P2 New

L .= Phyrologist

Commentary

Symbiotic fungi and clonal
plant physiology

Fungal symbionts commonly occur in plants influencing host
growth, physiology, and ecology (Carlile ez 4/, 2001). However,
while whole-plant growth responses to biotrophic fungi are
readily demonstrated, it has been much more difficult to
identify and detect the physiological mechanisms responsible.
Previous work on the clonal grass Glyceria striata has revealed
that the systemic fungal endophyte Epichloé glyceriae has a
positive effect on clonal growth of its host (Pan & Clay, 2002;
2003). The latest study from these authors, in this issue
(pp- 467—475), now suggests that increased carbon movement
in hosts infected by E. glyceriae may function as one mechanism
by which endophytic fungi could increase plant growth.
Given the widespread distribution of both clonal plants and
symbiotic fungi, this research will have implications for our
understanding of the ecology and evolution of fungus—plant
associations in natural communities.

Clonal plants and fungal symbionts

Well over 80% of vascular plant species form symbiotic
associations with arbuscular mycorrhizal fungi (AMF) within
their roots (Smith & Read, 1997). Also, AMF and leaf-
inhabiting fungal endophytes are widely distributed in some
ecologically important groups, such as the grasses (Newsham
& Watkinson, 1998; Clay & Schardl, 2002). Given the pre-
ponderance of clonal plants in many habitats worldwide, the
potential for fungal symbionts to impact plant population
and community dynamics is enormous. In addition, by dif-
ferentially affecting the sexual or asexual reproduction of host
genotypes, infection by symbiotic fungi (whether pathogenic
or mutualistic) is likely to influence microevolutionary
processes within plant populations.

For clonal plants, clonal growth is a major determinant of
genet fitness through its effects on genet persistence and new
ramet and seed production (Pan & Price, 2002). Only a few
studies have described the potential role of symbiotic fungi
in the growth and asexual reproduction of clonal plants.
Streitwolf-Engel ez al. (2001) showed that, for the stolonif-
erous herb Prunella vulgaris, AMF explained more of the
variation in clonal traits such as ramet production than did
host genotype. They concluded that the effects of AMF on plant
growth and clonal reproduction were great enough to ‘affect
population size and variation of clonal plants in communi-
ties. For the stoloniferous grass Glyceria striata, Pan and
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Clay (2002) reported that plants infected by the systemic
endophyte Epichloé glyceriae produced more stolons and
clonal growth mass than uninfected plants. The results
suggest that infected (+E) Glyceria genotypes should be spa-
tially larger due to increased lateral spread than uninfected
(-E) genotypes in natural communities. However, infection
and host genotype were confounded because only naturally
infected or uninfected individuals were utilized. In a follow-
up study (Pan & Clay, 2003), effects of infection and host
genotype were experimentally separated through the use of
+E and —E replicates of the same host genotypes. This was
achieved by manual separation of +E individuals into two
ramet groups, one of which was treated with the sys-
temic fungicide Benomyl®. Two host genotypes were rep-
licated for each of three populations in southern Indiana,
USA. Total dry mass did not differ between +E and -E
plants; however, stolon numbers and lengths were signifi-
cantly greater in +E plants (Pan & Clay, 2003). Further-
more, +E hosts allocated more of their total mass to clonal
growth in all three populations (Fig. 1). Clearly in this sys-
tem there was a shift in resource allocation associated with
fungal infection. Putative physiological mechanisms that
might account for this effect remained elusive.
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Fig. 1 Mean (+ SE) percent of the total genet biomass allocated to
clonal growth (stolons and daughter ramets) in three populations of
the clonal grass Glyceria striata infected (shaded bars) or not
infected (open bars) by the systemic fungal endophyte Epichloé
glyceriae. Four infected and four uninfected replicates of two
genotypes were used in each population. Data supplied by J.J. Pan,
based on research reported in Pan & Clay (2003).
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The Epichloé-Glyceria symbiosis

