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ABSTRACT 

This project aims to determine the cellular identity of the immune cells composing the tumor 

microenvironment of a melanoma mouse model using single-cell RNA-sequencing (scRNA-seq). The 

recent development in the scRNA-seq technology has now made the full transcriptome of individual 

cells within reach and therefore enables us to characterize the identity of cells according to their full 

gene expression. However the substantial stochasticity and high dropout rates of scRNA-seq data 

challenge the process of cell type identification. To overcome these limitations I apply here a 

computational approach that takes advantages of immune transcriptomic repositories to define cell 

type specific gene markers in order to quantify the cellular identity of immune cells in melanoma. The 

performance of the identification algorithm has been first tested with cross-validation analysis of 

sorted cell bulk gene expression profiles. Then, the cell type identification algorithm has been applied 

on scRNA-seq data and revealed that the melanoma immune microenvironment from our mouse 

model is composed of a large proportion of T and NK cells.  

Keywords: Single-cell RNA-seq, Bioinformatics, Immunology, Melanoma

INTRODUCTION 

Tumor is a complex ecosystem, not only composed of cancer cells but also with various other cells such 

as endothelial cells, cancer-associated fibroblasts or immune cells1,2. The latter appear to play an 

important role in the development or control of the tumor and the promising results of 

immunotherapy against cancer have confirmed this major role3-6. Therefore analyzing the composition 

and the interplay of cells in the tumor microenvironment (TME) is crucial for understanding how tumor 

grow and resist to the destruction by the immune system.  

In this attempt to characterize the immune landscape of tumors, single-cell RNA sequencing (scRNA-

seq) represents a powerful method to profile simultaneously each individual cells by obtaining their 

full transcriptome7,8. This technical achievement has been made possible by the combination of cell 

isolation like with the fluidigm-C1 technology9 or Fluorescence-activated cell sorting (FACS) and the 

improvement of high-throughput sequencing technology.  

With the availability of the whole transcriptome for a given cell, it now opens the gate of defining the 

cellular identity according to the expression of all genes and not only based on cell surface proteins 

markers or morphology as it has been predominantly done so far in biology. There are currently two 

commonly used methods to differentiate cells among each other: supervised and unsupervised 
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clustering technique. While supervised clustering separates cells based on a priori information 

(categories are known and assignation depends on the expression on some known gene markers for 

example), unsupervised classification in the other hand requires no a priori information and will 

separate cells according to their intrinsic propriety (for instance the expression of all their genes) but 

can be highly influenced by batch effect10,11. The purpose of each method is also different: where 

unsupervised clustering would be more suited for de novo cell type identification, supervised 

clustering is more appropriate for validation of known cell types from transcriptomic samples.  

Enumeration and classification of cell types in immunology has been of great concern since the 

beginning of the field, as illustrated by the number of cluster of differentiation (CD) proteins discovered 

and used as markers so far. Some of these classifications remain controversial, in particular for rare 

cell types but the major hematopoietic cell types are well validated and described. Gene expression 

profiles of well-defined immune cell types are also freely accessible in a website (www.immgen.org) 

from the Immunological Genome Project (ImmGen)12. The ImmGen project is composed of 

immunologists and bioinformaticians that have used highly standardized cell sorting strategy (FACS) 

and sequencing procedure (Micro-array) to provide well curated expression profiles of murine immune 

cells.   

By taking advantage of the immune profiles published by ImmGen I have proposed to describe the 

immune cell population in a murine tumor model of melanoma from the MelanomX project. However 

to define the identity of a particular cell type in tumor with supervised classification, I needed a method 

to define cellular identity by selecting cell type specific genes. I found an answer to this problem with 

the paper published by Birnbaum & Kussell13 and Efroni et al14. They have proposed a method where 

they quantified the cellular identity by using gene markers that were first selected and which received 

a score reflecting the amount of cell type specific information they carried. In other words, this method 

allows to classify genes according to their specificity for a given cell type and therefore allows to define 

subsets of genes that can be used for supervised classification of cells. The number of marker genes to 

use remains an open question, because with single-cell RNA-seq, the amount of gene expressed is 

rather low and stochastic and by using too few markers we could miss to detect one cell type. On the 

other hand, by using too many markers we risk to lower the specificity of the cell type identification. 

An optimal number of markers is therefore needed. 

Through this project I have selected immune cells profiles from ImmGen and defined their associated 

marker genes in order to potentially identify these cells later within scRNA-seq data from the 

MelanomX project. In order to validate the method I carried out a first phase of cross-validation with 

http://www.immgen.org/
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the leave one out method and many key parameters of the identification algorithm used were studied 

in order to optimize the identification process for further classification of single-cell transcriptomic 

data. 

RESULTS 

PART I: SELECTION OF IMMUNE CELL TRANSCRIPTOMIC PROFILES FROM IMMGEN 

I selected 110 microarray expression data over the ~270 mice leukocytes subsets available in the 

ImmGen.org website. The criteria to select these profiles in particular was their global representability 

of emblematic hematopoietic cell types, the exclusion of genetically modified mice  and the evaluation 

of the experiment, the body location and cell-sorting strategy. Monocytes or bone marrow precursors 

were not selected because I was mostly interested in more differentiated cells, typically those that we 

can find in tissue or tumors. Moreover monocytes are somewhat present in the data set in the form of 

Macrophages or DCs as these cells arise from differentiated monocytes. Sadly, no Myeloid-derived-

suppressor cells (MDSC) sample was available in ImmGen and the tumor-infiltrating lymphocytes (TILs) 

samples were not available for downloading despite my emails.  

