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ABSTRACT

Financial products are priced using risk-neutral expectations justified by
hedging portfolios that (as accurate as possible) match the product’s payoff.
In insurance, premium calculations are based on a real-world best-estimate
value plus a risk premium. The insurance risk premium is typically reduced
by pooling of (in the best case) independent contracts. As hybrid life insur-
ance contracts depend on both financial and insurance risks, their valuation
requires a hybrid valuation principle that combines the two concepts of finan-
cial and actuarial valuation. The aim of this paper is to present a novel
three-step projection algorithm to valuate hybrid contracts by decomposing
their payoff in three parts: a financial, hedgeable part, a diversifiable actuarial
part, and a residual part that is neither hedgeable nor diversifiable. The first
two parts of the resulting premium are directly linked to their corresponding
hedging and diversification strategies, respectively. The method allows for a
separate treatment of unsystematic, diversifiable mortality risk and systematic,
aggregate mortality risk related to, for example, epidemics or population-wide
improvements in life expectancy. We illustrate our method in the case of CAT
bonds and a pure endowment insurance contract with profit and compare the
three-step method to alternative valuation operators suggested in the literature.
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1. INTRODUCTION

The valuation of future cash flows is a fundamental problem in both finance
and actuarial science. In a classical deterministic setting, the problem is trivial:
the value is then simply given by the discounted future cash flows (see, e.g.,
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Boyle and Schwartz, 1977; Brennan and Schwartz, 1979; Gerber, 1997).
However, as soon as the cash flows become uncertain, different methodologies
are necessary. In particular, two different philosophies of pricing are present
in finance and in insurance, respectively. The classical paradigm of pricing in
insurance is based on the law of large numbers: the basic premium is equal
to the discounted expectation of the risk under the real probability measure
plus a safety margin (for instance, the standard deviation principle (see, e.g.,
Kaas et al., 2008; Laeven and Goovaerts, 2008; Rotar, 2014) or the Solvency
II cost of capital (see, e.g., Keller and Luder, 2004)). This valuation, based on
a “mean” logic, comes directly from the underlying strategy of the insurer to
limit its own risk, namely the mutualization of a big number of diversifiable
independent risks in an insurance pool. The right strategy for the insurer, in
line with this pricing tool, is then to increase the size of the pool. In finance, the
approach is quite different; pricing in complete markets is based on discounted
expectation of future payoffs but now under an equivalent martingale measure
(for instance, the risk-neutral measure). Also here, the valuation methodology
can be justified by an underlying strategy: the well-known hedging technique.
The basic strategy is then to use replicating portfolios whose price corresponds
to the risk-neutral expectation of the discounted payoff. In practice, there
are many reasons why this dichotomy of philosophy between finance and
insurance is quite challenging. First, the main assumptions behind the two
paradigms can be discussed: in finance, markets are very often incomplete and
a perfect hedge remains very difficult or even impossible to achieve. In insur-
ance, risks are not always perfectly diversifiable (take catastrophic (CAT) risks
or longevity risks as an example) violating the assumptions of the law of large
numbers. Secondly, hybrid products based on a combination of actuarial and
financial components are more and more present on the markets (for instance,
life insurance products with optional payoffs) and require then a new adjusted
valuation principle. Different principles have been proposed in the literature
in order to price these hybrid products (see, e.g., Møller, 2002; Malamud
et al., 2008; Möhr, 2011; Pelsser and Stadje, 2014; Pelsser and Ghalehjooghi,
2016; Dhaene et al., 2017; Barigou and Dhaene, 2019; Delong et al., 2019a,b;
Engsner et al., 2020 and many others). Our article contributes to this literature
by proposing a novel decomposition method with a clear separation of risks
that are hedgeable on financial markets, risks that can be reduced by pooling,
and a remaining part evaluated by taking into account solvency guidelines.
This method is based upon hedging and diversification strategies, respectively,
for the first two parts. In particular, it allows to distinguish between the
different types of mortality risks (unsystematic, diversifiable mortality risk and
aggregate, systematic mortality risk, see also Chen et al., 2019). In this article,
we focus, in a static 1-period framework, upon a general evaluation method
to cope with hybrid life products, while working in a complete financial
market and supposing independence between financial and actuarial risks.
Our method is based on a three-step projection algorithm, consistent with the
concepts of risk-neutral pricing in finance as well as with the pooling principle

https://doi.org/10.1017/asb.2020.25 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.25


VALUATION OF HYBRID FINANCIAL AND ACTUARIAL PRODUCTS 711

in insurance, and coherent with the classical financial and actuarial valuation.
Moreover, we can produce a coherent strategy to manage the risk. The basic
idea of the method is to decompose any future stochastic cash flow into three
additive components:

• part 1: a financial, hedgeable part that can be priced under an equivalent
martingale measure following the finance paradigm. This part can be repli-
cated by existing assets and contains no risk (when properly hedged), neither
systematic nor unsystematic.

• part 2: a diversifiable part that can be priced under the real probability
measure following insurance principles. This part contains only diversifiable
risks that can be asymptotically canceled by increasing the size of the pool
of risks.

• part 3: a part which is neither hedgeable nor diversifiable. This part can be
based on insurance risk and financial risks and requires an adapted (hybrid)
methodology.

We provide a comparison to other hybrid valuation operators suggested in
the literature (e.g., Møller, 2002; Pelsser and Stadje, 2014) and discuss their
implications. Among others, we want to stress that hybrid life products do
usually not allow to fully disentangle financial and actuarial risks. Thus, even
in the case of a complete financial market, it is not possible to fully eliminate
financial risks.

We organize the remainder of this article as follows: in Section 2, we intro-
duce the general model framework, the payoff of hybrid life products and the
basic concept of a financial and actuarial valuation principle. In Section 3, we
show how the product’s payoff can be decomposed in a financial, an actuar-
ial and a residual part. This decomposition is used in Section 4 to introduce
the three-step method. We introduce other approaches suggested in the liter-
ature and provide a comparison and axiomatic assessment of these valuation
operators. In Sections 5 and 6, we apply the different valuation operators to
valuate general life insurances and securitization as, for example, CAT bonds.
In Section 7, we include a numerical illustration with discussion of the different
evaluation operators, and this in the setting of a pure endowment life insurance
contract with profit. Section 8 discusses the stability of our results if certain
simplifying assumptions are relaxed. Section 9 concludes.

2. MODEL SETUP AND ASSUMPTIONS

Throughout, we operate on a finite time interval [0,T ]. We consider a
pool of n ∈N insured individuals with remaining lifetimes τ := (τ1, τ2, . . . , τn).
Mortality risk consists of two parts: systematic or aggregate mortality risk
referring to risk factors that lead to a population-wide in- or decrease in
life expectancy and unsystematic mortality risk taking into account random
deviations from the population-wide mortality experience. On the probability
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space (�,F , P), we consider a filtration (Gt)t that is generated by the sys-
tematic mortality risk factors. For each individual j= 1, 2, . . . , n, we consider
I j
t := σ (1{τj≤u} : u≤ t). Under the real-world measure P, the σ -fields I j (for
j= 1, 2, . . . , n) are assumed to be conditionally independent given the system-
atic mortality information contained in GT , that is, for any T > 0 and t ∈ [0,T ],
we have that

P
(
τ1 > t, τ2 > t, . . . , τn > t

∣∣ GT)= n∏
j=1

P
(
τj > t

∣∣ GT).
This model framework was originally proposed in credit risk, see, for exam-
ple, Bielecki and Rutkowski (2004), p. 268ff. The enlarged time-t actuarial
filtration is then defined as F a

t := Gt ∨ (∨n
j=1 I j

t ). We further denote the time-t

filtration of financial risk by F f
t , defined on �. From this, the full information

filtration is Ft :=F a
t ∨F f

t for all t ∈ [0,T ]. The number of policyholders at any
time t ∈ [0,T ] is denoted byNt :=∑n

j=1 1{τj≥t}. Under the real-world measure P,
we assume that financial and actuarial risks are independent. On the product
space (� = �a × �f ,F ), we choose the product measure P := Pa × Pf , where –
throughout this article – the superscripts a and f represent quantities related to
actuarial and financial risks, respectively.

Hybrid life products. Let us introduce functions gj(τ ) : (0,∞)→R+ and hj(s) :
(0,∞)→R+, j= 1, 2, . . . , n. We consider hybrid life products that can be
represented by the time-T payoffs

Hn
T = 1

n

n∑
j=1

gj(τj) · hj(ST ), (2.1)

where ST denotes the time-T value of a financial asset, hj(ST ) isF f
T -measurable,

and gj(τj) is F a
T -measurable. We discuss generalizations of the payoff (2.1) in

Section 6.
We denote the set of contingent claims (2.1) by HT . The subclass of

financial claims (obtained by setting gj(τj)= 1 for j= 1, 2, . . . , n in (2.1)) is
denoted by Hf

T , while the subclass of actuarial claims (obtained by setting
hj(ST )= 1 for j= 1, 2, . . . , n in (2.1)) is referred to asHa

T .

