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Rapport de synthèse  

Contexte et objectifs: 

Le glaucome est une neuropathie optique progressive caractérisée par une excavation du 
disque optique accompagnée par une perte du champ visuel et de l’acuité visuelle. L’un des 
facteurs de risque bien connus du glaucome est une pression intraoculaire (PIO) élevée, 
ainsi qu’ une variation nycthémérale importante de la PIO. Or, il est difficile de bien 
documenter la fluctuation de la PIO d’ un patient, par ce que les mesures obtenues dans un 
cabinet médical ne reflètent pas les valeurs de la PIO au cours de la journée ni ses 
fluctuations. La compagnie Sensimed a développé une nouvelle méthode de mesure pour la 
PIO, basée sur l’utilisation d’ une lentille de contact en silicone souple à usage unique 
intégrant un capteur (SENSIMED Triggerfish®) permettant de mesurer les déformations 
minimes de la cornée lors des changements de PIO, pour en déduire ainsi les changements 
de PIO. Des résultats in vitro sur des yeux de porc ont permis de démontrer l’excellente 
corrélation entre les fluctuations de PIO induites dans ces yeux et des changements de 
courbure cornéenne mesurés au limbe. Les premières expériences in vivo ont confirmé la 
validité de l’enregistrement d’ un changement de PIO artificiellement induit par un scuba-
masque pendant 10 minutes. L’objectif de notre étude était d’ évaluer chez 10 volontaires la 
précision et la stabilité de la mesure du signal fourni par le capteur, ainsi que le confort du 
volontaire avec ce capteur pendant 24 heures.  

Matériel et méthode: 

Après un examen ophtalmologique complet un capteur oculaire télémétrique était posé sur 
l’œil du volontaire, ainsi qu’ une antenne de transmission télémétrique pour l’enregistrement 
de la PIO, collée sur la peau périorbitaire. Un dispositif portable externe, connecté à 
l’antenne périorbitaire par un câble de données, enregistrait les données durant 24 heures. 
Un contrôle ophtalmologique était effectué pendant le port du capteur après 5 et 30 minutes, 
4, 7 et 24 heures. Ce contrôle comportait la mesure de l’acuité visuelle optimalement 
corrigée, un examen à la lampe à fente pour évaluer le comportement du capteur, sa 
mobilité spontanée et lors qu’il est poussé vers le haut (push-up test). Le volontaire notait par 
un score de 1 à 10 son confort par rapport au capteur oculaire. Après 24 heures les données 
de l’enregistrement étaient téléchargées à travers un système Bluetooth vers l’ordinateur et 
l’examen ophtalmologique complet était répété. 

Résultats : 

Le score de confort par rapport au capteur oculaire noté par les volontaires était haut et ne 
changeait pas significativement au cours de 24 heures. La mobilité du capteur oculaire était 
limitée durant les contrôles. L’acuité visuelle optimalement corrigée était réduite 
significativement pendant le port du capteur et immédiatement après son enlèvement. Trois 
volontaires développaient une érosion cornéenne mineure transitoire. Chez tous les 
volontaires sauf un, les données de l’enregistrement ont été capturés montrant un signal 
télémétrique utile avec des pulsations oculaires visibles. 

Conclusions:  
Cette étude produisait des résultats encourageants sur la précision et la stabilité de la 
mesure du signal fourni par le capteur, ainsi que le confort du volontaire avec ce capteur 
pendant 24 heures. Afin d’améliorer le confort, la précision et l’interprétation du signal 
télémétrique, on a besoin de futures études utilisant des capteur oculaires télémétriques de 
différent courbature sur une plus grande nombre de participants. 

  



 

 3

Le travail de thèse : article accepté pour publication dans  
« Journal of Glaucoma » 

 

24 hour-intraocular pressure fluctuation monitoring  
using an ocular telemetry Sensor:  

tolerability and functionality in healthy subjects. 
 

 
Authors 

De Smedt Stefan* MD and Mermoud André* MD, Schnyder Corinne*§ MD. 
* Glaucoma Center at the Montchoisi Clinic, Lausanne, Switzerland. 

§ Jules Gonin Eye Hospital, Lausanne, Switzerland. 
 
 
Abstract 

Purpose: to evaluate the tolerability, comfort and precision of the signal transmission 

of an ocular Sensor used for 24-hour intraocular pressure fluctuation monitoring in 

humans.  

