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a b s t r a c t

As malware evolves and becomes more complex, researchers strive to develop detection and classifi-
cation schemes that abstract away from the internal intricacies of binary code to represent malware
without the need for architectural knowledge or invasive analysis procedures. Such approaches can
reduce the complexities of feature generation and simplify the analysis process. In this paper, we present
efficient Huffman features (eHf), a novel compression-based approach to feature construction, based on
Huffman encoding, where malware features are represented in a compact format, without the need for
intrusive reverse-engineering or dynamic analysis processes. We demonstrate the viability of eHf as a
solution for classifying malware into their respective families on a large malware corpus of 15 k samples,
indicative of the current threat landscape. We evaluate eHf against current compression-based alter-
natives and show that our method is comparable or superior for classification accuracy, while exhibiting
considerably greater runtime efficiency. Finally we demonstrate that eHf is resilient against code reor-
dering obfuscation.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Developing adequate identification and eradication schemes to
combat malware is a major challenge nowadays, due to the ever-
increasing complexities of such malicious programs. From a mal-
ware forensics perspective, an essential step is the classification of
malware, which helps to better understand its impact. Ideally, a
classification schemewould arrange malware types into taxonomic
groupings based on characteristic traits shared between members
of the same class, such as shared code sections (Choi et al., 2008),
similar API call sequences (Saxe et al., 2012) or API frequencies
(Hansen et al., 2016). Much prior work has been presented in this
field, demonstrating a wide range of approaches. By and large,
these methods use signatures as feature vectors extracted from
either the static code or dynamic behaviours of the malware sam-
ples. This requires intricate knowledge of the malware's internal
binary structure, which can involve labor-intensivemanual analysis
to isolate the signatures. Furthermore, correct feature selection is a
crucial step in this process, as choosing incorrect features will
negatively impact the overall performance of the classification
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algorithms. New approaches that require no prior specialist
subject-specific or background knowledge can help simplify the
process by negating the need for specific feature extraction mea-
sures, while retaining important or relevant signature information.

The use of compression algorithms, such as LZMA, BZ2 and Zlib
have been used in machine learning tasks such as clustering and
classification, due to their properties which reduce the need for
explicit feature extraction and selection. Prior work has demon-
strated that compression algorithms map input data sequences to
a defined and reduced feature space. This infers that the outputs
from compression tools can be used to represent feature vectors
for machine learning tasks. In this regard, compression has been
be applied to machine learning tasks in many domains, such as
image classification (Sanchez and Perronnin, 2011), text classifi-
cation (Marton et al., 2005) and DNA sequencing (Vinitha et al.,
2016).

In particular, prior work has focused on the formulation and
application of similarity metrics based on compression. One such
metric that has featured predominantly in this domain is Normal-
ized Compression Distance (NCD) (Li et al., 2004). The theoretical
inger@unil.ch (F. Breitinger).
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justification for NCD is founded upon an approximation of the
Kolmogorov (1998) complexity. NCD computes the similarity dis-
tance between two input sequences using a fixed formula
expressed in terms of the compressed versions of the sequences
both separately and combined. NCD's developers have demon-
strated its application to a wide variety of domains, such as text
processing, genomics, virology, music, and languages (Cilibrasi and
Vitanyi, 2005). In the malware domain, NCD has been applied areas
such as phylogeny (Walenstein et al., 2017) and detection
(Alshahwan et al., 2015).

Despite its desirable properties, NCD-based approaches have
proven infeasible for large data corpora, due to the computational
complexity in pair-wise comparisons where each comparison in-
volves calculating both the compression of each input data
sequence and the compression of the concatenated pair. Moreover,
Schuller Borbely (2016) demonstrated the performance of NCD is
heavily dependent on the choice of compression algorithm and
increasing file size is a factor that hampers the performance of NCD
with these compression algorithms.

In this paper, we present a compression-based technique, based
on the Huffman coding algorithm: an efficient, unambiguous sta-
tistical code that is commonly used for lossless data compression
(Huffman, 1952). Although this technique can be applied to mul-
tiple domains, we focus on its application to malware family class
classification. We evaluate our eHf method against a malware
dataset comprising approximately 15 k samples from recent Viru-
sTotal (VT) repositories, which are representative of current mal-
ware strains. For classification, k-nearest neighbors (KNN) classifier
is used to validate our approach. Using the standard Minkowski
distance metric, we demonstrate our Huffman features provide
superior classification performance over NCD with a computation
time of up to 3 orders of magnitude faster. We also evaluate our
method against Lempel-Ziv Jaccard Distance, a recent compression-
based metric proposed by Raff and Nicholas (2017a) and show our
method produces comparable classification performance but is
approximately five times faster in generating features and over
twice as fast in classification model training on the VT dataset. Our
code is open-source and fully available.2 Additionally, the full or
partial VT malware dataset is available to researchers on request. In
summary, this research makes the following contributions:

� Efficient Huffman features (eHf): fixed-length feature vectors
derived from Huffman encoding which provide a feature rep-
resentation of input binary data in a compressed format;

� Non-domain-specific: since no internal or structural knowledge
of the data is required, our eHf method can be applied to mul-
tiple domains outside of malware classification;

� Machine learning ready: eHf features are stored in an array
structure, so can be applied to a wide range of machine learning
algorithms.

