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The financial return of equity-indexed annuities depends on an underlying fund or investment portfolio 
complemented by an investment guarantee. We discuss a so-called cliquet-style or ratchet-type guarantee 
granting a minimum annual return. Its path-dependent payoff complicates valuation and risk management, 
especially if interest rates are modelled stochastically. We develop a novel scenario-matrix (SM) method. In 
the example of a Vasicek-Black-Scholes model, we derive closed-form expressions for the value and moment-

generating function of the final payoff in terms of the scenario matrix. This allows efficient evaluation of values 
and various risk measures, avoiding Monte-Carlo simulation or numerical Fourier inversion. In numerical tests, 
this procedure proves to converge quickly and outperforms the existing approaches in the literature in terms of 
computation time and accuracy.

1. Introduction

We discuss equity-indexed life insurance policies that guarantee a minimum annual return and allow to participate in returns of an underlying 
fund or investment portfolio. (see, e.g., Briys and Varenne, 1994; Grosen and Jørgensen, 2000; Graf et al., 2011; Bacinello et al., 2011). The payoff 
assures the policyholder a protected investment with potential additional gains while the insurance company takes a share of the surplus to cover 
expenses and reach profit targets. Variants that are particularly common in central Europe are cliquet-style guarantees that provide a constant 
minimum return on the contract’s investment. In the literature, these type of guarantees are also referred to as ratchet-type. The path-dependent 
nature of this product makes its valuation and risk management a complex task.

Commonly, these policies are settled with a long-term maturity. Due to the lack or high cost of long-term bonds, insurance companies can 
typically not fully eliminate their interest rate risk. The value of long-term guarantees depends substantially on interest rate risk and cliquet-options 
are prone to change in the interest rate environment. In the past, we have observed periods of low interest rates as well as rapid increases in 
the interest rate level. That is why it is advisable to consider interest rate risk for these types of products. Technically, modelling interest rates 
stochastically leads to a dependence between consecutive annual returns, complicating the analysis of cliquet-style guarantees. We contribute to the 
tractability of these products by introducing a novel scenario-matrix (SM) method.

The valuation and contract design of these types of guarantees is a frequently discussed problem. In Lévy settings, that is, under stationary and 
independent increments, the contract’s value can be expressed in terms of integral equations or Fourier algorithms, see Kassberger et al. (2008), 
Alonso-García et al. (2017) or, for a non-compounding variant of cliquet-guarantees, Bernard and Li (2013). Korn et al. (2017) use a central-limit 
type argument to approximate guarantee values in Heston’s stochastic volatility model. Miltersen and Persson (2003) consider a compounding type 
and investigate how to set up a mechanism for sharing the surplus between customer and insurer. Bacinello (2001) and Barbarin and Devolder 
(2005) outline strategies for choosing contract parameters such as the annual guarantee level and the participation rate.
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The literature on cliquet guarantees in a stochastic interest rate environment is rather scarce, probably due to the technical challenges. While the 
case of a maturity guarantee (e.g., Lin and Tan, 2003; Barbarin and Devolder, 2005; Bernard et al., 2005) can be tackled by standard option pricing 
theory, the cliquet-style variant requires more elaborate techniques. Existing results mostly rely on simulation (e.g., Zaglauer and Bauer, 2008; 
Deelstra and Rayée, 2013; Hieber et al., 2019, and many others). The case of a regime switching interest rate where the valuation can use Fourier 
techniques (e.g., Fan et al., 2015; Ignatieva et al., 2016; Hieber, 2017; Cui et al., 2017) or Erlangization techniques (e.g., Deelstra and Hieber, 2023) 
is analytically rather tractable. For the special case of two subperiods, Persson and Aase (1997) and Miltersen and Persson (1999) derive premiums 
in closed-form in a generalization of the Vasicek-Black-Scholes model. For the multi-period case, Kijima and Wong (2007) represent the value of a 
cliquet option in terms of a multi-dimensional normal integral. Further, a computationally more efficient approach is the PROJ method by Kirkby 
(2015), a frame projection approach that relies on density approximations through fast Fourier transformations. This idea is applied by Cui et al. 
(2017) to a cliquet option where the underlying can incorporate stochastic volatility models with jumps that are approximated by Markov chain 
processes. Kirkby (2023) uses the same technique for stochastic interest rate models.