Patients and methods: In this uncontrolled open trial involving 10 healthy volunteers 

an 8.7 mm radius prototype ocular telemetry Sensor (SENSIMED Triggerfish®, 

Lausanne, Switzerland) and an orbital bandage containing a loop antenna were 

applied and connected to a portable recorder after full eye examination. Best 

corrected visual acuity and position, surface wetting ability and mobility of the Sensor 

were assessed after 5 and 30 minutes, 4, 12 and 24 hours. Subjective wearing 

comfort was scored and activities documented in a logbook. After Sensor removal a 

full eye examination was repeated and the recorded signal analyzed. 

Results: The comfort score was high and did not fluctuate significantly over time. The 

mobility of the Sensor was limited across follow-up visits and its surface wetting 

ability remained good. Best corrected visual acuity was significantly reduced during 

Sensor wear and immediately after its removal (from 1.07 before, to 0.85 after, P-
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value 0.008). Three subjects developed a mild, transient corneal abrasion. In all but 

one participant we obtained usable data of a telemetric signal recording with 

sufficient sensitivity to depict ocular pulsation. 

Conclusions: This 24-hour- trial has encouraging results on the tolerability and 

functionality of the ocular telemetric Sensor for intraocular pressure fluctuation 

monitoring. Further studies with different Sensor radii conducted on a larger study 

population are needed to improve comfort, precision and interpretation of the 

telemetric signal.  

 

Introduction 

Glaucoma is a chronic optic neuropathy characterized by the excavation of the optic 

disc due to the atrophy of the retinal ganglion cells. A progression of such atrophy 

leads to further reduction of the visual field and eventually to the loss of sight at the 

end-stage of the disease. Glaucoma is the second leading cause of blindness 

worldwide [1]. Large diurnal intraocular pressure (IOP) fluctuation is an established 

risk factor for the development and progression of glaucoma [2-5]. It has been shown 

that analyzing the IOP curves allows a more accurate detection of the IOP 

fluctuations and peak values, which, in 52 to 69 % of patients, occur outside office 

hours [6-8]. With current available tonometers (Goldmann, I-care, Tonopen) such IOP 

curves are established by repeated IOP measurements e.g. every 4 hours over a 

period of up to 24 hours. However, 24-hour IOP measurements on an in-patient basis 

with current methods are unpractical and therefore not appropriate as a routine 

clinical tool, while self-monitoring requires a significant amount of manual dexterity for 

some devices and cannot cover the nocturnal period [9]. Continuous IOP monitoring 
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is therefore an unmet need following diagnosis of the disease [10, 11]. While not 

universally confirmed [12], two separate groups [13, 14] demonstrated a correlation 

between IOP and corneal curvature in human eyes , in which an IOP change of 1 mm 

Hg causes a change of central corneal radius of curvature of approximately 3 µm. 

Accurate detection of these changes using the ocular telemetry Sensor (SENSIMED 

Triggerfish®, Lausanne, Switzerland) has already been shown ex vivo [15]. During 

an in vitro study using a Sensor with an embedded micro-fabricated strain gauge, 

Leonardi et al demonstrated on porcine eyes a very good correlation between the 

intraocular pressure variations and the changes in the corneal curvature measured at 

the corneoscleral junction, where it is believed IOP changes induce maximum 

corneal deformation [16]. In a second experiment the same authors confirmed these 

results using a wireless Sensor on enucleated porcine eyes [17]. They were able to 

significantly reduce the noise so as to be able to detect an artificially induced IOP 

change over a 10-minute interval in 4 human volunteers [18]. This device had the 

potential to monitor the IOP over a prolonged period using a minimally invasive 

technique, regardless of the position of the patient and his activities, thus opening up 

new perspectives for the management of glaucoma. The aims of our study were to 

evaluate the tolerability, comfort and precision of signal transmission of the Sensor 

during a continuous IOP recording in healthy volunteers over a 24-hour period. A 

preliminary analysis of the resulting circadian IOP curves was also performed. 

