CONTINUOUS SCALED PHASE-TYPE DISTRIBUTIONS
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ABSTRACT. Products between phase-type distributed random variables and any in-
dependent, positive and continuous random variable are studied. Their asymptotic
properties are established, and an expectation-maximization algorithm for their ef-
fective statistical inference is derived and implemented using real-world datasets. In
contrast to discrete scaling studied in earlier literature, in the present continuous
case closed-form formulas for various functionals of the resulting distributions are
obtained, which facilitates both their analysis and implementation. The resulting
mixture distributions are very often heavy-tailed and yet retain various properties
of phase-type distributions, such as being dense (in weak convergence) on the set of
distributions with positive support.

1. INTRODUCTION

A phase-type (PH) distributed random variable is defined as the time until absorp-
tion of a time-homogeneous pure-jump Markov process with a finite state-space having
one absorbing state and all others transient. PH distributions are particularly attrac-
tive within applied probability and statistics since its members are explicitly described
through functionals involving matrix exponentials, making this class both versatile
and tractable, see Bladt and Nielsen (2017) for a comprehensive account of PH dis-
tributions. Furthermore, the PH class is known to be dense (in the sense of weak
convergence) among the distributions concentrated on the positive half-line, so that
one can approximate any non-negative random variable with arbitrary precision by
a PH random variable. However, PH random variables are always light-tailed (have
an exponentially bounded tail), and for many applications, this is too restrictive. In
particular, in various application areas, there is a focus on modeling the tail, which is
often heavier than exponential.

As an alternative, a class of discrete scaled PH distributions (NPH) was introduced
in Bladt et al. (2015). The NPH class consists of distributions that can be expressed
as the distribution of a product VY, where V is a discrete random variable, and Y is
PH distributed. Parameter estimation for the NPH class was subsequently treated in
Bladt and Rojas-Nandayapa (2018) via an expectation-maximization (EM) algorithm
(see also Asmussen et al. (1996) for the unscaled case). Finally, in Rojas-Nandayapa
and Xie (2018), the tail behavior in the general case, when the scale component is
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also allowed to be continuous, was studied in detail. In particular, the authors showed
that a scaled PH distribution is heavy-tailed if and only if the scaling distribution is
unbounded. Thus, the NPH class is of particular interest for modeling purposes due
to its inherited denseness in the class of distributions on the positive half-line and
its genuinely heavy tails (for a recent discussion of actuarial applications of discrete
mixtures of exponential distributions, see also Cossette et al. (2021)). However, one
downside of NPH distributions is that expressions such as the density and distribution
functions are given in terms of infinite matrices, which in practice can only be computed
up to a finite number of terms.

In this paper, we study the class of scaled PH distributions for the case when the
scaling component is continuous. It turns out that under this construction, one can
obtain closed-form formulas for different functionals. We provide new results on the tail
behavior of these distributions, which complements the work in Rojas-Nandayapa and
Xie (2018) and answers some open questions posed there. We then proceed to develop
an EM algorithm for maximume-likelihood estimation of these models, which enables
the use of this class of models on real-life data. We adapt the algorithm to the case of
censored data, and we show how the EM algorithm can be employed to approximate
a known given theoretical distribution. A crucial difference to the NPH arises as a
by-product of the closed-form formulas that we obtain for the mixed distributions: the
latter can be evaluated using functional calculus tools, which avoids the truncation of
the infinite series of the NPH case. Recently, Furman et al. (2021) considered the scaling
of PH distributions in a multivariate context with an interpretation of background risk
models, in the light of which one might also see the present contribution as a theoretical
underpinning of marginal properties of such models together with the development of
an estimation algorithm for them when faced with real data.

However, although we are exclusively interested in products of random variables where
at least one of them is PH distributed, much work has been done in more general
probabilistic settings. We give a brief overview here. Breiman’s lemma (cf. Breiman
(1965) and then extended by Cline and Samorodnitsky (1994)) established the regular
variation of the product of two independent random variables where one is regularly
varying and the other one has a moment condition. In Embrechts and Goldie (1980),
the closure property was shown, namely that the product of regularly varying variables
is again regularly varying with the same tail index, although no explicit asymptotics
were provided. Subsequently, Cline (1986) (see also Cline (1987)) linked the asymp-
totics of products of independent random variables in terms of survival function ratios.
More generally, Cline and Samorodnitsky (1994) studied the closure property of prod-
uct convolutions within the subexponential class of distributions. Under more relaxed
conditions, Tang (2006) established the closure of product convolutions for a slightly
smaller class than the subexponential one. The latter author also considered necessary
and sufficient conditions of the product distribution to be long-tailed when one of the
component variables satisfies a generalization of lattice and long-tailed distributions.
The multivariate subexponential case was studied in Samorodnitsky and Sun (2016).
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Recently, Xu et al. (2017) found necessary and sufficient conditions for the subexpo-
nentiality of the product convolution, and provided a sufficient condition for the reverse
problem: establishing the subexponentiality of a component given that of the product
convolution. Finally, we would like to remark that the approach in the present paper
is less general than the one in some of the papers above, but our focus is on a statis-
tically tractable class that still allows for a fairly broad body and tail behavior of the
distribution.

The rest of the paper is organized as follows. In Section 2 we present an overview
of the PH class and its most important properties for our purposes. In Section 3
we introduce the class of continuous scaled PH distributions, provide new insights on
their tail behavior (Section 3.1), and derive an EM algorithm for parameter estimation
(Section 3.2) as well as an extension to the case of censored observations (Section 3.3).
In Section 4 we provide some numerical illustrations with real-life data and concerning
the approximation of given distributions. Finally, Section 5 concludes.

2. PRELIMINARIES ON PH DISTRIBUTIONS

This section presents the relevant preliminaries on PH distributions. For a random vari-
able X, the notation X ~ F for F being a distribution function, density, or acronym, is
understood as X following the distribution uniquely associated with F'. Unless stated
otherwise, equalities between random objects hold almost surely. For two real-valued
functions, g, h the terminology g(t) ~ h(t), as t — oo means that lim; ., g(t)/h(t) = 1.