In contrast to most of the previous articles, we do not only focus on the valuation problem, but also analyse the (interest rate) risk of cliquet-

style guarantees. The 2009-2022 low interest rate period has revealed that this risk can be substantial. Further, the SM method relies neither on 
simulations nor on Fourier transformation algorithms. To achieve this goal, we focus on a financial market that is modelled by a Vasicek-Black-

Scholes model, being less general than some of the related literature. Conditioning on the annual interest rates, this framework allows us to derive 
many quantities like the conditional moment-generating function of the logarithmic return in closed-form. This allows us to get values and higher 
moments of the payoff of the cliquet-option in terms of the scenario matrix (SM). In combination with techniques from Carr and Madan (1999) we 
obtain quantiles and the Value-at-Risk of cliquet-style guarantees. This proves to conveniently well approximate the true prices and risk measures. 
The final approximation requires the computation of (scenario) matrix multiplications only and turns out to be faster than benchmark techniques 
like the PROJ method.

The remainder of this article is organized as follows: In Section 2, we describe the underlying dynamics of the financial market and the payoff 
of the cliquet option that we want to consider. The SM method for efficiently estimating the moment-generating function and quantiles of the log-

payoff is introduced in Section 3. A brief introduction to techniques like Fourier pricing or the PROJ method and its application to cliquet options 
are given in Section 4. These serve as our benchmarks for accuracy and time efficiency, which we consider in numerical experiments in Section 5. 
We also investigate the sensitivity of risk metrics like the expected discounted payoff or the Value-at-Risk with respect to different parameters.

2. Equity-indexed annuities and financial market

We look at equity-indexed annuities with a single premium 𝑃0 paid at time 0. Their payoff depends on the financial market. To describe the 
market, we consider a probability space (Ω, A , ℙ, F𝑡), where ℙ is the real world measure and F𝑡 = 𝜎(𝑊 (1)

𝑠 , 𝑊 (2)
𝑠 , 𝑠 ⩽ 𝑡) is the natural filtration for two 

independent Brownian motions 𝑊 (1)
𝑡 and 𝑊 (2)

𝑡 . The stochastic interest rate process follows

d𝑟𝑡 = 𝜅
(
𝜃∗ − 𝑟𝑡

)
d𝑡+ 𝜎𝑟 d𝑊

(1)
𝑡 , 𝑟0 ∈ℝ , (1)

under the real-world measure ℙ with mean-reversion speed 𝜅 ∈ ℝ, long-term mean interest rate level 𝜃∗ ∈ ℝ and volatility 𝜎𝑟 > 0. The financial 
market contains a risky asset {𝑆𝑡}𝑡≥0 with dynamics under the real-world measure ℙ

d𝑆𝑡 = 𝑆𝑡

(
𝜇𝑡 d𝑡+ 𝜎𝑆

(
𝜌d𝑊 (1)

𝑡 +
√
1 − 𝜌2 d𝑊 (2)

𝑡

))
, 𝑆0 = 1 , (2)

where 𝜇𝑡 is the drift term, 𝜎𝑆 > 0 the volatility and 𝜌 ∈ [−1, 1] the correlation parameter.

Starting from the single premium 𝑃0, every year, the policyholder account is continuously compounded by a rate of return. This rate is determined 
by the maximum of a participation share 𝛼 ∈ (0, 1) of the log-returns of the underlying ln(𝑆𝑡∕𝑆𝑡−1) and the guaranteed rate 𝑔. The maturity of the 
contract is 𝑇 > 0. The compounding nature of the cliquet option leads to the time-𝑇 payoff to the policyholders

𝑌𝑇 = 𝑃0 ⋅
𝑇∏

𝑡=1
max

(
e𝑔,

(
𝑆𝑡

𝑆𝑡−1

)𝛼)
. (3)

We also introduce the risk-free discounted payoff as

𝑍𝑇 = e−∫ 𝑇
0 𝑟𝑠 d𝑠 ⋅ 𝑌𝑇 .