 

Methods 

In this prospective uncontrolled open trial, 10 healthy volunteers were recruited 

fulfilling the inclusion criteria of being aged 21 years or over, not being pregnant, not 
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suffering from glaucoma or any ocular surface disorder and not having undergone 

ocular surgery in the last 3 months. The volunteers underwent a full eye examination 

including evaluation of the best corrected visual acuity, slit lamp examination, 

Goldmann applanation tonometry (GAT), pachymetry (Ocuscan®, Alcon laboratories, 

USA), automatic keratometry, measurement of the pupil and horizontal corneal 

diameters (Nidek RKT-7700®, Japan), gonioscopy and fundoscopy. The Sensor 

used in this study was made of silicone with oxygen plasma-treated surface to make 

it hydrophilic and contained a thin micro-fabricated platinum-titanium strain gauge as 

sensor and a gold loop antenna, which was interconnected to a telemetric 

microprocessor for wireless power and data transfer to a loop antenna located in an 

orbital bandage (figure 1). The diameter and radius of the Sensor used in this study 

were respectively 14.4 mm and 8.7 mm and its thickness was 100 µm at the border 

and 600 µm at the centre. The microfabricated strain gauge was centred on a 

circumference of 11.5 mm diameter, which is the average of the corneoscleral 

junction position. On one eye, chosen at the discretion of the investigators, the 

Sensor was placed, the orbital bandage was applied around the orbit and connected 

to a portable recorder worn around the volunteer’s waist (figure 2). The volunteers 

were seen by the investigators at 5 and 30 minutes, 4 hours, 12 hours and 24 hours 

thereafter. Parameters such as the conjunctival injection, the position and surface 

wetting ability of the Sensor and its mobility on blinking and during push-up maneuver 

were assessed on the slit lamp. The anterior surface wetting ability of the Sensor was 

also assessed based on the reflection of the Javal keratometer mires and best 

corrected visual acuity was taken. Subjective volunteer comfort was scored from zero 

to 10, zero being intolerable and 10 perfect. During this 24-hour period the volunteers 

were requested to document their activities in a logbook in order to be able to 
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correlate such activities to the recorded corneal curvature changes. Twenty-four 

hours later the Sensor was removed and the full eye examination repeated. Any 

adverse events were recorded and treatment offered if necessary. At the end of the 

recording, data from the portable recorder were transferred via a bluetooth link to a 

computer containing the software for analysis of the signal. The output of the Sensor 

was expressed in arbitrary units (a.u.). This study was in accordance with the 

Declaration of Helsinki, and was approved by the Ethics Committee of the University 

of Lausanne and Swissmedic. A written informed consent was obtained from all 

volunteers. Wilcoxon non-parametric signed rank test was used for statistical analysis 

of the differences in parameters over time (SAS stats program) and a significance 

level was set on P-value less than 0.05. The minimal detectable difference (MDD) for 

each of the parameters of interest were calculated with 80% power, taking into 

account the sample size (N = 10) and the observed standard deviation of the 

parameter’s difference from its value at baseline. 

 

Results 

Table 1 shows the baseline characteristics of the study subjects. There was an equal 

number of men and women participating. Three participants were co-workers. All 

Sensors were placed and removed in the mornings, except one. Slit lamp 

examination and fundoscopy findings were normal except for one subject with some 

lens opacities and one with a narrow angle on gonioscopy. No subject had 

glaucomatous discs and no topical or systemic anti-glaucoma medication was used. 

Three subjects were regular optical correcting contact lens wearers. The evolution in 

the subjective refractive error (spherical and cylindrical equivalent) and the best 
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corrected visual acuity is shown in table 2, and were expressed as the mean, the 

standard deviation (SD) and the range. The P-value represents the significance for 

the difference with the visit prior to Sensor wear. After removal of the Sensor a 

significant but transient myopisation of the subjects occurred (P-value 0.018), 

normalizing within 48 hours. Best corrected visual acuity was significantly reduced 

during the Sensor wear at each visit and this reduction remained statistically 

significant immediately after removal of the Sensor (from 1.07 before, to 0.85 after, P-

value 0.008). However, this was clinically significant for only one participant and did 

not persist beyond 48 hours after removal. Similar changes before and after Sensor-

wear were found among the subgroup of contact lens wearers for  subjective 

spherical correction (P-value 0.018) and  BCVA (P-value 0.008). After removal of the 

Sensor at the end of the 24-hour-wear vertical corneal radius was statistically (P-

value 0.025) smaller (mean 7.41 mm, SD 0.21, range 7.01-7.63 mm) than before the 

placing (mean 7.53 mm, SD 0.21, range 7.18-7.88 mm). This difference remained 

significant while considering the 9 morning Sensor placements (P-value 0.05) and the 

contact lens wearers (P-value 0.025) separately. For the horizontal radius this 

difference before Sensor wear (mean 7.65 mm, SD 0.27, range 7.19-8.22 mm) and 

after Sensor-removal (mean 7.59 mm, SD 0.33, range 7.2-8.3 mm) was not 

significant (MDD 0.06 mm, P-value 0.201). No statistically significant difference (MDD 

