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Abstract 

Background  Mitochondrial genes and nuclear genes cooperate closely to maintain the functions of mitochondria, 
especially in the oxidative phosphorylation (OXPHOS) pathway. However, mitochondrial genes among arthropod 
lineages have dramatic evolutionary rate differences. Haplodiploid arthropods often show fast-evolving mitochon-
drial genes. One hypothesis predicts that the small effective population size of haplodiploid species could enhance 
the effect of genetic drift leading to higher substitution rates in mitochondrial and nuclear genes. Alternatively, 
positive selection or compensatory changes in nuclear OXPHOS genes could lead to the fast-evolving mitochondrial 
genes. However, due to the limited number of arthropod genomes, the rates of evolution for nuclear genes in hap-
lodiploid species, besides hymenopterans, are largely unknown. To test these hypotheses, we used data from 76 
arthropod genomes, including 5 independently evolved haplodiploid lineages, to estimate the evolutionary rates 
and patterns of gene family turnover of mitochondrial and nuclear genes.

Results  We show that five haplodiploid lineages tested here have fast-evolving mitochondrial genes and fast-
evolving nuclear genes related to mitochondrial functions, while nuclear genes not related to mitochondrion showed 
no significant evolutionary rate differences. Among hymenopterans, bees and ants show faster rates of molecular 
evolution in mitochondrial genes and mitochondrion-related nuclear genes than sawflies and wasps. With genome 
data, we also find gene family expansions and contractions in mitochondrion-related genes of bees and ants.

Conclusions  Our results reject the small population size hypothesis in haplodiploid species. A combination of posi-
tive selection and compensatory changes could lead to the observed patterns in haplodiploid species. The elevated 
evolutionary rates in OXPHOS complex 2 genes of bees and ants suggest a unique evolutionary history of social 
hymenopterans.
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Background
Eukaryotes have repeatedly acquired intimate symbiotic 
microorganisms, including mitochondria, plastids, and 
microbiome, which provide great benefits to the eukary-
ote hosts, facilitating adaptation and diversification of the 
hosts [1, 2]. The most ancient symbionts, mitochondria, 
have formed obligate interdependent relationships with 
their eukaryote hosts. Mitochondrial genes and nuclear 
genes cooperate closely with each other in oxidative 
phosphorylation, as well as maintaining mitochondrial 
replication, transcription, and translation [3]. Mitochon-
drial genomes in animals have higher mutation rates and 
lower efficacy of selection than nuclear genomes [4–7]. 
As a result, mitochondrial genomes often have faster 
molecular evolutionary rates than nuclear genomes 
[8–10]. These evolutionary rate differences can generate 
inter-genomic incompatibilities that have been impli-
cated in a variety of contexts including sexual selection, 
hybrid breakdown, and speciation [11]. Understanding 
these inter-genomic interactions is a key to addressing 
fundamental questions in evolutionary biology, such as 
the evolution of gene–gene interactions, and the pro-
cesses of adaptation and speciation [12–16].

Despite the functional importance of mito-nuclear 
interactions, mitochondrial and nuclear genes have 
shown dramatically different evolutionary rates among 
arthropods [17–19]. Species in the order Hymenoptera 
(sawflies, wasps, bees, and ants) have elevated evolution-
ary rates (amino acid substitutions per site per million 
years) in both mitochondrial and mitochondrion-related 
nuclear genes, but not for the single-copy nuclear genes, 
compared to other arthropod species [19–21].

Different factors could influence the evolutionary rate 
of mitochondrial genes, including genetic drift, selec-
tion, and mutation rate [3]. Multiple hypotheses have 
been proposed to explain the elevated rate of molecu-
lar evolution in hymenopterans. First, the vast majority 
of hymenopterans have haplodiploid sex-determination 
systems [22]. Many of them also have parasitic lifestyles 
and varying degrees of eusociality. These unique features 
could lead to repeated founder effects and a small effec-
tive population size, which can increase the influence of 
genetic drift leading to the accumulation of slightly del-
eterious mutations and elevated evolutionary rates in the 
mitochondrial and nuclear genomes [23–25]. However, 
the observed similar evolutionary rate of single-copy 
nuclear genes between hymenopterans and other insects 
contradicts this hypothesis. Alternatively, positive selec-
tion on the oxidative phosphorylation (OXPHOS) path-
way could lead to the observed rapid evolution in both 
mitochondrial and nuclear OXPHOS genes [18, 20, 26]. 
In addition, the accumulation of deleterious mutations in 
mitochondrial genes could drive compensatory changes 

in related nuclear genes. The fixation of beneficial muta-
tions in nuclear genes could, in turn, reduce the cost of 
subsequent deleterious mutations in the mitochondrial 
genome promoting the fixation of additional mitochon-
drial mutations [27, 28]. As previous studies often focus 
on hymenopterans, the role of haplodiploidy in the fast 
evolution of mitochondrial genes is not clear. In addition, 
previous studies [18, 19, 21] were based on the transcrip-
tome dataset from Misof et al. [29] or conserved nuclear 
genes [20, 28]. In these studies, only the evolutionary rate 
of extremely conserved single-copy genes was tested. 
Therefore, it is also not clear whether less conserved 
nuclear genes in the genomes would show the same or 
different evolutionary patterns.