In order to refine the immune transcriptomic profiles collected, a first step was to visualize the 

clustering of profiles in 2 dimensions using three main dimensionality reduction methods (t-Distributed 

Stochastic Neighbor Embedding (t-SNE), Multidimensional Scaling (MDS) and Principal Component 

Analysis (PCA)) (Figure 1). Then some profiles were excluded or reassigned based on the clustering 

groups. For example in Figure 1A, a particular B cell sample clusters with activated CD8 T cells on the 

right of the graph. This sample has been sorted differently from other B cells and has been defined as 

germinal center B cells, likely to cell-cycle just after activation. Therefore to avoid overlapping of 

clusters, this sample has been removed for further computation. This example depicts the selection 

method used and further analysis has been made to exclude or characterize other cell types. For 

example the definition of M1 or M2 Macrophages relies mainly on the expression of Stat1 and Stat6 

respectively (even though the separation of M1 or M2 macrophages is controversial in immunology 

because it is not a definitive lineage commitment but it is more seen as a phenotypic plasticity)15. Thus 

these two groups were also defined by using specific gene expression such as Stat1 and Stat6 (showed 

in Figure 2). 
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Figure 1. Dimensionality reduction for 110 ImmGen immune transcriptomic profiles. Three methods to reduce 
the dimensionality have been used: t-SNE, Multidimensional scaling (MDS) and Principal component analysis 
(PCA). 18 major cell types are show on this graph according to the color legend on the right. In addition to the 
evident abbreviation of immune cells, here are the less obvious ones: Baso = Basophil, BC = B cells, DC_LC = 
Langerhans cells, MC = Mast cells, MF_M1 = M1 “inflammatory” Macrophages, MF_M2 = M2 “tissue-repair” 
Macrophages,  Strom_endo = Stromal endothelial cells, Strom_fim = Stromal fibroblast cells, TC_4 = T cells CD4+, 
TC_gd = T cells gamma-delta 

 

Figure 2. Stat1 and 6 expression in macrophages subsets. M1 Macrophages stands for an inflammatory profile 
while M2 is associated with the “tissue repair” profile of Macrophage. Expression values are relative expression 

values from the ImmGen microarray and y-axis labels corresponds to ImmGen samples names. Values were 
normalized across 3 independent microarrays and true gene expression was considered above 120.   
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As observed in Figure 1, the lymphoid samples tend to cluster together when all samples are analyzed 

in the same time. Thus I have separated lymphoid and myeloid samples and compare their pattern of 

organization based on expression profiles with the t-SNE method for each group (Figure 3). On Figure 

3A, T cells subsets display good clusters of NK and B cells however naïve CD4 and CD8 T cells appear to 

cluster together. In consequence these clusters have been renamed as naïve T cells in celltypes3 (Table 

1). It should be noted that Treg samples did not cluster closely together and were rather dispersed 

along the CD4 T cells memory cluster. This group was nevertheless maintained in the analysis despite 

its dispersion. In contrast to lymphoid cells, myeloid cells showed a better clustering according to cell 

types. The only exception is the relative separation of pDC from the DC cluster.  

 

  

Figure 3. T-SNE dimensionality reduction for ImmGen lymphoid and myeloid cells transcriptomic profiles. 
TC_4_Nve = CD4 T cells naïve. TC_8_Nve = CD8 T cells naïve. 
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PART II: DETERMINATION OF CELL TYPE GENE MARKERS AND CELLULAR IDENTITY 

DEFINING CELL TYPE-SPECIFIC SCORE (SPEC SCORES) 

In order to identify gene markers for defining a cellular identity, cell type specific scores called Spec 

scores were calculated as described by Birnbaum and Kussell13 (see mathematical explanation with an 

idealized example in Figure 4). These Spec scores were calculated relatively to other cell types and 

therefore depended on the level of definition of cell types. For example, a given gene would not have 

the same value of Spec if it is limited to the classification of lymphoid/myeloid cells or if one wishes to 

obtain more precise information with subgroups such as Treg or pDCs for instance. The Spec scores 

were therefore established for different level of cell type definition (n=3, Table 1) using 106 expression 

data derived from ImmGen microarray profiles. The first five gene markers with the highest Spec score 

for ten different cell types are given in Table 2. We can observe the presence of emblematic gene 

markers for lymphoid cells such as Cd3 or Cd27 for T cells, Cd19 for B cells and killer cell lectin-like 

receptor for NK cells. In the other hand, the five better markers for myeloid cells are less common, but 

there is also less specific markers known in immunology for myeloid cells subgroups than for lymphoid 

cell subgroups. Similar findings were observed for stromal cells with the exception of Tek, an 

endothelial cell-speific gene, whose presence as specific marker can be explained by the fact that the 

identity “stromal cells” is composed of 4 profiles of endothelial cells and 3 profiles of fibroblasts. 