15.38 µm, P-value 0.695) was noticed in corneal thickness before (mean 549.4 µm, 

SD 33.91, range 517-610 µm) and after the Sensor wear (mean 549.1 µm, SD 43.52, 

range 489-613 µm), nor was there a significant difference in IOP (MDD 2.58 mmHg, 

P-value 0.266) measured by GAT before (mean 14.7 mm Hg, SD 3.33, range 10-20 

mm Hg) and after (mean 13.7 mm Hg, SD 2.41, range 10-18 mm Hg). Figure 3 

represents the mean comfort score across visits with its 95%-confidence interval. 
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Applying a repeated measures model to the data, the comfort score remained high 

(from 8.35 to 7.35 out of 10) and did not differ significantly over time from the 

baseline visit with Sensor at 5 minutes (MDD 1.84, P-value 0.16). Regular contact 

lens wear and being a co-worker did not influence this difference significantly (P-

values 0.73 and 0.723 respectively). The change in telemetric microprocessor chip 

position expressed in clock hours compared to the baseline examination at 5 minutes 

after Sensor insertion was not statistically significant for any of the visits (P-value 1 at 

30 min and 4 hours, P-value 0.75 at 12 hours and P-value 0.5 at 24 hours). Table 3 

gives a summary of the significance tests for the difference in Sensor parameters 

assessed at the slit lamp, comparing each follow-up visit to the baseline visit at 5 

minutes. Initially at baseline the quality of the Javal-keratometer mires reflected on 

the cornea, was sharp in 7 eyes (70%) and distorted in 3 eyes (30%). The lubrication 

status of the Sensor surface on slit lamp examination at baseline visit was good in 9 

eyes (90%) and in one eye (10%) there were some hydrophobic spots seen. 

Conjunctival injection was absent in all but one study eye at baseline visit. The 

vertical centering of the Sensor at baseline visit was good in 3 eyes (30%) and in 

superior and inferior position in respectively 1 eye (10%) and 6 eyes (60%). The 

horizontal centering at baseline was good in 7 eyes (70%) while nasally and 

temporally displaced in respectively 1 (10%) and 2 (20%) eyes. In 3 subjects (30%) a 

lifted edge was observed at the Sensor margin that disappeared over time. 

Spontaneous mobility of the Sensor at baseline visit was fluid in 6 eyes (60%), 

difficult in 2 eyes (20%) and no movement was seen on slit lamp examination in 

another 2 eyes (20%). The push up test at baseline visit was fluid in 7 eyes (70%), 

but difficult in 3 (30%). For all these slit lamp parameters there were no significant 

changes over time except for mobility, both spontaneous and during push up test 
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(table 3). Mobility reduced rapidly over the follow-up visits and at the last visit no 

spontaneous mobility was present in 9 eyes (90%) and in one eye (10%) it was 

difficult, while the push up test was difficult for all eyes. Similar results were found for 

the subgroup of  the 3 contact lens wearers (table 3). The Sensor was removed using 

gloves in 7 cases (70%), a glass rod in 2 (20%) and tweezers in 1 subject (10%). 

After removal of the Sensor 9 study subjects (90%) had limited localized fluorescein-

positive corneal staining and 1 had generalized staining (10%). This was in the area 

of the telemetric microprocessor in 2 subjects (20%). As a measure of precaution 

ofloxacin antibiotics (Floxal ®) were prescribed in 3 cases (30%) for a corneal 

epithelial micro-defect, that resolved quickly. The border of the Sensor produced a 

fluorescein-positive impression on the limbal conjunctiva in 8 subjects (80%), 

covering more than 180 degrees in 5 subjects (50%). There was no change in the 

aspect of the upper tarsal conjunctiva, in comparison with the status before the 

Sensor wear. In 2 subjects (20%) a disconnection of the cable between the antenna 

and the recorder occurred during day time, resulting in no recording for one subject. 

In the other subject the disconnection could be solved, leading to a gap in the 

recording for only 2 hours. Figure 4 represents the signal of the Sensor recorded over 

24 hours, expressed in arbitrary units (a.u.), with a close-up zoom during the day 

(zoom A) and night (zoom B). In all recordings the highest values were reached at 

night time when the participants were sleeping at home. A higher signal during both 

the middle of the night and early morning (12pm-6am) was registered in 75% of 

curves, including the contact lens wearers. A characteristic short-term signal drop 

was occasionally noticed and according to the subjects’ log books this correlated well 

with exposure to sunlight during outdoor activities. The effect of blinking is visible in 

the detailed profile as a fraction-of-a-second peak (Zoom A). The absence of such 
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peaks over night is an indicator that they are blinking-related. Ocular pulsation could 

be seen in all curves. In Zoom B, showing the registration signal during 60 seconds 

at night, it can be seen that the ocular pulsation frequency is in line with that of 

cardiac activity. Only in one patient there were 4 episodes lasting 10 minutes each, 

without ocular pulsations visible. SENSIMED Triggerfish® was worn on average 

during 23.23 hours (SD 0.44, range 22.90-24.08). Repeating the analysis for the 

subgroup of 8 eyes that wore the Sensor for 24h +/- 1 hour showed the same 

probability results as for the whole group.  