To test these hypotheses in other haplodiploid lineages, 
we use an extensive arthropod whole genome dataset of 
76 arthropod species from 17 orders spanning 500 mil-
lion years of evolution [30–32]. This dataset includes 
five independent origins of haplodiploidy [33] and two 
different types of haplodiploid systems, arrhenotoky 
and parental genome elimination (PGE). In arrhenotoky 
species, unfertilized eggs develop into male individuals, 
whereas PGE males develop from fertilized eggs but then 
the paternal chromosomes are removed or not passed to 
offspring [22, 33, 34]. Our dataset includes two independ-
ent PGE lineages, the western predatory mite (Metaseiu-
lus occidentalis) [35–37] and the body louse (Pediculus 
humanus) [38], and three independent arrhenotoky lin-
eages, the two-spotted spider mite (Tetranychus urticae) 
[39], the western flower thrips (Frankliniella occidenta-
lis) [34], and hymenopterans. The inclusion of multiple 
independent evolutionary origins and different types of 
haplodiploidy greatly enhances our ability to describe the 
overall molecular evolutionary patterns of mitochondrial 
and nuclear genes in haplodiploid species. In addition, 
as we are using complete genome data, we can study not 
only single-copy nuclear genes but also 5746 orthologous 
nuclear genes that are found in most of the sequenced 
arthropod genomes. Based on this genome dataset, we 
investigate the evolutionary rate of mitochondrial genes 
and nuclear genes of haplodiploid arthropod species. 
We show that the five lineages of haplodiploid species 
all have fast-evolving genes related to the mitochondrion 
but not for genes unrelated to the mitochondrion. As a 
small population size would affect both mitochondrion-
related and non-related nuclear genes, this finding rejects 
the hypothesis that the small effective population size of 
haplodiploid species increases the influence of genetic 
drift, leading to the fast-evolving mitochondrion-related 
genes. In Hymenoptera, bees and ants have even faster 
evolutionary rates in mitochondrion-related genes than 
basal hymenopterans, including sawflies and wasps, sug-
gesting other processes could affect the evolutionary 
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pattern. Lastly, haplodiploid species as well as bees and 
ants have unique gene family expansions and contrac-
tions that could imply functional differences in these 
groups.

Results
Data acquisition
To explore the evolution of mitochondrion-related genes, 
we collected the genomes of 76 arthropod species with 
haplodiploid and diploid sex determination systems. We 
assigned species into three categories, Hymenoptera 
species (including 24 species from 1 order), non-Hyme-
noptera haplodiploid species (denoted as “other hap-
lodiploid,” including 4 species from 4 orders), and diploid 
species (denoted as “diploid,” including 48 species from 
12 orders) (Fig. 1 and Additional file 1: Table S1). Nuclear 

genes and their corresponding orthologous groups were 
retrieved from a previous study [32]. Mitochondrial 
genes were downloaded from the National Center for 
Biotechnology Information (NCBI) if available. For the 
species without published mitochondrial genomes, we 
assembled and annotated mitochondrial genomes from 
whole genome shotgun sequencing data (Additional 
file 1: Table S1).

In total, we included 38,195 ortholog groups of nuclear 
genes and 13 mitochondrial genes. Among these orthol-
ogous groups, we focused on subsets pertaining to 
mitochondrial and nuclear interactions, including 13 
mitochondrion-encoded OXPHOS genes (mtOXPHOS), 
65 nuclear-encoded OXPHOS genes (nucOXPHOS), and 
74 nuclear-encoded mitochondrial ribosomal proteins 
(nucMTRP). As a control, we estimated the evolutionary 

Fig. 1  Distribution of haplodiploidy in the phylogeny of 76 arthropod species. The tree is based on the time tree of Thomas et al. [32]. 
Hymenopterans are colored in green; non-Hymenoptera species are colored in blue; diploid species are in red. Different types of haplodiploidy are 
in parenthesis. Names of major arthropod orders with more than one species in the tree are next to the corresponding clade
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rates of genes not related to mitochondrion in the 
genomes, including 77 nuclear-encoded cytosolic riboso-
mal proteins (nucCRP), 150 nuclear-encoded single-copy 
genes (nucControlSingle), and 5746 nuclear-encoded 
genes that were found in ≥ 80% of the species (i.e., ≥ 61 
species) and were not necessarily single copy (nucCon-
trol) (Table 1, Additional file 1: Table S2).

