scott and Casey Proctor for their contribution to the field work and the Central Acclimatisation Society for their ongoing support and assistance on the project. We thank the anonymous reviewers whose helpful comments improved earlier drafts of this manuscript. Funding was provided by the Recreational Fishing Trust, Central Tablelands and South East Local Land Services. Traditional monitoring was conducted under the approval of the NSW DPI Animal Care and Ethics Committee (Permit Number: 05/06). JB is currently supported by funding from the Swiss National Science Foundation (SNF grant number: 31003A_182265).

References

Arthington, A. H., \& McKenzie, F. (1997). Review of Impacts of Displaced/Introduced Fauna

Associated with Inland Waters. Canberra, Australia. Retrieved from https://www.researchgate.net/publication/254442027

Bista, I., Carvalho, G. R., Walsh, K., Seymour, M., Hajibabaei, M., Lallias, D., ... Creer, S. (2017). Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nature Communications, 8, 14087. https://doi.org/10.1038/ncomms14087
Bylemans, J., Furlan, E. M., Hardy, C. M., McGuffie, P., Lintermans, M., \& Gleeson, D. M. (2017). An environmental DNA-based method for monitoring spawning activity: a case study, using the endangered Macquarie perch (Macquaria australasica). Methods in Ecology and Evolution, 8(5), 646-655. https://doi.org/10.1111/2041-210X. 12709

Bylemans, J., Furlan, E. M., Pearce, L., Daly, T., \& Gleeson, D. M. (2016). Improving the containment of a freshwater invader using environmental DNA (eDNA) based monitoring. Biological Invasions, 18(10), 3081-3089. https://doi.org/10.1007/s10530-016-1203-5

Davies, P. E., Stewardson, M. J., Hillman, T. J., Roberts, J. R., \& Thoms, M. C. (2012). Sustainable Rivers Audit 2 (Vol. 1). Canberra.

Davison, P. I., Copp, G. H., Créach, V., Vilizzi, L., \& Britton, J. R. (2017). Application of environmental DNA analysis to inform invasive fish eradication operations. Science of Nature, 104(35). https://doi.org/10.1007/s00114-017-1453-9
Doi, H., Inui, R., Akamatsu, Y., Kanno, K., Yamanaka, H., Takahara, T., \& Minamoto, T. (2017). Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshwater Biology, 62(1), 30-39. https://doi.org/10.1111/fwb. 12846

Doi, H., Katano, I., Sakata, Y., Souma, R., Kosuge, T., Nagano, M., ... Tojo, K. (2017). Detection of an endangered aquatic heteropteran using environmental DNA in a wetland ecosystem. Royal Society Open Science, 4(7). https://doi.org/10.1098/rsos. 170568

Erickson, R. A., Rees, C. B., Coulter, A. A., Merkes, C. M., McCalla, S. G., Touzinsky, K. F., ... Amberg, J. J. (2016). Detecting the movement and spawning activity of bigheaded carps with environmental DNA. Molecular Ecology Resources, 16(4), 957-965. https://doi.org/10.1111/1755-0998.12533

Evans, N. T., Olds, B. P., Turner, C. R., Renshaw, M. a., Li, Y., Jerde, C. L., ... Lodge, D. M. (2015). Quantification of mesocosm fish and amphibian species diversity via eDNA metabarcoding. Molecular Ecology Resources, 16(1), 29-41. https://doi.org/10.1111/1755-0998.12433
Faulks, L. K., Gilligan, D. M., \& Beheregaray, L. B. (2011). The role of anthropogenic vs. natural instream structures in determining connectivity and genetic diversity in an endangered freshwater fish, Macquarie perch (Macquaria australasica). Evolutionary Applications, 4(4), 589-601. https://doi.org/10.1111/j.1752-4571.2011.00183.x
Ficetola, G. F., Miaud, C., Pompanon, F., \& Taberlet, P. (2008). Species detection using environmental DNA from water samples. Biology Letters, 4(4), 423-425. https://doi.org/10.1098/rsbl.2008.0118

Fremier, A. K., Strickler, K. M., Parzych, J., Powers, S., \& Goldberg, C. S. (2019). Stream Transport and Retention of Environmental DNA Pulse Releases in Relation to Hydrogeomorphic Scaling Factors. Environmental Science \& Technology, 53(12), 6640-6649. https://doi.org/10.1021/acs.est.8b06829