Product valuation. We consider a complete financial market containing risky
assets and a risk-free bank account with constant risk-free rate r. Further, we
assume that there exists an equivalent martingale measure Qf ∼ Pf such that
dQf /dPf ∈Hf

T . The value of a financial claimHn
T ∈Hf

T is then given by its risk-
neutral expectation, that is

π
f
0

(
Hn

T

∣∣F0

)
:=E

Qf

F0

[
e−rTHn

T

]
, (2.2)

https://doi.org/10.1017/asb.2020.25 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.25


VALUATION OF HYBRID FINANCIAL AND ACTUARIAL PRODUCTS 713

where we denote conditional expectations by EQf

Ft
:=EQf

[·|Ft]. We extend (2.2)
to define a set of financial valuation operators for a general claim Hn

T ∈HT as1

π
f
0

(
Hn

T

∣∣F0

)
:=E

Pa×Qf

F0

[
e−rTHn

T

]
. (2.3)

We further consider a set of actuarial valuation operators. Using the standard
deviation principle, the value of a purely actuarial claim Hn

T ∈Ha
T is

π a
0 (H

n
T

∣∣F0) := e−rT
(
EPa

F0

[
Hn

T

]+ α

2

√
VarP

a

F0

(
Hn

T

))
, (2.4)

where α > 0 is the risk aversion coefficient. Again, we extend this to general
claims Hn

T ∈HT and define under the real-world measure P := Pa × Pf that

π a
0 (H

n
T

∣∣F0) := e−rT
(
EPa×Pf

F0

[
Hn

T

]+ α

2

√
VarP

a×Pf

F0

(
Hn

T

))
. (2.5)

Formulas (2.3) and (2.5) could be applied to any hybrid product but they are
clearly contradictory. The purpose of this article is to propose a general eval-
uation method for any hybrid claim, consistent with formula (2.2) for pure
financial productsHn

T ∈Hf
T , consistent with formula (2.4) for pure diversifiable

actuarial claims Hn
T ∈Ha

T and able to valuate claims neither completely hedge-
able nor diversifiable. We want also to develop a product valuation reflecting
strategies to treat the underlying risk.

The purpose of this paper is to propose an evaluation method for the
hybrid claim Hn

T defined in (2.1), which takes into account strategies to treat
the underlying risks based on ideas from finance and insurance.

For a purely financial, hedgeable contract, it is well known that one should
apply a purely financial premium that does not include any additional risk mar-
gins. This property (market consistency) takes into account that payoffs that
can be liquidly replicated on financial markets should not carry any risk as they
can be liquidated at any time. Similarly, purely actuarial pools of independent
risks must be valued by purely actuarial valuation principles. Here, risks can-
not be eliminated on financial markets, and the valuation operator has to add
appropriate risk margins for this unhedgeable but diversifiable risk (a property
we call actuarial valuation operator). Definition 2.1 introduces both concepts in
a formal way.

Definition 2.1 (Market-consistent and actuarial valuation operator).

• The valuation operator is market-consistent if, for any financial, hedgeable
claim h1(ST ) ∈Hf

T and any claim Hn
T ∈HT, it holds that

π0

(
Hn

T + h1(ST )
)= π0

(
Hn

T

)+ π
f
0

(
h1(ST )

∣∣F0

)
. (2.6)
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• The valuation operator is actuarial if, for an insurance portfolio whose claims
are independent (i.e., a portfolio of insureds whose remaining lifetimes τj ,
j= 1, 2, . . . , n, are independent and identically distributed (i.i.d.)) and an actu-
arial claim gnT := 1

n

∑n
j=1 gj(τj) ∈Ha

T , the valuation operator is given by an
actuarial valuation operator, that is,

π0

(
gnT
)= π a

0

(
gnT
∣∣F0

)
. (2.7)

It is desirable that any valuation operator is market-consistent and actuarial
(see, e.g., Delong et al., 2019a,b for a detailed discussion).

3. PAYOFF DECOMPOSITION OF HYBRID CLAIMS

In this article, we discuss on how to choose a valuation operator for hybrid
products Hn

T ∈HT that contain appropriate risk margins for the product’s
various risks. We want to suggest a valuation operator that decomposes the
contract’s payoff in hedgeable financial risk, diversifiable actuarial risk, and a
third component that relates to unhedgeable and undiversifiable risk, for exam-
ple, due to aggregate mortality risk. Therefore, as a first step, we decompose
the mortality-risk-related part of the payoff as

gj(τj)=EPa×Pf

F0

[
gj(τj)

]︸ ︷︷ ︸
best-estimate

+
(
gj(τj)−EPa×Pf

F0∨GT
[
gj(τj)

])
︸ ︷︷ ︸

unsystematic deviation

+
(
EPa×Pf

F0∨GT
[
gj(τj)

]−EPa×Pf

F0

[
gj(τj)

])
︸ ︷︷ ︸

systematic deviation

.

The suggested decomposition depends on the underlying model for
(un)systematic mortality risk. In Section 5 and the numerical part of this
article, we suggest one exemplary choice of a mortality model staying in the
conditional independence setting introduced in the previous section.

This decomposition in a best-estimate value of the mortality-risk-related
payoff and unsystematic and systematic deviations from this best-estimate
value can be used to decompose the payoff Hn

T in three different parts:

Hn
T = 1

n

n∑
j=1

gj(τj) · hj(ST )

= 1
n

n∑
j=1

EPa×Pf

F0

[
gj(τj)

] · hj(ST )
︸ ︷︷ ︸

financial part

+ 1
n

n∑
j=1

(
gj(τj)−EPa×Pf

F0∨GT
[
gj(τj)

]) · hj(ST )
︸ ︷︷ ︸

diversifiable part

https://doi.org/10.1017/asb.2020.25 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.25


VALUATION OF HYBRID FINANCIAL AND ACTUARIAL PRODUCTS 715

+ 1
n

n∑
j=1

(
EPa×Pf

F0∨GT
[
gj(τj)

]−EPa×Pf

F0

[
gj(τj)

]) · hj(ST )
︸ ︷︷ ︸

unhedgeable, non-diversifiable part

=:H (1)
T +H (2)

T +H (3)
T . (3.1)

The first part H (1)
T is a purely financial payoff that does not depend on mortal-

ity risk. This part is completely hedgeable on financial markets. For the second
part H (2)

T , we analyze unsystematic deviations from the population-wide mor-
tality experience GT . This part is completely diversifiable on insurance markets.
As, conditional on GT , individual deaths are independent, this term can be elim-
inated by increasing the portfolio size n (see Theorem 3.1(a) for a proof) and
is thus referred to as diversifiable risk. The risk of the last term H (3)

T cannot be
eliminated. It contains systematic mortality risk and financial market risk and
can be neither hedged on financial markets nor diversified by increasing the
portfolio size. This hybrid part disappears if mortality rates are deterministic,
that is, if there is no systematic mortality risk, see Theorem 3.1(b) for a formal
proof.

In the remainder of this article, our focus is on homogeneous insurance
portfolios, that is, our contracts satisfy the following assumption:

(Hom) The insured pool is homogeneous, that is, their initial age and risk pref-
erences are equal. Their remaining lifetimes are identically distributed.
Further gj(τj)= g(τj) and hj(ST )= h(ST ) for j= 1, 2, . . . , n.

Theorem 3.1 ((Non-)diversifiable mortality risk).
Consider an insurance portfolio satisfying assumption (Hom). We find that:

(a) In the limit n→ ∞, the diversifiable part H (2)
T of the payoff Hn

T converges
a.s. to 0, that is, H (2)

T → 0 a.s. (no unsystematic mortality risk).
(b) If mortality rates are deterministic (no systematic mortality risk), the last

part H (3)
T of the payoff Hn

T equals 0 a.s., that is, H
(3)
T = 0 a.s.

Proof. See Appendix A. �

4. VALUATION OF HYBRID CLAIMS

In this section, we introduce different valuation operators for hybrid life
products Hn

T ∈HT . In Section 4.1, we introduce the three-step method whose
premium is based on the payoff decomposition (3.1). In Section 4.2, we look at
the existing literature and concentrate on two so-called conditional valuation
principles. The general idea of these valuation operators is to first condition on
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the financial market filtrationF f
T and then to apply an actuarial valuation prin-

ciple on the F f
T -conditional payoff (see, e.g., Møller, 2002; Pelsser and Stadje,

2014). In Section 4.3, we focus on an axiomatic approach by indicating desir-
able properties that a valuation operator should fulfill. Finally, we show that
each of the above-mentioned (hybrid) valuation operators satisfies the basic
properties of a valuation operator and is both market-consistent and actuar-
ial. In Section 4.4, we compare the three valuation operators in the case of a
homogeneous insurance portfolio.

4.1. Additive valuation: three-step method

In Section 3, we have decomposed the payoff of a hybrid claim Hn
T ∈HT into

a hedgeable part H (1)
T , a diversifiable part H (2)

T , and an unhedgeable and non-
diversifiable part H (3)

T , see (3.1). We now use this decomposition to suggest a
new valuation operator for hybrid claims. This three-step valuation operator is
defined as:

π
(3)
0

(
Hn

T

)
:= π

f
0

(
H (1)

T

∣∣F0

)
+ π a

0

(
H (2)

T

∣∣F0

)
+ π n

0

(
H (3)

T

∣∣F0

)
, (4.1)

that is, we apply a valuation operator separately for each of the three parts
of the payoff. The advantage of this decomposition is its direct link to the
corresponding strategies. While the application of the financial valuation on
the claim H (1)

T can be justified by an underlying financial hedging strategy in a
complete and arbitrage-free financial market, the valuation of the second claim
H (2)

T is based on an actuarial valuation: the risks can be diversified by choosing
a sufficiently large portfolio size. For the last partH (3)

T , that takes into account
the uncertainty of the unhedgeable and non-diversifiable part of the payoff,
there exists neither a financial hedge nor a diversification strategy to reduce
the inherent risk. Instead, the insurer has to provide a sufficient safety margin
to account for this risk. This requires the choice of a valuation operator π n

0

for H (3)
T that adequately reflects this neither hedgeable nor diversifiable risk.

We suggest to use an Esscher valuation operator, that is, we apply an Esscher
transform to the underlying risk drivers (financial risk and systematic mortal-
ity risk) to obtain the discounted value π n

0 (H
(3)
T

∣∣F0). The Esscher valuation
operator is a well-known concept in finance to, for example, valuate finan-
cial claims in incomplete financial markets (see, e.g., Chapter 9 in Cont and
Tankov, 2003; Schoutens, 2003). The choice of the Esscher measure among
the set of possible other equivalent martingale measures may be justified by a
utility-maximizing argument (see Gerber and Shiu, 1996). The incompleteness
in our setting is different from the financial applications as it stems from (sys-
tematic) mortality risk. Note that the risk of the residual part H (3)

T is different
from the first two parts H (1)

T and H (2)
T as this risk has to stay in the insurer’s

book and cannot be reduced by hedging or diversification. Using the Esscher
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transform for the residual part is very practical as we can calibrate it using
the Cost-of-Capital approach of Solvency II (see, e.g., Möhr, 2011; Zeddouk
and Devolder, 2019). In insurance, it is common to charge a risk margin for
the risks that stay in the insurer’s books. This serves as a buffer by the share-
holders to cover unhedgeable and undiversifiable risks. In the Cost-of-Capital
approach, at each future time point, the insurance company’s solvency cap-
ital requirements are computed. Then, the costs of this capital provision is
added as a risk margin to the best-estimate insurance premium. We suggest to
calibrate the Esscher valuation operator to this risk margin (see, e.g., Zeddouk
and Devolder, 2019).