Haplodiploid species have fast‑evolving 
mitochondrion‑related genes
We first measured the evolutionary rate by concatenat-
ing the amino acid sequences of all the genes in the same 
gene category for each species. We then measured the 
number of amino acid substitutions per site per million 
years (AA/site/MY) based on terminal branch length and 
root-to-tip branch length. In general, terminal branch 
evolutionary rate and root-to-tip evolutionary rate 
showed a similar pattern (Fig. 2 and Additional file 2: Fig. 
S1), except that Hymenoptera nucControl genes showed 
significantly higher evolutionary rates than diploid spe-
cies based on terminal branch length. Estimating evo-
lutionary rates using terminal branches is often affected 
by the divergence time of the branches. Sequences from 
early diverging lineages could be saturated, leading to 
an underestimation of the evolutionary rate [40, 41]. 
At the same time, when lineages are under-sampled, 
polymorphisms could be treated as recent substitutions 
leading to the overestimation of evolutionary rates of 
recent terminal branches [42]. Therefore, more recent 
terminal branches could have higher evolutionary rates 
than early diverging branches due to estimation bias. 
As hymenopterans were well sampled in our study, they 
often had short divergence times, potentially leading to 
the observed pattern of fast evolution in their nucCon-
trol genes (Additional file 2: Fig. S1). Consistent with this 
hypothesis, we observed a negative correlation between 
divergence time and terminal branch evolutionary rate 
(Additional file  2: Fig. S2). To account for this bias, we 
estimated the evolutionary rate from the root to each tip 

in the tree, even though they are not independent of each 
other.

We first examined the evolutionary rates among dif-
ferent gene groups. Across all species, mtOXPHOS 
genes (median = 0.00176 AA/site/MY) had the high-
est evolutionary rates of all gene categories (Addi-
tional file  2: Fig. S3). Among nuclear genes, nucCRP 
(median = 0.00084 AA/site/MY) and nucControlSingle 
(median = 0.00118 AA/site/MY) were the most con-
servative gene groups with the lowest evolutionary rate. 
nucOXPHOS (median = 0.00120 AA/site/MY), nuc-
MTRP (median = 0.00147 AA/site/MY), and nucCo-
ntrol genes showed an intermediate evolutionary rate 
(median = 0.00136 AA/site/MY). Based on the Kruskal–
Wallis test and multiple comparison tests after Kruskal–
Wallis, mtOXPHOS and nucMTRP genes evolved 
significantly faster than nucCRP genes across all species. 
mtOXPHOS genes in hymenopterans showed a signifi-
cantly faster evolutionary rate than nucControlSingle and 
nucControl genes but the pattern was not found in dip-
loid species.

Among different groups of arthropods, mtOXPHOS, 
nucOXPHOS, and nucMTRP genes evolved significantly 
faster in hymenopterans than in diploid species, while 
only mtOXPHOS genes evolved significantly faster in 
non-Hymenoptera haplodiploid species than diploid 
species (Fig.  1). As only four non-Hymenoptera species 
were included in our analysis, the small sample size lim-
ited our power to distinguish evolutionary rate differ-
ences for the genes. Hymenopterans had fast-evolving 
mtOXPHOS (median = 0.00282 AA/site/MY), nucOX-
PHOS (median = 0.00145 AA/site/MY), and nucMTRP 
(median = 0.00171 AA/site/MY) genes (Fig.  2). Other 
haplodiploids, including both PGE and arrhenotoky lin-
eages, had fast-evolving mtOXPHOS (median = 0.00413 
AA/site/MY) and nucMTRP (median = 0.00189 AA/site/
MY) genes. Although the comparison was not significant, 
other haplodiploid species had higher evolutionary rates 
(median = 0.00136 AA/site/MY) than diploid species 
(median = 0.00112 AA/site/MY).

Table 1  Gene categories, functions, and the number of genes within each gene category in the present study

Gene category Function Number of 
orthologous 
groups

mtOXPHOS Mitochondrial-encoded OXPHOS protein coding genes 13

nucOXPHOS Nuclear-encoded OXPHOS protein coding genes 65

nucMTRP Nuclear-encoded mitochondrial ribosomal protein genes 74

nucCRP Nuclear-encoded cytosolic ribosomal protein genes 77

nucControlSingle Single-copy nuclear-encoded genes found in all 76 arthropod species 150

nucControl Nuclear-encoded genes found in at least 61 arthropod species 5746
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Coevolution between mitochondrial and nuclear genes
mtOXPHOS and their nuclear counterparts often 
coevolve to maintain the function of the OXPHOS 
pathway and mitochondrial replication, transcription, 
and translation [19, 43]. To investigate the relationships 
between mtOXPHOS genes and related nuclear genes, 
we estimated Spearman’s rank correlation coefficients 
of evolutionary rates between different gene categories. 
Across all 76 arthropod species, the evolutionary rate 
of mtOXPHOS genes was significantly correlated with 

the rates of nucOXPHOS and nucMTRP genes but not 
with other nuclear genes (Fig.  3 and Additional file  1: 
Table S3).