Epichloé (Clavicipitaceae; Ascomycotina) and its asexual
derivatives (Neotyphodium) are systemic fungal endophytes
of cool-season grasses with effects on their hosts that span
the continuum from antagonism to mutualism (Schardl, 1996;
Schardl et al., 2004). Host benefits include protection from
herbivores due to four classes of alkaloids produced by the
endophyte; improved abiotic stress tolerance; and enhanced
growth (Clay & Schardl, 2002). Antagonistic aspects to the
symbiosis are due to the abortion of host inflorescences
during stroma formation, which is part of the fungal sexual
cycle (Schardl, 1996). The fungal hyphae are only located
between the leaf cells of the host and do not penetrate host
cell walls. Presumably, endophytic hyphae are able to utilize
simple sugars, amino acids or other metabolites located
within the intercellular spaces as nutrient sources (Clay &
Schardl, 2002).

The clonal grass Glyceria striata is widely distributed
throughout most of the United States, typically occurring
in moist woodlands or marshes (Gould & Shaw, 1983). An
individual genet grows vegetatively by basal tiller production
to form a clump of ramets, but can also exhibit lateral spread
during clonal growth by ramet production along extending
stolons. Tillers can develop large, open inflorescences (panicles)
for sexual reproduction, but only when they are not infected
by Epichloé glyceriae. In their paper in this issue, Pan &
Clay note that, due to the replacement of inflorescences by
fungal fruiting bodies (stromata), fertile inflorescences are
never found on Epichloé-infected hosts. Hence, G. striata is
sexually sterile when infected, but remains quite capable
of vigorous clonal growth and asexual reproduction (Pan &
Clay, 2003; Fig. 1).

The dynamics of carbon

In efforts to document and understand physiological integra-
tion, that is, the sharing of resources between connected
ramets within a genet, clonal plant biologists have often used
14C to trace the movement of carbon compounds (Jénsdéttir
& Watson, 1997). Physiological integration may be ecolog-
ically advantageous to clonal plants in resource-poor environ-
ments (Jénsdéttir & Watson, 1997) or highly competitive
communities (Gough ez 4/, 2002).

The new paper by Pan & Clay extends clonal plant
research a bit further by asking whether or not changes in
physiological integration can be mediated by a symbiotic
fungus. Because they had shown previously that infection by
Epichloé increased clonal growth of the host Glyceria striata
(Pan & Clay, 2002, 2003), they hypothesized that increased
resource movement in infected plants could be part of the
mechanism responsible.

Both severed and intact stolons of G. striata that were
infected (+E) or not infected (—E) by Epichloé were labeled
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with '4C during the thirteenth week of the glasshouse exper-
iment. Two weeks later, above-ground biomass was harvested;
labeled stolons were divided into segments; and these were
analyzed to determine the pattern of assimilate distribution.
Stolon segments both proximal and distal to the original
14C-labeled leaf were assessed for radioactivity.

Pan & Clay found that both proximal and distal move-
ment of '“C away from the labeled leaf was greater for +E
stolons; in contrast, more assimilate was retained by the
labeled leaf of —E stolons. Although carbon movement was
greater along +E stolons, there was no difference in stolon
growth or new ramet production between +E and —E hosts,
suggesting that the observed level of physiological integration
did not play a major role in improving clonal growth in this
study.

The results of Pan & Clay’s efforts are exciting because,
by showing that symbiotic fungi change the dynamics of
carbon within the host, they have opened up new avenues
for research into the mechanistic basis for such an effect. The
physiological reasons for the increase in carbon translocation
in infected hosts is currently unknown, but Pan & Clay
speculate that hormones or enzymes produced by Epichloé
could be responsible. Although not explicitly mentioned
by the authors, fungal-mediated changes in cytokinin
levels may be a possibility, especially as cytokinins have been
implicated in the regulation of source—sink relations in
plants (Roitsch & Ehnefl, 2000). Furthermore, both phy-
topathogenic and mycorrhizal fungi have been shown to
produce cytokinins (Jameson, 2000).