Note that the choice to add the premiums related to the three parts H (1)
T ,

H (2)
T , and H (3)

T is not unique and can be quite conservative. In case that there
are dependencies between the different parts (e.g., between the systematic and
the unsystematic mortality risk), the three-step valuation operator can serve
as an upper bound on the contract value. The advantage of this upper bound
and the vision behind it is that the insurer has a recipe on how to hedge the
risk of the claim, that is, the insurer uses three strategies to treat the financial,
actuarial, and residual risks contained in the claim.

For the Esscher transform, we follow Gerber and Shiu (1994) to find an
equivalent martingale measure that takes into account the incompleteness of
the insurance market and is at the same time coherent with the risk-neutral
financial measure Qf . We will denote this equivalent martingale measure by
Ma ×Qf .

Therefore, we denote the contract’s risk factors (e.g., financial and sys-
tematic mortality risk) by XT := (X (1)

T ,X (2)
T , . . . ,X (k)

T )′, where k ∈N. In the
following, we will always consider k= 2 with X (1)

T referring to systematic
mortality risk and X (2)

T to financial risk.
For θ := (θ (1), θ (2))′ ∈R2×1, the valuation operator for the payoff H (3)

T is
defined as2

π n
0

(
H (3)

T (XT )
)

= e−rTEMa×Qf

F0

[
H (3)

T (XT)
]
,

where the measure Ma ×Qf ∼ Pa × Pf is defined by the following Esscher
transform by considering a general claim HT ∈HT :

E
Ma×Qf

F0
[HT ] :=EPa×Pf

F0

⎡
⎣HT · e−∑2

j=1 θ ( j)X ( j)
T

EPa×Pf

F0

[
e−∑2

j=1 θ ( j)X ( j)
T

]
⎤
⎦. (4.2)

Remark that although the sign of the third termH (3)
T (XT ) in the decomposition

(3.1) seems to be unknown a priori, in practice, the parameter θ of the Esscher
transform will always be chosen in such a way that π n

0 (H
(3)
T (XT )) is positive. In

particular, the parameters will be chosen in another way for survival insurance
products than for insurances guaranteeing only death benefits.
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4.2. Conditional valuation

In this section, we concentrate upon two conditional valuation principles for
hybrid products, that is, the two-step method introduced in, for example,
Pelsser and Stadje (2014) (see Section 4.2.1) and the conditional standard devi-
ation principle as introduced by, for example, Møller (2002) (see Section 4.2.2).

4.2.1. Two-step method
In the two-step valuation principle suggested by, for example, Pelsser and
Stadje (2014), the idea is an iterative procedure where, first, a conditional actu-
arial valuation π a

0 (H
n
T |F f

T ∨F0) is applied, then a financial valuation operator
π
f
0 . Summarizing, we obtain the valuation operator

π
(2a)
0 (Hn

T ) := π
f
0

(
erT · π a

0

(
Hn

T

∣∣F f
T ∨F0

) ∣∣∣F0

)
. (4.3)

The two-step valuation principle has many desirable properties, see our later
discussion in Sections 4.3 and 4.4.

4.2.2. Conditional standard deviation principle
If the actuarial valuation π a

0 is chosen to be the standard deviation princi-
ple, for example, Møller (2002) suggests an actuarial valuation operator that
applies an actuarial valuation conditional on the financial market filtration F f

T
and defines the following valuation operator as a modified standard deviation
principle, that we will refer to as “Conditional standard deviation principle”:

π
(2b)
0 (Hn

T ) := e−rT
(
E

Pa×Qf

F0

[
Hn

T

]+ α

2

√
EPa×Pf

F0

[
VarP

a×Pf

F f
T∨F0

(
Hn

T

)])
, (4.4)

see Equation (5.6) in Møller (2002). The first part of π
(2b)
0 (Hn

T ) is the best-
estimate valuation, while the second part adds a risk premium to parts of the
payoff that cannot be hedged on financial markets.

4.3. Axiomatic assessment of the valuation operators

In this section, we follow an axiomatic approach and introduce desirable prop-
erties, a valuation operator has to fulfill. We start with general properties, see
Definition 4.1.

Definition 4.1 (Valuation operator). A valuation operator is a function π0 :
HT →R that attaches a real number to every contingent claim Hn

T ∈HT. It has
the following properties:

(a) Normalization: π0(0)= 0.
(b) Constant payoff: π0(x)= e−rTx for any x ∈R.
(c) Translation invariance: π0(Hn

T + x)= π0(Hn
T )+ e−rTx for any x ∈R and

Hn
T ∈HT.
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(d) Positive homogeneity: π0(a ·Hn
T )= a · π0(Hn

T ) for any a> 0 and Hn
T ∈HT.

(e) Sub-additivity: π0(Gn
T +Hn

T )≤ π0(Gn
T )+ π0(Hn

T ) for any G
n
T ,H

n
T ∈HT.

Property (a) normalizes the valuation operator by assigning a zero premium to
a zero terminal payoff. Properties (b) and (c) assure cash invariance, that is, if
any deterministic cash amount x ∈R is added to the final payoff, the premium
increases by its discounted value e−rTx. The fact that payoffs are scalable, that
is, a-times a given payoff leads to a-times the premium, is postulated by positive
homogeneity (d). The last property sub-additivity acknowledges diversification
effects and ensures that a portfolio’s total premium can never be higher than
the sum of the premia of all of its constituents. All these properties are satisfied
by the financial valuation operator (2.3) and the standard deviation principle
(2.5). If the standard deviation in (2.5) is replaced by the variance as a risk mea-
sure (variance principle), this valuation operator does not satisfy sub-additivity
(see, e.g., Kaas et al., 2008).3

In Theorem 4.2, we show that the two-step method (Section 4.2.1), the con-
ditional standard deviation principle (Section 4.2.2), and the three-step method
(Section 4.1) define valuation operators in the sense of Definition 4.1. Further,
we show that these valuation operators reduce to a financial valuation operator
π
f
0 for purely financial, hedgeable risks and to an actuarial valuation operator

π a
0 for a claim that consists of unsystematic (diversifiable) mortality risk only.

Theorem 4.2. Consider an actuarial valuation principle π a
0 , a financial valua-

tion principle π
f
0 , and a valuation principle π n

0 in the sense of Definition 4.1.
The valuation operators’ two-step method π

(2a)
0 defined in (4.3), the conditional

standard deviation principle π
(2b)
0 in (4.4), and the three-step method π

(3)
0 in

(4.1) are also valuation operators in the sense of Definition 4.1. The two-step
method, the conditional standard deviation principle, and the three-step method
are market-consistent and actuarial in the sense of Definition 2.1.

Proof. See Appendix B. �

4.4. Comparison of the (hybrid) valuation operators

We now compare the premiums resulting from the two-step method
(Section 4.2.1), the conditional standard deviation principle (Section 4.2.2),
and the three-step method (Section 4.1).

Consider a homogeneous insurance portfolio (satisfying property (Hom)
of Section 3), a valuation operator in the sense of Definition 4.1, and a payoff
Hn

T ∈HT , that is of the form

Hn
T = 1

n

n∑
j=1

g(τj) · h(ST ).
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Exploiting the independence of financial and actuarial risks under the real-
world measure P, the homogeneity assumption and using the standard devi-
ation principle as actuarial valuation operator π a

0 , we obtain for the two-step
method (4.3):

π
(2a)
0 (Hn

T ) := π
f
0

(
erT · π a

0

(
Hn

T

∣∣F f
T ∨F0

) ∣∣∣F0

)

= π
f
0

⎛
⎝erTh(ST ) · π a

0

⎛
⎝ 1
n

n∑
j=1

g(τj)
∣∣∣F f

T ∨F0

⎞
⎠ ∣∣∣F0

⎞
⎠

= π
f
0

⎛
⎝erTh(ST ) · π a

0

⎛
⎝ 1
n

n∑
j=1

g(τj)
∣∣∣F0

⎞
⎠ ∣∣∣F0

⎞
⎠

= erTπ a
0

⎛
⎝ 1
n

n∑
j=1

g(τj)
∣∣∣F0

⎞
⎠ · π f

0

(
h(ST )

∣∣F0

)
= E

Pa×Qf

F0

[
e−rTh(ST )

]
·
⎛
⎜⎝EPa×Qf

F0

⎡
⎣1
n

n∑
j=1

g(τj)

⎤
⎦+ α

2

√√√√√VarP
a×Pf

F0

⎛
⎝1
n

n∑
j=1

g(τj)

⎞
⎠
⎞
⎟⎠

= e−rT

⎛
⎜⎝EPa×Qf

F0

[
Hn

T

]+ α

2
E

Pa×Qf

F0
[h(ST )] ·

√√√√√VarP
a×Pf

F0

⎛
⎝1
n

n∑
j=1

g(τj)

⎞
⎠
⎞
⎟⎠.