Let (J¢)t>0 denote a time-homogeneous Markov jump process on a state space {1, ..., p,
p + 1}, where states 1,...,p are transient and state p + 1 is absorbing. Then (J;)>0
has an intensity matrix of the form

T t
()

where T = (t31)ki=1..p, 1S @ p X p sub-intensity matrix, t = (¢1,...,t,)" is a p-
dimensional column vector, and 0 is the p-dimensional row vector of zeroes. Since
rows of A sum to zero, we have that ¢ = —T e, where e is the p-dimensional column
vector of ones. Let m, = P(Jy = k), k = 1,...,p, # = (m,...,m,) be the initial
distribution of the chain, and assume that P(Jy, = p + 1) = 0, that is, the time until
absorption is necessarily positive. Then we say that the time until absorption

Y =inf{t>0]J,=p+1}

has a phase-type distribution with representation (e, T') and we write Y ~ PH(a, T').
It can be shown that the density fy and distribution function Fy for Y ~ PH(a,T)
are given by the closed-form expressions

fy(y) =mexp(Ty)t, y>0,
Fy(y) =1—mexp(Tyle, y>0
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in terms of the matrix exponential of a matrix, defined as
(o)

exp(M) = Z J\in

n=0

More generally, if ¢ is any analytic function and M is a matrix, we may define g(M)
by Cauchy’s formula, given by

g(M) = - f 9()(=I — M)dz

o

where I'is a simple closed path in C which encloses the eigenvalues of M, see (Bladt and
Nielsen, 2017, Section 3.4.) for details. More generally, we refer the reader to Doolittle
(1998) for a condensed treatment of functions of matrices through the Cauchy integral,
and Higham (2008) for other possible and equivalent methods.

The evaluation of such expressions can be done in several ways but is not always a
straightforward task, especially for high-dimensional matrices, and complex functional
analysis serves mostly as a mathematical tool. When performing estimation on real-
world data, the resulting matrix is often diagonalizable. Hence, alternative methods
such as diagonalization (and, more generally, the Jordan decomposition) of matrices
are powerful tools in this context.

The fact that the underlying Markov chain is time-homogeneous has the consequence
that the sojourn times, that is, the time spent in each state at each visit, are necessarily
exponentially distributed. Furthermore, the tail F = 1 — F of a PH distribution is
asymptotically exponential and has the following analytic expression:

m 57—1

(21) F(y) =) > v exp(Re(=X)y) lazsin (Im (=A;) y) + by cos (Im (=) y)] ,

j=1 k=0

where —); are the eigenvalues of the Jordan blocks J; of T', with corresponding di-
mensions x;, j = 1,...,m, and a;; and b;; are constants depending on 7 and T'. If
—\ is the largest real eigenvalue of T" and n is the dimension of the Jordan block of A,
then it is easy to see from (2.1) that

(2.2) F(y) ~cy" texp(=y), y— oo,

where c is a positive constant. That is, all PH distributions have exponential tails with
Erlang-like second-order bias terms. Consequently, the practical modeling of heavy
tails using PH distributions can be problematic when the tail behavior is of interest.
Nonetheless, the above formulas serve as a building block for the analysis that will
follow in the sequel.
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3. RANDOM SCALINGS OF PH RANDOM VARIABLES

In this section we consider a univariate PH random variable Y ~ PH(w, T') and define
its randomly scaled counterpart

1
1 X ==Y
(3 ) @ )

where © is some positive real-valued random variable, independent of Y. From the
probabilistic construction of a PH random variable, it is clear that such a scaling can be
conditionally realized by a transformation of the time axis, so that it can be subsumed
through a modified sub-intensity matrix, that is,

(3.2) X | © =0 ~ PH(,0T).

for every realization of ©. This simple observation allows us to now obtain the basic
properties of random variables satisfying (3.1), stated in the following result. Here,
and in what follows, we denote by

Lo(s) =Elexp(—sO)], s>0,

the Laplace transform of © and by £ (s) its corresponding derivative with respect to
S.

In what follows, all considered functions are analytic in the region where the eigenvalues
of —T lie, such that we may consider evaluating them at —T', and more generally at
—T'x for any = > 0, without any concern. Recall also that for Laplace transforms, the

analytic property in the domain of absolute convergence follows from Morera’s theorem
(cf Rudin (1987)).

Proposition 3.1. Let X be given by (3.1). Then
(1) Fx(z) =1—wLeo(—Tx)e, z>0.
(2) fx(z) = —wLy(—Tx)t, z>0.
S _1
(@Lﬂ@:wER@I—T>}L s> 0.
(4) E(X") =E(1/0")T'(v+1)m(—=T) e, forv > 0, provided that it is well-defined.

Proof. (1) follows from (3.2), since one can obtain the tail of X as follows:

Fx(z) =P(X > 1)
:/wmx>ﬂ@:mw%@

= /000 exp(0Tz)dFge(f)e.

Taking derivatives in the above expression yields

fx(z)=—-m /000 0T exp(0Tx) dFg(0)e,
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from which (2) easily follows. (3) follows from
Lx(s) = Elexp(—sX)

= /OOOE[exp(—(S/G)Y)]dF@)(@)
= | wlts/o1 — 1) e drate).

Finally (4) is a consequence of E(Y") = I'(v + 1)m(—T') e, see Bladt and Nielsen
(2017). O

Remark 3.1. If © has an infinitely divisible distribution Fg, then
Lo(x) = exp(—B(z))

for a unique Bernstein function B, see for instance Schilling et al. (2012), Prop.3.12.
In this case, Fx has representation

Fx(x) =1—mexp(—B(—Tx))e.

Here —B(—Tz) is a sub-intensity matrix for all > 0 (cf. Berg et al. (1993)). The
corresponding density is then

fx(z) =mexp(—B(—Tz))B'(—Tx)Te = —wexp(—B(—Tx))B' (—Tx)t.

The above formulas show that for a fairly broad class of mixing distributions we obtain a
closed-form formula in terms of Bernstein functions for the resulting CPH distribution,
which can be computationally advantageous.

Remark 3.2. Scaling a PH distribution with a variable whose law is of unbounded
support always results in a heavy-tailed distribution (see the next subsection for a for-
mal definition of heavy-tailedness). However, the precise nature of the tail asymptotics,
including higher-order expansions, can be calculated by applying a Jordan normal form
expansion in Property (1) above. Note that the resulting behavior is solely determined
by the functional form of the Laplace transform of © and the eigenvalues of T'.

Thus, we make the following formal definition of such an X in terms of scaling.