 

Discussion 

Large IOP variations are an important risk factor that cannot be satisfactorily 

documented with the current available tonometers, especially when IOP peaks occur 

during the out-of-office hours [6, 8, 9]. These methods are prone to numerous 

potential sources of measurement error including eyelid closure, small precorneal 

tear film in dry eyes, accommodation, Valsalva maneuver, eye position, and body 

posture. Developing a device overcoming these drawbacks would be an important 

step forward in glaucoma management, by allowing assessment of therapy efficiency 

over a 24-hour period [9]. Our study evaluated the comfort and precision of the signal 

transmission during extended 24-hour Sensor wear in daily life on 10 healthy 

volunteers. In the vast majority of subjects a continuous transmission signal was 

recorded, indicating a good wireless power and data transfer by the telemetric chip 

and the antenna embedded in the Sensor during the 24-hour wear in humans. The 

technical shortcoming causing a disconnection of the cable between the antenna and 

the recorder was corrected after the study to avoid repetition in future. The 
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continuous presence of ocular pulsation on the recorded signal indicated a good 

monitoring quality. The episodes without ocular pulsations in one patient could be 

due to a failure in transmission of data from the Sensor through the wireless 

connection that may happen if the patient touches the orbital bandage with e.g. the 

hands. The highest signal values reached over night are in line with the reports of Liu 

et al on 24h IOP-recordings in healthy subjects[19] [10, 20-23]. However, these 

findings and the effect of sunlight exposure on the signal need to be confirmed by a 

larger series of 24-hour recordings. The Sensor was well tolerated over a 24-hour 

period, based on the comfort score, which remained high. There was no difference in 

score whether participants were regular contact lens wearers, co-workers or not. 

Furthermore, the fact that the corneal thickness did not vary significantly before and 

after device application indicated that no major corneal oedema or metabolic 

suffering occurred over the 24-hour wear. The observed temporary shift towards 

myopia can be partly explained by the corneal astigmatism induced by the Sensor 

impression at the corneo-scleral junction. Furthermore, there was a reduction in the 

vertical corneal radius seen after 24 hours. Nevertheless the change in cylindrical 

correction used during subjective refraction before and after Sensor-wear was not 

statistically significant, suggesting that other factors like visco-elasticity and 

biomechanics of the cornea, may contribute too. The MDD for the various parameters 

allowed to detect clinically important differences for most parameters, except for GAT 

where the study could only detect as significant a 2.58 mmHg change from baseline. 

Changes in comfort score of 2 grades was considered as clinically significant. The 

anterior surface wetting ability did not change significantly over 24 hours based on 

the quality of the Javal-keratometer mires image reflected on the cornea, but this 

needs to be confirmed by future studies using a tearscope. Best corrected visual 
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acuity was reduced during Sensor wear and this reduction remained statistically 

significant immediately after removal of the Sensor. This can be explained by the 

Sensor inducing some temporary corneal surface irregularities. The decentration of 

the Sensor in the vertical axis in 7 out of 10 subjects suggested a too tight fit, which 

could explain the reduction in the vertical corneal radius and be responsible for the 

corneal surface irregularities seen after 24-hour wear. The Sensor didn’t move much, 

as based on the observed position of the telemetric microprocessor, the spontaneous 

mobility on blinking and the results of the push up test of the Sensor during the 

follow-up visits. Offering Sensors with different radii would definitely improve the 

fitting in the future, avoiding induction of significant corneal radius changes and 

therefore enhancing comfort and measurement precision.  

Further trials remain to be done to discern the effect of true IOP changes from that of 

other variations on corneal radius of curvature as well as further detailed analysis of 

the recorded profile with respect to the influence of light exposure, Sensor fit and 

surface temperature.  