It is therefore possible that the endophyte affects assimi-
late partitioning by increasing the sink strength of meristems,
which provide a nutrient-rich environment for hyphal growth
(Schardl ez al, 2004). Active uptake of carbon compounds
by the fungus in regions of active host growth should increase
sink strength. Alternatively, source strength may be increased
if the endophyte somehow enhances leaf photosynthesis.
Indeed, there is some evidence for greater photosynthetic
rates in endophyte-infected tall fescue (e.g. Marks & Clay,
1996), but it is not certain that such effects would increase
carbon translocation. However, assimilate movement is clearly
driven by the pressure gradient between source and sink
regions (Oparka & Santa Cruz, 2000), and the possibility
that endophyte infection can alter source-sink relations
cannot be discounted. Future investigations into the carbon
physiology of the endophyte—grass symbiosis should consider
fungal-mediated effects on carbohydrate production (Marks
& Clay, 1996); translocation (Pan & Clay); and storage
(Cheplick & Cho, 2003).

Ecological ramifications

Pan & Clay’s new study provides a nice starting point
for further investigations into the potentially important role
that symbiotic fungi play in the physiology and ecology of
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clonal plants. There is no doubt that the ability to integrate
resources impacts the population dynamics of clonal plants
(Jénsdéttir & Watson, 1997). Provisioning of carbohydrate
resources to new ramets by established genets should improve
the probability of ramet- and whole-genet survival in a
heterogeneous environment. Symbiotic endophytes might
improve the odds for genet spread and persistence within the
local community.

It is also increasingly recognized that symbiotic associations
can be significant determinants of plant community struc-
ture (Clay, 2001). Mycorrhizal associations, for example, can
affect the ecology of clonal species (Streitwolf-Engel ez al.,
2001; Watson eral, 2002) and entire plant communities
(Newsham ez al., 1995). The community and ecosystem-level
consequences of fungal endophyte infection are only just
beginning to be documented and explored by ecologists
(Clay & Schardl, 2002; Rudgers ez al., 2004).

Gregory P. Cheplick

Department of Biology, College of Staten Island,
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Plant and arbuscular
mycorrhizal fungal diversity
— are we looking at the
relevant levels of diversity
and are we using the right
techniques?

A strong emphasis in modern ecology is placed on an exper-
imental approach to understanding mechanisms that explain
patterns actually observed in nature. Testing the relevant
hypotheses experimentally can often draw on a wealth of
descriptive ecological information that exists for a large
number of plants and animals, much of which was probably
collected before descriptive ecology became less fashionable.
Thus the observation of patterns in nature typically precedes
the experimental tests of which mechanisms might explain

New Phytologist (2004) 164: 415-418



416 "Forum Commentary

their existence. Experimental ecologists may often take
such descriptive data for granted. However, for those of us
working on organisms where we do not have the necessary
information at hand about these patterns in nature, then
testing the relevant hypotheses can be a bit like going fishing:
before we start, we don’t know whether we will get anything
and even if we are successful, perhaps there is always the
elusive ‘one that got away’ (the more important or the more
ecologically relevant hypothesis that we did not think to test).
Working on the ecology of arbuscular mycorrhizal fungi (AMF;
Glomeromycota) falls into this latter category of organisms,
where descriptive data on their community structure in
different environments and in relation to the community
structure of their host plants is sadly lacking. In this issue
(pp- 493-504), Landis et al. present descriptive data showing
the correlation in Wisconsin oak savannas between AMF
species richness and plant community composition. This
relationship should exist in natural communities if a number
of experimental studies testing the relationship between these
two factors were correct and were, indeed, testing ecologically
relevant hypotheses.

The study by Landis et a/. also raises two issues that
deserve some further discussion. The first of these is raised
by the authors themselves and concerns the reconstruction
of AMF species richness by using, controversially, the mor-
phology of AMF spores, rather than molecular techniques
to measure AMF species richness. The second concerns the
ecologically relevant measure of AMF diversity: is it inter-
specific or intraspecific AMF diversity that is ecologically
important?