When only considering diploid or non-Hymenoptera 
haplodiploid species, the evolutionary rates of mtOX-
PHOS and nucOXPHOS genes did not show a strong 
correlation (Fig.  3A). For example, there was variation 
among the non-Hymenoptera haplodiploid species: the 
two PGE haplodiploid species (M. occidentalis and P. 
humanus) showed an evolutionary rate of 0.0032 AA/

Fig. 2  Root-to-tip evolutionary rates (AA/site/MY) of different gene categories among arthropod groups. Asterisks indicate significant differences 
among hymenopterans (green), other non-Hymenoptera haplodiploid species (blue), or diploid species (red). Note that the y-axis of mtOXPHOS 
genes is different from nuclear genes due to the elevated evolutionary rates of mitochondrial genes
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site/MY and 0.0070 AA/site/MY, and the two arrheno-
toky species (T. urticae and F. occidentalis) had an evo-
lutionary rate of 0.0074 AA/site/MY and 0.0029 AA/site/
MY, respectively, while their nuclear genes had similar 
evolutionary rates (Fig.  3B). On the other hand, when 
only considering hymenopterans, there was a significant 
correlation, possibly because our study included a more 
comprehensive selection of species from Hymenoptera 
than for any other arthropod orders.

It has been hypothesized that nucOXPHOS genes that 
do not directly interact with mitochondrial genes tend 
to have less correlated evolutionary rates with mito-
chondrial genes [19, 44]. We found that mtOXPHOS 
genes and nucOXPHOS genes excluding OXPHOS 
complex 2 (Fig.  3C, Additional file  1: Table  S3) have a 

better correlation than that including OXPHOS complex 
2 (Fig. 3A) in arthropods. Arthropod mtOXPHOS genes 
and nucOXPHOS complex 2 genes have no significant 
correlation (Fig. 3D). Only hymenopterans show a strong 
correlation between mtOXPHOS genes and nucOX-
PHOS complex 2 genes. This observed correlation in 
hymenopterans is likely due to the evolutionary rate vari-
ations within hymenopterans that bees and ants tend to 
have higher evolutionary rates than sawflies and wasps in 
their nucOXPHOS genes (Fig. 3A).

Bees and ants have elevated mitochondrion‑related 
nuclear gene evolutionary rates
To investigate rate variation among hymenopterans, 
we assigned hymenopterans to two groups: eusocial 

Fig. 3  Spearman’s rank correlation of evolutionary rates (AA/site/MY) between mtOXPHOS genes and A nucOXPHOS, B nucMTRP, E nucCRP, F 
nucControlSingle, and G nucControl genes based on root-to-tip evolutionary rate. In addition, we also estimated the correlation of evolutionary 
rates between mtOXPHOS genes and C nucOXPHOS genes not from complex 2 and D genes only from complex 2. Spearman’s correlation 
coefficient (R) and p values (p) are used to estimate the correlation between evolutionary rates of mtOXPHOS genes and evolutionary rates 
of nuclear-encoded gene categories based on all four arthropod groups (black), diploid species (red), hymenopterans (bees and ants: green, 
sawflies and wasps: dark green), and other non-Hymenoptera haplodiploid species (blue). Linear regression represents the general trend 
of the correlation
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Hymenoptera (including bees [superfamily: Apoidea] 
and ants [superfamily: Formicoidea; family: Formicidae]) 
and basal lineages (including sawflies [superfamilies: 
Cephoidea and Tenthredinoidea] and wasps [super-
families: Chalcidoidea and Orussoidea]). As sawflies and 
wasps have higher divergence times than bees and wasps, 
we used tip-to-root evolutionary rates for this analysis. 
We found that bees and ants had significantly higher evo-
lutionary rates in mtOXPHOS and nucOXPHOS genes 
than sawflies and wasps (Fig. 4).

To confirm our findings based on root-to-tip evolu-
tionary rates and to consider the unbalanced sampling 
of bees, ants, wasps, and sawflies, we also estimated the 
terminal branch evolutionary rate by subsampling within 
hymenopterans. For each subsampling, we sampled one 
hymenopteran without replacement with the rest of 
the arthropods to keep the divergence time consistent 
among subsamples. Subsampling results were consistent 
with root-to-tip estimations that bees and ants had sig-
nificantly higher evolutionary rates in mtOXPHOS and 
nucOXPHOS genes than sawflies and wasps (Additional 
file 2: Fig. S4).