Definition 3.2. A random variable X is said to have a continuous scaled phase-type
(CPH) distribution with representation (m,T') and scaling variable © if its distribution
function is given by

Fx(z)=1—-7nLeo(-Tx)e, x>0,
in which case X is the product of 1/© and an independent PH(mw,T') variable. We
write X ~ CPH(w, T, 0).

Theorem 3.3. Let C be a family of positive random variables in which we may find a
sequence which degenerates weakly into a positive constant ¢ > 0. Then the class

D={Y/0|0©cCY ~PH}
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of CPH distributions is weakly dense in the class of distributions on the positive half-

line. In other words, for any given positive random variable Z, we may find a sequence
{X,}>2, C D such that

X, — Z.

Proof. The proof is a simple application of convergence through the diagonal of an ar-
ray. For instance, by choosing a sequence of scaling random variables ©,, with constant
mean k and variances shrinking to zero, we may then use the corresponding denseness
property of regular PH distributions to find a suitable sequence {Y,,}>2; of PH dis-
tributed random variables with Y,, — Z, which in particular establishes the required
convergence of the X,, = Y,,/©,,. Alternatively, one can adapt along the same lines
the elementary proof of the denseness of mixtures of Erlang distributions (which are a
special case of PH distributions) to the continuously scaled case. 0

We now present some examples where the distribution of X has an explicit expres-
sion. This is not only of mathematical interest, but also of practical relevance when
considering their evaluation and estimation.

Example 3.1 (Gamma mixing). Consider Gamma mixing with © ~ Gamma(«, 1) for
any positive shape parameter . Then

(3.3) Fx(z)=n(I —2T) “e, x>0,

which is well-defined since = - Re(\) < 1 holds for any = > 0, and A any eigenvalue of
T. Thus I — 2T is invertible. We also have that

fx(@) =am(I —2T)*'t, 2>0.

We call this distribution matriz-Pareto type II to distinguish it from the matrix-Pareto
distribution introduced in Albrecher and Bladt (2019). Note that there is a funda-
mental difference to the latter in that the tail behavior is specified by a scalar (shape)
parameter «, and the scale is determined by the matrix T". In contrast, the matrix-
Pareto distribution in Albrecher and Bladt (2019) has a tail behavior that depends on
the eigenvalues of the matrix T (arising from its matrix-valued shape parameter) and
a scalar scale parameter.

Observe that mixing with more general © ~ Gamma(a, #) results in the same class,
since f > 0 is a scale parameter and PH distributions are closed with respect to
deterministic scalings. Consequently, from this CPH class, we may obtain the classical
PH class when degenerating the Gamma mixing distribution into any positive point
mass (by keeping a//3 constant and letting a, f — 00), i.e., the so-called Erlangization.
The latter property is of particular interest when using this class of distributions for
modeling purposes. 0

Example 3.2 (Positive stable mixing). Consider Lévy mixing with parameter n > 0
and density

fol0) = N%exp(—w(zw)), 6> 0,
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which is a positive stable distribution with stability parameter 1/2, then

Fx(z) = wLle(—Tx)e
= /0 T exp(QTx)e%/% exp(—1°/(40))d6
= mexp (77 (—ﬁ) \/§>e.

The matrix —/—T is again a sub-intensity matrix, see (Higham, 2008, Page 160), so
(r, —v/—T') can be seen as the parameters of another PH distribution.

More generally, let us consider a positive stable random variable © with corresponding
Laplace transform Lg(s) = exp(—s®), where « € (0, 1]. Then,

Fx(z) =mexp(—(—T)*2%e.

Again, (m, —(—T)%) are parameters corresponding to another PH distribution. Such
distributions have a Weibull-type tail behavior, and they span the same class as matrix-
Weibull laws for « € (0, 1] as discussed in (Albrecher and Bladt, 2019, Section 4.1).
Note, however, that the two parametrizations differ, and for a general o, the underlying
sub-intensity structure is not maintained. 0

3.1. Tail behavior of scaled PH distributions. The tail behavior of the CPH class
can be studied by exploiting its representation (3.1). In this section we use as before
the notation V' = 1/0. Some asymptotics of this type of construction were treated in
Rojas-Nandayapa and Xie (2018). We now recall some of these results, extend them,
and provide a counter-example for a conjecture posed there.

One of the main observations in Rojas-Nandayapa and Xie (2018) is that if V' is un-
bounded, then X is heavy-tailed in the sense that limsup, ., Fx(r)exp(ezx) = oo for
all € > 0. Perhaps the most well-known class of heavy-tailed distributions is the regu-
larly varying class denoted by R. Recall that a random variable Z and its distribution
function F; are called regularly varying with index a > 0 (we write Fi; € R_,) if

Fy(x)=2"L(x), x>0,
where L is a slowly varying function, that is, L(cz)/L(z) — 1 as x — oo for all ¢ > 0.

A standard result to obtain the tail behavior of a product of independent random vari-
ables, when one of the components is regularly varying, is Breiman’s lemma (Breiman,

1965):

Lemma 3.4. Let F; € R_,, and assume that E[Y**] < oo, for some ¢ > 0. Then
Fzv € R_,, and

Fuy(z) ~E[Y*Fz(z), z—o0.

Example 3.3. For the Matrix-Pareto type II distribution with tail (3.3) obtained by
Gamma mixing, we have that 1/0 € R_,, so that 7(I — 2T) %e ~ Cx~® as x — oo.
One can, of course, also prove this directly by decomposing the matrix into Jordan

blocks. ]
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Example 3.4. If © ~ PH(mg, Tp), we can show from straightforward calculations and
using (2.1) that 1/0 has tail behavior

m Kj—

Fujel ZZ k]k’ — 0,

7j=1 k=0

where b?k are real-valued constants. This shows that 1/0 € R_,, for some non-negative
integer . In particular, the ratio of any two PH distributed random variables is always
regularly varying of integer order. 0

We say that Y is a-regular variation determining (a-rvd) if F; € R_, whenever
Fyz € R_,. It has been noted in Rojas-Nandayapa and Xie (2018) that special cases
of PH distributions are a-rvd. A converse of Breiman’s lemma was given in Jacobsen
et al. (2009) as follows.

Proposition 3.5. Let Y be a positive random variable with E[Y*t] < oo for some
€ >0. ThenY is a-rvd if and only if

E[Y*"] £0, neR,
where o + in € C, that is, i* = —1.