The paper is organized as follows: Sec. 2 discusses the related
works in compression-based approaches to malware detection and
classification; Sec. 3 introduces the Huffman coding algorithm and
outlines our feature construction method, including how we opti-
mize the feature sets; Sec. 4 details our methodology; Sec. 5 pre-
sents our analysis approach and results. In this section, we test the
efficacy of our Huffman feature generation method as a means of
malware classification. We also perform comparative analyses with
state-of-the-art compression techniques and finally demonstrate
our method is resilient against code reordering obfuscation; Sec. 6
2 Repository: https://anonymous.4open.science/r/068ed7f6-7957-4440-87cf-
350b71e8feae/
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provides a discussion on the significance of our findings and finally
we conclude in Sec. 7.

2. Background and related work

One of the challenges in machine learning classification is the
choice of an appropriate representation for the data. With the
proliferation of malware and in particular the increasing com-
plexities of recent campaigns, many classification schemes must be
adapted to meet these demands. Malware researchers are moving
away from the reliance on pattern matching schemes to generate
signatures for classification by developing ways to represent mal-
ware in an abstract format that does not require invasive measures
such as reverse engineering. Previously, techniques such as
approximate matching or image processing have been considered
in this regard. For example, Breitinger et al. (2014) presented
saHash: an algorithm whose final fingerprint is composed of four
sub-hash functions values.“Given the hash values of two byte se-
quences, saHash returns a lower bound on the number of Lev-
enshtein operations between the two byte sequences as their
similarity score.”Nataraj et al. (2011) used image representations of
malware to classify samples into their family classes. Dubbed
“byteplots”, the images were generated using a byte-to-grayscale
pixel mapping, resulting in textural images from which salient
features were extracted for classification.

In contrast, this paper focuses on compression-based applica-
tions, particularly applied to the malware space. Compression
represents data in a compact or reduced format, without any sub-
ject-specific knowledge, so it has potential as a feature space rep-
resentation. The fact that compression can be applied to data in any
format means it can be adapted to a spectrum of domains. Several
previous works exist in this field, either in malware detection
(differentiating between benign and malicious programs) or mal-
ware classification (grouping similar malware into groups, based on
common structural or behavioural traits).

2.1. Compression as a distance metric

Many previous compression-based approaches in the malware
domain are based on using compression as a distance metric to
measure similarity, in particular, the normalized compression dis-
tance. NCD works on the idea that the similarity of two objects can
be measured by the ease with which one can be transformed into
the other. NCD is formally measured in Eq. (1), where C denotes a
compression function and x; y are inputs:

NCDðx; yÞ¼CðxyÞ �minðCðxÞ;CðyÞÞ
maxðCðxÞ;CðyÞÞ : (1)

If x ¼ y, then the following is true: CðxyÞ ¼ CðyÞ ¼ CðxÞwhere xy
denotes the concatenated inputs. NCD generates a non-negative
value 0 � NCDðx; yÞ � 1 where 0 indicates identical sequences
and 1 denotes complete dissimilarity.

Wehner (2005) used NCD to analyse and detect different species
of worms. Firstly, NCD was used as a similarity metric to cluster
worms by family type. Unknown samples were compared to known
worms for detection purposes. Next, detected anomalies in traffic
by comparing the compressibility of each network session capture.
Finally, compressionwas used to detect malicious network sessions
that exhibited similarities to known intrusion attempts. Two Snort
IDS plugins were provided to demonstrate the former approaches.
Wehner does not report on the computational run-time perfor-
mance, nor attempts to implement any classification scheme for the
methods presented.

https://anonymous.4open.science/r/068ed7f6-7957-4440-87cf-350b71e8feae/
https://anonymous.4open.science/r/068ed7f6-7957-4440-87cf-350b71e8feae/
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Alshahwan et al. (2015) built a malware classification scheme by
constructing approximated features, based on NCD measurements
between benign and malicious samples. The first feature in each
vector was the ratio of the program's compressed size to its un-
compressed size. The remaining n features were obtained by calcu-
lating the program's NCD to n other reference programs, comprising
n=2 benign and n=2 malicious samples, chosen at random. The
resulting feature set was trained on a corpus of labelledmalware and
benign-ware using a Random Forest classifier. The authors note the
run-time computational complexity of NCD was non-trivial and
addressed this by reducing the number of compression comparisons
through a lower bound threshold. This threshold was derived from
the compression property that states ZðxyÞ ¼ ZðxÞ, where Z is some
compression algorithm and x is an input sequence that fully contains
a shorter sequence y, giving 1� ZðxÞ=ZðyÞ. A classification accuracy of
97.1% was reported using the described method.

Besides computational complexity issues, the choice of compres-
sion algorithm has impact on NCD as an effective distance metric.
Cilibrasi and Vitanyi (2005) placed several attributes that compres-
sion algorithms must possess to ensure the properties of NCD as a
similaritymetric. Definition3.1 byCilibrasi andVitanyi (2005) states a
compressor is “normal” if it exhibits the following qualities:

1. Idempotency: CðxxÞ ¼ CðxÞ;andCðlÞ ¼ 0
2. monotonicity: CðxyÞ � CðxÞ
3. Symmetry: CðxyÞ ¼ CðyxÞ
4. Distributivity: CðxyÞ þ CðzÞ � CðxzÞ þ CðyzÞ

where x, y are data input sequences and l is an empty string.
However, Schuller Borbely (2016) demonstrated that several
compression algorithms, e.g., LZMA, BZ2, Zlib, and PPMZ, fail to
satisfy the properties of a normal compressor for use with NCD, as
defined above. Using a KNN classifier, it was shown that for larger
malware binaries up to 15MB in size, LZMA performed best, though
classification accuracy was still low, at 59.7%. The best results were
produced from the BZ2 algorithm, yielding 89.7% classification ac-
curacy with smaller files up to 200 KB in size. The author offered a
method to improve performance through interleaving and string
sequence alignment, but this was still limited to order-dependent
similarity and had a time complexity proportional to the product
of the file sizes input and thus was quite slow with large files.