 

Figure 4. Example of the computation of Spec scores with an idealized profile of expression with one gene in 
6 cell types with replicates. The mathematics is explained on the right and a schematic example of the binned 
expression of a gene in 6 different cell types on the left. Reprinted from Birnbaum KD and Kussell E: Measuring 

cell identity in noisy biological systems. Nucleic Acids Res. 2011. 
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Table 1. Definition of immune cell type profiles used for identification. 

 

CELL TYPE GENE SYMBOL SPEC DESCRIPTION 

T cells Cd3g 1 CD3 antigen, gamma polypeptide [MGI:88333] 

T cells Cd3d 1 CD3 antigen, delta polypeptide [MGI:88331] 

T cells Cd3e 1 CD3 antigen, epsilon polypeptide [MGI:88332] 

T cells Bcl11b 1 B cell leukemia/lymphoma 11B [MGI:1929913]   (involved in T cell development)16 

T cells Cd27 0.97 CD27 antigen [MGI:88326] 

B cells Pou2af1 1 POU domain, class 2, associating factor 1 [MGI:105086] 

B cells Cd79b 1 CD79B antigen [MGI:96431] 

B cells Pax5 1 paired box 5 [MGI:97489] 

B cells Cd19 1 CD19 antigen [MGI:88319] 

B cells Ms4a1 1 membrane-spanning 4-domains, subfamily A, member 1 [MGI:88321] 

NK Ncr1 1 natural cytotoxicity triggering receptor 1 [MGI:1336212] 

Baso (Basophils) Baso Baso

BC (B cells) BC BC

DC (Dendritic cells)

DC DC

pDC (plasmacytoid DCs) pDC

dDC (dermal DCs) dDC

LC (Langerhans cells) LC

MC (Mast cells) MC MC

MF (Macrophages) MF
MF_1 (inflammatory MF)

MF_2 (tissue repair MF)

Neutro (Neutrophils) Neutro Neutro

NK cells NK NK

Strom (Stromal cells)
Strom_endo (endothelial cells) Strom_endo

Strom_fib (fibroblasts) Strom_fib

TC (T cells)

TC_4 (CD4 T cells)
TC_4 Mem (memory cells)

TC_Nve (naive cells)

TC_8 (CD8 T cells) TC_8_Mem (memory cells)

TC_8_activated (effector CD8 T cells)

TC_gd (γδ T cells) TC_gd

TC_NKT (Natural killer T cells) TC_NKT

TC_Tregs (T regulatory cells) TC_Tregs

Celltypes1 (n=9) Celltypes2 (n=17) Celltypes3 (n=20) 
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NK Klra9 1 killer cell lectin-like receptor subfamily A, member 9 [MGI:1321153] 

NK Klri2 1 killer cell lectin-like receptor family I member 2 [MGI:2443965] 

NK Klra10 1 killer cell lectin-like receptor subfamily A, member 10 [MGI:1321093] 

NK Klre1 1 killer cell lectin-like receptor family E member 1 [MGI:2662547] 

MF Tmem106a 1 transmembrane protein 106A [MGI:1922056] 

MF Cndp2 1 CNDP dipeptidase 2 (metallopeptidase M20 family) [MGI:1913304] 

MF Abhd12 1 abhydrolase domain containing 12 [MGI:1923442] 

MF Nhlrc3 1 NHL repeat containing 3 [MGI:2444520] 

MF C1qc 0.91 complement component 1, q subcomponent, C chain [MGI:88225] 

DC Flt3 0.94 FMS-like tyrosine kinase 3 [MGI:95559] 

DC Syngr2 0.86 synaptogyrin 2 [MGI:1328324] 

DC Paxbp1 0.82 PAX3 and PAX7 binding protein 1 

DC Uvrag 0.82 UV radiation resistance associated gene [MGI:1925860] 

DC Mycl 0.76 v-myc avian myelocytomatosis viral oncogene lung carcinoma derived 

Neutro S100a9 1 S100 calcium binding protein A9 (calgranulin B) [MGI:1338947] 

Neutro Lcn2 1 lipocalin 2 [MGI:96757] 

Neutro Chi3l1 1 chitinase-like 1 

Neutro Csf3r 1 colony stimulating factor 3 receptor (granulocyte) [MGI:1339755] 

Neutro Spatc1 1 spermatogenesis and centriole associated 1 [MGI:1921531] 

MC Mcpt4 1 mast cell protease 4 [MGI:96940] 

MC Olfr920 1 olfactory receptor 920 [MGI:3030754] 

MC Tpsb2 1 tryptase beta 2 [MGI:96942] 

MC Ctsg 1 cathepsin G [MGI:88563] 

MC Tpsab1 1 tryptase alpha/beta 1 [MGI:96943] 

Baso Hgf 1 hepatocyte growth factor [MGI:96079] 

Baso Mcpt8 1 mast cell protease 8 [MGI:1261780] 

Baso Htr1b 1 5-hydroxytryptamine (serotonin) receptor 1B [MGI:96274] 

Baso Dnase2b 1 deoxyribonuclease II beta [MGI:1913283] 

Baso Hist1h2ac 1 histone cluster 1, H2ac [MGI:2448287] 

Stromal Enpp2 1 ectonucleotide pyrophosphatase/phosphodiesterase 2 [MGI:1321390] 

Stromal Nfib 1 nuclear factor I/B [MGI:103188] 