Gene family expansion and contraction of haplodiploid 
and diploid arthropods
Lastly, as complete genomes were used, we investigated 
gene family expansions and contractions related to hap-
lodiploidy. Based on a feature selection analysis using 
the R package, Boruta [45], multiple mitochondrion-
related genes had significantly different copy numbers 
among haplodiploid and diploid species. For example, 3 
out of 35 genes had significantly different copy numbers 
between haplodiploid/diploid species (Additional file 1: 
Table S4). Between bees/ants and sawflies/wasps, 9 out 
of 26 genes with significantly different copy numbers 
were mitochondrion-related. There were two copies of 
the mitochondrial translation elongation factor gene 
(EOG8Z0DM0, FlyBase IDs mEFTu1 [FBpp0086790] 
and mEFTu2 [FBpp0088054]) in sawflies and wasps but 
only one copy in most of the bees and ants. Interest-
ingly, different from mEFTu1, mEFTu2 is overexpressed 
in the testis of Drosophila melanogaster [46, 47]. 
Changes in the gene family could relate to mitochon-
drial functions in bees and ants.

Fig. 4  Root-to-tip evolutionary rates of different gene categories among hymenopterans. Asterisks indicate significant differences between bees 
and ants (green) and sawflies and wasps (dark green)
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Discussion
The coevolution of mitochondrial and nuclear genes is 
critical to mitochondrial functions. The mitochondrion 
is often uniparentally inherited and effectively haploid. 
As a result, the mitochondrion has a reduced effective 
population size relative to diploid nuclear genes and is 
prone to accumulation of deleterious mutations and, 
therefore, evolves faster than nuclear genes. The rate of 
molecular evolution in the mitochondrial genome varies 
dramatically among arthropods; however, the reasons for 
the accelerated mitochondrial rate in some arthropods 
remain unknown. Previous studies hypothesized that the 
elevated evolutionary rates in mitochondrial genomes of 
hymenopterans are due to their small effective popula-
tion size from haplodiploidy, parasitism, or selection in 
the mitochondrion [28, 48]. To test these hypotheses, we 
investigated the evolutionary rate of mitochondrial and 
nuclear genes across five haplodiploid lineages, including 
three haplodiploid lineages in Insecta and two haplodip-
loid lineages in Acari (Fig.  1). These five haplodiploid 
lineages have arisen independently, providing a unique 
opportunity to comprehensively explore the evolution of 
mitochondrion-related genes.

Small population size is not the reason for fast‑evolving 
mitochondrion‑related genes in haplodiploid species
We showed that all haplodiploid species tested here, 
across 500 million years of evolution, have fast-evolving 
mitochondrial genes and mitochondrion-related nuclear 
genes (Fig.  2). Our observation suggests that haplodip-
loidy is linked to fast-evolving mitochondrial genes. Our 
results are consistent with other studies showing elevated 
evolutionary rates in mitochondrial genes of hymenop-
terans [19–21] and P. humanus [49].

Elevated evolutionary rates also correlate with fast 
mitochondrial gene rearrangement rates in arthropods 
[50, 51]. Previous studies have shown that most of the 
haplodiploid species included in this study have elevated 
mitochondrial rearrangement rates, including species in 
Hymenoptera [52], Thysanoptera (including F. occidenta-
lis) [53, 54], and Phytoseiidae (including M. occidentalis) 
[55–57]. The most extreme mitochondrial rearrangement 
case is in Pediculus species, where instead of a single cir-
cular chromosome, the mitochondrial genome fractured 
into 20 circular mini-chromosomes [58]. Besides Pedicu-
lus, fragmented mitochondria and endosymbionts have 
arisen in multiple lineages, such as mini-chromosomes 
in Silene [59] and nematodes [60, 61], and fragmented 
genomes of endosymbiont Hodgkinia in cicadas [62], 
which all have elevated evolutionary rates. The frag-
mented genomes of mitochondria and symbionts are 
possibly nonadaptive for their hosts [63, 64].

For nuclear genes, our finding that mitochondrion-
related genes (nucOXPHOS and nucMTRP) have fast 
evolutionary rates but that other nuclear genes (nucCo-
ntrolSingle and nucControl) do not (Figs. 2 and 3) rejects 
the hypothesis that the reduced effective population size 
caused by haplodiploidy or parasitism is the reason for 
the fast-evolving mitochondrial genomes. As both hap-
lodiploidy and parasitism lead to a small population size, 
all nuclear genes should exhibit rapid evolution. Even 
though we included a larger set of nucControl genes than 
previous studies, we still did not find a genome-wide pat-
tern of rapid evolution.

The nuclear compensation hypothesis could explain 
the fast‑evolving mitochondrial‑related genes 
in haplodiploid species
Alternatively, both nuclear compensation and selection 
on the OXPHOS pathway hypotheses could lead to the 
observed pattern. The nuclear compensation explana-
tion is based on the observation that the mitochondrion 
often has fast evolutionary rates and accumulates more 
deleterious mutations than nuclear genes [5, 8], and 
thus, nuclear genes are hypothesized to be under posi-
tive selection to compensate for the deleterious changes 
in the mitochondrion [27]. In this scenario, mitochon-
drion-related nuclear genes are under positive selection 
but not the mitochondrial genes and unrelated nuclear 
genes. Non-Hymenoptera haplodiploid species show this 
pattern of rapid evolution in the nucOXPHOS complexes 
that consist of both mito-nuclear genes but not in the 
complexes with only nuclear-encoded genes (complex 
2) (Fig.  2E). The observed evolutionary rate differences 
for OXPHOS genes are consistent with the nuclear com-
pensation explanation. For haplodiploid species, haploid 
males express recessive mutations could lead to more 
efficient selection to purge deleterious and fix beneficial 
mutations, expediting the nuclear compensation process.