Apel et al. (2009) evaluated several distance metrics, including
Levenshtein, Manhattan and NCD algorithms for malware similarity
detection. The compression algorithms used to compute the NCD
methods were LZMA and prediction by partial matching (PPM). The
distance metrics were tested under the following categories: order
sensitivity, appropriateness and run-time performance. The authors
reported that the compression-based NCDmetrics performed worst,
even failing to detect shared behaviours in a malware corpus of 1195
samples. Additionally, run-time performance was infeasibly slow for
larger samples. They recommended NCD should not be used as a
similarity metric for malware detection.

Raff and Nicholas (2017a) presented an alternative metric to
NCD, called the Lempel-Ziv Jaccard Distance (LZJD), based on the
LZ77 algorithm and Jaccard distance. LZJDmakes use of the Lempel-
Ziv technique for creating a compression dictionary of byte sub-
sequences, dubbed a LZSet. The authors note that the set of sub-
sequences extracted by LZJD requires memory proportional to the
size of the input strings, which makes storage impractical. To
overcome this, they use min-hashing to create compact represen-
tations of the input strings, converting each sub-string to integers
(hashes) and then choosing the k-smallest features. An error rate of
3% was achieved with ðk ¼ 1024Þ. The similarity metric is derived
from an approximation of the Jaccard distance metric. The authors
evaluated their method against NCD on several datasets including
3

the Kaggle Malware Classification Challenge (Ronen et al., 2018)
and Drebin Android datasets (Arp et al., 2014). A KNN classifier was
used with 10-fold cross-validation on the data. Results reported
showed LZJD outperformed NCD on both datasets, with perfor-
mance speedup of up to four magnitudes faster.

2.2. Compression as a feature space

The research discussed thus far comprised different compression-
based approaches applied to the malware space. In particular, they
used compression algorithms to determine similarity through the
NCD distance metric, or Jaccard index in the case of LZJD. However,
none has explicitly considered the outputs of these compression
algorithms as features for classification. Sculley and Brodley (2006)
showed that compression algorithms possess such properties,
which allow mappings from input sequences to vectors within an
implicit feature space. For example, they showed the Lempel-Ziv-
based compressors, such LZ77 and LZ78, compress data into dictio-
naries of substrings, which can be engineered as feature vectors.
Paskov et al. (2013) build on these findings, presenting a dictionary-
based compression scheme to represent features for unsupervised
text classification. The scheme operates by scanning each document
from left to right, consuming characters until it has found the longest
prefixmatching a previously seen substring. It then outputs a pointer
to that previous instance, which is interpreted as a feature. The
process continues with the remaining input string and if no prefix
matches, the single next character is output. Using 10-fold cross
validation on the training data, they report classification accuracies
of 83% and 90.4% on the 20 Newsgroups (Crawford, 2016) and IMDb
(Maas et al., 2011) datasets, respectively.

Raff and Nicholas (2017b) presented an improvement on LZJD
called Stochastic Hashed Weighted Lempel-Ziv (SHWel). The byte
sequences produced by the original LZJD algorithm were fixed and
a weighting applied. To improve runtime calculation, feature
hashing via the hashing trick was used. The hashing trick is a fast
and space-efficient way of turning arbitrary features into a sparse
binary vector. It enables dimensionality reduction because the hash
function is used to determine the feature's location in a vector of
lower dimension. Finally, similarly to LZJD, the k-smallest hashes
were chosen. A stochastic component was also introduced to the
vectorization, so that the algorithm could be robust against
imbalanced data. By comparing the two algorithms for perfor-
mance in malware family classification and detection, using the
Kaggle and Drebin datasets, it was demonstrated the SHWel algo-
rithm outperformed LZJD on balanced and unbalanced data. Out of
the research reviewed, only the SHWel method provides a feature
vector set that can be used for classification.

The majority of the compression-based approaches reviewed
use the Lempel-Ziv (LZ) algorithm or one of its variations in their
calculations. However, the findings of Sculley and Brodley (2006)
showed that the LZ feature space is very large. For example, the
Lempel-Ziv variant LZ77 encodes substrings as a series of output
codes that reference previously occurring substrings in a sliding
dictionary window. The result of this encoding is a high dimen-
sional feature space of Oð2mÞ, where m is the maximum length of
the repeated substrings found by LZ77. The LZWalgorithm, another
LZ variant, builds and stores an explicit substring dictionary on the
fly, selecting new substrings to add to the dictionary using a greedy
selection heuristic. The maximum length of a substring in the LZW
dictionary, using the LZW substring selection heuristic, is Oð2cÞ,
where c is the fixed-length output code produced by the LZW
encoding. The vector space has one dimension for each possible
substring with maximum length Oð2cÞ, that is, Oð2ð2cÞÞ dimensions,
so is considerably larger than that of LZ77. Evidently, to prepare LZ-
based features for classification purposes, additional processing
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must be performed to reduce the feature set dimensionality, such
as feature hashing in the case of the LZJD and SHWel methods.
However, this increases computational time complexity and for
very large corpora or large file sizes, can render these approaches
infeasible.
3. Efficient Huffman features