Stromal Tek 1 endothelial-specific receptor tyrosine kinase [MGI:98664] 

Stromal Parva 1 parvin, alpha [MGI:1931144] 

Stromal Timp3 1 tissue inhibitor of metalloproteinase 3 [MGI:98754] 

Table 2. First 5 gene markers with the highest Spec scores for 10 cell types from Celltypes1. 
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DETERMINATION OF AN INDEX OF CELLULAR IDENTITY (ICI) 

After the computation of Spec scores with the ImmGen profiles, the genes with the highest Spec scores 

were chosen as marker in order to identify a cell type in other data sets such as single-cell expression 

data. In order to be as consistent as possible between cell types, the number of markers chosen 

depended on the values of Spec scores and was based on the cumulative sum of each Spec score that 

reached a constant (the first markers were added until their cumulative sum of Specs scores reached 

a predetermined value). This constant was arbitrarily fixed at 10 after evaluation of the results 

obtained during the cross validation process (see next part). This constant of 10 resulted in about 10 

genes selected if the Spec scores were high and up to about 12 if they were low (meaning less specific). 

This number represented a good compromise, because single-cell expression data is likely to exhibit 

scarce genes expression and with too few markers we would endorse the risk of missing cell types. 

Additionally with too many markers we take the risk of adding less specific markers and therefore we 

might risk returning wrong profiles. 

The identification of cell types from single-cell or even cell-sorted bulk expression data was obtained 

by using an index of identification (ICI) for every cell types predefined with the Spec computation. This 

score of identification for a given cell type (t) was calculated by multiplying the expression values (eg) 

(TPM or micro-array expression values) of the predefined gene markers (g) by their corresponding Spec 

score (sg,t) and then averaged by the number of markers used (nt). The value was then weighted by the 

proportion of markers expressed and normalized from 0 to 1.  

 

PART III: CROSS-VALIDATION 

In order to evaluate the method of identification I used the method of the Leave-One Out Cross 

Validation (LOOCV) on the ImmGen samples. Multiple round of identification was made with a 

procedure that removed one ImmGen sample on each round, then the Specs score were calculated 

with the remaining dataset and the cell type identification (ICI) was performed on the removed sample. 

The results of this LOOCV are shown on Figures 5-6 with the immune profiles given in x-axis and the 

ImmGen samples on y-axis. It has to be mentioned that the Basophils and Langerhans cells samples 

were excluded of this validation because of their limited number of samples. We could clearly 

determine 8 general immune identities (celltypes1) for almost all ImmGen samples with a cumulative 
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Specs score of 10. With the exception of 2 DCs and 2 Macrophages samples that showed mixed 

identities between their immune profiles. However by taking the max value obtained in the cell type 

identity, their immune cell type was nevertheless correctly determined.  

 

Figure 5 Index of cell identity for the Leave One Out Cross Validation (LOOCV) with cumulative markers 
information of 10 (markers10) and for a cell type definition of level 1 (celltypes1).  

At a higher level of definition, with 14 different immune profiles, the algorithm could relatively well 

classify most of the profiles at the exception of CD4 and CD8 T cells that remained not clearly different, 

even though max values returned mostly correct identifications (Figure 6). Increasing the number of 

cell type to 17 with the differentiation of M1 and M2 macrophages and a different T cells classification 
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showed the same tendency for T cells and also decrease the identification value for DCs (Figure 7). 

However M1 and M2 macrophages could be differentiated to a certain extent. 

 

Figure 6. Index of cell identity for the Leave One Out Cross Validation (LOOCV) with cumulative markers 
information of 10 (markers10) and for a cell type definition of level 2 (celltypes2). 
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Figure 7. Index of cell identity for the Leave One Out Cross Validation (LOOCV) with cumulative markers 
information of 10 (markers10) and for a cell type definition of level 3 (celltypes3). 
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Figure 8. Correct cell type identification in LOOCV for different cell type definition and with different number 
of markers. 

Ultimately the identification algorithm could correctly identify most of the samples if the max value 

was taken and the cell type definition remained general. The percent of correct identification (when 

the max value was corresponding to the actual identity of the sample) is given in Figure 8 for 5 different 

sets of markers used (with an increased number of markers from markers5 to markers100). We can 

observe a decreased trend of correct identification when augmenting the number of markers. This 

trend has also been observed by Efroni et al, when identifying plant cells.14  

In order to further improve the identity predictions, I have proposed to use the identification algorithm 

sequentially by varying the predefined immune profiles. For example the samples identified as T cells 

by the algorithm identifying broad immune cell types are then analyzed more specifically with 

predefined immune profiles for determining only T cell subsets. The result of this identification with 

the LOOCV is shown on Figure 9. T cells subsets were globally identified correctly except for 5 samples 

with mixed identities. However, the identification remained mainly correct on the basis of the max 

value for determining the identity. Indeed we can deduce here that diminishing the number of cell 

types and focusing on one particular group such as T cells for the computation of Specs scores increases 

the power of discrimination of closely related samples.  
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Figure 9. Index of cell identity for the Leave One Out Cross Validation (LOOCV) with cumulative markers 
information of 10 (markers10) and for T cells with a cell type definition of level 2 (Tcells2). 