We were not able to reliably calculate dN/dS ratio (the 
ratio of the number of non-synonymous nucleotide sub-
stitutions per non-synonymous site to the number of 
synonymous nucleotide substitutions per synonymous 
site) for haplodiploid species, due to the deep divergence 
among the 76 arthropods. Our previous study, based on 
a comprehensive sampling of species in Hymenoptera, 
Coleoptera, Lepidoptera, and Diptera, demonstrated 
that 17 out of 23 tested nucOXPHOS genes of hymenop-
terans had an elevated dN/dS ratio compared to other 
holometabolous species, but only 2 out of 13 mitochon-
drial genes of hymenopterans had an elevated dN/dS 
ratio compared to other holometabolous species [21]. As 
nucOXPHOS genes under positive selection are impor-
tant genes for mitochondrial functions, it is likely that 
the elevated dN/dS ratio is due to positive selection to 
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compensate for the deleterious mutations in fast-evolv-
ing mitochondrial genes. In another arthropod example, 
positive selection was detected in nucOXPHOS and nuc-
MTRP but not mitochondrial genes for copepod species 
with fast-evolving mitochondrial genes [65, 66]. There-
fore, it is possible that the fast-evolving nucOXPHOS 
genes found in haplodiploid species were due to compen-
sation for the fast-evolving mtOXPHOS genes.

The positive selection hypothesis could explain 
the fast‑evolving mitochondrion‑related genes in bees 
and ants
The positive selection on OXPHOS genes hypothesis 
claims that both mitochondrial and nuclear genes are 
under positive selection. Although most studies [21, 43, 
67] have shown that mitochondrial genes often have a 
low dN/dS ratio supporting the nuclear compensation 
hypothesis, Piccinini et  al. [44] found that mtOXPHOS 
genes of bivalves had similar dN/dS ratios as nucOX-
PHOS genes, suggesting positive selection on the whole 
OXPHOS pathway, possibility due to adaptation to envi-
ronmental stress.

Bees and ants experience different evolutionary pat-
terns than other haplodiploid species. None of the 
haplodiploid species except bees and ants showed a cor-
relation between mtOXPHOS genes and nucOXPHOS 
complex 2 genes (Fig. 3D), although genes in complex 2 
do not directly interact with mtOXPHOS genes. It is pos-
sible that the whole OXPHOS pathway of bees and ants 
is under positive selection due to their high metabolic 
demand. For example, bees and ants often maintain their 
nest temperature using metabolic heat [68, 69]. Bees and 
ants are also central place foragers. A recent study has 
found that the OXPHOS genes of pollinating fig wasps 
(superfamily: Chalcidoidea) evolved significantly faster 
than those genes of non-pollinating fig wasps [70]. Five of 
the OXPHOS genes in pollinators showed signals of posi-
tive selection possibly due to energetic demand during 
pollination [70].

In addition, we propose another explanation for the 
elevated mitochondrial gene evolutionary rate that hap-
lodiploid species could accumulate deleterious mutations 
on the mitochondrial recombination, replication, and 
repair genes due to small population size. The disruption 
of mitochondrial recombination, replication, or repair 
genes (RRR genes) could cause increased substitution 
rates in mitochondrial genomes. Such cases have been 
found in D. melanogaster [71], Arabidopsis thaliana [72], 
and African killifishes [73]. The observed elevated evolu-
tionary rates on nucOXPHOS complex 2 of bees and ants 
(Figs. 3 and 4) also support this explanation, as eusocial 
hymenopterans have even smaller population sizes than 
sawflies and wasps [25, 74] potentially leading to a higher 

chance of deleterious mutations occurring on mitochon-
drion-related genes. Recent studies [75, 76] also found 
that low copy numbers of mitochondrial DNA could 
lead to high mitochondrial evolutionary rates due to the 
less efficient homologous recombination for mitochon-
drial DNA repair. The nuclear compensation, positive 
selection, and less efficient mitochondrial repair system 
are not exclusive to each other and could work together 
affecting the mito-nuclear evolution of bees and ants.