In conclusion, this 24-hour, uncontrolled, open trial has encouraging results on the 

tolerability and functionality of the Sensor in human volunteers, but further controlled 

studies with different Sensor radii conducted on a larger study population are needed 

to improve comfort and precision. Trials to improve the interpretation of the telemetric 

signal are planned. 
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Figures 

 

Figure 1:  

Ocular telemetric Sensor on the eye with the different parts indicated. 

 

 

Figure 2:  

The ocular telemetric Sensor transmits the information to a bandage-fixed periorbital 

loop antenna which is connected to a portable recorder worn around the volunteer’s 

waist.  
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Figure 3:  

Curve of the comfort score of the ocular telemetric sensor -wear over 24 hours with 

95% confidence interval. 

 

 
Figure 4:  

Registration signal over 24 hours (expressed in arbitrary units [a.u.] output of the 

ocular telemetric sensor), with a close-up during the day (zoom A) and night (zoom 

B). Close-ups show output registration signal during 60 seconds. 
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Tables 
 

Table 1: Baseline characteristics of 10 healthy volonteers, expressed in mean, standard 

deviation (SD), minimum (MIN) and maximum (MAX). 

 
MEAN SD MIN MAX 

age (years) 46,3 16,9 24 71 

horizontal corneal diameter (mm) 11,7 0,3 11 12 

palpebral aperture (mm) 10,8 1,3 8 12 

pupillary diameter (mm) 5,5 1,1 3,5 7 

cup/disc ratio 0,25 0,13 0,1 0,5 

Goldmann intraocular pressure (mmHg) 14,7 3,3 10 20 

 

Table 2: Evolution across the follow-up visits of the spherical and cylindrical correction and 
best corrected visual acuity in 10 volonteers, expressed in mean, standard deviation (SD), 
minimum (MIN), maximum (MAX) and P-value for the difference to the first visit. 

 

MEAN SD MIN MAX P-value  

subjective spherical correction 
(Diopters) 

before Sensor wear -0,88 1,93 -4,75 1,75 - 

5 min -0,18 1,56 -3,00 1,75 0,154 

4 hours 0,13 1,94 -2,25 4,75 0,059 

12 hours 0,10 2,18 -2,50 4,75 0,064 

24 hours 0,10 2,26 -4,25 4,25 0,039 

after Sensor removal -1,90 1,88 -6,75 0,25 0,018 

subjective cylindrical correction 
(Diopters)      

before Sensor wear -0,55 0,50 -1,50 0,00 - 

5 min -1,08 0,58 -1,75 -0,25 0,074 

4 hours -1,00 0,49 -1,75 -0,50 0,047 

12 hours -1,00 0,62 -1,75 0,00 0,078 

24 hours -1,00 0,57 -1,75 0,00 0,063 

after Sensor removal -0,83 0,49 -1,50 -0,25 0,188 

best corrected visual acuity 
(decimal fraction)       

before Sensor wear 1,07 0,18 0,65 1,20 - 

5 min 0,56 0,21 0,15 0,85 0,002 

4 hours 0,64 0,22 0,40 1,00 0,002 

12 hours 0,61 0,26 0,25 1,00 0,002 

24 hours 0,70 0,22 0,30 1,00 0,004 

after Sensor removal 0,85 0,26 0,30 1,20 0,008 
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Table 3: Summary of the significance tests for difference in quality of the Javal-keratometry 
mires, wetability, conjunctival injection,ocular telemetric Sensor-centering and mobility 
spontaneously as well as on push-up test,  compared to baseline visit (5 minutes after lens 
instillation), both in general and for optical contact lens wearers. 

P-values for change                             
during the follow-up visits among 

all participants 

P-values for change                             
during the follow-up visits among 

contact lens wearers  

parameters 
after 30 
minutes 

after 
4 

hours 

after 
12 

hours 

after 
24 

hours 

after 30 
minutes 

after 
4 

hours 

after 
12 

hours 

after 
24 

hours 

quality of Javal-keratometer mires 1,000 0,250 0,625 1,000 0,250 0,625 1,000 1,000 

wetability no change 1,000 0,500 1,000 no change 1,000 0,500 1,000 

conjunctival injection no change 0,500 0,250 0,063 no change 0,500 0,250 0,063 

centering vertically no change 1,000 0,500 0,250 no change 1,000 0,500 0,250 

centering horizontally no change 0,250 0,250 0,500 no change 0,250 0,250 0,500 

spontaneous mobility 1,000 0,031 0,031 0,008 1,000 0,031 0,031 0,080 

mobility at push-up 1,000 0,031 0,031 0,016 1,000 0,031 0,031 0,016 
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