The relationship between the diversity of plants
and their fungal symbionts

Few would doubt the ecological importance of arbuscular
mycorrhizal fungi, given that they improve plant nutrition
and growth and are found in symbiosis with the roots of
the majority of land plants (Smith & Read, 1997; van der
Heijden & Sanders, 2002). Over the past two decades, a number
of key experimental studies have indicated that AMF affect
plant community structure, diversity and productivity. Grime
etal. (1987) first showed that the presence of AMF can
increase the diversity of plants in experimental plant
communities and subsequently, using a similar design, van
der Heijden ez 4/ (1998) showed that increasing AMF species
richness led to an alteration in the plant community structure
and an increase in plant productivity and diversity. Vice
versa, by manipulating the diversity of the plant community,
Burrows and Pfleger (2002) saw an effect on the structure
of the AMF community. So it appears that a change in the
community of either one of the symbionts affects the other.
There are also some elegant conceptual models that explain
the effects of each symbiont on the other, such as the nega-
tive feedback model (Bever ez 4l, 1997; Bever, 2003), which
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also predicts that a change in the diversity of one symbiont
should affect the diversity of the other. Experimental investi-
gations also support this model (Bever, 2002). However, if
the experimental ecologists have got it right, and the
relationships between the diversity of plants and AMF are not
obscured by other factors that were not considered, then we
should see some correlations between the diversity of these
two groups of organisms in natural ecosystems. It is therefore
encouraging that this is exactly what Landis ez /. show
in their study. As the authors are fully aware, the study is
based on correlations, meaning that one cannot say whether
plant diversity directly affects fungal diversity or vice versa
and it must be pointed out that both are also co-correlated
with soil texture and soil nitrogen content.

Morphological vs molecular descriptions of
AMF communities

One aspect that is controversial regarding the study is the
use of morphological techniques to measure AMF species
richness rather than PCR-based molecular identification
methods. AMF spores can be sieved from the soil and then
classified into different morphological types. These can then
either be counted in order to obtain their abundance and
then used to reconstruct the AMF community structure or
they can simply be recorded as present/absent in order to
obtain a measure of AMF species richness (as favoured by
Landis ez al). The problems with this approach are numerous.
An AMEF species could be present in low frequency but
produce many spores. Another could be very abundant but
hardly produce any spores. This is why Landis ez 4/. do not
favour this measurement for AMF abundance. However,
what Landis et 4/. do not point out is that there are a number
of other reasons why the method may be seriously flawed.
First, the environment may affect sporulation. Thus, the
comparison of AMF species richness in different environments
may reflect differences in which, and how many, AMF
species sporulate in the different environments, even though
the same fungi could potentially be present in all environ-
ments. In this case, the existence of a correlation between
these two factors would be a red herring in the search for
patterns that match the experimental predictions. Second,
AMEF spores are notoriously difficult to identify when sieved
directly from the soil and some AMF taxonomists only
consider identification to be reliable when the fungi have first
been established in pot culture, from which many replicate
spores of the same fungus can be observed. Even then, it can
take a skilled researcher many hours to correctly mount
samples of one fungus and observe the spore wall structure
for correct identification. Third, we now know from molec-
ular based studies of AMF communities in plant roots that
many AMF are present in roots, although spores of these
fungi have never been found using the techniques proposed
by Landis ez al. One of the clearest examples of this comes
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from a study that was also published in New Phytologist.
Clapp et al. (1995) used molecular techniques to show that
the roots of one of the common understorey plants in a
woodland in north Yorkshire, UK consistently contained
AMEF for which no spores had been found. There are several
other studies that document similar findings.

However, a more recent study provides even more worry-
ing data for the proponents of the spore morphology-based
methods. Rosendahl and Stukenbrock (2004) have sequenced
AMF ribosomal DNA (rDNA) from plants in a Danish
grassland community on a sand dune. Using a phylogenetic
analysis, they found that the sequences fitted into 11 clades
within the Glomeromycota. Of these 11 clades, only four
matched to known AMEF for which species have been
described on the basis of their spore morphology. Further-
more, within the four clades of known AME very few of the
spore morphotypes were actually found at the Danish grass-
land site that match to those sequences, although they are
known from other locations. This study indicates that AMF
species richness, based on spore counts, is probably only
scratching the surface of what really occurs in plant roots.
Landis ez al. partly justify their chosen methodology because
they claim that sporulation is an important part of the AMF
life-cycle. The molecular data, however, indicate that some
AMEF species are obviously not sporulating very often, if at all,
and the importance of sporulation may be much less than
has previously been assumed.