Gene family expansions and contractions in different 
haplodiploid groups
Besides evolutionary rates, we also investigated gene 
gains and losses in haplodiploid species. Overall, arthro-
pods have conserved copy number for mitochondrion-
related genes due to the functional importance of 
mitochondrion. Only a few mitochondrion-related gene 
families were found to have significant expansions or 
contractions in haplodiploid species. We also found sev-
eral gene losses with mitochondrion-related GO terms, 
which could affect the function of mitochondrial genes. 
Many bees and ants have lost one of the mitochondrial 
translation elongation factor gene copies, mEFTu2. The 
gains and losses of mitochondrion-related genes could 
affect mitochondrion evolution. For example, the loss of 
the mitochondrial single-stranded binding protein has 
been associated with the mitochondrial mini-chromo-
somes in the P. humanus genome [77].

Biased sampling efforts of genomes could affect 
the estimation of evolutionary rates
One caveat to our study is the biased genome sequenc-
ing efforts devoted to hymenopterans due to their agri-
cultural importance [78, 79]. Of the 76 studied arthropod 
species, 26 were hymenopterans, and only four species 
represented four non-Hymenoptera haplodiploid orders. 
This biased sampling effort limited our interpretation of 
the global effects of haplodiploidy on evolutionary rates. 
Although we performed subsampling and simulation 
to take this sampling bias into account, more genomes 
from other haplodiploid orders could vastly improve our 
understanding of haplodiploidy and its effects on genome 
evolution in the future.

Conclusions
We studied the evolutionary and co-evolutionary 
dynamics of mitochondrial and nuclear genes across 
major haplodiploid arthropod lineages. We found 
elevated mitochondrion-related gene evolution in all 
five haplodiploid lineages. Our findings suggest that 
the small population size of haplodiploid species is 
not likely to be the reason for the fast-evolving mito-
chondrial genes. But investing different gene groups, 
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we propose three alternative explanations, includ-
ing nuclear compensation, positive selection on the 
OXPHOS pathway, and deleterious substitutions on the 
mitochondrial RRR genes. We also showed several gene 
family gains and losses in haplodiploid species, sug-
gesting the unique evolution history of their mitochon-
drion-related genes.

Methods
Taxon sampling and sequence acquisition
The genome sequences of 28 arthropod species from 
the Arthropod 5000 Genomes Initiative (i5K) project 
[30] and 48 previously sequenced arthropods spanning 
21 arthropod orders were used in this study (Additional 
file  1: Table  S1). Within the 76 species, 28 species were 
haplodiploid, including 24 species from Hymenoptera 
and 4 species from Trombidiformes, Mesostigmata, 
Phthiraptera, and Thysanoptera (Fig. 1).

A set of 38,195 ortholog groups was obtained from 
Thomas et al. [32] based on the orthologous gene predic-
tion of OrthoDB8 [80]. Two categories of nuclear genes 
related to mitochondrial function were used in our study: 
(i) nuclear-encoded OXPHOS genes (nucOXPHOS) and 
(ii) nuclear-encoded mitochondrial ribosomal protein 
genes (nucMTRP) [19, 81]. To estimate the background 
evolutionary rate of genes in the nuclear genome, three 
gene categories with no relationship to mitochondrial 
genes were used, including (i) nuclear-encoded cyto-
solic rRNA protein genes (nucCRP), (ii) 150 single copy 
nuclear-encoded genes (nucControlSingle) (Thomas 
et  al. [32]), and (iii) all the nuclear-encoded genes 
(nucControl).

Multiple approaches were used to extract groups of 
orthologous genes in the different categories described 
above from the complete set of orthologs. For nucOX-
PHOS genes, the OXPHOS gene annotations of Dros-
ophila melanogaster [82, 83] were used to search the 
D. melanogaster gene identifiers (IDs) in each ortholog 
group (Additional file 1: Table S2). For nucMTRP genes, 
75 genes under the FlyBase ID “FBgg0000059” were 
used to search the Drosophila melanogaster gene IDs 
in ortholog groups. For nucCRP genes, 93 genes under 
the FlyBase ID “FBgg0000141” were used to match the 
genes in ortholog groups [19, 81]. Of the 38,195 ortholog 
groups, 150 ortholog groups had only 1 copy in any of 
the species. These 150 ortholog groups were used as 
nucControlSingle genes. As RAxML [84] treated gaps as 
undetermined base pairs, missing genes could inflate the 
evolutionary rate estimation. Therefore, 5746 ortholog 
groups that could be found in ≥ 80% of the species (at 
least 61 species) were used as background genes (nucCo-
ntrol gene category).