The goal of this research was to devise a method of representing
malware in an abstract way, such that the characteristics or features
of the representation could be used to accurately classify each
sample into their respective family classes. Compression is an
intuitive approach, since it provides a way of representing infor-
mation in a reduced, compact form. Motivated by the limitations of
current research, we chose the Huffman coding algorithm as it
provides lossless compression, without being overly complex. Since
the number of codewords in the Huffman set is equal to the number
of alphabet of symbols in the input sequence, feature dimension-
ality is generally small. This is computationally advantageous as it
requires less time and space to train a classifier and make in-
ferences (Guyon and Elisseeff, 2003).
Fig. 1. Huffman tree for the string: A
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3.1. Huffman coding

The Huffman procedure is based on optimum prefix codes. In an
optimum code, symbols that occur more frequently, i.e., have a
higher probability of occurrence, will have shorter codewords than
symbols that occur less frequently. To compress an input sequence,
the Huffman coding algorithm constructs a tree structure as fol-
lows: The frequencies of the n symbols in the input sequence al-
phabet are used as the initial weights attached to a set of leaf nodes,
one per alphabet symbol. The two lowest weighted nodes are
identified and removed from the set, and combined to make a new
internal node that is given aweight equal to the sum of the weights
of the two nodes. That new node-weight pair is then added back to
the set, and the process repeated. After n� 1 iterations of this cycle
the set contains just one node that incorporates all of the original
source symbols, and has an associated weight that is the sum of the
original, at which point the process stops. The binary codewords
usually use the convention that a left edge corresponds to a 0 bit
and a right edge to a 1 bit and are found by constructing the binary
number following from the root node to the leaf representing the
symbol. Fig. 1 illustrates a Huffman tree for the string
AAAAAAAABBBBBBBBCCCCDDE.
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AAAAAAAAABBBBBBBBCCCCDDE. The frequencies of each node are
shown in brackets. From the previous explanation, the order of the
tree node construction is:

Dð2ÞEð1Þ;Cð4ÞDEð3Þ;Bð8ÞCDEð7Þ;BCDEð15ÞAð9Þ

The Huffman codeword for each character is calculated by
following the path from root to the character leaf, e.g. the codeword
for D is: 0110. Table 1 shows the frequency and corresponding
codeword for each symbol.
3.2. Huffman feature construction

Each feature in the eHf vector is constructed by combining the
symbol, its frequency and Huffman codeword into a composite
feature. The alphabet symbol and Huffman binary codeword are
first converted to integers and the three values are added to pro-
duce a single feature. Malware variants by definition will share
many common alphabet symbols, frequencies and codewords, so in
turnwill sharemany common composite features. Althoughwe can
consider the symbols, frequencies and codewords as separate di-
mensions in the feature vectors, we chose to combine them, which
reduced feature set dimensionality by 66% and thus improved
classification run-time complexity. It is of note that we initially
calculated the features using the Huffman codewords only, but the
models did not generalize as well on unseen data. By utilizing this
composite feature approach, we were able to increase prediction
performance by approximately 10%. This experimentation is not
documented in the paper.

The eHf algorithm is constructed using a priority queue data
structure, via a heap data structure. Priority queues are run-time
efficient, with insertion and removal operations having a compu-
tational complexity of Oðn logðnÞÞ. With priority queues, every item
in the queue has a priority assigned to it and elements with a high
priority are de-queued before an element with low priority. The
alphabet symbol frequencies are assigned to determine the priority
variables and in this way we can choose the two lowest weighted
alphabet symbols (the first two items on the priority queue) to
construct the nodes for the Huffman tree.

The pseudo code for our algorithm is shown in Algorithm 1. The
sequence s denotes the data sequence to be encoded, in our case, a
malware binary. The first step is to generate the frequency for each
alphabet symbol in the binary. This is then stored in a dictionary f
where each alphabet symbol is the key and its frequency is the
associated value. A heap ,h, is then constructed containing a tuple of
each symbol's frequency n with a nested array containing the al-
phabet symbol k, and an empty string c. The string c will store the
Huffman codeword for each symbol.

To construct the Huffman codewords, the two lowest frequency
weight pairs are de-queued from the heap, representing the left
and right nodes in the tree. Zero is assigned to c in the left node
representing the 0 binary bit for the left node edge and a one to c in
the right node, representing the 1 binary bit for the right node edge.
If a node has previously been processed, the node edge (1 or 0) is
concatenated to c. The accumulation of the node edge values will
Table 1
Huffman codewords. This table corresponds to Fig. 1 and shows each symbol, their
corresponding frequency and the resulting Huffman codeword.

Symbol Freq. Codeword

A 9 1
B 8 00
C 4 010
D 2 0110
E 1 0111
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eventually form the binary Huffman codeword. Next, the sum of
the frequencies, which represents the parent node weight in the
tree, along with the array containing the left and right nodes with
their node edge values are pushed back onto the queue. The next
two lowest frequency weight pairs are de-queued from the heap
and the process is repeated until it reaches the root node. At this
time, the heap consists of a single element, containing the sum of
all the weights and the symbol:codeword pair array for each al-
phabet symbol.

The complete tree is next dequeued from the heap, with the sum
of the weights removed as this is not considered in the calculation
of the eHf features. The tree is then sorted in ascending order of
codeword size. Finally, the code loops through the tree, summing
symbol:codeword pairs and their corresponding symbol value n,
feature in the algorithm. On each pass, the feature is appended to
the eHfset vector. Once the vector is constructed, it is returned.