 

PART IV: IDENTIFICATION OF IMMUNE CELLS FROM SCRNA-SEQ DATA 

To explore the immune cell composition of the TME, I used the scRNA-seq data from the MelanomX 

project (plate X61, CD45+ cells, cell size of 5-10 µm). In brief, the sequenced cells originated from a 

genetically-engineered melanoma mouse model called iBIP2 mouse that develops tumor mimicking 

human melanoma and which was treated with anti-CTLA-4 and anti-PD-1 antibodies. The cells were 
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rapidly dissociated and sorted with flow cytometry using the CD45+ markers to capture specifically 

hematopoietic live cells. Then the sorted cells were isolated with the Fluidigm C1 technology, libraries 

were prepared and analyzed with the Illumina HiSeq sequencing machines. Hereafter, the cells that 

passed quality control (n=42) were further analyzed with the identification algorithm presented in this 

project. As seen on Figure 10 most the captured cells had a T cell profile (n=24), 7 cells were identified 

as NK cells, 1 as a B cell, 2 as neutrophils and 2 others as DCs. The other cells that did not reach a 

threshold 0.6 for their identity score were considered as undetermined (n=6).   

 

Figure 10. Immune cell type identification of CD45+ cells from the mouse melanoma tumor model. 
Identification was done with celltypes1 immune profiles and cumulative information threshold of 10 
(markers10). All identification value were considered significant P < 0.05 (otherwise indicated “ns”).  

 

Further identification with celltypes2 profiles (Figure 11) could determine that most T cells were 

classified as Treg but this has to be confirmed with a more precise identification using only T cells 
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identification algorithm. Additionally the 7 NK cells were found again, as the 2 neutrophils, the B cell 

and one DC showed a pDC profile while the other DC did not get a sufficient identification score (even 

if the max value return a conventional DC profile). 

 

Figure 11. Immune cell type identification of CD45+ cells from the mouse melanoma tumor model using the 
celltypes2 profiles. Identification was done with a cumulative information threshold of 10 (markers10). All 

identification value were considered significant P < 0.05 (otherwise indicated “ns”). 

To confirm some identities, specific gene expression of emblematic immune markers has been 

evaluated one by one and is described hereafter (data not shown in this report except for T cells in the 
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next part). The cell identified as a B cell was the only one to express the Cd19 gene which is specific for 

B cells. In addition this cell express MHC class II genes as the two other cells identified as DCs. Moreover 

the pDC marker Spib was highly expressed in the X61_50 sample (identified as pDC).17 Neutrophil 

marker (Csf3r, Fpr1, S100a8, S100a9, Cxcr2) were only expressed in the X61_33 and 75 cells. 

Interestingly the Ly6g (Gr-1) commonly used in FACS for defining neutrophils was not expressed in any 

of the cells. Additionally no clear macrophage markers were found, only sporadic expression of Adgre1 

(F4/80), which is not really specific for macrophages. For cells identified as NK, numerous killer cell 

lectin-like receptor subfamily A (Klra) genes were found to be expressed in most of these cells and the 

Ncr1 markers was specifically expressed in these cells. 

Finally using Tcells2 profiles on cells that was identified previously as T cells, returned again Treg as the 

main type of T cells and also showed 5 cells with a CD8 T cell profile, one CD4 T cells and one gamma-

delta T cell (all with an identification score above 0.6) (Figure 12). 

 

Figure 12.  Further cell type classification using Tcells2 profiles on cells previously identified as T cells (in 
Figure 10). All identification value were significant P < 0.05 (otherwise indicated “ns”). 
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To refine further the identification, specific genes expression for various T cell functions and identities 

are plotted for all identified T cells with Tcells2 (Figure 13). The y-axis represents the single cells 

labelled with the identification of Tcells2 when the identity score was above a threshold of 0.6 

(otherwise they were labelled as “mixed”). The horizontal axis shows particular genes grouped 

according to their importance in cell type definition or function such as T cell activation for example.   

At first glance we can observe here the heterogeneity of single-cell gene expression that does not 

provide crystal clear pattern but rather rugged gene expression. We can nevertheless observe that 

cells identified as Treg tends to cluster together with a similar expression of Il2ra (CD25), a marker for 

Treg but also of activated T cell. Indeed these cells are also enriched in markers of T cells activation 

such as Icos, Ox40 or 4-1bb in addition to the Cd4 expression. The latter cells also display the expression 

of immune checkpoint genes such as Ctla4 or Pdcd1 and a transcription factor associated with the 

dysfunction of tumor-infiltrating T cells: Gata3.18 Surprisingly, Foxp3, a critical driver of Treg 

development is only expressed in 4 cells but Gitr and Tnfrsf1b (Tnfr2) also specific for Treg were mostly 

found expressed in cells identified as Treg.  Additionally, granzymes which are associated with effector 

functions were also expressed in some of the cells identified as Treg. However granzymes have been 

shown to be essential for Treg suppressive immune function in tumors.19 Almost no cytokine (Il4, Il13, 