Assembly and annotation of mitochondrial genomes
Reference mitochondrial genomes of 32 arthropod spe-
cies are available on NCBI. Mitochondrial genes of 12 
species have already been annotated from transcrip-
tome data in our previous study (Li et  al. [21]). For the 
rest of the species, we first assembled the mitochondrial 
genome from the available genome sequence data using 
MITObim version 1.9 [85]. To minimize the computa-
tional requirements, we extracted between 12,500,000 
and 100,000,000 reads for mitochondrial genome assem-
bly (Additional file 1: Table S1). If a mitochondrial refer-
ence genome from the same genus was available, “-quick” 
option of MITObim was used where mitochondrial 
genomes were assembled based on the reads with a cer-
tain kmer overlap to the mitochondrial reference. If a 
mitochondrial genome from the same genus was not 
available, the COI barcode of the same species was used 
as a seed for assembly. Assemblies from MITObim were 
annotated online using MITOS version 2 [86] based on 
NCBI RefSeq 81 and the invertebrate genetic code. We 
were able to assemble and annotate 23 arthropod spe-
cies using this approach. For the remaining 9 species 
without mitochondrial genomes and their mitochon-
drial genomes could not be assembled from the genomic 
data, a reference mitochondrial genome from a closely 
related species was used in the analysis (Additional file 1: 
Table  S1). The protein-coding genes of the mitochon-
drial genomes were used for subsequent mitochondrial 
OXPHOS gene (mtOXPHOS) evolutionary rate analysis.

Estimating evolutionary rates
Due to the deep divergence, we used amino acid 
sequences of orthologous groups to estimate evolu-
tionary rates. In cases where a species had multiple 
paralogs within an orthologous group, a random par-
alog was selected for subsequent analysis. The amino 
acid sequences of each orthologous group were first 
aligned using the L-INS-i algorithm in MAFFT ver-
sion 7.475 [87]. GBlocks version 0.91b [88] was then 
used to remove the low-quality regions of the alignment 
with “-t = p -b4 = 5 -b5 = a -e = -gb” meaning the input 
aligned sequences were amino acid alignment, the mini-
mum length of a block was 6 amino acids, and gaps were 
allowed. Lastly, genes in the same gene category (i.e., 
mtOXPHOS, nucOXPHOS, nucMTRP, nucCRP, nucCo-
ntrolSingle, and nucControl) were concatenated.

To estimate evolutionary rates, branch lengths of gene 
trees were estimated using the concatenated amino acid 
sequence alignments with RAxML version 8.2.3 and the 
same fixed topology from Thomas et al. [32]. RAxML ver-
sion 8.2.3 [84] was used with the PROTGAMMAAUTO 
model option, which automatically selected the 
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best-fitting amino acid substitution model based on the 
log-likelihood value and approximated across-site rate 
heterogeneity with a gamma distribution. In RAxML, the 
“-t” option was used to estimate branch lengths based 
on the given topology. We estimated both the terminal 
branch length and the root-to-tip branch length, which 
included the terminal branch length and all the internal 
nodes leading to the common ancestor of arthropods, 
using phytools version 0.6–44 [89]. We calculated the 
evolutionary rate as the branch length estimation divided 
by the divergence time (MYA). The divergence time of 
each species was retrieved from the time tree of Thomas 
et al. [32].

To evaluate whether the gene family size of control 
genes (5746 genes) biased the estimation of evolutionary 
rate, 1000 random subsamplings were performed based 
on the gene number and gene family size of nucOX-
PHOS and nucMTRP genes. The evolutionary rate was 
estimated in the same way above. Spearman’s rank cor-
relation coefficient (cor.test function in R) was used to 
estimate the differences between the evolutionary rate of 
subsamplings and 5746 control genes.

Statistical analysis of gene evolutionary rates
R version 3.4.4 [90] was used to perform statistical tests. 
Kruskal–Wallis test (kruskal.test) and multiple com-
parison tests after Kruskal–Wallis (kruskalmc) from 
pgirmess package version 2.0.3 [91] were used to test 
the significance of gene evolutionary rate differences 
between Hymenoptera species, other non-Hymenoptera 
haplodiploid species, and diploid species. Spearman’s 
rank correlation coefficient (cor.test function in R) was 
used to calculate the correlation of rates between gene 
groups. The PCA package in R was used to find the prin-
cipal components that explain the pattern of evolutionary 
rates within arthropod species. ggplot2 version 2.2.1.9 
[92] and ggtree version 1.10.5 [93] were used to visualize 
data and phylogenetic trees.

Mitochondrion‑related gene family expansion 
and contraction in arthropods
Gene family expansions and contractions were esti-
mated based on the number of genes in each ortholog 
group and the time tree using Dupliphy version 1.0 
[94]. To explore the unique gene family expansions and 
contractions in haplodiploid species and Hymenoptera 
species, a random forest algorithm was used to select 
significant features using the R package Boruta version 
5.3.0 [45]. Three different sets of species were used for 
feature selection analysis: (a) haplodiploid species ver-
sus diploid species, (b) hymenopterans versus diploid 
species, and (c) haplodiploid species except hymenop-
terans versus diploid species. Gene copy numbers were 

used as input attributes to separate the two groups. 
For gene families that separate different groups of 
insects based on the Boruta approach, we used a 
rough fix of tentative attributes (TentativeRoughFix) 
to judge whether these gene families were significantly 
important.
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