(4.5)

The same expression is obtained by rewriting Equation (5.5) in Møller (2002).
The premium depends on the value of the financial part EPa×Qf

F0
[h(ST )] and is

unaffected by higher moments (e.g., the variance) of the financial payoff.
In case of the conditional standard deviation principle (4.4), we obtain

π
(2b)
0 (Hn

T )

= e−rT

⎛
⎜⎝EPa×Qf

F0

[
Hn

T

]+ α

2

√√√√√EPa×Pf

F0

⎡
⎣h(ST )2 ·VarPa×Pf

F f
T∨F0

⎛
⎝1
n

n∑
j=1

g(τj)

⎞
⎠
⎤
⎦
⎞
⎟⎠

= e−rT

⎛
⎜⎝EPa×Qf

F0

[
Hn

T

]+ α

2

√
EPa×Pf

F0
[h(ST )2] ·

√√√√√VarP
a×Pf

F0

⎛
⎝1
n

n∑
j=1

g(τj)

⎞
⎠
⎞
⎟⎠.
(4.6)
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Comparing Equations (4.5) and (4.6), we observe that the premium π
(2b)
0 (Hn

T )

takes into account the risk of the financial payoff by the term
√
EPa×Pf

F0
[h(ST )2].

This clearly differs from the two-step premium that depends on the fair value
E

Pa×Qf

F0
[h(ST )] of the financial risks only. The premium of the three-step method

is given by

π
(3)
0

(
Hn

T

)
:= π

f
0

(
H (1)

T

∣∣F0

)
+ π a

0

(
H (2)

T

∣∣F0

)
+ π n

0

(
H (3)

T

∣∣F0

)
= e−rT

(
E

Pa×Qf

F0

[
Hn

T

]+ α

2

√
EPa×Pf

F0
[h(ST )2]·

·

√√√√√VarP
a×Pf

F0

⎛
⎝1
n

n∑
j=1

(
g(τj)−EPa×Pf

F0∨GT
[
g(τj)
])⎞⎠

+E
Pa×Qf

F0
[h(ST )] ·EMa×Qf

F0

⎡
⎣1
n

n∑
j=1

(
E

Pa×Qf

F0∨GT
[
gj(τj)

]−E
Pa×Qf

F0

[
gj(τj)

])⎤⎦
⎞
⎠,
(4.7)

where the measure Ma ×Qf is defined as the Esscher transform in (4.2). As
in the case of the conditional standard deviation principle (4.6), the three-
step method depends also on the risk of the financial payoff by the term√
EPa×Pf

F0
[h(ST )2]. The advantage of this decomposition is that we can now

relate the different parts to financial risks, diversifiable risks, and residual risk
that depends on systematic mortality risk and financial risk. In particular, we

attribute the factor
√
EPa×Pf

F0
[h(ST )2] to the term describing unsystematic mor-

tality risk. Intuitively, this acknowledges that the unsystematic mortality risk
does not allow to fully hedge financial risks. That is why the premium also

depends on the real-world financial risk
√
EPa×Pf

F0
[h(ST )2]. This is in contrast to

the two-step method (4.5) that depends on the fair value EPa×Qf

F0
[h(ST )] of the

financial risks only.

5. APPLICATION TO PURE ENDOWMENT LIFE INSURANCE WITH PROFIT

As an example, we consider a pure endowment life insurance contract with
profit, for which the insurer pays a guaranteed fixed lump sum. The insurer has
fixed a guaranteed lump sum of 1e in case of life after T years but no payment
in case of death before time T . The single premium paid by the client is given by

P= 1
(1+ i)T

· ˆTpx, (5.1)
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where i and ˆTpx are, respectively, the technical interest rate and the survival
probability chosen by the insurer. Both actuarial assumptions are prudent and
chosen ex ante on a first-order basis.

The premium P is invested in a (stochastic) fund {St}t∈[0,T ], S0 =P (see
Examples 5.1−5.2). As we consider a pure endowment contract with profit,
the final fund payment to the client in case of life at time T contains two parts:
the guaranteed amount (equal to 1e ) and (possibly) a surplus participation
(terminal bonus). The terminal bonus is taken to be a share β ∈ (0, 1) of the
difference between the fund value and the premium P accrued at the technical
interest rate i (if this difference is positive). Overall, this leads to the time-T
payoff

h(ST ) := 1+ β ·max
(
ST −P(1+ i)T , 0

)
. (5.2)

We now consider a portfolio of n homogeneous (see property (Hom) in
Section 3) endowment insurance contracts. The pure endowment life insurance
contract with profit is a hybrid payoff Hn

T ∈HT , where the payoff to client
j ∈ {1, 2, . . . , n} is given by

HT ( j)= g(τj) · h(ST )= 1{τj>T} · (1+ β ·max
(
ST −P(1+ i)T , 0

))
. (5.3)

The average payment to one client is then given by Hn
T := 1

n

∑n
j=1 HT ( j). For

the financial fund, we consider two possible dynamics: a risk-free bank account
(Example 5.1) and a Black–Scholes model (Example 5.2).

Example 5.1 (Fund dynamics 1: Bank account). The premium P is invested in
a risk-free bank account with constant interest rate r≥ i, that is, St =P · ert.
In this case, the financial payoff (5.2) of the pure endowment life insurance
contract is given by

h(ST ) := 1+ βP · (erT − (1+ i)T
)
.

The expected present value of this payoff is

E
Pa×Qf

F0

[
e−rTh(ST )

]= e−rT(1+ βP · (erT − (1+ i)T
))
.

For later purposes (namely, the calculations of the premium in three-step
method and the conditional standard deviation principle), we notice that√

EPa×Pf

F0
[h(ST )2]= 1+ βP · (erT − (1+ i)T

)
.

Example 5.2 (Fund dynamics 2: Black–Scholes model). Apart from the risk-
free bank account, the financial market consists of one F f

t -adapted risky asset
with Pf -dynamics

dSt = μSStdt+ σSStdWt, S0 =P, (5.4)

where Wt is a Pf -Brownian motion, which models the fund dynamics. We
assume that there exists an equivalent martingale measure Qf and we can
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change to the Qf -Brownian motion WQf

t :=Wt + μS−r
σS

· t. For the payoff (5.2)
of the pure endowment life insurance contract, we obtain

E
Pa×Qf

F0

[
e−rTh(ST )

]= e−rT (1+ βP · (	 (d1(r, σS)) −G · 	 (d2(r, σS))))

=: e−rTK(r, σS),

where d1(ν, σ ) :=
((

ν + σ 2

2

)
T − ln (G)

)
/
(
σ
√
T
)
, d2(ν, σ ) := d1(ν, σ )− σ

√
T ,

G := (1+ i)T and 	 denotes the standard normal cumulative distribution
function. As in Example 5.1, we compute√

EPa×Pf

F0
[h(ST )2]=

√
1+ 2βP ·K(μS, σS)+ β2P2 ·K2(μS, σS),

where

K2(μS, σS) :=G2	 (d2(μS, σS)) − 2GeμST	 (d1(μS, σS)) + e(2μS+σ 2
S )T	 (d3(μS, σS))

with d3(ν, σ ) := d1(ν, σ )+ σ
√
T .

To compute the premium of the pure endowment life insurance contract, we
still need to model the systematic mortality risk. We consider a stochastic mor-
tality intensity {λt}t∈[0,T ], adapted to the filtration G. The survival probability of
individual j with age x is abbreviated by

T−tpjx := P
(
τj ≥T

∣∣ τj > t, Ft

)= 1{τj>t} ·EP
Ft

[
e− ∫ Tt λsds

]
. (5.5)

We notice that both the remaining lifetimes and the stochastic mortality inten-
sity process will depend upon the age x. Although this could have been stressed
in the notation, we prefer to omit the dependence in the notation for notational
convenience. For calculating the best-estimate survival probabilities, we choose
a stochastic model for the mortality intensity {λt}t∈[0,T ]. Indeed, in Example 5.3,
we introduce an Ornstein–Uhlenbeck (OU) mortality intensity.

Example 5.3 (Mortality model: Ornstein–Uhlenbeck intensity). As in, for
example, Dahl and Møller (2006), Luciano and Vigna (2008), Luciano et al.
(2012), we model systematic mortality risk by the stochastic mortality intensity
following an Ornstein–Uhlenbeck process, that is,

dλt = μλλtdt+ σλdW λ
t , λ0 > 0,

where we assume thatW λ
t is independent of the financial risk filtration F f

t and
the parameters satisfy the usual conditions (see, e.g., Ikeda and Watanabe,
2014). From this, we find that the integrated intensity

∫ T
t λsds is normally

distributed with

https://doi.org/10.1017/asb.2020.25 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.25


724 G. DEELSTRA, P. DEVOLDER, K. GNAMEHO AND P. HIEBER

mt,T :=EPa×Pf

Ft

[∫ T

t
λsds
]

= λt · ζ (t,T),

s2t,T :=VarP
a×Pf

Ft

(∫ T

t
λs ds

)
= σ 2

λ

μ2
λ

(μλ

2
· ζ 2(t,T)− ζ (t,T)+ (T − t)

)
, (5.6)

where ζ (t,T) := (eμλ(T−t) − 1
)
/μλ. We can use this to obtain the survival

probability (5.5) of individual j with an initial age x:

T−tpjx := 1{τj>t} ·EPa×Pf

Ft

[
e− ∫ Tt λsds

]
= 1{τj>t} · e−mt,T+ 1

2 s
2
t,T . (5.7)

The computations of the different parts of the three-step premium for an
Ornstein–Uhlenbeck mortality intensity, as introduced in Example 5.3, can
be found in Appendix C. From these calculations, it is clear that they are
essentially based on the laws (conditional upon Ft) of the random variables
(− ∫ Tt λsds) for the mortality modeling and ln (ST/St) in case of the financial
risk as modeled in Example 5.2. In the following, we refer to these risk factors
as X (1)

T and X (2)
T .

6. EXTENSION TO GENERAL LIFE CONTINGENCIES
AND SECURITIZATION

The valuation procedure proposed in Section 5 for pure endowment life insur-
ance contracts can be extended to other kinds of life contingencies and to life
securitization products.