For the valuation of equity-indexed annuities, we assume that there exist constant risk premiums 𝜆𝑟, 𝜆𝑆 ∈ ℝ for both the interest rate (1) and 
asset process (2) (see also Barbarin and Devolder, 2005; Graf et al., 2011; Hieber et al., 2019). More specifically, we suppose 𝜃∗ = 𝜃 + 𝜆𝑟𝜎𝑟

𝜅
and 

𝜇𝑡 = 𝑟𝑡 + 𝜆𝑆 . Analogously to Graf et al. (2011), this uniquely determines the valuation measure via the change of measure:

dℚ
dℙ

|||||F𝑡

= e
−𝜆𝑟𝑊

(1)
𝑡 − 1

2 𝜆2𝑟 𝑡− 𝜆𝑆−𝜌𝜆𝑟𝜎𝑆√
1−𝜌2𝜎𝑆

𝑊
(2)
𝑡 − 1

2
(𝜆𝑆−𝜌𝜆𝑟𝜎𝑆 )2

(1−𝜌2)𝜎2
𝑆

𝑡

. (4)

Note that, given this assumption, the short rate process follows a Vasicek model under both ℙ and ℚ. Additionally, the dynamics for the risky asset 
under ℚ are as in (2) with drift term 𝜇𝑡 replaced by the interest rate 𝑟𝑡. The long-term mean interest rate under ℚ is 𝜃.

To analyse the interest rate risk of equity-indexed annuities, we want to efficiently compute the expected discounted payoff 𝔼ℚ[𝑍𝑇 ], the variance 
of the discounted payoff Varℙ[𝑍𝑇 ] and the probability that the terminal payoff exceeds certain thresholds 𝐺 > 0, that is ℙ(𝑌𝑇 > 𝐺). The latter 
probability allows us to analyse contracts with an additional maturity guarantee 𝐺, that is payoffs of the form max(𝑌𝑇 , 𝐺). We can also derive 
16

Value-at-Risk and downside-risk related quantities of interest.
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3. Moment-generating function

To study these products more closely, we first derive the moment-generating function of the logarithm of the discounted payoff random variable 
𝑍𝑇 . To simplify the notation, define the logarithm of the discounted annual returns 𝐿𝑡−1,𝑡 as

𝐿𝑡−1,𝑡 ∶= ln
(
e−∫ 𝑡

𝑡−1 𝑟𝑠 d𝑠 ⋅max
(
e𝑔,

( 𝑆𝑡

𝑆𝑡−1

)𝛼))
=max

(
𝑔, 𝛼 ⋅ ln

( 𝑆𝑡

𝑆𝑡−1

))
−

𝑡

∫
𝑡−1

𝑟𝑠 d𝑠 ,

so that

𝑍𝑇 = 𝑃0 ⋅
𝑇∏

𝑡=1
e𝐿𝑡−1,𝑡 .

The moment-generating function L (𝑢) ∶= 𝔼 
[
e𝑢𝑋

]
of a random variable 𝑋 allows us to make inferences about its distribution. The moment-generating 

function of the logarithm of 𝑍𝑇 can be expressed as

L𝑇 (𝑢) = 𝔼
[
e𝑢⋅ln(𝑍𝑇 )

]
= 𝔼

[
(𝑍𝑇 )𝑢

]
= 𝔼

[
(𝑃0)𝑢

𝑇∏
𝑡=1

𝔼
[
e𝑢⋅𝐿𝑡−1,𝑡

|||| 𝑟𝑡−1, 𝑟𝑡

]]
. (5)

Theorem 3.1 provides closed-form expressions for the conditional moment-generating function 𝜙𝑟𝑡−1 ,𝑟𝑡
(𝑢) ∶= 𝔼

[
e𝑢⋅𝐿𝑡−1,𝑡 | 𝑟𝑡−1, 𝑟𝑡

]
in equation (5).