Il12b, Il6, Il21, Il17a, data not shown on the next figure) was found at the exception of Ifng in three 

cells of TC gamma-delta and mixed identities. Il10 was only found in the X61_72_1s sample, confirming 

its potent Treg immunosuppressive profile.  
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Figure 13. Heatmap of specific gene expression for various T cell functions and identities in cells identified as 
T cells by the identification algorithm. The y-axis represents the single cells labelled with the identification of 
Tcells2 when the identity score was above a threshold of 0.6 (otherwise they were labelled as “mixed”). The x-

axis represents T cells emblematic genes. Gene expression is given in Z-score and cells are clustered on the 
basis of the Euclidian distance of the gene expressed.  
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DISCUSSION 

As cellular identity can be defined by the molecular components of a cell, mainly mRNA and proteins, 

an approach measuring the whole content of mRNA in one cell as with scRNA-seq is indeed a major 

tool to gain insight of this identity. However the technical noise inherent with this technology and the 

apparent burst of transcription of single cell20, forces us to reconsider the way we define a cell type 

with gene markers in scRNA-seq data. Here I used a method that incorporate all the cell types in one 

analysis and provide multiple sets of specific markers for various immune cell types to further quantify 

the cellular identity of scRNA-seq data. The results of the internal validation using the leave one out 

method has demonstrated the potential of this method in quantifying correctly most of the ImmGen 

samples of known identity (Figure 8). However the cross validation method has its own limit of 

inference because it uses only its own samples and moreover it uses microarray data which provide 

much more consistent expression data than scRNA-seq. Additionally the selection of samples based on 

clustering proximity has partially standardized the immune profiles and therefore it might have slightly 

over fitted the cross validation. I expect that the development of scRNA-seq will provide more profiles 

of various immune cells that has been previously cell-sorted with cell-surface markers for a better 

assessment of the algorithm performances (external validity). 

The number of markers to use is also a crucial point of the analysis. I have evaluated empirically that a 

threshold of about 10 genes improved the number of correct identification with the cross validation 

(Figure 8). These results remain to be validated for single-cell, which probably contains a larger 

proportion of gene markers not expressed at all. Efroni et al also showed that a threshold of 20 was 

optimal for scRNA-seq data from plant cells and this threshold should be increased if the resolution of 

the data (ie the number of genes detected) decreased14. With our own scRNA-seq data I observed a 

slight decreased in the identification score when I increased the cumulative information threshold to 

20 or 50 (data not shown). It appears that there is a tradeoff between choosing too few and too many 

markers. With too few markers there is an improvement of the identity score (particularly if a large 

number of gene is detected) but the risk of missing an identity by the absence of a gene marker or 

being bias by a sporadic gene expression of one gene is also more likely. Conversely, by including too 

many markers, some markers would be less specific and jeopardize the identification with false-

positives.  

Another compelling and perhaps not sufficiently investigated parameter is the equation quantifying 

the identity (ICI). As the equation rely on the level of expression of a particular gene, the results might 

be influenced by an extreme expression value. Even if the algorithm takes into account the absence of 
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other markers and the Spec score by weighting the final identification score, it is yet possible to have 

false positives because of sporadic gene expression with extreme values. To test this assumption I have 

empirically modified one gene marker expression and found that it would require an extreme value of 

approximately 15 times the max expression value observed in the whole data set to decrease the 

identity index from 1 to 0.5 approximately. Even if the impact is finally quite small we could imagine 

to use a binning strategy in order to prevent this phenomenon but here I have simply determining a 

stringent threshold of 0.6 from which identities are validated. Additionally, a mixed identity of two 

profiles with an identity score around 0.5 may still be informative and would require further analysis 

like comparing the results with unsupervised clustering techniques or evaluating specifically the 

expression of other gene markers.    

This leads us toward the idea of a hierarchical identification process analysis, with multiple steps of 

identification to deepen and confirm the cell identity. As observed with the cross-validation in figure 6 

and 9, the identification scores for T cells have increased when Specs scores were calculated with a 

more narrow set of cell types (i.e. restricted to T cells). This process has also been used for identifying 

particular subsets of T cells in the scRNA-seq data for example (Figure 10 and 13). Moreover we can 

observe that the identification scores revealed more distinct identities in Figure 12.  

In an attempt to confirm the identities I have displayed the expression of particular genes among the 

identified cells (Figure 13). Interestingly the cells identified as Treg clustered together and displayed a 

relatively similar expression of Cd25 but most of them lack the expression of Foxp3. Hence, the 

accuracy of the Treg identification is challenged by this observation but other markers such as Ctla4, 

Gitr, TNfrsf1b, Ox40 well-known to be particularly expressed in Treg were also found in these cells21. 

Some of these markers are also part of the T cell activation module as Cd25 and therefore it is yet 

unclear whether these cells are truly Treg or activated T cells (theses two states are nevertheless not 

mutually exclusive). It has to be noticed that the Treg profile might also be related to the CD4 memory 

cells profile as their transcriptomes clustered closely in the unsupervised clustering analysis (Figure 

3A). This example illustrates here the difficulty of determining precisely the cellular identity based on 

some genes selected from the literature because on one hand, the scientific information relative to 

the emerging field of single-cell analysis is somewhat incomplete and on the other hand, a great 

number of immune genes were simply not expressed at all. Over the 42 cells that passed the quality 

control, a median of 2618 unique genes were detected, which remains relatively low. In addition, the 

presence of unpredicted simultaneous expression of genes that are usually mutually exclusive has 

been observed such as Cd4 and Cd8a (in sample X61_3) or MHC class II genes (H2-DMb2 or H2-DMa) 

and Cd3/2/8a (X61_43). MHC class II expression in some T cells subsets such as Treg has been 
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demonstrated in human or rat but never in mice.22,23 This observation would require more 

investigation in order to rule out a potential technical contamination of mRNA between wells during 

the Fluidigm C1 cell capture or unnoticed doublet cells for example.  