6.1. General life contingencies

So far, we have considered retirement products with a single payoff at a fixed
maturity time T . If we want to generalize this approach to term insurance or
annuity products, we have to introduce multi-period cash flows. The payoff
of a general life product is then a vector of random variables representing the
successive potential payoffs of the product at times t= 1, . . . ,T . Generalizing
(2.1), these cash flows – paid by the insurer to the various policyholders
belonging to a pool – are introduced as

Hn := (Hn
1 ,H

n
2 , . . . ,H

n
T ), (6.1)

where Hn
t is the time-t random payoff given by:

Hn
t = 1

n

n∑
j=1

gj,t(τj) · hj,t
(
(Ss)0≤s≤t

)
, t= 1, . . . ,T .
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In particular, for a homogeneous pool of policyholders: Hn
t = 1

n

∑n
j=1 gt(τj) ·

ht
(
(Ss)0≤s≤t

)
, for t= 1, . . . ,T . We can model various classical life insurance

products this way:

Example 1. Pure endowment

A pure endowment contract corresponds to the special case ht
(
(Ss)0≤s≤t

)= 1
and

gt(τj)= 0, t= 1, 2, . . . ,T − 1, and gT (τj)= 1{τj>T},

see also Section 5.

Example 2. Term insurance

A term insurance contract (payment of one unit at the end of the year t
in case of death between age x+ t− 1 and age x+ t) is characterized by
ht
(
(Ss)0≤s≤t

)= 1 and

gt(τj)= 1{t−1<τj≤t}, t= 1, 2, . . . ,T .

We can valuate this product using the three-step method. The first part
corresponds to the usual expected present value:

π
f
0

(
H (1)

T

∣∣F0

)
=

T∑
t=1

e−rt · t−1px · qt,

where tpx := P
(
τj ≥ t

)=EP
F0

[
e− ∫ t0 λsds

]
and qt := P

(
t− 1< τj ≤ t

)= tpx − t−1px.

For the diversifiable part H (2)
T , we use the standard deviation principle (2.5)

accruing all payments to maturity at the risk-free rate r:

π a
0

(
H (2)

T

∣∣F0

)

= e−rT α

2

√√√√VarP
a×Pf

F0

(
1
n

T∑
t=1

er(T−t)
(
(Nt−1 −Nt) − n ·

(
e− ∫ t−1

0 λsds − e− ∫ t0 λsds
)))

.

For the non-diversifiable and unhedgeable partH (3)
T , we introduce the normally

distributed risk factors X (1)
t := − ∫ t0 λsds and denote the covariance matrix of

(X (1)
t−1,X

(1)
t ) by �t. Then we find by applying the Esscher transform:
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π n
0

(
H (3)

T

∣∣F0

)

=EPa×Pf

F0

[
T∑
t=1

e−rt
(
eX

(1)
t−1−θ (1)
t

1,1−θ (2)
t
1,2 − eX

(1)
t −θ (1)
t

1,2−θ (2)
t
2,2 − t−1px · qt

)]
.

Again, there is an explicit hedging and diversification strategy behind the first
two parts of the premium.

Example 3. Annuity

An annuity product (payment of one unit at the end of each year in case of
survival of the policyholder, until the maximum age x+T) is characterized by
ht
(
(Ss)0≤s≤t

)= 1 and

gt(τj)= 1{τj>t}, t= 1, 2, . . . ,T .

An application of the three-step method works similar to Example 2.
All these examples can be generalized to their analogs with profit sharing,

where the fund is either based on Example 5.1 or 5.2.

6.2. Securitization products

We can also adapt the methodology for the pricing of life securitization prod-
ucts such as survival or CAT bonds or swaps. For instance, let us consider a
bond with fixed coupon and with a principal at risk, linked to a survival or
mortality condition on a reference population. We denote by T the maturity of
the bond, by K the nominal, and by c the coupon rate. Then, the bond’s cash
flow looks as follows:

CFt = c ·K, t= 1, 2, . . . ,T ,

CFT = c ·K +Hn
T , (6.2)

where Hn
T is based on a stochastic index linked to the realized longevity or

mortality of the reference population at maturity T .
In this case, the random variable H is no more linked to the individual

situation of each policyholder (individual function gj for each insured as in
Section 6.1 above) but to the global behavior of the population. Then, instead
of considering individual cash flows depending on each remaining lifetime
through the functions gj (formula (2.1)), we have to model a random variable
depending globally on all the lifetimes simultaneously. Formally, instead of
considering a maturity risk of the formHn

T = 1
n

∑n
j=1 g(τj) · h(ST ), we can model

a global cash flow by:

Hn
T =G(τ1, τ2, . . . , τn) · h(ST ). (6.3)
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Example 1. Survivor swap

Without coupon (c= 0) and with a principal given by :

Hn
T =K · (In(x,T)− Tpx),

where

In(x,T) realized survival rate at age x+T of a pool of n policyholders
initially aged x,

Tpx ex ante probability of survival between ages x and
x+T (chosen life table),

we obtain the payoff of a survivor swap. More formally, the realized survival
rate is given by In(x,T)=NT/n. The decomposition of the three-step method
is very similar to the pure endowment contracts in Section 5 and therefore
omitted.

Example 2. CAT bonds

A CAT bond is considered to be a bond with maturity T and nominal K that
annually pays financial coupons at a rate c (see, e.g., Lin and Cox, 2008; Tsai
and Tzeng, 2013). The repayment of the principal K at maturity is at risk, that
is, the issuer of the bond will repay less to the investors in order to recuperate
part of his mortality-risk-related liabilities. To link the payoff to mortality risk,
we consider a reference population of size nwith initial 1-year death probability
q0. Following Lin and Cox (2008), we introduce the payoff of the 2003 Swiss Re
mortality bond with a maturity of T = 3 years. The loss of principal is linked
to how far the realized mortality q :=maxt=1,2,3 qt, where

qt := 1
n

n∑
j=1

1{t−1<τj≤t}, t= 1, 2, 3,

deviates from q0. The bond’s cash flow looks as in (6.2) with Hn
T =K · l, where

the loss is determined as the following function l(q), which is therefore a
function of τj for all j= 1, . . . , n:

l(q)=

⎧⎪⎨
⎪⎩
1, if q≤ 1.3 · q0
1.5·q0−q
0.2·q0 , if 1.3 · q0 < q≤ 1.5 · q0

0, if q≥ 1.5 · q0
We can first decompose the CAT bond payoff in a bond payoff with nominalK
and coupon rate c and a mortality-related payoff Hn

T , which is clearly a payoff
of the form (6.3) with G(τ1, τ2, . . . , τn)= l and h(ST )=K.

The coupon part of the CAT bond payoff is a purely financial payoff with
present value cK

∑T
t=1 e

−rt. To valuate the remaining payoffHn
T , we can use the
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three-step decomposition (4.1). The value of the hedgeable part corresponds to
the expected present value:

π
f
0

(
H (1)

T

∣∣F0

)
= e−rTK ·EPa×Qf

F0
[l(q)].

For the diversifiable part, we need to account for the risk that the GT -
conditional payoff deviates from the true payoff, that is,

π a
0

(
H (2)

T

∣∣F0

)
=K · π a

0

(
l(q)−EPa×Pf

F0∨GT [l(q)]
)
.

For the residual part, we get

π n
0

(
H (3)

T

∣∣F0

)
=K · π n

0

(
EPa×Pf

F0∨GT [l(q)]−EPa×Pf

F0
[l(q)]

)
.

To explicitly calculate the expressions, we can proceed in a similar way as in
Example 2 in Section 6.1.

7. NUMERICAL ILLUSTRATIONS

To illustrate the different valuation operators, we return to the pure endow-
ment insurance contracts from Section 5 and first choose a base-case parameter
set. Then, we analyze the effect of different parameters on the premium. We
choose a portfolio of n pure endowment insurance contracts with profit that
have a time to maturity of T = 15 for a cohort of 65-year-old females.

7.1. Parameter choice

We first compute the actuarial, prudent premium (5.1). We follow the rules
recommended by the Belgian regulatory authorities (CBFA) and consider a
prudent mortality table computed according to the Makeham model with
parameters fixed by the Royal Decree.4 We choose the technical interest rate
i= 0.9%. The actuarial, prudent premium can then be computed as

P= 1
(1+ i)T

· ˆTpx = 1
1.00915

· ˆ1p65 · ˆ1p66 · · · ˆ1p79 ≈ 0.663743.

For the best-estimate survival probabilities Tpx, we calibrate the parameters
of the OU process for systematic mortality risk (see Example 5.3) to mortal-
ity rates of Belgian females (1930 cohort) obtained from the human mortality
database (HMD).5 We choose the 1900 cohort and obtain survival probabili-
ties TpHMD

65 for T = 1, 2, . . . , 30 from the HMD. Following, for example, Chen
and Vigna (2017), we minimize least-square differences to the survival prob-
abilities of our OU mortality model. The initial mortality intensity can be
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TABLE 1

MODEL PARAMETERS FOR FINANCIAL AND SYSTEMATIC MORTALITY RISK.

Black–Scholes OU process

Parameters r μS σS μλ σλ λ0

Values 2% 6% 0.20 0.113826 0.002990 0.015030

observed from the mortality table and is given by λ0 = 0.015030. The remaining
parameters are obtained via

(μλ, σλ)=min
μλ,σλ

30∑
T=1

(
e−m0,T+ 1

2 s
2
0,T − TpHMD

65

)2
,

see Table 1. For the financial market, we choose a constant risk-free interest
rate r= 2% and Black–Scholes parameters μS = 6%, σS = 0.20.

We compare the premium in case the funds are invested in a bank account
(Example 5.1, β = 0.9500) and a risky fund (Example 5.2, β = 0.4019), respec-
tively. The β-values are chosen such that the best-estimate premium (no risk
premiums) for the pure endowment insurance contract with maturity T = 15 is
(in both cases) given by:

PBE =E
Pa×Qf

F0

[
Hn

T

]= π
f
0

(
H (1)

T

∣∣F0

)
≈ 0.471608. (7.1)

For the Esscher transform, we can deduce for the two risk factors X (1)
T :=

− ∫ T0 λsds and X (2)
T := ln (ST/S0) that the means of (X (1)

T ,X (2)
T ) are given by

μ := (μ(1),μ(2))′ = (−m0,T , (μS − σ 2
S/2)T

)′
, and that the covariance matrix is

composed as follows: 
1,1 = s20,T , 
1,2 = 
2,1 = 0 and 
2,2 = σ 2
ST . In the case

of a deterministic financial payoff (a bank account), however, the financial risk
does not depend on the risk factor X (2)

T .