We can translate the above condition into the PH setting as follows.
Proposition 3.6. Let Y ~ PH(w,T). Then'Y is a-rvd for o > 0 if and only if
(3.4) (=T ")**e £0, neR.

Proof. First observe that the function
w(z) =z, x>0,
has a well-defined Laplace transform for any « > 0, given by

e 1y F(la+in+1)
. . (atin+1)—1 .
L,(s) = /0 exp(—sz)x dr = i S 0.

Consequently, by functional calculus,
Elw(Y)] =wL,(-T)t =T(a+in + 1)71.(_T—1)a+ine '

Since the I'-function never vanishes, the result follows. O

It was conjectured in Rojas-Nandayapa and Xie (2018) that any PH distribution is
a-rvd for any a > 0. Here we provide a counterexample.

Example 3.5 (Hyperexponential). Consider the following sub-intensity matrix corre-
sponding to a hyperexponential PH distribution

T= (_01 —exg(—m) :
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Then its associated Green matrix is given by

U=-T"= ((1) e)q?(w)) :

and thus we may easily calculate its complex power as (cf. Doolittle (1998))

v= (é ool + z’)w)) - (é —eXgW)) |

Uoz-i—ie — 1
—exp(am) )’

and defining the initial vector as

_ < explar) | exp(am) >

1+exp(an) 1+ exp(an)

Therefore

we then have that ‘
aU e =0.

In fact, we may always construct a PH distribution such that the property (3.4) fails
for a pre-specified n € R. This is achieved by considering

73 —anterm)
7r:( explar/n) | exp(am/n) )’

1+ exp(am/n)’ 1 + exp(am/n)
and again tU“" e = (. O

and

Example 3.6. We now provide a concrete example of an explicit distribution which
multiplied by a hyperexponential is regularly varying but itself is not. Consider Y
following a hyperexponential PH distribution with parameters

ﬂ_( exp(r) | exp(m) )

1+ exp(m)’ 1 + exp(m)

T= (_01 —exg(—w)) '

Now, take V with tail function given by

Fy(z) = (1 + %sin(log(x))) 271

Note that this distribution is not regularly varying. Then the product VY has tail
distribution

and

Fyy(r)=P(VY >z2)=a2""! /000 yfy(y)dy = 27 'x(=T) e,

meaning that Fyy is regularly varying with index —1. In fact, the above construction
can be seen as a special case of Example 5 in Maulik and Resnick (2004). Note that
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this construction hinges on having at least two mixing components, in line with the
previous example.

3.1.1. Subexponentiality and other classes of heavy-tailed distributions. We now study
other types of tail behavior, such as Weibull-type and lognormal-type, which fall into
the Gumbel max-domain of attraction. We consider the following two examples.

Definition 3.7 (Weibull-type tails). A distribution function F'is in the Weibull-type
class if
F(z) ~ ca’exp(=Az"), x — oo,

for some constants § € R and 7, A\, ¢ > 0. A Weibull-type distribution is heavy-tailed
if 7 € (0,1) and light-tailed otherwise. If V' is Weibull-type with parameter 7 > 0,
then X = VY is Weibull-type with parameter 7/(7+1), see Arendarczyk et al. (2011).
In particular, and in contrast to the regularly varying case, random scaling results

in a distribution with a heavier tail than each of the two components (but still of
Weibull-type).

Definition 3.8 (Lognormal-type tails). A distribution function F' is in the lognormal—
type class if

F(z) ~ cxP(logz)¢ exp(—A(logz)?), z — oo,
for some constants §,£ € R, v > 1 and A\, ¢ > 0, and we write /' € LN(v). In

particular, the lognormal distribution belongs to LN(2). In Rojas-Nandayapa and Xie
(2018), it was shown that if V has a standard lognormal tail, then

P(VY > x) e
P(V > x) ’
and X = VY is subexponential (see below).

T — 00,

The regularly varying class, the Weibull-type class (with 7 € (0,1)) and the lognormal-
type class are subclasses of the so-called subexponential class S. Recall that F' € S
if lim, o0 7*2(@ /F(z) = 2, where F*?> = F % I denotes the 2-fold convolution of F.
The property can be shown to extend to n-fold convolutions, n € N. We now focus on
finding more general conditions under which a CPH distribution has subexponential
tail behavior. The following result provides sufficient conditions for subexponentiality
of the product of independent random variables.

Theorem 3.9 (Theorem 2.1 in Cline and Samorodnitsky (1994)). Let V and Y be
independent non-negative random variables with distribution functions Fy and Fy,
respectively, and with Y not degenerate at zero. Let Fyy be the distribution of the
product VY. Assume that Fyy € S. If there is a function a : (0,00) — (0,00) such
that:

(1) a(z) T 00 as x — oo;
(2) x/a(z) 1 00 as x — oo,
(8) lim, o F'y(z —a(z))/Fy(x) =1;
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(4) limyosee Fy(a(2))/Fyy(z) = 0;
then FVY €S.

Remark 3.3. A distribution function F' that satisfies F'(z & h(x)) ~ F(x) as z — oo
is called h-insensitive. Thus, Condition (3) in Theorem 3.9 translates to Fy being
a-insensitive, where a(-) satisfies Conditions (1) and (2). We refer to Foss et al. (2011)
for further reading on h-insensitive distribution functions.

The following Corollary provides sufficient conditions for subexponential behavior of
scaled PH distributions.

Corollary 3.10. Let V' be a non-negative random variable with distribution function
Fy €S8, andletY ~ PH(m,T) independent of V. Let a : (0,00) — (0,00) be a function
such that:

(1) a(z) T 0o as x — oo;

(2) x/a(x) T 0o as x — oo

(3) Vx/a(x) — 0 as x — oo;

(4) lim, o Fy(z —a(x))/Fy(z) = 1.

Then X = VY has subexponential tail behavior.