As Landis et al. point out, the molecular methods available
for AMF identification are by no means problem-free. The
most precise of the methods, to date, involves amplifying
parts of the AMF ribosomal DNA from roots and then
sequencing the DNA. This can be both costly and time
consuming, given the diversity of sequences that can be found
in the root system of one plant. But the real problem with
all of the molecular methods is the amount of genetic variation
within an AMF species and even within an AMF indi-
vidual. It is well known that high sequence variation for a
given region of DNA occurs in AME even within single spores
(Sanders, 2002). For ecologists this is problematic because
when two or more different AMF sequences are obtained from a
root system we don't know whether those sequences originate
from one, two or several different AMF individuals. Further-
more, without knowing the true extent of the genetic varia-
tion within an individual, among individuals of the same
species and among different AMF species, it is very difficult
to know exactly what this sequence diversity actually represents.

The amount of genetic variation in an AMF spore or in
an AMF species is in itself a controversial issue. The recon-
struction of AMF phylogeny using rDNA sequences relies on
the underlying assumption that the variation in rDNA is so
low that distinguishing among AMF morphotypes with IDNA
sequences is not problematic. However, the failure of so
many attempts to make true AMF morphotype-specific or
species-specific primers suggests that it is not quite so
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simple. Other studies, however, indicate that the diversity
of rDNA sequences within a morphotype is so large that
such identification on the basis of one or a few sequences
could be very misleading (Rodriguez ez al, 2004b). In fact,
Rodriguez ez al. (2004b) found that several isolates of two
different morphotypes of AMF harboured extremely diverse
tDNA sequences. However, they also found that the two
morphotypes also shared some identical sequences. They
claim that low sequence variation suggested by some
researchers is simply due to the fact that they have not
sequenced intensively enough to see some of the low
frequency variants (Rodriguez ez 4/, 2004a). Furthermore, the
first quantification of genome-wide molecular variation
among isolates of one species of an AMF shows extremely
high genetic variation, even in a very small field (Koch ez 4L,
2004). The study was not based on rDNA variation but on
250 different polymorphic markers. The issues about genetic
variation in AMF are clearly not yet sufficiently resolved
such that we know exactly what we are dealing with when
we pull a few AMF rDNA sequences out of the roots of
a plant.

Should we actually be trying to measure AMF
species or morphotype diversity?

The study of within species genetic variation in AMF (Koch
et al., 2004) highlights a final concern about studies that
measure AMF diversity. Many of these studies, whichever
method they employ, justify the ecological relevance of their
study because of the experimentally demonstrated relation-
ship between AMF species richness and plant diversity (van
der Heijden ez al, 1998). However, most of such experiments
have used one AMF isolate (often originating from one spore)
to represent an AMF species and have ignored the variation
in plant growth that could be due to within-AMF species
variation. The study of Koch ez al. (2004) shows that there is
very large genetic variation within an AMF species, even
within a small field, and that variation in how the fungi
grow also has a genetic basis. A recent study by Munkvold
et al. (2004) has shown that different isolates of one AMF
species can supply very different levels of phosphorus to
the plant. Perhaps the relationship might exist between the
number of genetically different AMF in the field and the
diversity of plant species; the distinction as to whether this
is due to variation among or within AMF species or morpho-
types may be largely irrelevant. I would certainly want to know
the answer to this before embarking on an extensive and
probably very costly survey of AMF species or morphotype
variation in the field. The methods employed by Landis
et al. will not be able to tackle this question, but molecular
methods based on quantification of molecular variation
within the AMF community, when further refined, along
with a better understanding of AMF genetics and levels of
genetic variation, may provide the answers.
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Perspectives