7.2. Numerical results

We can now apply the different valuation operators to the pure endowment
insurance contract. To allow for an easy comparison, we use the best-estimate
value of the contract (7.1) as 100% benchmark. A premium of 110% means
that there is a 10% risk margin on top of the best-estimate premium.

7.2.1. Comparison to the conditional valuation principles
Next, we compare the three-step method to the two-step method by Pelsser and
Stadje (2014) (π (2a)

0 (Hn
T )) and the conditional standard deviation principle by

Møller (2002) (π (2b)
0 (Hn

T )). We nowmodel systematic mortality risk as described
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TABLE 2

PREMIUM OF A PURE ENDOWMENT INSURANCE CONTRACT WITH A PARTICIPATION SHARE β = 0.95,
MATURITY T = 15, α = 0.3 AND THE PARAMETERS FROM TABLE 1 - CASE OF A BANK ACCOUNT AND A

POOL SIZE OF n= 100.

Conditional valuation Three-step method

π
(2a)
0 (Hn

T ) (%) π
(2b)
0 (Hn

T ) (%) π
f
0

(
H (1)

T

)
(%) π a

0

(
H (2)

T

)
(%) π n

0

(
H (3)

T

)
(%) π

(3)
0

(
Hn

T

)
(%)

n= 0 100 103.46 103.46 100.00 1.28 4.32 105.60
n= 0 500 103.26 103.26 100.00 0.57 4.32 104.90
n= 2 000 103.22 103.22 100.00 0.29 4.32 104.61
n= 00∞ 103.21 103.21 100.00 0.00 4.32 104.32

in Example 5.3 using the parameters from Table 1. For the standard deviation
principle, we choose a risk aversion parameter α = 0.3. For the financial mar-
ket risk, we use θ (2) = (μS − r)/σ 2

S = 1.0, consistent with the change of measure
from the real-world measure Pf to the risk-neutral measure Qf . To get reason-
able values for the systematic mortality risk parameter θ (1), we follow Zeddouk
and Devolder (2019) and compute the risk margin for systematic mortality risk
resulting from a Solvency II Cost-of-Capital approach with a cost of capital
rate of 6%. The parameter θ (1) is then chosen such that the third part of the
three-step premium equals the Solvency II risk margin for systematic mortality
risk. With the pure endowment insurance contract and the parameters from
Table 1, we obtain θ (1) = −0.945.

In Tables 2 and 3, we present the premiums of the pure endowment insur-
ance contract with profit for the two-step method π

(2a)
0 (Hn

T ), the conditional
standard deviation principle π

(2b)
0 (Hn

T ), and the three-step method π
(3)
0 (Hn

T ). In
case of the three-step method, we also provide the three parts of the premium:
financial, hedgeable risk, diversifiable risk, and unhedgeable, non-diversifiable
risk. To make the results easily comparable, the financial part π

f
0 (H

(1)
T

∣∣F0)=
0.471608 is set to 100%. Tables 2 and 3 differ in the way the premium is
invested on financial markets. While Table 2 considers a bank account (see
Example 5.1), Table 3 uses a risky stock (see Example 5.2). We choose the
bonus share β in a way that the financial part π

f
0 (H

(1)
T

∣∣F0)= 0.471608 is the
same in both tables, that is, β = 0.4019 for the risky stock and β = 0.9500 for
the bank account.

Comparing both tables, we observe that the two-step method π
(2a)
0 (Hn

T ) asks
for the same insurance premium irrespective of the financial investment. The
reason for this observation is the fact that the two-step premium depends on
the risk-neutral price of the financial risk only. For all the other valuation oper-
ators, the premium in case of a stock investment is higher than in the case of a
bank account investment. The advantage of the three-step method is the possi-
bility to analyze the reason for this difference. Comparing Tables 2 and 3, we
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TABLE 3

PREMIUM OF A PURE ENDOWMENT INSURANCE CONTRACT WITH A PARTICIPATION SHARE
β = 0.4019, MATURITY T = 15, α = 0.3 AND THE PARAMETERS FROM TABLE 1 - CASE OF A RISKY

STOCK AND A POOL SIZE OF n= 100.

Conditional valuation Three-step method

π
(2a)
0 (Hn

T ) (%) π
(2b)
0 (Hn

T ) (%) π
f
0

(
H (1)

T

)
(%) π a

0

(
H (2)

T

)
(%) π n

0

(
H (3)

T

)
(%) π

(3)
0

(
Hn

T

)
(%)

n= 0 100 103.46 104.57 100.00 1.69 4.32 106.01
n= 0 500 103.26 104.31 100.00 0.76 4.32 105.08
n= 2 000 103.22 104.26 100.00 0.38 4.32 104.71
n= 00∞ 103.21 104.24 100.00 0.00 4.32 104.32

observe that the difference stems from the second, diversifiable part π a
0 (H

(2)
T )

of the premium. For the diversifiable risk H (2)
T , it is interesting to compare

Tables 2 (risk-free payoff) and 3 (risky payoff). In this case, the uncertainty
of the mortality risk does also not allow to fully hedge the financial risks (even
in a complete financial market). In case of the much riskier payoff in Table 3,
the risk premium for unsystematic mortality risk is higher than for the constant
payoff (Table 2). If the portfolio size is increased, the unsystematic mortality
risk is fully diversified and π a

0 (H
(2)
T )= 0.00%.

7.2.2. Systematic and unsystematic mortality risk
We can further analyze the effect of portfolio size n on the insurance premium.
Figure 1 presents on the left-hand side the different parts of the three-step
premium. As a reference value (100%), we again choose the contract’s best-
estimate value π

f
0 (H

(1)
T

∣∣F0)= 0.471608; we cut this graph at 90%. On the
right-hand side, the premium is compared to the two-step method and the con-
ditional standard deviation principle. The parameter set used is the same as
in Table 3 with an investment in a risky stock. We observe that the hedge-
able part and the premium part for residual risk are unaffected by portfolio
size. With increasing portfolio size n, the premium for the diversifiable part
is reduced. However, even in case of a portfolio size of n= 1 000, this part of
the premium contributes a significant part of the overall premium. In the limit
n→ ∞, we arrive at a risk premium for a fully diversified insurance portfolio.
In other words, there is no unsystematic mortality risk and the payoff H (2)

T of
the three-step method is zero.

Lastly, we want to have a look how a different allocation between sys-
tematic and unsystematic mortality risks affects the insurance premium. We
therefore have a look at three possible scenarios:

• scenario 1: A pool size of n= 50 and the parameter set from Table 3 except
for μl = 0.113196, σl = 0.002754, and λ0 = 0.015030.
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TABLE 4

PREMIUM OF A PURE ENDOWMENT INSURANCE CONTRACT WITH A PARTICIPATION SHARE
β = 0.4019, MATURITY T = 15, α = 0.3 AND THE PARAMETERS FROM TABLE 1 - CASE OF A RISKY

STOCK AND DIFFERENT SCENARIOS

Conditional valuation Three-step method

π
(2a)
0 (Hn

T ) (%) π
(2b)
0 (Hn

T ) (%) π
f
0

(
H (1)

T

)
(%) π a

0

(
H (2)

T

)
(%) π n

0

(
H (3)

T

)
(%) π

(3)
0

(
Hn

T

)
(%)

Scenario 1 103.46 104.57 100.00 2.41 3.62 106.03
Scenario 2 103.46 104.57 100.00 1.69 4.32 106.02
Scenario 3 103.46 104.57 100.00 0.53 4.94 105.47
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FIGURE 1: The different parts of the three-step insurance premium as a function of the portfolio size n
(left-hand side) and a comparison of the three-step, the two-step, and the conditional standard deviation

premium (right hand side). We choose the parameters from Table 3.

• scenario 2: A pool size of n= 100, the parameter set from Table 3 (for sys-
tematic mortality risk, this implies that μl = 0.113826, σl = 0.002990, and
λ0 = 0.015030).

• scenario 3: A pool size of n= 1 000, the parameter set from Table 3 except
for μl = 0.114375, σl = 0.003179, and λ0 = 0.015030.

Scenario 1 has the highest unsystematic risk while scenario 3 has the highest
systematic risk (as can be seen by the higher volatility σl of the mortality
rate). The parameters are chosen such that the overall mortality risk, that
is, the variance VarP

a×Pf

F0

(
NT/n

)
, is the same in the three scenarios. Table 4

presents the insurance premiums for the different hybrid valuation operators.
We observe that the two-step method and the conditional standard deviation
principle lead to the same premium in all three scenarios. The three-step
method, however, is able to treat unsystematic and systematic mortality risks
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differently. We observe that scenario 1 has the highest unsystematic risk pre-
mium π a

0

(
H (2)

T

)
but the lowest systematic risk premium π n

0

(
H (3)

T

)
. Whether or

not the premium in the three-step method increases with a higher share of sys-
tematic mortality risk, depends on the choice of the risk charge parameters α

and θ (1).

8. DISCUSSION OF ASSUMPTIONS

To focus on our main messages and to make the paper easily accessible, we
have included several simplifying assumptions in our analysis. In this section,
we want to point out some of them and discuss their effect on our results.

• Stochastic interest rates: It is generally accepted that a constant risk-free
interest rate r does not reflect empirical observations. We can assume that
our financial market contains a time-T stochastic discount factor DT :=
e− ∫ T0 rsds, independent of the product’s mortality risk. In such a setting, all
our results are still valid (as long as the financial market remains complete,
else see below). What we need to do is replace any financial claim hj(ST ) by
a new financial claim DT · hj(ST ) (and set the (deterministic) discount rate to
r= 0).