Theorem 3.1 (Conditional moment-generating function). Assume that the financial market is described by (1) and (2). Define

𝑔𝜅 (𝑡) ∶=
1 − e−𝜅𝑡

𝜅
.

The moment-generating function of the discounted annual log-returns 𝐿𝑡−1,𝑡 , conditional on 𝑟𝑡−1, 𝑟𝑡, is given by

𝜙𝑟𝑡−1 ,𝑟𝑡
(𝑢) ∶= 𝔼ℚ

[
e𝑢⋅𝐿𝑡−1,𝑡

|||| 𝑟𝑡−1, 𝑟𝑡

]
= e−𝑢𝜇(𝑟𝑡−1 ,𝑟𝑡)+𝑢2 Σ2

2

(
e𝑢𝑔Φ

( 𝑔

𝛼
− 𝜇(0, 𝑢, 𝑟𝑡−1, 𝑟𝑡)

Σ̃

)
+ e𝑢𝜇(0,𝑢,𝑟𝑡−1 ,𝑟𝑡)𝛼+

1
2 𝑢2𝛼2Σ̃2Φ

(
− 𝑔

𝛼
+ 𝜇(0, 𝑢, 𝑟𝑡−1, 𝑟𝑡) + 𝑢𝛼Σ̃2

Σ̃

))
, (6)

where Φ describes the cumulative distribution function of a standard normal random variable and

𝜇(𝑟𝑡−1, 𝑟𝑡) =
𝑔𝜅 (1)
1 + e−𝜅

⋅ (𝑟𝑡−1 + 𝑟𝑡) +

(
1 −

2𝑔𝜅 (1)
1 + e−𝜅

)
⋅ 𝜃 ,

Σ2 = 𝜎2
𝑟

(
1 − 𝑔𝜅 (1)

𝜅2 −
𝑔𝜅 (1)2

𝜅(1 + e−𝜅 )

)
,

𝑐 = 𝜎2
𝑟

(
1 − 𝑔𝜅 (1)

𝜅2 −
𝑔𝜅 (1)2

2𝜅
−

𝑔𝜅 (1)3

2(1 + 𝑒−𝜅 )

)
−

𝜌𝜎𝑆𝜎𝑟

𝜅

(
2𝑔𝜅 (1)
1 + e−𝜅

− 1

)
,

𝜇(𝜆, 𝑢, 𝑟𝑡−1, 𝑟𝑡) = 𝜆+
𝑔𝜅 (1) − 2𝜌 𝜎𝑆

𝜎𝑟
e−𝜅

1 + e−𝜅
⋅ 𝑟𝑡−1 +

𝑔𝜅 (1) + 2𝜌 𝜎𝑆

𝜎𝑟

1 + e−𝜅
⋅ 𝑟𝑡 +

(
1 − 2

𝑔𝜅 (1) + 𝜌
𝜎𝑆

𝜎𝑟
(1 − e−𝜅 )

1 + e−𝜅

)
⋅ 𝜃 − 𝑐 ⋅ 𝑢− 1

2
𝜎2

𝑆
,

Σ̃2 = 𝑐 + 𝜎2
𝑆
− 2𝜌2𝜎2

𝑆

𝑔𝜅 (1)
1 + e−𝜅

−
𝜌𝜎𝑆𝜎𝑟

𝜅

(
2𝑔𝜅 (1)
1 + e−𝜅

− 1

)
.

Proof. See the Appendix A. □

Remark 3.2. (a) In (6), we determined the conditional moment-generating function under the risk neutral measure ℚ. We can also derive an 
expression under ℙ since the financial market follows a Vasicek-Black-Scholes model under both measures. Considering the change of measure as in 
(4), we only have to set 𝜆 = 𝜆𝑆 and change 𝜃 to 𝜃∗ = 𝜃 + 𝜆𝑟𝜎𝑟

𝜅
to obtain the result under ℙ.

(b) Note that (6) can be modified to calculate the moment-generating function of the undiscounted annual log-returns 𝐿∗
𝑡−1,𝑡 ∶= max(𝑔, 𝛼 ⋅ ln(𝑆𝑡∕𝑆𝑡−1)). 