Furlan, E. M., \& Gleeson, D. (2016a). Environmental DNA detection of redfin perch, Perca
fluviatilis. Conservation Genetics Resources, 8(2), 115-118. https://doi.org/10.1007/s12686-016-0523-1

Furlan, E. M., \& Gleeson, D. (2016b). Improving reliability in environmental DNA detection surveys through enhanced quality control. Marine and Freshwater Research, 68(2), 388-395. https://doi.org/10.1071/MF1534
Furlan, E. M., Gleeson, D., Hardy, C. M., \& Duncan, R. P. (2016). A framework for estimating the sensitivity of eDNA surveys. Molecular Ecology Resources, 16(3), 641-654. https://doi.org/10.1111/1755-0998.12483
Furlan, E. M., Gleeson, D., Wisniewski, C., Yick, J., \& Duncan, R. P. (2019). eDNA surveys to detect species at very low densities: A case study of European carp eradication in Tasmania, Australia. Journal of Applied Ecology, 56(11), 2505-2517. https://doi.org/10.1111/1365-2664.13485

Geerts, A. N., Boets, P., Van den Heede, S., Goethals, P., \& Van der heyden, C. (2018). A search for standardized protocols to detect alien invasive crayfish based on environmental DNA (eDNA): A lab and field evaluation. Ecological Indicators, 84, 564-572. https://doi.org/10.1016/j.ecolind.2017.08.068

Gilligan, D., McGarry, T., \& Carter, S. (2010). A scientific approach to developing habitat rehabilitation strategies in aquatic environments: A case study on the endangered Macquarie perch (Macquaria australasica) in the Lachlan catchment. Batemans Bay.
Gold, Z., Wall, A. R., Curd, E. E., Kelly, R. P., Pentcheff, N. D., Ripma, L., ... Wetzer, R. (2020). eDNA metabarcoding bioassessment of endangered fairy shrimp (Branchinecta spp.). Conservation Genetics Resources, 12(4), 685-690. https://doi.org/10.1007/s12686-020-011619

Hempel, C. A., Peinert, B., Beermann, A. J., Elbrecht, V., Macher, J. N., Macher, T. H., ... Leese, F. (2020). Using Environmental DNA to Monitor the Reintroduction Success of the Rhine Sculpin (Cottus rhenanus) in a Restored Stream. Frontiers in Ecology and Evolution, 8, 81. https://doi.org/10.3389/fevo.2020.00081

Hinlo, R., Gleeson, D., Lintermans, M., \& Furlan, E. (2017). Methods to maximise recovery of environmental DNA from water samples. PLoS ONE, 12(6), 1-22. https://doi.org/10.1371/journal.pone. 0179251

Hinlo, R., Lintermans, M., Gleeson, D., Broadhurst, B., \& Furlan, E. (2018). Performance of eDNA assays to detect and quantify an elusive benthic fish in upland streams. Biological Invasions, 20, 3079-3093. https://doi.org/10.1007/s10530-018-1760-x
Ikeda, K., Doi, H., Tanaka, K., Kawai, T., \& Negishi, J. N. (2016). Using environmental DNA to detect an endangered crayfish Cambaroides japonicus in streams. Conservation Genetics Resources, 8(3), 231-234. https://doi.org/10.1007/s12686-016-0541-z
Jane, S. F., Wilcox, T. M., McKelvey, K. S., Young, M. K., Schwartz, M. K., Lowe, W. H., ... Whiteley, A. R. (2015). Distance, flow, and PCR inhibition: eDNA dynamics in two headwater streams. Molecular Ecology Resources, 15(1), 216-227. https://doi.org/10.1111/17550998.12285

Jarman, S. N., Berry, O., \& Bunce, M. (2018). The value of environmental DNA biobanking for longterm biomonitoring. Nature Ecology and Evolution, 2(8), 1192-1193. https://doi.org/10.1038/s41559-018-0614-3

Jerde, C. L., Mahon, A. R., Chadderton, W. L., \& Lodge, D. M. (2011). "Sight-unseen" detection of
rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150-157. https://doi.org/10.1111/j.1755-263X.2010.00158.x
Kellner, K. (2015). jagsUI: a wrapper around rjags to streamline JAGS analyses. R Package. Retrieved from https://github.com/kenkellner/jagsUI
Knudsen, S. W., Ebert, R. B., Hesselsøe, M., Kuntke, F., Hassingboe, J., Mortensen, P. B., ... Møller, P. R. (2019). Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea. Journal of Experimental Marine Biology and Ecology, 510 (September 2018), 31-45. https://doi.org/10.1016/J.JEMBE.2018.09.004