The methods that are currently available for AMF identifi-
cation in ecological studies are problematic. I remain sceptical
regarding the validity of the occurrence of spores in the soil
as a measure of AMF species richness. Despite my criticisms
I was, however, struck by the following sentence of Landis
et al. ‘However, we find it extremely hard to believe that the
striking correlations among AMF community composition
and species richness, plant community composition and rich-
ness, and environmental factors that are demonstrated in this
paper by our use of spore morphology could be artefacts’.
We may well find in the future that the correlations observed
by Landis eral between plant diversity and AMF species
richness may not exist when we measure the true richness
that occurs in roots. It may turn out that the results reflect
changes in the numbers of AMF that sporulate with changes
in plant diversity, and that the sporulating AMF mask
completely different underlying levels of AMF diversity/
richness of nonsporulating AME Indeed, the correlations
observed by Landis ez 4/. are unlikely to be artefacts and it
will be exciting to find out in the future what is the
underlying mechanism for their existence.

Ian R. Sanders

Department of Ecology and Evolution, University of
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The human footprint in
ecology — past, present
and future

Ecological Society of America, 89th Annual
Meeting, Lessons of Lewis & Clark: Ecological
Exploration of Inhabited Landscapes, Portland,
OR, USA, August 2004

The Sustainable Biosphere Initiative, initiated by the
Ecological Society of America (ESA) in 1988 and launched
officially in 1991, outlined a new series of research
priorities for ecology, with an emphasis on the global
nature of environmental pressures and human impact on
the environment (Sala, 1992). There has been a growing
awareness of the importance of human impact in both
managed and natural ecosystems, and from local to global
scales. Coupled with this growing awareness has been an
increasing need to evaluate and understand how humans
are modulating the ecosystems in which they live. Finally,
and most recently, ecologists increasingly feel a sense of
responsibility to transmit that information to the public at
large and to policy makers, who are currently making a
number of decisions where relevant ecological understanding
is the basis of an informed decision (Bazzaz et al., 1998).

‘Ecologists must take their science in bold new
directions if humans and the natural systems on
which they depend are to coexist in the future.’

(ESA Visions Report, Box 1)

The ESA annual meeting was held in Portland, Oregon
from August 1-6, with over 4000 participants from all
walks of the ecological spectrum: academics, representatives
from nongovernmental organizations, students, and govern-
ment researchers. Human impact on the environment was a
central theme in the thinking and research presented at this
society’s meeting. A simple overview of the abstracts and talk
titles is particularly revealing. From approximately 2800 oral
and poster presentations at this meeting, over 60% were in
some way related to human impact on the environment.
Topics ranged across anthropogenic disturbance and
land-use change, urban ecology, invasions, biodiversity loss,
and interacting drivers of global change. Taken together, the
resounding message of this meeting focused on the human
footprint on the land- and waterscapes across the globe
and what could be done to understand and mitigate this
impact in the future. The current ESA president, William
Schlesinger (Duke University, NC, USA), even went a
step further emphasizing not only the scientific contract
for ecologists, but the need for political motivation and
responsibility as well.

The past: human legacy on the landscape

The idea that humans manipulate their environment is
not new; however, the novel ways in which we view
and interpret that impact was shown in a number of
presentations, both in symposiums and contributed oral
sessions. Peter Vitousek (Stanford University, CA, USA)
presented evidence demonstrating how the interaction of
soil fertility and climate determined practices of dryland
agriculture in the Hawaiian islands. Dr Vitousek and
colleagues, collecting soils from under field walls constructed
by native Hawaiians approximately 500 years ago, found
very high levels of available soil phosphorus (P), suggesting
a ‘sweet spot’ for agricultural activity due to the effect of
plants absorbing P from the soils and depositing nutrient-
rich litter at the soil surface (Vitousek ez al, 2004). But

at large, to participate in the effort.

Box 1 Ecological science and sustainability for a crowded planet — the ESA Visions Report

In May of this year, the ESA published a new report (Palmer et al., 2004a) which recognized the need to identify the future of
research priorities in ecology and that this future inevitably must incorporate the effect of human activity on the environment. The
goals of the Visions Committee, led by Margaret Palmer (University of Maryland, MD, USA) were established to go beyond simple
assessment of environmental issues, in an attempt to outline a conceptual framework to apply our power of prediction to combat
environmental problems from local to global scales (Palmer et al., 2004b). In essence, this report is a call to action for ecologists
worldwide to recognize the fundamental role of ecology in our collective future prompting all members of this society, and the public
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interestingly, the fact that the early agriculturists of Hawaii
had cultivated this area for dryland agriculture was the reverse
of what we might imagine — they did not manipulate the
environment to increase yield of these areas, but rather took
advantage of preexisting conditions of fertility due to the inter-
acting effects of climate and vegetation on soil nutrient status.