Proof. Since a(-) satisfies Conditions (1)-(3) of Theorem 3.9, it remains to show that
Condition (4) is also satisfied. Using F'y (z'/2) Fy (2'/?) < Fyy (2) for all z > 0,
(2.2), and x'/%/a(z) — 0 as © — oo, we have that

Fy (az)) 1 exp(—her'?)

o0 [y ([L’) ~ a0 cp(n—1)/2 Fy (1-1/2)

for any 0 < A\g < A. Since Fy, € S, then exp(ex)Fy(x) — 0o as x — oo for all € > 0,
see (Foss et al., 2011, Lemma 2.17). Thus, we conclude that
F
fi ()
T—+00 FVY (x)

It follows then, by Theorem 3.9, that the product V'Y has subexponential tail behavior.
O

Remark 3.4. Note that the conditions on V' above are solely in terms of its tail behav-
ior, and even though they seem rather restrictive, they are satisfied by several classes of
distributions, including: intermediate regularly varying distributions, see (Foss et al.,
2011, Theorem 2.47), Weibull-type distributions with 7 € (0,0.5) and lognormal-type
distributions with v > 1. Note also that a(z) = M+/x for some M > 1 is possible,
and then the class of distributions that satisfies the conditions of Corollary 3.10 is
closely related to the \/x-insensitive class of distributions, which can be characterized
by means of a convergence on probability, see (Foss et al., 2011, Theorem 2.49).
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We now address different subclasses of S, and we start with the A class of distributions.
Recall that F' belongs to the A class if F' € S and

F
(3.5) —

for some ¢ > 1.

Remark 3.5. Condition (3.5) is a mild restriction, and it is satisfied by a vast number
of distributions, including those in Table 1.2.6 in Embrechts et al. (2013), making this
a relevant subclass of S.

Note that, in particular, A C S, and both are subclasses of the more general class of
long-tailed distributions £ (see the appendix for a definition). The following proposi-
tion, which characterizes the tail behavior of a scaled phase-type distribution when the
scaling is long-tailed, is key for deriving more explicit tail asymptotics when dealing
with different subclasses of S.

Proposition 3.11. Let V' be a non-negative random variable with distribution function
Fy € L and let Y ~ PH(m,T), independent of V. Then Fy(x) = o (Fyy(bx)) for all
b> 0.

Proof. Let b > 0. Since ¥ ~ PH(w,T), we have that (2.2) holds. Using
Fyv (Mx) Fy (b/Xo) < Fyy (bx) for all x > 0, we have that

I Fy(z) . exp(—Aoz)
m ——— < lim = —
T—00 Fvy(bl') T—00 FV ()\033') Fy (b/)\o)
for any 0 < A\g < A. Given that Fy, € £, then exp(ex)Fy(z) — oo as x — oo for all
€ > 0, which implies the result. 0]

The next result provides sufficient conditions for the tail behavior in the A class of the
product of independent random variables.

Theorem 3.12 (Theorem 2.1 in Tang (2006)). Let V and Y be independent non-
negative random wvariables with distribution functions Fy and Fy, respectively, and
let Fyy be the distribution function of the product VY. If Fy, € A and Fy(z) =
) (Fvy(bﬂf)) for all b > 0, then Fyy € A.

As an immediate consequence, we obtain the following result for scaled phase-type
distributions.

Corollary 3.13. Let V' be a non-negative random variable with distribution function
Fy and let Y ~ PH(w,T), independent of V. If Fyy € A, then Fyy € A.

Proof. Follows directly from Theorem 3.12, Proposition 3.11 and using that A C £. [

A necessary and sufficient condition for subexponentiality of the product was more re-
cently derived in Xu et al. (2017). Denote by D[F] the set of all positive discontinuities
of F.
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Theorem 3.14 (Theorem 1.2 in Xu et al. (2017)). Let V and Y be independent non-
negative random variables with distribution functions Fy and Fy, respectively, and let
Fyy be the distribution of the product VY. Then Fyy € S if and only if Fyy € S and
either D[Fy| = O or D[Fy| # O and

(3.6) Fy(z/d) = Fy((z +1)/d) = o(Fyy(z)),
for all d € D[Fy].

Remark 3.6. In particular, the result above implies that when the scaling compo-
nent in a scaled phase-type random variable is a continuous random variable with
subexponential tail (thus, falling in the CPH class), the resulting distribution is subex-
ponential as well. However, note that when dealing with discrete scaling, one should
proceed more carefully since Condition (3.6) is, in general, not easy to verify. Thus,
the different criteria provided here are useful tools to determine the subexponentiality
of the product, and the use of each of them depends on each particular case.

We now consider other subclasses of §. More specifically, we consider the classes
of Extended reqularly varying (), Intermediate reqularly varying (Z), and Dominated
varying (D) distributions. These classes satisfy R CE CZ CDandZ C (DNL) C
S C L. We refer to the appendix for their definition.

The specific tail behavior of a PH distribution now yields the following results.

Corollary 3.15. Let V' be a non-negative random variable with distribution function
Fy and let Y ~ PH(w,T) independent of V. Then we have that

(1) If Fy € R then Fyy € R and their indices of reqular variation are the same.
(2) [fFV € & then Fyy € £.

(3) If Fyy, € T then Fyy € T.

(4) IfFV eDNL then Fyvyv e DN L.

(5) [fFV e L then Fyy € L.

Pro_of. Note that for all cases Fyy € £, then Proposition 3.11 implies that Fy(z) =
o (Fvy(bx)) for all b > 0. Thus,

(1) Follows from (Cline and Samorodnitsky, 1994, Corollary 3.6 (ii)) (and is in fact
also a direct consequence of Breiman’s lemma).

(2) Follows from (Cline and Samorodnitsky, 1994, Theorem 3.5 (iii)).

(3) Follows from (Cline and Samorodnitsky, 1994, Theorem 3.4 (ii)).

(4) Follows from (Cline and Samorodnitsky, 1994, Theorem 3.3 (ii) and Theorem
2.2 (iii)).

(5) Follows from (Cline and Samorodnitsky, 1994, Theorem 2.2 (iii)).
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3.2. An EM algorithm for CPH distributions. We present an EM algorithm for
estimating the CPH class of distributions when © is any positive, continuous random
variable. Assume that © belongs to a parametric family depending on the vector a
and denote by fo(-;a) its corresponding density function.

As is usual, we will exploit the path representation of PH distributions seen as ab-
sorption times of a finite-state Markov jump process. Thus, the complete data are
the entire paths of the Markov jump processes and the scaling component ©. In this
setting, not only do we not observe the state sojourn times and transitions, but the
realizations of © are also not observed.