Lacoursière-Roussel, A., Côté, G., Leclerc, V., \& Bernatchez, L. (2015). Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. Journal of Applied Ecology, 53(4), 1148-1157. https://doi.org/10.1111/1365-2664.12598
Li, F., Peng, Y., Fang, W., Altermatt, F., Xie, Y., Yang, J., \& Zhang, X. (2018). Application of Environmental DNA Metabarcoding for Predicting Anthropogenic Pollution in Rivers. Environmental Science and Technology, 52, 11708-11719. https://doi.org/10.1021/acs.est.8b03869
Lintermans, M. (2007). Fishes of the Murray-Darling Basin: An introductory guide. Retrieved from https://www.mdba.gov.au/sites/default/files/pubs/MDBA-Fish-species-book.pdf
Mauvisseau, Q., Kalogianni, E., Zimmerman, B., Bulling, M., Brys, R., \& Sweet, M. (2020). eDNAbased monitoring: Advancement in management and conservation of critically endangered killifish species. Environmental DNA, 2(4), 601-613. https://doi.org/10.1002/edn3.92
Pavlova, A., Beheregaray, L. B., Coleman, R., Gilligan, D., Harrisson, K. A., Ingram, B. A., ... Sunnucks, P. (2017). Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: A call for assisted gene flow. Evolutionary Applications, 10(6), 531-550. https://doi.org/10.1111/eva. 12484
Pearce, L. (2013). Macquarie Perch refuge project - Final report for the Lachlan CMA.
R Development Core Team. (2010). R : A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna(Austria), ISBN 3-900051-07-0.

Renshaw, M. A., Olds, B. P., Jerde, C. L., McVeigh, M. M., \& Lodge, D. M. (2015). The room temperature preservation of filtered environmental DNA samples and assimilation into a Phenol-Chloroform-Isoamyl alcohol DNA extraction. Molecular Ecology Resources, 15(1), 168-176. https://doi.org/10.1111/1755-0998.12281
Robinson, C. V., Garcia de Leaniz, C., Rolla, M., \& Consuegra, S. (2019). Monitoring the eradication of the highly invasive topmouth gudgeon (Pseudorasbora parva) using a novel eDNA assay. Environmental DNA, 1(1), 74-85. https://doi.org/10.1002/edn3.12
Rojahn, J., Gleeson, D., \& Furlan, E. M. (2018). Monitoring post-release survival of the northern corroboree frog, Pseudophryne pengilleyi, using environmental DNA. Wildlife Research, 45(7), 620-626. https://doi.org/10.1071/WR17179
Rourke, M. L., McPartlan, H. C., Ingram, B. A., \& Taylor, A. C. (2009). Polygamy and low effective population size in a captive Murray cod (Maccullochella peelii peelii) population: Genetic implications for wild restocking programs. Marine and Freshwater Research, 60(8), 873-883. https://doi.org/10.1071/MF08218

Ryman, N., \& Laikre, L. (1991). Effects of Supportive Breeding on the Genetically Effective

Population Size. Conservation Biology, 5(3), 325-329. https://doi.org/10.1111/j.15231739.1991.tb00144.x

Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A., \& Boehm, A. B. (2016). Quantification of Environmental DNA (eDNA) Shedding and Decay Rates for Three Marine Fish. Environmental Science \& Technology, 50(19), 10456-10464. https://doi.org/10.1021/acs.est.6b03114
Sepulveda, A. J., Schabacker, J., Smith, S., Al-Chokhachy, R., Luikart, G., \& Amish, S. J. (2019). Improved detection of rare, endangered and invasive trout in using a new large-volume sampling method for eDNA capture. Environmental DNA, l(3), 227-237. https://doi.org/10.1002/edn3.23
Shogren, A. J., Tank, J. L., Egan, S. P., August, O., Rosi, E. J., Hanrahan, B. R., ... Bolster, D. (2018). Water Flow and Biofilm Cover Influence Environmental DNA Detection in Recirculating Streams. Environmental Science and Technology, 52(15), 8530-8537. https://doi.org/10.1021/acs.est.8b01822
Shogren, A. J., Tank, J. L., Egan, S. P., Bolster, D., \& Riis, T. (2019). Riverine distribution of mussel environmental DNA reflects a balance among density, transport, and removal processes. Freshwater Biology, 64(8), 1467-1479. https://doi.org/10.1111/fwb. 13319
Sigsgaard, E. E., Carl, H., Møller, P. R., \& Thomsen, P. F. (2015). Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biological Conservation, 183, 46-52. https://doi.org/10.1016/j.biocon.2014.11.023
Sigsgaard, E. E., Nielsen, I. B., Bach, S. S., Lorenzen, E. D., Robinson, D. P., Knudsen, S. W., ... Thomsen, P. F. (2016). Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nature Ecology \& Evolution, 1, 4. https://doi.org/10.1038/s41559-016-0004
Smart, A. S., Tingley, R., Weeks, A. R., Van Rooyen, A. R., \& McCarthy, M. A. (2015). Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecological Applications, 25(7), 1944-1952. https://doi.org/10.1890/141751.1