Since the feature dimension of the eHf set is equivalent to the
number of alphabet of symbols contained in the input data, it is
possible to encounter cases where the resulting feature vectors
differ in dimension. To produce a uniform length set of vectors
suitable for classification, we first determine the vector with least
dimensions, k. We then and resize all vectors in the feature set to k
dimensions by choosing the first k features in each vector. Since
each vector has been previously sorted by codeword value in
ascending order, this ensures we are removing the largest code-
words from the vectors, which represent the symbols with the
lowest probability of occurrence and so inflict the least disturbance
on the feature vectors.

Algorithm 1. Efficient Huffman Features

3.3. Feature optimization

Feature reduction can be advantageous when performing ma-
chine learning tasks. Datasets with less dimensions have better
runtime efficiency and in some cases can improve classification
performance due to a possible reduction in multicollinearity. We
tested the effect of different values for k dimensions on run time



Table 2
Malware dataset comprising samples collected from the 2018e2021 VirusTotal ac-
ademic share repositories.

Family Type Count

Agen Virus 676
Allaple Worm 339
Autoit Worm 966
Berbew Backdoor/Downloader 1692
Bitman Trojan 1090
Dinwod Trojan 893
Dorkbot Info. stealer 92
Dridex Banker Trojan 523
Emotet Banker Trojan 497
Fsysna Cryptominer 614
Hematite File virus 562
InstallMonster Adware Installer 364
Oberal Spyware 224
Picsys Worm 534
Salgorea Backdoor 607
Scar Trojan downloader 305
Sfone Worm 1053
Shifu Banker Trojan 475
Socks Virus 495
Sytro Worm 1140
Agent.BDMJ Adware installer 97
Vilsel Trojan 752
Vobfus Worm 704
Total 14,694
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efficiency and classification performance, illustrated in Fig. 2. Since
the number of dimensions is quite low, there was little change in
the classification accuracy, however we were able to decrease
classification runtime considerably. The graph shows an example
where we reduced the number of feature dimensions in the Viru-
sTotal subset from 229 (the smallest Huffman feature vector
computed by our method for the VirusTotal dataset) to 150. By
doing so, we decreased classification computation time from
104.18 s to 83.49 s, a reduction of approximately 20%, which is
denoted by the shaded area under the top (compute time) curve in
the graph. In contrast, the classification error rate in this case
increased just 0.4%, from 0.018% to 0.022%, denoted by the shaded
area under the bottom (error rate) curve. This demonstrates that
eHf can be configured to accelerate runtime computations, while
maintaining a high level of classification performance.

4. Methodology

The research presented in this paper provides a study on the
efficacy of implementing Huffman coding to represent malware
features that can be used to classify them according to their family
class. The method of the study comprises four distinct parts: data
gathering & pre-processing, Huffman feature generation, classifi-
cation and model validation.

4.1. Data collection and pre-processing

For initial method testing, we used a subset of the VT data,
which comprised 8232 portable executable (PE) samples from 12
distinct malware families. The sample sizes varied from 13.8 KB up
to 61.7 MB, totalling 11.4 GB in size. The samples from this re-
pository are not labelled, but have an associated JSON file which
contains the detection outputs from the anti-malware scanners on
VT, so there is some pre-processing necessary to assign the correct
family label. In order to ensure correct labeling, we used a tool
called AVClass Labeller to cluster malware samples into their family
Fig. 2. Measuring the effect of varying features on classification error rate and computation
time is reduced by 19.9%, with a classification error penalty of 0.4%.

6

classes based on the output of the VT JSON reports (Sebasti�an et al.,
2016). Only samples with a distinct label detection output from 10
or more scanners were chosen as true labelled samples. For
comparative analysis with LZJD and NCD, we extended the VT
dataset to 23 family classes, increasing the corpus to 14,694 sam-
ples, totalling 20.4 GB. The samples ranged from 8.2 KB up to
63.4 MB. Testing with this data also allowed us to evaluate eHf on a
larger corpus to demonstrate its viability for malware family clas-
sification. The breakdown of the dataset is given in Table 2. Note:
eHf's classification performance on the extended VT dataset is
discussed in Sec. 5.3.
time (based on VirusTotal dataset). By reducing the features from 229 to 150, compute
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4.2. Classification

To evaluate our methods, we chose the supervised machine
learning algorithm KNN, since the class labels were already known,
as described before. Supervised learning maps an inferred function
between the training data and the corresponding class label and
uses this function to identify class labels for unseen samples. For
the KNN classifier, the most important input hyper-parameters are
k, the neighbourhood size considered around each data point and
the distance metric. Varying the size of kwill directly influence the
performance of the classifier, since it determines the label of a data
point using a majority vote of the k most similar instances, or
neighbours. KNN measures the neighborhood based on a distance
metric such as Euclidean, Minkowski or Cityblock. Most signifi-
cantly, KNN stores all available cases and classifies new cases based
on a similarity measure, which allowed us to test our method
directly against the NCD distance metric. The optimal combination
of hyper-parameters was determined using GridSearchCV, which is
part of the Python Sci-kit Learn library. GridSearchCV calculates all
possible combinations of hyper-parameter input values for the
classifier, and the best combination is retained. The optimum pa-
rameters for our KNN classifier was found to be k ¼ 3, measured
with the Minkowski distance metric.
4.3. Performance metrics

We performed extensive testing of our Huffman feature gener-
ation method to ensure robust classification models that could
generalize well to previously unseen samples. We used the metrics
precision, recall and accuracy to gauge each classifiers performance
on the malware data. In the context of our research: Precision, in
this context, tells us ‘for all the malware labelled as a particular
family, how many were correct?’; recall tells us ‘for each malware
family, how many that should have been labelled as that family, were
labelled correctly?’ and accuracy tells us ‘how many samples were
labelled correctly out of all the predictions?‘. A confusion matrix was
used to provide a graphical view of how well each model
performed.
Table 3
Classification performance for the KNN model on the VT subset. The best metrics
were returned for the banker Trojan Dridex, highlighted in bold.