In addition the mouse used in this study has been treated with the combination of checkpoint 

inhibitors (anti-CTLA-4 and anti-PD-1), which further complicates the interpretation.  I was 

nevertheless able to demonstrate that the main immune cell types in our sample were T cells followed 

by NK cells and some neutrophils, dendritic and B cells. The small amount of myeloid cells found is 

explained by the cell size restriction of 5-10 µm used with the Fluidigm C1 integrated fluidic circuits 

that will likely exclude myeloid cells which are usually bigger than 10 µm. Therefore I would need more 

data to clarify the composition of the immune compartment in our mouse model of melanoma and 

especially scRNA-seq data from FACS sorted subpopulation of immune cells to validate definitely the 

algorithm. However the scripts are now available and ready to be embedded in an identification 

pipeline for large-scale analysis of mouse melanoma data. For human melanoma analysis I still require 

human immune cells repositories to compute Spec scores even though the immune system between 

human and mice is remarkably conserved. This represent the future goal of this project and human 

immune datasets are already under evaluation.24,25 

Finally, we can now also relate of the striking heterogeneity observed for cells of presumed same 

identity and this observation appears to be the norm in single-cell studies. 21,2526  Hence, we can argue 

whether this heterogeneity comes from technical limitations or originate from biological variation. 

Obviously, the small amount of mRNA in a cell represents a major technical challenge and must be a 

substantial source of the noise but it also appears that biological variation between cells of apparent 

same identities play also its part. This evidence has been confirmed by other studies using bar coding 

which have shown that various cell fates emerge from apparently identical cells.26,27 Hence, we can 

question whether this heterogeneity is in fact used by the organism to promote the diversity and the 

fine tuning of responses in a population of cells and if these variations are reflecting a more complex 

system. I believe that the development of single-cell technology will greatly help us in answering these 

questions.  
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MATERIALS AND METHODS 

IMMGEN 

Immune profiles were collected through the dataset retrieval section of the ImmGen website 

(www.immgen.org). Expression data of the selected immune profiles are available in a supplementary 

file. ImmGen immune profiles were obtained by averaging the expression of 3 biological replicates of 

10,000 to 30,000 FACS-sorted immune cells from C57BL/6 mice. Data were generated using the 

Affymetrix 1.0 ST mouse microarrays. As the arrays contained duplicated probes, the max expression 

values was selected for defining only one expression for each gene.  

MELANOMA TRANSGENIC MOUSE MODEL  

The melanoma single-cell data originate from an engineered melanoma mouse model called iBIP2 

(inducible human BRAFV600E, Ink4Arf floxed and PTEN floxed) that has been developed over a mouse 

with a genetic background of FVB at 70% and 30% of mixed background. These mice also have a CRE-

ERT2 recombinase under the control of a melanocyte specific promoter (tyrosinase promoter). Thus 

they develop melanoma with similar genetic mutations that are observed in human and were also 

treated similarly to the clinical situation with the checkpoint inhibitors anti-CTLA-4 and anti-PD-1. 

SINGLE-CELL RNA-SEQ DATA 

Single-cell data were produced by the MelanomX team from the iBIP2 mice. Briefly, the tumors were 

subject to disaggregation, enzymatic digestion and red blood cells lysis followed by FACS-sorting of the 

CD45+ live cells. Then the cells were captured with the Fluidigm C1 technology using small plates (wells 

of 5-10 μM), followed by cDNA preparation and barcoding using the SMARTer protocol (Clontech). The 

following cDNA was sequenced by using the Illumina HiSeq instrument at the Lausanne Genomic 

Technologies Facility (LGTF). For this project I used the expression data of the X61 small plate with 

CD45+ cells. In total 2’732’700 reads could be mapped over the mouse genome (91% of total reads) 

with 1'177'365 reads mapping protein coding genes. Quality control filtered single cells with a minimal 

number of 10’000 reads, at least 500 genes detected and with a minimal proportion of 50% of reads 

that mapped protein coding region. In total 42 cells passed the quality control and I used TPM (tags 

per million) as expression values for cell type identification. 

 

 

http://www.immgen.org/
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DATA AND SOURCE CODE 

All scripts were performed using R version 3.3.1. All the R and bash code are available in a separate 

file. The procedure started with selecting ImmGen samples (expData.txt and cellTypesV3.txt) with 

various unsupervised clustering techniques (t-SNE, PCA, MDS). Then the selected transcriptomes (106 

samples with each 21’755 genes) were splitted in matrix of 1000 genes (in specV3-7Analysis.R) for 

parallel calculation of Spec scores (according to Birnbaum and Efroni codes)13,14 over the Vital-it cluster 

(http://www.vital-it.ch). The 1000 rows submatrix were loaded on the cluster and a bash script 

(clusterScriptV3.sh) was launched with the bsub command. The output files were merged to provide a 

matrix of Spec scores for every genes (with specV3-7Analysis.R or scX61-4.R for sc-RNA-seq analysis). 