Spear, S. F., Groves, J. D., Williams, L. a., \& Waits, L. P. (2015). Using environmental DNA methods to improve detectability in a hellbender (Cryptobranchus alleganiensis) monitoring program. Biological Conservation, 183, 38-45. https://doi.org/10.1016/j.biocon.2014.11.016
Strickler, K. M., Fremier, A. K., \& Goldberg, C. S. (2014). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, 183, 85-92. https://doi.org/10.1016/j.biocon.2014.11.038
Thomas, A. C., Nguyen, P. L., Howard, J., \& Goldberg, C. S. (2019). A self-preserving, partially biodegradable eDNA filter. Methods in Ecology and Evolution, 10(8), 1136-1141. https://doi.org/10.1111/2041-210X. 13212
Tsuji, S., Takahara, T., Doi, H., Shibata, N., \& Yamanaka, H. (2019). The detection of aquatic macroorganisms using environmental DNA analysis - A review of methods for collection, extraction, and detection. Environmental DNA, 1, 99-108. https://doi.org/10.1002/edn3.21
Tsuji, S., Ushio, M., Sakurai, S., Minamoto, T., \& Yamanaka, H. (2017). Water temperaturedependent degradation of environmental DNA and its relation to bacterial abundance. Plos One, 12(4), e0176608. https://doi.org/10.1371/journal.pone. 0176608

Ushio, M., Murakami, H., Masuda, R., Sado, T., Miya, M., Sakurai, S., ... Kondoh, M. (2018). Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcoding and Metagenomics, 2, e23297. https://doi.org/10.1101/113472
Westrelin, S., Roy, R., Tissot-Rey, L., Bergès, L., \& Argillier, C. (2018). Habitat use and preference of adult perch (Perca fluviatilis) in a deep reservoir: variations with seasons, water levels and individuals. Hydrobiologia, 809(1), 121-139. https://doi.org/10.1007/s10750-017-3454-2
Yates, M. C., Fraser, D. J., \& Derry, A. M. (2019). Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environmental DNA, l(1), 5-13. https://doi.org/10.1002/edn3.7

Data accessibility

The Rscript to produce the different tables and figures is given in the supporting information. The full data associated with this study have been uploaded to the Figshare data repository and is available at https://doi.org/10.6084/m9.figshare. 14569425.

Author contribution

JR, LP, DMG, DG and JB designed the study; JR and LP led the field work, JR and JB performed the laboratory work; JR, JB and RPD performed the data analyses. JR and JB led the writting of the manuscript with significant contributions from all co-authors.

522 Tables

523 Table 1. Details of the sampling sites, sampling effort and detection results for the environmental DNA based monitoring survey. Detection

524
525 results are given as the total number of PCR replicates performed, the number of valid and positive PCR replicates for each site and both target species (i.e. Macquarie perch (Macquaria australasica) and redfin perch (Perca fluviatilis)).

Waterway	Location	ID	Latitude	Longitude	Month	Year	Target	No samples	No. PCRs		
									Total	Valid	Positive
Abercrombie River	The Junction	JU	-34.011370	149.466916	May	2018	M. australasica	8	48	41	38
							P. fluviatilis	8	96	55	20
	Millvale	MV	-34.093805	149.550849	May	2018	M. australasica	8	48	41	41
							P. fluviatilis	8	96	55	35
	Smiths Crossing	SC	-34.105458	149.585993	May	2018	M. australasica	8	48	41	38
							P. fluviatilis	8	48	40	39
	The Beach	TB	-34.128663	149.634285	May	2018	M. australasica	8	48	38	38
							P. fluviatilis	8	48	42	42
	Tween Cabin	TC	-34.174962	149.671264	May	2018	M. australasica	8	48	41	34
							P. fluviatilis	8	48	37	37
	Bummaroo Ford	BuF	-34.194049	149.738498	May	2018	M. australasica	8	48	30	16
							P. fluviatilis	8	48	22	21
	Jerrong	JE	-34.184885	149.888472	May	2018	M. australasica	8	96	24	16
							P. fluviatilis	8	48	28	28
Retreat River	Retreat crossing	RC	-34.119052	149.639486	May	2018	M. australasica	8	48	48	36
							P. fluviatilis	8	48	32	19
	The Sink	TS	-34.097073	149.659142	May	2018	M. australasica	8	48	28	10
							P. fluviatilis	8	48	17	0