Consider z1, ...,z an iid sample from a CPH distributed random variable, and let
L.(m,T,a;x) denote the corresponding complete data likelihood function. In order to
write out the latter explicitly, we need to make the following definitions. Let By be the
number of times the underlying Markov jump processes start in state k, Ny the total
number of transitions from state k to [ until absorption, /Ny the number of times that &
was the last state to be visited before absorption, and finally let Z; be the cumulated
time that the Markov jump processes spent in state k.

Then, using fxy(z,y) = fx;v(|y)fy(y) and conditioning on the paths of the Markov
jump processes

L7, T, a;x)

a) H 7TkBk H H (Gtkl)Nkl exp ( — Gtkle)

k=1 k=11=1,l#k

p
X H (Gtk)N’“ exp ( — Gthk) .
k=1

Consequently, the corresponding log-likelihood (disregarding the terms which do not
depend on any parameters) is given by

ZC(TF,T,a;iK ZBklog Tk +Z Z Nkllog tkl Z Z tkleZk

kllll;ﬁk k=1 l=1,l#k

+2Nklog (tx) Ztk92k+10g(f@( a)).

With this decomposition of the full likelihood at hand, we now outline the necessary
computations that are needed in each of the two steps of the EM algorithm, and then
collect the main formulas at the end.

E-Step

This step consists of computing the conditional expectation of the complete data log-
likelihood given the observed data, and given some fixed parameters. We consider one



16 H. ALBRECHER, M. BLADT, M. BLADT, AND J. YSLAS

(generic) data point (M = 1) and let x = ;. Then

E log(fo(€;a)) | X = 2] = / " log(fo(0: @) feyx (0]2)d0
- /Ooo log(f@(e;a))—f@’x((e’x)dﬁ

- /Ooo log(f@(é;a))fX|@§cgj2°)fe(9)d9

Jy~ 0g(fo(0: @) 7 exp(0T2)0¢ fo(6)d6
fx(z)

Regarding By,
E[Br | X =2]=P(Jo=k| X =2x)

:/ P(Jy=k,©cdl| X =x)df
0

CP(Jy=Fk 0 €df X € dx)
- /0 P (X € dx)
fOOOIP’(X cde | Jo=k,0=0)P(Jy=k| O =10) fo(0)dd
P(X € dx)
IS me exp(0Tx)0t fo(0)do
B fx(x) ’
where e;, denotes a p-dimensional column vector with all entries equal to zero except
the k-th entry, which equals one.

do

For the term which involves the product of © and Z; we will make use of the tower
property of conditional expectations, namely that

E[0Z,| X =2]=E(OE (Z, |0, X =) | X =) .

Since
E[Zk|@—67X—x]—E{/ 1ig,=mydu @—Q,X—x}
0
:/ P(J.=k|©=0,X=2)du
0
P (Ju=k,0€db, X € dr)du
P(© € df, X € dx) '
then
[@Zk|X—x
f]P’J =k,©€cdf, X €dz)du

P € X & da) P(O€edf| X =z)df

* P = kO € df X € dr)du
P(X € dx)

do
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[0 [*P(X €du | J, =k 0 =0)P(J, =k | O =0) fo(0)dudf
P(X € dx)
150 [ ep exp(0T (x — w))0tmw exp (0T u)erdu fo (0)do
fx(x) '

Similarly, one finds that
[ Otw [y € exp(0T (x — u))ftm exp(6Tu)epdu fo(0)do

B = = Fx (@) |
and
E[N, | X = a] = I, 0tym exp(0T ey, fo (0)dO
fx ()
For M > 1, we simply sum over z;, ¢ = 1,..., M, in the formulas above.
M-Step

Having found the required expectations, the maximization of the conditional expected
log-likelihood in terms of the parameters o, # and T is done separately. Some of the
expressions will in general not have an explicit solution.

In full generality, for the parameter a of the scaling distribution we write

a = argmax E [log(fe(0;a)) | X =2] .

For the parameters of the PH component, we first address the estimation of . Consider
the Lagrange function

((m) = Bylog (m) + p (1_Z7Tk> :
k=1 k=1

where p is a Lagrange multiplier. Then

0 B
M) _Be 0 pym = B
87rk Tk
Summing over k
P
'LL = Bk = M7
k=1
thus
. By,
T = —.
FTM

Now, we consider the non-diagonal elements of T', ty;, k # [. We have that

ol 1
¢ = Ny— —0Z, =0
atkl kltkl k 3
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implying
i Na
W=y
In a similar way, we can show that for ¢
. Ny,
fy=—
07,

Finally, we obtain the estimators for the diagonal elements of T, by
o = (fk N m) |

We summarize the two steps into a completed EM algorithm.

Algorithm 3.1 (EM algorithm for CPH distributions).

0. Initialize with some “arbitrary” (7w, T, a).

1. (E-step) Calculate

E(By | X = 1) Z / moen SDETT)0 o)

fX xn)
fo e} exp(0T (x,, — u))0tw exp(0Tu)exdu
exp(# —u))0tm exp(0Tu)edu
(Nkl |X _ 112 / ot lf(] el p T( fX(I)n)> tm p( T )ek f@(@)d&,

E(Ny | X =) = Z / kaﬁjgn)e’“f@w)da

2. (M-step) Let
a = argmax E (log(fo(0;a)) | X =x)

M (9)
—argmax Y [ log(fa(0r)) TR fo )00,
a n=1

fx(w,)
g M MU EOZ ) X=2)) " EOZ|X==2)
fkkz—szz—fk-
£k

Let &t = (71,...,7,), T = {tx}rier..p, and t = (£1,... 1,)7.

-----
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3. Assigma=a, =7, T = T, t:=t and GOTO 1.

Remark 3.7. In general, none of the integrals will have explicit solutions, and ap-
proximations will have to be employed. Namely, one may discretize the continuous
distribution and approximate the integrals by numerical methods, such as Simpson’s
rule, or use diagonalization for the integration of matrix functions. In practice, a
combination of the two approaches yields good results.

Remark 3.8. The discrete case follows in a similar way, where sums replace integrals
and are much easier to handle. Such an EM algorithm for NPH distributions was
introduced in Bladt and Rojas-Nandayapa (2018), and the above formulas can be
seen as the limit when the discretization becomes infinitely fine. In Bladt and Rojas-
Nandayapa (2018), in fact, several of the illustrations arise as discretized continuous
random variables.