The parallelization method with submatrix returned the exact same Spec results whether the matrix 

was taken fully or partially. Then, the names of Specs genes were then converted to ensembl identifier 

using the Bioconductor package Biomart and matched with the ones obtained in the scRNA-seq 

experiment (unmatched genes were simply removed for the scRNA-seq experiment). Significance was 

determined by randomly selecting an identical number of markers and performing an identification 

1000 times to established a background distribution. The threshold for significance was defined as an 

identification value superior than the top 5% of the highest background identification and the p-value 

was adjusted with the false discovery rate (FDR). Cross-validation with the leave-one out method and 

Spec+ICI identification of the left out sample was also calculated on the cluster but with parallel 

calculation over the 103 samples removed one at a time (with the V3specClusterLOO.R and 

clusterScriptLOO.sh scripts, analysis of results: LOOCV_analysis.R). 

 

  

http://www.vital-it.ch/


 

25 

 

REFERENCES 

1. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell 2011;144:646-74. 
2. Hanahan D, Coussens LM. Accessories to the Crime: Functions of Cells Recruited to the Tumor 

Microenvironment. Cancer Cell 2012;21:309-22. 
3. Topalian SL, Sznol M, McDermott DF, et al. Survival, Durable Tumor Remission, and Long-Term Safety in 

Patients With Advanced Melanoma Receiving Nivolumab. Journal of Clinical Oncology 2014;32:1020-+. 
4. Hamid O, Robert C, Daud A, et al. Safety and Tumor Responses with Lambrolizumab (Anti-PD-1) in Melanoma. 

New England Journal of Medicine 2013;369:134-44. 
5. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 2011;480:480-9. 
6. Schreiber RD, Old LJ, Smyth MJ. Cancer Immunoediting: Integrating Immunity's Roles in Cancer Suppression 

and Promotion. Science 2011;331:1565-70. 
7. Islam S, Zeisel A, Joost S, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nature 

Methods 2014;11:163-+. 
8. Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-

organism science. Nature Reviews Genetics 2013;14:618-30. 
9. Jang JS, Simon VA, Feddersen RM, et al. Quantitative miRNA Expression Analysis Using Fluidigm Microfluidics 

Dynamic Arrays. Bmc Genomics 2011;12. 
10. Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively Parallel Single-Cell RNA-Seq for Marker-Free 

Decomposition of Tissues into Cell Types. Science 2014;343:776-9. 
11. Islam S, Kjällquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly 

multiplex RNA-seq. Genome Research 2011. 
12. Shay T, Kang J. Immunological Genome Project and systems immunology. Trends in Immunology 

2013;34:602-9. 
13. Birnbaum KD, Kussell E. Measuring cell identity in noisy biological systems. Nucleic Acids Res 2011;39:9093-

107. 
14. Efroni I, Ip PL, Nawy T, Mello A, Birnbaum KD. Quantification of cell identity from single-cell gene expression 

profiles. Genome Biology 2015;16. 
15. Murray Peter J, Allen Judith E, Biswas Subhra K, et al. Macrophage Activation and Polarization: Nomenclature 

and Experimental Guidelines. Immunity 2014;41:14-20. 
16. Wakabayashi Y, Watanabe H, Inoue J, et al. Bcl11b is required for differentiation and survival of alphabeta T 

lymphocytes. Nat Immunol 2003;4:533-9. 
17. Sasaki I, Hoshino K, Sugiyama T, et al. Spi-B is critical for plasmacytoid dendritic cell function and 

development. Blood 2012;120:4733. 
18. Singer M, Wang C, Cong L, et al. A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-

Infiltrating T Cells. Cell;166:1500-11.e9. 
19. Cao X, Cai SF, Fehniger TA, et al. Granzyme B and perforin are important for regulatory T cell-mediated 

suppression of tumor clearance. Immunity 2007;27:635-46. 
20. Satija R, Shalek AK. Heterogeneity in immune responses: from populations to single cells. Trends in 

Immunology 2014;35:219-29. 
21. Pfoertner S, Jeron A, Probst-Kepper M, et al. Signatures of human regulatory T cells: an encounter with old 

friends and new players. Genome Biol 2006;7:R54. 
22. Holling TM, Schooten E, van Den Elsen PJ. Function and regulation of MHC class II molecules in T-lymphocytes: 

of mice and men. Human Immunology 2004;65:282-90. 
23. Baecher-Allan C, Wolf E, Hafler DA. MHC class II expression identifies functionally distinct human regulatory 

T cells. Journal of immunology (Baltimore, Md : 1950) 2006;176:4622-31. 
24. Linsley PS, Speake C, Whalen E, Chaussabel D. Copy Number Loss of the Interferon Gene Cluster in Melanomas 

Is Linked to Reduced T Cell Infiltrate and Poor Patient Prognosis. PLOS ONE 2014;9:e109760. 
25. Hoek KL, Samir P, Howard LM, et al. A Cell-Based Systems Biology Assessment of Human Blood to Monitor 

Immune Responses after Influenza Vaccination. PLOS ONE 2015;10:e0118528. 
26. Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary 

glioblastoma. Science 2014;344:1396-401. 

 

 