Family Precision Recall Accuracy

Agent.BDMJ 0.989 1.000 0.994
Autoit 0.961 0.976 0.969
Berbew 0.993 0.986 0.990
Dinwod 0.994 0.983 0.988
Dorkbot 0.977 0.988 0.982
Dridex 1.000 1.000 1.000
Oberal 0.976 1.000 0.988
Scar 0.857 0.854 0.855
Sfone 0.987 0.996 0.991
Socks 0.991 0.980 0.986
Sytro 0.994 0.999 0.997
Vilsel 0.985 0.971 0.978
Weighted avg. 0.982 0.982 0.982
4.4. Underfitting and overfitting

Throughout the machine learning phase, efforts were made to
reduce the possibility of underfitting and overfitting in the classi-
fication models. Underfitting can occur when there is not enough
data to build a generalized model and the model will fail to identify
important signatures or patterns in the data. We compiled a suit-
ably large dataset to reduce the risk of underfitting. Overfitting
occurs when the model fits the data too well, mainly due to it
capturing noise along with the underlying signatures or patterns in
the data. A model that is trained to fit slightly inaccurate data can
infect it with substantial errors and reduce its predictive power. In
an effort to minimize overfitting, we implemented stratified 5-fold
cross-validation. Stratification is the process of dividing members
of the data population into homogeneous subgroups before sam-
pling. In stratified cross-validation, folds are stratified such that
they contain approximately the same proportion of samples as the
original dataset. Cross-validation helps identify if overfitting is
present in the data by repeating the training and testing phases
multiple times, using all the different folds of the training set as
validation sets. During our parameter tuning phase, we also tested
10-fold cross-validation, but our results showed 5-fold produced
superior results.
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5. Experimental analysis and results

Our initial model training was carried out on a subset of the VT
dataset, previously described in Sec. 4.1. Approximately 10% of the
data for each family class was held out for the validation phase
where we evaluated the robustness of the classification model
against previously unseen data. The model was trained using the
following procedure:

1. Compute the Huffman feature vector for each sample.
2. Assign the family label to each vector.
3. Pass the feature set (vectors and labels) to the KNN classifier.
4. Perform stratified 5-fold cross-validation.
5. Compute precision, recall and accuracy.
6. Compute the confusion matrix.

The KNN classification performance metrics are presented in
Table 3. The KNN model produced excellent results in the training
phase, with the weighted average precision, recall and accuracy
scores over all classes of 98.2%. The weighted average calculates the
metrics for each class label and finds their averageweighting by the
support or the number of true instances for each label. This method
accounts for any label imbalance as in the case of the VT dataset,
where class sizes ranged from 92 to 1692. The highest metrics were
returned for the banker Trojan Dridex precision, recall and accuracy
of 100%. The lowest performing family was the Trojan downloader
Scar, withmetrics of 85.7%, 85.4% and 85.5% for precision, recall and
accuracy, respectively.

The confusion matrix in Fig. 3 illustrates the classification
metrics reported in Table 3. The actual class values are represented
in the rows, while the columns represent the predictions. The
intersection of the rows and columns represent the true positives,
i.e., where the model predicted actual values correctly. It can be
seen from the confusion matrix that the model predicted most
classes correctly, with 11 out of 12 class prediction true positive
rates (TPR) of 97% or above. As per the findings in Table 3, the
lowest performing family, Scar, returned a TPR of 85%. On closer
inspection of Scar, the classifier returned 60 false positives, where
samples from other families were predicted incorrectly as Scar. In
particular, 18 samples from the Berbew family were predicted as
Scar. Scar and Berbew both possess downloader functionality,
which may have caused the misclassification. Additionally, 14 false
positives were returned for the Vilsel family. It was found that, in
several Vilsel samples uploaded to VirusTotal, the AV scanners
detected Scar as Vilsel, so this may have attributed to the incorrect
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predictions (VirusTotal, 2021b). The false negatives for Scar, where
actual samples of Scar were classified as other families, were 39.
The highest misclassification rate was for Autoit, in 7.2% of cases or
22 out of 305 samples. Similarly to Vilsel, we identified that some
AV scanners detect Scar as Autoit (VirusTotal, 2021a). Furthermore,
we noted some variants of Scar, e.g., Win32.Scar.A, possess worm
propagation functionality, which could have contributed to the
confusion with the Autoit worm.
Table 4
Distance metric comparisons showing the average runtime for calculating the dis-
tance measurement between 2 data samples and the average classification metrics,
based on the extended VT data. Best results were returned for eHf using the Min-
kowski distance, highlighted in bold.