3.3. Censored data. We call a data point right-censored at v if it takes an unknown
value above v, and left-censored at w if it takes an unknown value below w. It is called
interval-censored if it takes an unknown value within the interval (v, w|. Left-censoring
is a particular case of interval-censoring with v = 0, while right-censoring is obtained
by fixing v and letting w — oo.

The EM algorithm for censored data works in much the same way as for uncensored
data, and the only change in Algorithm 3.1 is in the E-step. The derivation follows the
approach taken for the PH case, see Olsson (1996). We consider first

B [log(fa(©:a)1(X > )] = [ Ellog(fal(®:a)) | X = ] fx(w)ds
_ / ” /0 " log(fo(6:) forx (612)d0 fx (x)da
= /OO /000 log(fo(0;a))mexp(0Tx)0t fo(0)dOdx

_ /O log(fo (6 @) exp(0Tv)e fo (6)d0 .

Then, for interval-censored data, we obtain
_ Ellog(fe(©;a))1(X > v)] — E[log(fe(0;a))1(X > w)]

E [log(fo(0;a)) | X € (v,w]] = P(X € (v, w))

J5" log(fo(0; ) (m exp(6Tv)e — m exp(0Tw)e) fo (0)dO
P(X € (v,w]) '

In the following we present the resulting remaining formulas (their derivations are
similar to the above and are thus omitted for brevity).

o0 T T
e, exp(0Tv)e — m e, exp(0Tw)e
E (B, | X € (v,w]) =
(Bl X € ) = | PIX € (v, u]

fe(0)do,

E(©Z | X € (v,w)])
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= /OOO m [/wﬂ'exp(OTu)ekdu — /Ow e, exp(0T (w — u))em exp(0Tu)eydu

+ /U e, exp(0T (v — u))em eXp(HTu)ekdu] fo(0)do,
0

E(Nkl | X e (v,w])

> Ot /w /w .
| P(X € (v.w]) 0T w)exdu — 0T (w — 0T werd
/o P(X < (v,w])[ : mexp (0T u)exdu i e, exp(0T (w — u))em exp(8Tu)eydu

+ /U e, exp(0T (v — u))en exp(QTu)ekdu] fo(6)do,
0

[ exp(6Tw)erdu
P(X € (v,w)])

Remark 3.9. The main challenge when implementing the above formulas is obtaining
numerical estimates for integrals defined with respect to matrix exponentials, which
are usually slow to evaluate. A suite of fast and useful routines for calculating matrix
exponentials (and more generally, estimation tools for PH distributions) can be found,
for instance, in the R package matrixdist, see Bladt and Yslas (2021a,b).

E(Nk | X e (v,w]) = /Ooo 0t} f9(0)d9

4. EXAMPLES

In this section we present three detailed numerical illustrations of the estimation of
CPH distributions via the EM algorithm from the previous section. In the first two ex-
amples we fit CPH distributions to real data sets, the second one containing censored
observations, while in the last example we consider the estimation of a CPH distri-
bution to a theoretical given distribution. In all cases, we ran the algorithms until
the changes in the successive log-likelihoods became negligible. Note that the purpose
of this section is not to thoroughly compare to and outperform other models for the
given data (which with criteria like AIC or BIC would in any case not be evident given
the non-identifiability and overparametrization issues of PH distributions in general).
Instead, our aim is to illustrate how the algorithms developed in this paper can, in
fact, be implemented in a straightforward manner. As a consequence, we showcase
CPH distributions as interesting alternatives in the statistical modeling toolkit of the
respective application areas. Note that the concrete purpose may then decide which
model one might want to use.

4.1. Dutch fire insurance data. We consider claims above 1 million (Euro) from
the Dutch fire insurance claim data set studied in Albrecher et al. (2017), subtract
1 million to all data points (to shift them to the origin), and scale by a factor of
107%. Subsequently, we fit a matrix-Pareto type II to the resulting sample. To reduce
the number of parameters, we consider a Coxian structure (which is often sufficient)
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of dimension 3 in the PH component, obtaining in this way the following estimated
parameters

#=(1,0,0),
) —0.8620  0.8079 0
T = 0 —24341  1.1014 | |
0 0 —1.5808
& = 1.3792,

and corresponding log-likehood of —2,657.666. For reference, we also consider a matrix-
Pareto (type I) model (Albrecher et al., 2020) defined by

T
F(l‘):ﬂ'(%-i-l) e, =>0.

We again use a Coxian structure of dimension 3 in the PH component. The resulting
estimated parameters are

#=(1,0,0),
) —1.4370 1.3183 0
T = 0 —0.0824 23177 |,
0 0 —5.8812
B =1.5821,

with corresponding log-likelihood —2,657.702.

Figures 4.1 and 4.2 show that both fitted distributions provide adequate and very
similar models for the sample. Regarding the tail behavior, we have that the index
of regular variation of the matrix-Pareto type Il model is given by & = 1.3792, while
for the matrix-Pareto (type I) model, it is given by the negative of the largest real
eigenvalue, viz. A = 1.4370. Note that both these two estimates are comparable with
results obtained in previous studies. For instance, in (Albrecher et al., 2017, Page
107), a value of 1.255 is proposed in their splicing model. In contrast to traditional
extreme value techniques, the present matrix models are global. Hence, the tail index
is only one aspect of the distribution, not the calibration focus, yet the fit is very
satisfactory. As previously noted, when comparing matrix-Pareto type I and type II
distributions, the latter has a tail parameter that does not depend on the underlying
Markov structure. The advantage, in this case, is that it may also estimate the tail
index in a first step separately with extreme value techniques and then estimate the
other parameters in a subsequent step (similar to the approach in Bladt and Rojas-
Nandayapa (2018) for the NPH case). On the other hand, the matrix-Pareto type II is
computationally more demanding. The running times and resulting estimators depend
on the quality of the approximations in the EM algorithm formulas. For the Dutch
fire insurance data, in both cases, increasing the dimension of the PH component does
not improve the fit significantly. For instance, for a Coxian structure of dimension 5
in the PH component, we obtain a log-likelihood of —2,657.603 in the matrix-Pareto
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type I model and —2,657.653 in the type II. Thus, the choice of dimension 3 seems
eventually very reasonable here.