• Incomplete financial markets: As already mentioned in the introduction,
financial markets are incomplete and financial claims cannot necessarily
be completely hedged on financial markets. The focus of this article is on
a complete financial market. It would nevertheless be desirable to extend
the results in this article to incomplete financial markets. The general idea
of decomposing the product’s payoff in a hedgeable, a diversifiable, and a
residual part is still applicable. However, a valuation operator in incomplete
financial markets still faces at least two additional difficulties: first, the con-
cept of market consistency in incomplete financial markets requires some
discussion (see, e.g., Hirbod and Gospodinov, 2018). Second, a criterion is
necessary (e.g., a specific hedging strategy) to separate between hedgeable
financial risk (part H (1)

T ) and residual risk (part H (3)
T ). Such a separation has

to be model-dependent, that is, the premium and payoff decomposition will
depend on the hedging strategy chosen.

• Dependence between actuarial and financial risks: If financial and actuarial
risks are dependent, the diversifiable part H (2)

T in decomposition (3.1) is still
diversifiable. Applying the conditional law of large numbers, we obtain a
similar result as in Theorem 3.1(a) for dependent risks, that is,∑n

j=1 gj(τj)

n

∣∣∣ GT ∨F f
T

n→∞−−−→ EPa×Pf

F0

[
g1(τ1)

∣∣ GT ∨F f
T

]
a.s.
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For dependent financial and actuarial risks, we can decompose the
mortality-risk-related part of the payoff in four different parts:

gj(τj)= EPa×Pf

F0

[
gj(τj)

]︸ ︷︷ ︸
best-estimate

+
(
gj(τj)−EPa×Pf

F0∨GT∨F f
T

[
gj(τj)

])
︸ ︷︷ ︸

unsystematic deviation

+
(
EPa×Pf

F0∨GT∨F f
T

[
gj(τj)

]−EPa×Pf

F0∨F f
T

[
gj(τj)

])
︸ ︷︷ ︸

systematic deviation, systematic mortality part

+
(
EPa×Pf

F0∨F f
T

[
gj(τj)

]−EPa×Pf

F0

[
gj(τj)

])
︸ ︷︷ ︸

systematic deviation, financial part

. (8.1)

This can again be used to define a premium decomposition (3.1). The first
term in (8.1) relates to the financial, hedgeable part H (1)

T , namely:

H (1)
T := 1

n

n∑
j=1

EPa×Pf

F0

[
gj(τj)

] · hj(ST ). (8.2)

If financial and systematic mortality risks were independent, we obtain
EPa×Pf

F0∨F f
T

[
gj(τj)

]=EPa×Pf

F0

[
gj(τj)

]
and (8.1) reduces to the premium decompo-

sition (3.1). Stated differently, our previous results can be seen as a special
case of the decomposition (8.1). The explanation for the additional (last)
F f
T -measurable term in (8.1) is the fact that the dependence between finan-

cial and actuarial risks allows to partially hedge systematic mortality risk on
financial markets. The second part relates to the diversifiable, actuarial part:

H (2)
T := 1

n

n∑
j=1

(
gj(τj)−EPa×Pf

F0∨GT∨F f
T

[
gj(τj)

]) · hj(ST ). (8.3)

The remaining two terms can be used to define the residual part that is nei-
ther hedgeable nor diversifiable and consists of a combination of systematic
mortality risk and financial risk:

H (3)
T := 1

n

n∑
j=1

(
EPa×Pf

F0∨GT∨F f
T

[
gj(τj)

]−EPa×Pf

F0

[
gj(τj)

]) · hj(ST ). (8.4)

Overall, the case of dependent financial and actuarial risks allows us to also
define a premium decomposition similar to (3.1).
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9. CONCLUSION

We have introduced a novel hybrid valuation operator based on a decomposi-
tion of the product’s payoff in a financial, hedgeable part, a diversifiable part,
and a neither hedgeable nor diversifiable part. The risk of the first part can be
reduced by hedging on financial markets, while the second part can be removed
by diversifying in a sufficiently large portfolio. To valuate also the residual risk
that cannot be hedged nor diversified, we have suggested to use the Esscher
transform to choose a suitable martingale measure.We have demonstrated that
this valuation operator satisfies the desirable properties of a valuation operator
and generates a feasible underlying strategy of risk management. It is one pos-
sibility to price hybrid financial and actuarial products “interpolating” between
risk-neutral pricing in finance and actuarial valuation in insurance. The three-
step method allows to separately treat diversifiable and systematic mortality
risk and suggest strategies to manage the risks.

In this work, we restrict ourselves to a static valuation, postulating that,
typically, life insurance products are not liquidly traded on exchanges. It would
nevertheless be desirable to extend this analysis to the continuous-time case
to compute, for example, the product’s actuarial reserves at intermediate time
points. In this case, it is important to also discuss issues like time consistency
of this valuation operator (see also, e.g., Pelsser and Stadje, 2014; Pelsser and
Ghalehjooghi, 2016).
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NOTES

1. Technically, we assume that E
Pa×Qf

F0

[
gj(τj) · hj(ST )

]
and EPa×Pf

F0

[
gj(τj) · hj(ST )

]
are

also finite for each j= 1, 2, . . . , n. Further, the variances VarP
a×Qf

F0

(
gj(τj) · hj(ST )

)
and

VarP
a×Pf

F0

(
gj(τj) · hj(ST )

)
are assumed to be finite for each j= 1, 2, . . . , n.

2. If XT is normally distributed with mean vector μ := (μ(1),μ(2), . . . ,μ(k))′ and covariance
matrix � with elements 
i,j :=Cov (X (i)

T ,X ( j)
T ) for i, j= 1, 2, . . . , n under a probability measure P̃,

then, the moment generating function of XT under P̃ is, for u ∈Rn×1, given by
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M(u,T) :=EP̃
F0

[
e〈u,XT 〉]= exp

(
u′μ + 1

2
u′�u

)
.

For θ := (θ (1), θ (2), . . . , θ (k))′ ∈Rk×1, we can conclude that (see, e.g., Gerber and Shiu, 1994,
p. 119ff and p. 126ff)

M(u,T ; θ ) := EP̃
F0

[
e〈u−θ ,XT 〉]

EP̃
F0

[e〈−θ ,XT 〉]
= M(u− θ ,T)

M(−θ ,T)
= exp

(
u′(μ − � · θ)+ 1

2
u′�u

)
,

that is, the Esscher transform with parameter vector θ leads again to an k-variate normal
distribution, where the mean vector is modified from μ to μ − � · θ .

For normally distributed risks, the Esscher transform leads to the same transformation as the
Wang transform (see also Kijima, 2006). These observations also follow frommore general results
in, for example, Theorem 4.1 of Eberlein et al. (2009), see also Ballotta et al. (2017).

3. Note that we do not consider monotonicity, that is, ifGn
T <Hn

T for two claimsGn
T ,H

n
T ∈HT ,

then π0(Gn
T )≤ π0(Hn

T ), and this although one can classify this as a relevant property for valuation
operators. The reason hereto is that this property is in general not satisfied for many common
actuarial principles, for example, the standard deviation principle (see, e.g., Kaas et al., 2008 for
examples and a more detailed discussion).

4. Annual survival probabilities of an x-year-old female are given by:

ˆ1px = s · gcx(c−1), where 0< s≤ 1, 0< g< 1, and c> 1.

For women, we choose the survival specification (FR) where the Royal Decree parameters are

s= 0.999669730966, g= 0.999951440172, and c= 1.116792453830.

5. See http://www.mortality.org.
6. Similarly, for the two-step method and the conditional standard deviation principle in

Section 4.2, we use that

VarP
a×Pf

F0

⎛
⎝1
n

n∑
j=1

g(τj)

⎞
⎠= 1

n2
VarP

a×Pf

F0
(NT )

= 1
n2

(
VarP

a×Pf

F0

(
EPa×Pf

GT∨F0
[NT ]
)

+EPa×Pf

F0

[
VarP

a×Pf

GT∨F0
(NT )

])

=VarP
a×Pf

F0

(
e− ∫ T0 λsds

)
+ 1
n
EPa×Pf

F0

[
e− ∫ T0 λs ds(1− e− ∫ T0 λsds)

]
.

For the mortality model introduced in Example 5.3, we find that:

EPa×Pf

F0

[
e− ∫ T0 λsds(1− e− ∫ T0 λsds)

)]
= e−m0,T+ 1

2 s
2
0,T − e−2m0,T+2s20,T ,

VarP
a×Pf

F0

(
e− ∫ T0 λsds

)
=
(
es

2
0,T − 1

)
· e−2m0,T+s20,T .
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APPENDIX A

A.1. Proof of Theorem 3.1

(a) Knowing that EPa×Pf

F0

[
hj(ST )

]
< ∞ and applying the tower rule of conditional expecta-

tion, we find that

EPa×Pf

F0

[
H(2)
T

]
=EPa×Pf

F0

⎡
⎣1
n

n∑
j=1

(
gj(τj)−EPa×Pf

F0∨GT
[
gj(τj)

]) · hj(ST )
⎤
⎦= 0.
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As VarP
a×Pf

F0

(
gj(τj)

)
< ∞ and VarP

a×Pf

F0

(
hj(ST )

)
< ∞, the payoff H(2)

T has finite varia-
tion. Knowing that the death times τj are independent given the systematic mortality
information GT , we can apply the conditional law of large numbers to obtain∑n

j=1 gj(τj)

n

∣∣∣ GT n→∞−−−→ EPa×Pf

F0

[
g1(τ1)

∣∣ GT ] a.s.