A second perspective of the human legacy at the global
scale stemming from agricultural activity came from James
White (University of Colorado, CO, USA) who presented
a look back at the global methane budget over the last
2000 years using air extracted from ice cores in Antarctica.
Dr White showed that during this period, there has been a
marked increase in methane concentrations in the last
200 years (over three-fold), but that additionally, the global
methane budget was not in balance over the entire period of
record. Other lines of paleoecological evidence, including
isotopic ratio measurements of 13CH4 enrichment attributable
to anthropogenic activity, and overlapping cores from other
parts of the world, corroborate this finding of increased
methane concentrations in the atmosphere. Mixing models
suggest that these increases in global methane concentra-
tions can be attributed to increased biomass burning and
subsequent cultivation resulting in biogenically increased
sources of methane production from rice cultivation and
ruminant activity.

The present: urban ecosystems

Urban zones, which presently occupy approximately
2% of the land surface and are conservatively estimated to
cover 3—4% over the next 30 years, have arrived as a central
focus of ecological research. The long-term ecological research
(LTER) network program in the United States (http://
lternet.edu/), begun in 1980 by the National Science
Foundation, established a network of sites across the United
States in natural ecosystems in an effort to examine long-
term trends in ecological research and art large spatial scales.
The most recent additions to the network have been two
urban zones: one in the metropolitan area of Baltimore,
Maryland (http://www.beslter.org/); and the other in the
greater metropolitan area of Phoenix in the arid matrix of
central Arizona (http://caplter.asu.edu/). Urban zones have
been largely ignored as part of traditional ecological research
precisely because of the extensive human influence and
‘nonnatural’ conditions that surround these areas. It has
become increasingly clear, however, that ecologists must
better understand these fast-growing urbanized areas,
as a result of the increasing importance of land area and
the disproportionate effect of urban zones on adjacent
ecosystems (Austin ez a4/, 2003). Nancy Grimm (Arizona
State University, AZ, USA), director of the Central Arizona-
Phoenix LTER and president-elect of the ESA, presented
the provocative idea that understanding biogeochemistry
in urban zones may require a change in our theoretical
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understanding of element interactions and ecosystem
functioning (Grimm ez al, 2000). Dr Grimm argued
that increased concentrations of nitrogen (N) due to N
deposition and trace metals from industrial activities may
fundamentally disrupt the element interactions in both
terrestrial and aquatic ecosystems that are part of and
interface with urban zones, and that this may result in shifts
in fundamental nutrient limitations and novel biogeochemical
interactions. This suggests that our predictive power for
understanding urban ecology may be limited due to the
profound human impact on the landscape and the creation
of novel ecological conditions and interactions.

Two presentations from different study sites highlighted
the same conclusion of the importance of nonnative species
creating new ecological interactions. Katalin Szlavecz (John
Hopkins University, MD, USA) presented data from the
Baltimore Ecosystem LTER that showed dramatic changes
in the soil invertebrate communities in comparing rural and
urban forests and lawns. However, contrary to the general
belief that urban environments are impoverished in biodi-
versity, urban forests had the highest levels of species rich-
ness, in large part due to the introduction of nonnative
species in these environments. The importance of the exotic
fauna varied by taxonomic group but largely explained
the shifts in community structure, particularly earthworm
abundance in urban environments. Margaret Carreiro
(University of Louisville, KY, USA) demonstrated that
decomposition was altered along urban-rural gradients due
to changes in: litter quality from increased nutrient deposi-
tion; species composition; and soil community structure,
particularly nonnative earthworm abundance. Dr Carreiro
suggested that the combined effects of these multiple
changes are only beginning to be documented and that
comparative studies across a number of urban zones will
be necessary before we can begin to understand the impact
of urbanization on ecosystem processes.