Histogram vs fitted densities Histogram vs fitted densities
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FiGure 4.1. Histogram of Dutch fire insurance data versus fitted
matrix-Pareto type I and II distributions (left), and histogram of the
log-data (right)

QQ-plot - Matrix Pareto QQ-plot - Matrix Pareto type Il

Fitted distribution
Fitted distribution

Sample Sample

FIGURE 4.2. QQ-plot of Dutch fire insurance data versus fitted matrix-
Pareto type I distribution (left), and QQ-plot of Dutch fire insurance
data versus fitted matrix-Pareto type II distribution (right)

Note that in Albrecher and Bladt (2019), a previous analysis of the same data set
employing the matrix-Pareto (type I) distribution was considered with a specific and
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sparse matrix structure of dimension 20, whereas here, we are interested in the best fit
of a low-dimensional structure.

4.2. Loss insurance data. We consider the loss insurance claim data set from Frees
and Valdez (1998). The data comprises 1500 insurance claims from a real-life insurance
company, where each data point consists of an indemnity payment (loss) and an allo-
cated loss adjustment expense (ALAE). For the present analysis, we only use the loss
component (scaled by a factor of 107%), for which 34 observations are right-censored,
and fit a matrix-Pareto type II of 4 phases. The resulting fitted parameters are

# = (0.0476, 0.0289, 0.1412, 0.7823) |,

—2.9587 0.1886  1.2395  0.6833
0.5585 —3.5859 0.6233  0.0364
0.1152  0.0650 —0.5554 0.2892 ’
0.5079  1.9315 0.4666 —3.0784

a=1.3744.

The quality of the fit is supported by Figure 4.3, where we see that the cumulative
hazard of the matrix-Pareto type II model is close to the one implied by the non-
parametric Kaplan-Meier estimator. A recent analysis of the same data set employing
the matrix-Pareto (type I) distribution can be found in Bladt and Yslas (2021a).

xR
[

Fit to loss data

Cumulative hazard

—— Matrix-Pareto type Il

T T T
0 50 100 150 200
Loss

FiGURE 4.3. Cumulative hazard function of the fitted matrix-Pareto
type II versus the non-parametric Nelson-Aalen estimator of the sample.

4.3. Fitting to a known distribution. Algorithm 3.1 can be modified to fit a CPH
distribution to a theoretical given distribution. This is done in a similar way as in the
PH case, and the idea consists of considering sequences of empirical distributions with
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increasing sample size. Let h be an absolutely continuous density. Then, Algorithm 3.1
and dominated convergence yield:

& = argmax / / log( fo (6 )“eX?iiT;”)g fo(0)doh(z)dz

o — / / i ey exp GTIW fo(0)don(x)dz,

/ / fow ef exp(0T (x —f uzio;m XpETwerds oo i
/ / oo et exp(0T (x }jg)itw xpOTwerdu o e
- / / Gtk% fol0)dbh(x)dx
k / / oIy el xp(UT(x _sz)itﬂ T werdn o

As an example, we consider a matrix-Weibull distribution (Albrecher and Bladt, 2019),
whose density function is given by

h(z) = wexp(Sz?)spz’t, x>0, .

where S is a sub-intensity matrix, and s = —Se. For the present illustration, we take
parameters
= (0.5, 0.3, 0.2) ,
-1 1 0
S = 0o -2 1 ,
0 0 =5
B=0.75.

Then, we approximate this distribution with a CPH distribution of 3 phases with a
general Coxian structure in the PH component and positive stable mixing. The fitted
distribution has parameters

i = (0.2326, 0.4098, 0.3576)

) ~1.3436  1.2722 0
T = 0 ~11.2165 7.2335 | |
0 0 —0.8981
& = 0.7932.

Figure 4.4 shows that we recover the shape of the original distribution. Moreover,
the parameter & = 0.7932, which determines the heaviness of the tail, is close to the
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corresponding one of § = 0.75 for the given theoretical model. This is no surprise
since stable mixing generates the same class as matrix-Weibull distributions. In fact,
—(—T)/B approximates S, and although the former matrix is a valid sub-intensity
matrix, in the present case it falls outside of the Coxian structure (but it is still upper
triangular).

Original density vs fitted density QQ-plot
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@ Matrix-Weibull 74
—— CPH with positive stable mixing
©
o~ 0
o
o S
5 ©
2 2
Zg @ g
8 =
L <A
o | i
0 N
Q-
o
S ©
T T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8 10
X Original distribution

FIGURE 4.4. Density of the original matrix-Weibull versus density of
the fitted CPH (left), and corresponding QQ-plot (right)

5. CONCLUSION

We studied scaled phase-type distributions when the scaling component is continuous.
Particular emphasis was given to the closed-form expressions involved in different func-
tionals, and we adapted and extended some recent results regarding the tail behavior of
these distributions. We derived an EM algorithm for maximum likelihood estimation
for fully observed data and outlined extensions for censored data. The case of fitting
to a given theoretical distribution function was illustrated using a modified version
of the latter algorithms. The performance of the proposed algorithm was exemplified
in various numerical examples. The results suggest that these global models correctly
capture the data’s overall shape while remaining in agreement with existing tail behav-
ior analysis. In addition to the results and insight gained for the one-dimensional setup
considered in this paper, which is of interest on its own, one can also view the present
analysis as a starting point for a multivariate framework when scaling a multivariate
random vector with respect to the same continuous random variable. It will be inter-
esting to develop the corresponding implementation and examine the performance on
data as well as interpret the implied near-Archimedean dependence structure between
the different dimensions from an applied perspective. That approach has potential
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for parsimonious multivariate modeling, but its concrete development leads to several
challenges along the way, which we intend to address in future work.
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A. DEFINITIONS

Definition A.1. A distribution function F' on Ry = [0, 00) is called:

(1) Extended regularly varying if

lin inf £A?) > A?

for some ¢ > 0 and all A > 1. The class of extended regularly varying distribu-
tions is denoted by &.
(2) Intermediate regularly varying if
F(\
lim i inf 2O
ALl z—o00 F(aj)
The class of intermediate regularly varying distributions is denoted by Z.
(3) Dominated varying if

lim inf Zi()\x) >0

for some A > 1. The class of dominated varying distributions is denoted by D.
(4) Long-tailed if
lim M =1

for any y € R. The class of long tailed distributions is denoted by L.
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