Now, we can show that for each path of financial risk and systematic mortality risk
(represented by the filtration F f ∨ G), the term H(2)

T disappears for n→ ∞:

H(2)
T

∣∣∣F f
T ∨ GT =

n∑
j=1

(
gj(τj)−EPa×Pf

F0∨GT
[
gj(τj)

]) · hj(ST )

n

∣∣∣F f
T ∨ GT

n→∞−−−→ EPa×Pf

F0

[(
g1(τ1)−EPa×Pf

F0∨GT [g1(τ1)]
)

· h1(ST )
∣∣∣F f

T ∨ GT
]
= 0 a.s.

where we exploit the conditional independence of individual deaths and the indepen-
dence between unsystematic mortality risk (filtration ∨n

j=1I j) and systematic mortal-

ity/financial risks (filtration F f ∨ G).
(b) From (5.5), we obtain in case of deterministic mortality rates that EPa×Pf

F0∨GT
[
gj(τj)

]=
EPa×Pf

F0

[
gj(τj)

]
for all j= 1, 2, . . . , n. This immediately yields the desired claim.

APPENDIX B

B.1. Proof of Theorem 4.2

If πa
0 , π

f
0 and πn

0 are valuation operators in the sense of Definition 4.1, it is straightforward
to show that Definition 4.1 (a)–(d) also holds for (4.3), (4.4), and (4.1).

Sub-additivity (e) for the two-step premium (4.3) follows from the sub-additivity of πa
0

and π
f
0 :

π
(2a)
0

(
Gn
T +Hn

T
)
:= π

f
0

(
erTπa

0

(
Gn
T +Hn

T

∣∣F f
T ∨F0

) ∣∣∣F0

)
≤ π

f
0

(
erTπa

0

(
Gn
T

∣∣F f
T ∨F0

)
+ erTπa

0

(
Hn
T

∣∣F f
T ∨F0

) ∣∣∣F0

)
≤ π

f
0

(
erTπa

0

(
Gn
T

∣∣F f
T ∨F0

) ∣∣∣F0

)
+ π

f
0

(
erTπa

0

(
Hn
T

∣∣F f
T ∨F0

) ∣∣∣F0

)
= π

(2a)
0

(
Gn
T
)+ π

(2a)
0

(
Hn
T
)
.

Similarly, the sub-additivity of πa
0 , π

f
0 , and πn

0 directly implies the sub-additivity of the three-
step method.

To show that the conditional standard deviation principle (4.4) is sub-additive, we use
a two-dimensional version of Jensen’s inequality (see, e.g., Perlman, 1974): for the concave
function f (x, y)= √

x · y, we find that E[f (X ,Y )]≤ f (E[X ],E[Y ]). Applying this for X :=
VarP

a

F f
T∨F0

(
Gn
T

)
and Y :=VarP

a

F f
T∨F0

(
Hn
T

)
, we obtain
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EPa×Pf

F0

[
VarP

a×Pf

F f
T∨F0

(
Gn
T +Hn

T
)]

≤EPa×Pf

F0

[
VarP

a×Pf

F f
T∨F0

(
Gn
T
)+VarP

a×Pf

F f
T∨F0

(
Hn
T
)+ 2

√
VarP

a×Pf

F f
T∨F0

(
Gn
T

) ·VarPa×Pf

F f
T∨F0

(
Hn
T

)]

≤EPa×Pf

F0

[
VarP

a×Pf

F f
T∨F0

(
Gn
T
)+VarP

a×Pf

F f
T∨F0

(
Hn
T
)]

+ 2

√
EPa×Pf

F0

[
VarP

a×Pf

F f
T∨F0

(
Gn
T

)] ·
√
EPa×Pf

F0

[
VarP

a×Pf

F f
T∨F0

(
Hn
T

)]

=
(√

EPa×Pf

F0

[
VarP

a×Pf

F f
T∨F0

(
Gn
T

)]+
√
EPa×Pf

F0

[
VarP

a×Pf

F f
T∨F0

(
Hn
T

)])2

to conclude that

π
(2b)
0 (Gn

T +Hn
T ) := e−rT

(
E
Pa×Qf

F0

[
Gn
T +Hn

T
]+ α

2

√
EPa×Pf

F0

[
VarP

a×Pf

F f
T∨F0

(
Gn
T +Hn

T

)]

≤ π
(2b)
0

(
Gn
T
)+ π

(2b)
0

(
Hn
T
)
.

For a financial, hedgeable payoff h1(ST ) ∈Hf
T , the decomposition (3.1) contains only the

first part H(1)
T . Then, by the linearity of expectation, we find that the three-step valuation

operator is market-consistent, that is, for any claim Hn
T ∈HT it holds that

π
(3)
0

(
Hn
T + h1(ST )

)= π
(3)
0

(
Hn
T
)+ π

f
0

(
h1(ST )

∣∣F0
)
.

For the two-step method, we can apply translation invariance to obtain

π
(2a)
0

(
Hn
T + h1(ST )

)
:= π

f
0

(
erTπa

0

(
Hn
T + h1(ST )

∣∣F f
T ∨F0

) ∣∣∣F0

)
= π

(2a)
0 (Hn

T )+ π
f
0

(
h1(ST )

∣∣F0
)
.

For the conditional standard deviation principle (4.4), we find that:

π
(2b)
0

(
Hn
T + h1(ST )

)
:= e−rT

(
E
Pa×Qf

F0

[
Hn
T + h1(ST )

]+ α

2

√
EPa×Pf

F0

[
VarP

a×Pf

F f
T∨F0

(
Hn
T + h1(ST )

)])

= e−rT
(
E
Pa×Qf

F0

[
Hn
T
]+ α

2

√
EPa×Pf

F0

[
VarP

a×Pf

F f
T∨F0

(
Hn
T

)])+ π
f
0

(
h1(ST )

∣∣F0
)

= π
(2b)
0 (Hn

T )+ π
f
0

(
h1(ST )

∣∣F0
)
.

Next, we consider a purely actuarial claim gnT := 1
n
∑n

j=1 gj(τj) ∈Ha
T that does not con-

tain any systematic mortality risk (i.e., a portfolio of insureds whose remaining lifetimes
τj , j= 1, 2, . . . , n, are independent and identically distributed (i.i.d.)). In this case, the
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decomposition (3.1) contains only H(1)
T and H(2)

T . Then, (4.1) simplifies to

π
(3)
0

(
gnT
)= e−rTEPa×Pf

F0

[
gnT
]+ πa

0

(
gnT −EP

F0

[
gnT
] ∣∣F0

)
= πa

0
(
gnT
∣∣F0
)= π

(2a)
0

(
gnT
)
.

For the conditional standard deviation principle (4.4), we find that:

π
(2b)
0 (gnT ) := e−rT

(
E
Pa×Qf

F0

[
gnT
]+ α

2

√
EPa×Pf

F0

[
VarP

a×Pf

F f
T∨F0

(
gnT
)])

= e−rT
(
E
Pa×Qf

F0

[
gnT
]+ α

2

√
VarP

a×Pf

F0

(
gnT
))= πa

0
(
gnT
∣∣F0
)
,

where πa
0 is the standard deviation principle.

APPENDIX C

C.1. Three-step premium: Example

Given the payoff (5.2), the fund, and mortality dynamics, we can now compute the different
parts of the three-step premium. For the hedgeable part H(1)

T , we obtain

π
f
0

(
H(1)
T

∣∣F0

)
= e−rTEPa×Qf

F0

[
Hn
T
]= π

f
0

(
h(ST )

∣∣F0
) ·EPa×Pf

F0

[
e−
∫ T
0 λsds

]
. (C.1)

Due to the independence of financial and actuarial risks, we find that:

EPa×Pf

F0

[
H(2)
T

]
=EPa×Pf

F0

[
H(3)
T

]
=E

Pa×Qf

F0

[
H(2)
T

]
=E

Pa×Qf

F0

[
H(3)
T

]
= 0.

For the diversifiable part H(2)
T , we use the standard deviation principle (2.5):

πa
0

(
H(2)
T

)
= e−rT α

2

√
EPa×Pf

F0

[
h(ST )2

] ·
√√√√√VarP

a×Pf

F0

⎛
⎝1
n

n∑
j=1

(
g(τj)−EPa×Pf

F0∨GT
[
g(τj)
])⎞⎠

= e−rT α

2

√
EPa×Pf

F0

[
h(ST )2

]√√√√√VarP
a×Pf

F0

⎛
⎝1
n

n∑
j=1

(
g(τj)−EPa×Pf

F0∨GT
[
g(τj)
])⎞⎠

= e−rT α

2

√
EPa×Pf

F0

[
h(ST )2

] ·√ 1
n2

VarP
a×Pf

F0

(
NT − n · e−

∫ T
0 λsds

)

= e−rT α

2

√
EPa×Pf

F0

[
h(ST )2

] ·√ 1
n2

EPa×Pf

F0

[
VarP

a×Pf

F0∨GT
(
NT − n · e−

∫ T
0 λsds

)]

= e−rT α

2

√
EPa×Pf

F0

[
h(ST )2

] ·√1
n
EPa×Pf

F0

[
e−
∫ T
0 λsds(1− e−

∫ T
0 λsds)

]
. (C.2)
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Note that (C.2) approaches 0 for n→ ∞ (diversifiable risk).6 For the unhedgeable and non-
diversifiable partH(3)

T , we define the normally distributed risk factors X (1)
T := − ∫ T0 λsds and

X (2)
T := ln (ST/S0) representing systematic mortality and financial risk, respectively. We can

express the part H(3)
T of decomposition (3.1) as

H(3)
T = 1

n

n∑
j=1

(
E
Pa×Qf

F0∨GT
[
g(τj)
]−E

Pa×Qf

F0

[
g(τj)
]) · h(ST )= 1

n

n∑
j=1

(
eX

(1)
T − Tp

j
x

)
· h
(
P · eX (2)

T

)
.

Use (4.2) to apply the Esscher transform to compute

πn
0

(
H(3)
T

∣∣F0

)
= e−rTEPa×Pf

F0

⎡
⎣1
n

n∑
j=1

(
eX

(1)
T −θ (1)
1,1 − Tp

j
x

)
· h
(
P · eX (2)

T −θ (2)
2,2

)⎤⎦
=EPa×Pf

F0

[(
eX

(1)
T −θ (1)
1,1 − Tp1x

)]
· e−rTEPa×Pf

F0

[
h
(
P · eX (2)

T −θ (2)
2,2

)]
.
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