The future: global change and interdisciplinary
science

Ecology as a field of study has, almost by definition, been an
interdisciplinary endeavor, but never has it been more clearly
demonstrated than in some of the research presented at
this ESA meeting. Recent research on a number of topics
incorporated work not only from other scientific disciplines
but also the social sciences, including economics, human
demography, and sociology. An entire oral session, Estimating
Carbon Dynamics in Forested and Deforested Landscapes
of Costa Rica — organized by Flint Hughes (Insitute of
Pacific Islands Forestry USDA Forest Service, HI, USA),
Boone Kauffman (Insitute of Pacific Islands Forestry
USDA Forest Service, HI, USA) and Alex Pfaff (Columbia
University, NY, USA) — focused on the necessity to integrate

economic models and scientific information in order to
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understand how carbon sequestration in tropical forests and
the potential for carbon trading under the Kyoto protocol
for non-Annex 1 countries could impact both ecosystems
and human society. A variety of presentations demonstrated
the ecological challenges of calculating carbon pools,
particularly with forest-to-grassland conversion (Judith
Jobse, Oregon State University, OR, USA) and the potential
for carbon accumulation in secondary tropical forests
(Miguel Cifuentes Jara, Oregon State University, OR,
USA). But one of the newest approaches was by Alexander
Pfaff (Columbia University, NY, USA), an environmental
economist, who presented an integrated model of the
pressures for development and deforestation in Costa Rica.
Dr Pfaff and colleagues have identified the difficulties in
establishing carbon and land-use baselines in tropical forests
due to the scarcity of ecological information regarding regional
carbon sinks (Pfaff ezal, 2000). He presented a model,
combining ecological knowledge with economic parameters
including the effects of transport costs and poverty, to
extrapolate a ‘new’ assessment of deforestation rates that
circumvent some of the largest uncertainties in our current
estimates of carbon baselines. The model highlighted the
need to incorporate both the ecological and economic sides
of the equation in an integrated model of land-use change.

It has become clear that, as we think about the future
impact of global change, one of the largest uncertainties is
how these major anthropogenic changes will interact
and affect ecological processes. There are a number of large
research projects aimed at trying to understand exactly that;
not only the direct effects of each factor in isolation, but also
the complexity of considering multiple global change effects
simultaneously. One oral presentation came from the Jasper
Ridge Global Change Experiment, a multifactorial experi-
ment with manipulation of four global change parameters —
elevated CO,, elevated N deposition, elevated temperature,
and changes in water availability. Elsa Cleland (Stanford
University, CA, USA) conducted litter decomposition exper-
iments in this experimental framework. She showed that,
while warming increased decomposition, elevated CO,
attenuated this effect, resulting in nonadditive effects of the
interaction. In contrast, Shigiang Wan (Oak Ridge National
Laboratory, TN, USA) presented data on soil respiration
under conditions of elevated CO,, elevated temperature and
water availability, demonstrating additive effects of CO, and
temperature with increased soil respiration in the combina-
tion treatments. The range of studies and diversity of results
suggest that the complexity of the response of these interact-
ing factors will challenge ecologists in the coming years to
understand the impact of realized global change.

Biogeosciences: the big picture

One of the newest additions at ESA has been the formation
of the Biogeosciences Section, focused on biogeochemistry
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and earth sciences, and the impact of global change. In line
with the growing need to integrate the biological and earth
sciences, also occurring at the American Geophysical Union
(AGU) (Curtis, 2004), the section arose from an effort
undertaken by Robert Jackson (Duke University. NC, USA)
and Lars Hedin (Princeton University, NJ, USA) to capture
the interest of a large number of ecologists working at
the interface of biogeochemistry, earth sciences and global
change research. Lars Hedin, the current Biogeosciences
Section president, hopes that the new section can serve as
an outlet for advocacy of interdisciplinary science within
the ESA, as well as educating decision makers and funding
agencies. It is yet another indication of how the future of
ecology must indeed go in bold new directions and the
dynamic nature of what was seen at this ESA meeting
exemplified in many ways the changing face of ecology in
the 21st century.
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