526

529 Table 2. Details of the sampling sites, sampling effort and the catch results of the conventional fisheries surveys. Catch data are presented as 530
the total individuals caught for both Macquarie perch (Macquaria australasica) and redfin perch (Perca fluviatilis).

Waterway	Location	ID	Latitude	Longitude	Month	Year	Method	M. australasica	P. fluviatilis
Abercrombie River	Binacrombie	Bi	-34.191249	149.771151	May	2019	Fyke netting ($\mathrm{n}=5$)	2	35
	Jerrong	JE	-34.184885	149.888472	May	2019	Electrofishing ($\mathrm{n}=8$)	0	24
					May	2019	Fyke netting ($\mathrm{n}=5$)	0	1
	Parliament Hill	PH	-34.182981	149.918924	May	2019	Electrofishing ($\mathrm{n}=8$)	0	0
Retreat River	The Falls	ThF	-34.118000	149.644940	May	2019	Electrofishing ($\mathrm{n}=8$)	0	0
	Lower Retreat	LR	-34.111000	149.657000	April	2018	Electrofishing ($\mathrm{n}=8$)	0	0
	Mid Retreat	MR	-34.104810	149.662860	April	2018	Electrofishing ($\mathrm{n}=8$)	2	0
					May	2019	Electrofishing ($\mathrm{n}=8$)	0	0
	The Sink	TS	-34.097073	149.659142	April	2018	Electrofishing ($\mathrm{n}=8$)	1	0
					May	2019	Electrofishing ($\mathrm{n}=8$)	0	0
					May	2019	Fyke netting ($\mathrm{n}=5$)	7	0
	Gates Tunnel	GT	-34.052000	149.649000	April	2018	Electrofishing ($\mathrm{n}=8$)	3	0
	Ledinghams Hut	LH	-34.046700	149.663207	April	2018	Electrofishing ($\mathrm{n}=3$)	1	0
					April	2018	Fyke netting ($\mathrm{n}=5$)	17	0
					May	2019	Electrofishing ($\mathrm{n}=8$)	0	0
					May	2019	Fyke netting ($\mathrm{n}=5$)	2	0
	Creek Walk	CW	-34.044000	149.676000	April	2018	Electrofishing ($\mathrm{n}=8$)	0	0
					May	2019	Electrofishing ($\mathrm{n}=8$)	0	0
	Claytons Release	CR	-34.031580	149.697220	April	2018	Electrofishing ($\mathrm{n}=8$)	1	0
	U/S Claytons	Cus	-34.024660	149.701800	April	2018	Electrofishing ($\mathrm{n}=8$)	2	0

Figures

Figure 1. Map of the general study area with all sampling sites and the direction of water flow indicated by the blue arrow. The most upstream distribution limits of both Macquarie and redfin perch, as determined by standard monitoring surveys conducted prior to 2018, are indicated by the green and red vertical bars, respectively. The location of the waterfalls in the lower reaches of the Retreat River, which are believed to be an effective barrier for the future spread of redfin perch, are shown by the dotted black line.

Figure 2. The environmental DNA (eDNA) concentrations for both Macquarie (blue) and redfin (red) perch for all the different eDNA sampling sites in the Abercrombie and Retreat Rivers. Mean eDNA concentrations are shown by the solid points while the wide and narrow lines represent the 50% and 95% credibility intervals, respectively. For each river, sites are ordered along the x -axis going from most downstream (left) to most upstream (right).

Figure 3. Linear regression showing the relationship between the mean environmental DNA (eDNA) concentrations for Macquarie perch and redfin perch considering all sites within the Abercrombie River where eDNA of both species was detected. Solid black points show the mean eDNA concentrations while the wide and narrow black lines represent the 50% and 95% credibility intervals, respectively.