Dist. metric Runtime (secs) Prec. Recall Acc.

eHf-Jaccard 1:42� 10�3 0.969 0.968 0.968
eHf-Minkowski 1:02� 10�3 0.972 0.973 0.972
5.1. Model validation

A classification model's ability to generalize to new data is
central to its success. A correctly trained model can process new
data samples and make accurate predictions. The eHf KNN classi-
fication model was evaluated on the 10% holdout set that was
removed from the VT dataset before the training phase. Stratified
random sampling was used to select the evaluation set in order to
provide an accurate representation of the original sample data
population. The model predicted a class average of 97.4% for pre-
cision, recall and accuracy respectively. The results show that the
eHf KNN model is robust in that it generalized to the new data
samples. This indicates the model did not overfit the training data
and adapted to predict similar data samples, in this case variants
from the same malware family, providing an effective solution for
malware family classification.
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5.2. Comparison with NCD

As NCD has been featured heavily in previous compression-
based approaches, it necessitated a comparative study with our
eHf method. While eHf is not a similarity distance metric, our aim
here was to determine if standard distance measures could be used
with eHf in place of NCD for compression-based similarity, given its
runtime complexity limitations. For comparisons, we chose Jaccard,
Minkowski and Euclidean distance measures to test against NCD.
All four distance metrics were tested on the extended VT dataset.
The results are shown in Table 4. In terms of runtime, Minkowski
and Euclidean yielded similar run times of approximately 1 ms per
distance calculation, with Jaccard slightly slower at 1.4ms. NCDwas
over 3 orders of magnitude slower at 1.2 s per calculation. NCD also
performed considerably worse as a distance measurement,
approximately 20% lower for each classification performance
eHf-Euclidean 1:06� 10�3 0.970 0.971 0.969
NCD 1.2 0.782 0.774 0.772
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metric. Our findings reiterate previous work concluding that NCD is
not a feasible distance metric for malware classification at scale.
5.3. Comparison with LZJD

In this section, we evaluate our eHf technique against the LZJD
algorithm, since it is the closest approach to our own in terms of
compression-based feature generation. In the interests of equity,
we used PyLZJD, the Python version of LZJD (Raff, 2018), consid-
ering our code was also written in Python. Within LZJD, there are
two modes for hash set creation, the default hash and ‘Super-
MinHash’ which, according to its developers, is slower than the
default implementation, but converts feature sets to a more
compact vectorized representation for classification (Edward Raff
et al., 2019). We could not locate code for the faster SHWel algo-
rithm, but it is noted in LZJD's source code that the algorithm
contains ‘SHWel-style hashing’. We tested eHf against both LZJD
implementations, to demonstrate a more comprehensive compar-
ison of the two approaches. For clarity, we refer to the superhash
implementation of LZJD as LZJD-sh. For our comparative analyses,
we used the extended VT dataset with 14,694 samples. As in our
initial model training, we held out a 10% subset of the data for
model validation testing.

We first tested the methods on run-time complexity in terms of
feature generation and classification times. The results of the
comparison are shown in Table 5.

From the results, eHf was 2.42 times faster than LZJD in gener-
ating feature vectors and just over one order of magnitude faster
than LZJD-sh. In classification training, eHf was 6.85 times faster
than LZJD and 3.66 times faster than LZJD-sh. These results are
further discussed in Section 6.

Next, we compared eHf to the LZJD methods on classification
performance. We used the KNN classifier and 5-fold cross-
validation as in our initial model training on the VT subset data.
The results are shown in Table 6. In the model training phase, the
LZJD-sh method produced marginally better results than eHf, with
precision, recall and accuracy of 97.7%, 97.3% and 97.4% as opposed
to 97.2%, 97.3% and 97.2% for eHf. The default LZJD results were
approximately 2% lower. In the validation phase, eHf proved to be
significantly superior to both LZJDmethods, returning classification
metrics that were approximately 10% better than LZJD-sh and
Table 5
Comparison of runtime efficiency for eHf and LZJD, where feat. gen. ¼ feature gen-
eration, training ¼ classification training and feat. dims. ¼ dimension of each feature
vector. The times shown are averages per sample in milliseconds.

Run-time efficiency (ms) Size

feat. gen. training feat. dims.

LZJD-sh 5:15� 10�1 9:92� 10�2 1024
LZJD 1:21� 10�1 1:86� 10�1 1024
eHf 5:0� 10�2 2:71� 10�2 229

Table 6
Comparison of classification performance for eHf and LZJD methods. The scores
represent precision, recall and accuracy averaged over all classes for the training and
validation phases. The best performing scores are highlighted in bold.

Training Validation

precision recall accuracy precision recall accuracy

LZJD-sh 0.977 0.973 0.974 0.882 0.878 0.873
LZJD 0.951 0.950 0.950 0.745 0.752 0.746
eHf 0.972 0.973 0.972 0.974 0.974 0.974
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approximately 14% better than the default LZJD. The results indicate
that eHf KNN provided a more robust classification model than
either LZJD method in adapting to previously unseen samples.
However, we note here that the LZJD methods were used as a
comparison to gauge the validity of eHf for feature representation
and in this regard, we did not perform extensive feature selection
or parameter tuning, though we did test the LZJD methods on
different values for k in the KNN classifier.

5.4. Resilience to obfuscation (reordering)

It is of vital importance that malware detection and classifica-
tion schemes are resilient against obfuscation employed by mal-
ware developers. In this section, we demonstrate how eHf is robust
against code reordering obfuscation. For simplicity, we chose to use
the import tables extracted from each malware sample to test our
approach. Import tables are structures contained within executable
files comprising a list of functions that programs import in order to
communicate with the operating system. Malware programs that
contain similar code and have been compiled in the same way will
generally have the same import table and in this way can be used as
signatures to identify related malware samples. For example,
Mandiant (2016) developed imphash, which comprises an MD5
hash generated from the extracted malware binary. Tests have
shown that family variants generally share the exact same function
code and therefore can be clustered together on the basis of their
imphash. Furthermore, different strains of malware have been
shown to be attributed to a single threat group, through identical
imphashes. imphash suffers the same limitations of cryptographic
hashing in that any reordering of the code will result in a
completely different hash. Our test here demonstrates eHf is
resilient against such tactics.

To perform our evaluation, we first extracted the import tables
from each sample in the VT dataset. We then trained our KNN
classifier on the import tables in the same way as detailed previ-
ously in this section. Next, we used SCYTHE, an obfuscation tool
presented by Balles and Sharfuddin (2019), to perform a random
reordering routine on the import tables of a sub-sample of
approximately 3 k malware binaries. This produced a different
(reordered) import table for each sample. We then evaluated the
KNN model against the reordered import tables. The average pre-
cision, recall and accuracy scores returned were 99.8%, 99.7% and
99.7%, respectively. The results show that, despite the random
reordering, eHf is not adversely affected. The reason for this lies in
the way in which the Huffman encoding generates its compression
dictionary. As described in Huffman coding, input data is stored in a
dictionary structure according to their frequency of occurrence.
Therefore, the ordering of the input sequence is not a consideration
in the generation of the codewords. As long as the input data, in our
case the malware binary code, contains the same or similar “al-
phabet” of symbols and frequencies, then reordering has little
effect.

6. Discussion

The eHf method described in this paper provides a representa-
tion of data in a compressed feature space that does not require
invasive feature extraction processes and does not suffer the
complexities and scalability issues of such techniques. Further-
more, eHf operates without the need for domain-specific knowl-
edge, which means it can be applied to a multitude of domains
apart from malware classification. Prior related work has focused
predominantly on the normalized compression distance (NCD), a
compression-based distance metric for measuring similarity.
Although NCD has shown promise in terms of classification
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performance, it has proven to exhibit poor runtime efficiency, due
to the calculation requirement for compression of both the data
inputs individually and concatenated, which has been demon-
strated to be infeasible at scale. In this regard, we have shown that
standard distance metrics such as Minkowski and Euclidean pro-
duce far superior results over NCD. The results of our testing show
that eHf is a viable malware classification scheme, returning
average precision, recall and accuracy scores of approximately 97%
using a KNN classifier and Minkowski distance metric trained on a
corpus of approximately 15 k malware samples. These results mean
that eHf has the ability to accurately predict malware variants from
the same family it has been trained on.

By comparing eHf to LZJD, a similar compression-based
approach using the Lempel-Ziv compression algorithm and the
Jaccard index, we demonstrated that our method performed
comparatively well in classification model training, but proved to
produce more robust models, with improved prediction capabil-
ities of 10e14% over both LZJD methods. In terms of runtime effi-
ciency, eHF exhibited greatly and reduced computational
complexity over LZJD. This is attributed to several factors. First, the
Huffman encoding algorithm is less complex than the LZ77 algo-
rithm used by LZJD and so affords a much faster feature compu-
tation time. Second, by implementing our code using a min-heap
data structure, we could optimize data processing times to a
complexity of Oðn logðnÞÞ. Third, with eHf we can represent the data
within a considerably reduced feature space (229 vs. 1024 di-
mensions for LZJD) which reduces classification time. It should be
noted that the feature set size mode in LZJD can be configured to
smaller dimensions, but we did not test how this would influence
its performance.

Through our experiments, we observed that we could further
reduce the eHf feature set dimensionality, which resulted in a
considerable decrease in computation time, with a small penalty in
increased classification error. This property would be beneficial in
time critical scenarios or classification of large corpora and where a
slight increase in error rate is acceptable. Our evaluation also shows
that eHf is resilient against code reordering obfuscation. This is due
to the Huffman encoding procedure, where each codeword is based
on the frequencies of the input data and so the order of the data has
no influence on the features generated. This property infers that
eHf could potentially be applied to digital forensics situations, for
example, where modified data needs to be examined for similarity.

7. Conclusions and future work

Due to the limited related work in this domain, our intention for
this research was to investigate the efficacy of compression as a
solution to represent data in such a way that it abstracts away from
the need to understand intricate structural or analysis procedures.
In doing so, we introduced a novel method of feature set generation
using a modified implementation of the Huffman encoding algo-
rithm, which we dubbed efficient Huffman features or eHf. We note
here that, while we have not tested eHf on other data types, such as
in text file classification, our method is not limited to a specific
domain, so it can potentially be applied to a variety of fields other
than malware classification. Although we limited our research to
KNN classification, the feature sets generated by eHf are con-
structed as an array structure. Thus, they are in a suitable format for
testing in a variety of other machine learning algorithms. Our
evaluation of eHf with other compression-based approaches
demonstrated a greatly improved runtime efficiency over NCD and
LZJD. We have also shown that eHF produced more robust classi-
fication models than LZJD, in predicting previously unseen sample
data. Further testing of eHF has shown it is resilient to code reor-
dering obfuscation.
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Overall, the research presented here has shown that eHf exhibits
the desirable properties of code reordering obfuscation resilience,
non-invasive data feature extraction techniques and fast compu-
tation times, without the need for domain-specific knowledge,
making it a simple, practicable and scalable solution suited to the
classification of large malware corpora.

For future work, we aim to investigate the robustness of eHf
against other common forms of obfuscation such as packing and
encryption. Furthermore, we intend to extend our testing to eval-
uate eHf at scale. Our intention is to use the SORELe20 M dataset,
which comprises 10 million disarmed malware samples made
available for research purposes (Harang and Rudd, 2020). To make
eHf more feasible at this scale, we also intend to make further
improvements on the performance of the source code, for example,
utilizing Cython for faster computation of the feature sets (Behnel
et al., 2011).
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