For this derivation, we do not change the measure as in Appendix A and we thus find

𝔼ℚ

[
e𝑢⋅𝐿∗

𝑡−1,𝑡
|||| 𝑟𝑡−1, 𝑟𝑡

]
= e𝑢𝑔Φ

( 𝑔

𝛼
− 𝜇∗(0, 𝑟𝑡−1, 𝑟𝑡)

Σ̃

)
+ e𝑢𝜇∗(0,𝑟𝑡−1 ,𝑟𝑡)𝛼+

1
2 𝑢2𝛼2Σ̃2Φ

(
− 𝑔

𝛼
+ 𝜇∗(0, 𝑟𝑡−1, 𝑟𝑡) + 𝑢𝛼Σ̃2

Σ̃

)
,

where 𝜇∗(𝜆, 𝑟𝑡−1, 𝑟𝑡) = 𝜇(𝜆, 𝑢, 𝑟𝑡−1, 𝑟𝑡) + 𝑐 ⋅ 𝑢. Therefore, we are also able to describe the distribution of the undiscounted payoff 𝑌𝑇 . This is, for example, 
needed to include caps on the ultimate payoff 𝑌𝑇 at maturity. However, for simplicity, we continue to derive our approximation for the discounted 
payoff 𝑍𝑇 .

(c) We are interested in estimating quantiles of the solvency ratio 𝑌𝑇 ∕𝑆𝑇 since this provides insightful risk measures. We have

𝔼
[
e𝑢⋅ln(𝑌𝑇 ∕𝑆𝑇 )

]
= 𝔼

[(
𝑌𝑇

𝑆𝑇

)𝑢]
= 𝔼

[
𝑇∏

𝑡=1
𝔼
[
e
𝑢⋅𝐿∗

𝑡−1,𝑡−𝑢⋅ln
(

𝑆𝑡
𝑆𝑡−1

) |||| 𝑟𝑡−1, 𝑟𝑡

]]
.

17
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𝔼ℚ

[
e
𝑢⋅𝐿∗

𝑡−1,𝑡−𝑢⋅ln
(

𝑆𝑡
𝑆𝑡−1

) |||| 𝑟𝑡−1, 𝑟𝑡

]
=e𝑢𝑔−𝑢𝜇∗(0,𝑟𝑡−1 ,𝑟𝑡)+

1
2 𝑢2Σ̃2Φ

( 𝑔

𝛼
− 𝜇∗(0, 𝑟𝑡−1, 𝑟𝑡) + 𝑢Σ̃2

Σ̃

)

+ e𝑢𝜇∗(0,𝑟𝑡−1 ,𝑟𝑡)(𝛼−1)+
1
2 𝑢2(𝛼−1)2Σ̃2Φ

(
− 𝑔

𝛼
+ 𝜇∗(0, 𝑟𝑡−1, 𝑟𝑡) + 𝑢(𝛼 − 1)Σ̃2

Σ̃

)
.

3.1. Approximation on a grid

Given the conditional moment-generating function (6), we still need to determine the outer expectation in (5), that is to integrate over the annual 
interest rates (𝑟1, 𝑟2, …, 𝑟𝑇 ). We approximate this integral by choosing discrete grid points −∞ < 𝑟(1) < ⋯ < 𝑟(𝐾+1) =∞, 𝐾 ∈ℕ, for the annual interest 
rates 𝑟1, … , 𝑟𝑇 . We further set 𝑟(0) = −∞ and 𝑟(𝐾+1) = ∞. We want to choose a grid that contains 𝑟0 and set 𝑟(𝑖0) = 𝑟0. A possibility on how to choose 
this grid is Example 3.3.

Example 3.3 (Choice of discretization). In a Vasicek model, the interest rate 𝑟𝑡 is normally distributed with variance �̂�2
𝑡 = 𝜎2𝑟

2𝜅 (1 − e−2𝜅𝑡). We 
may just choose an equidistant grid around 𝑟0 whose upper and lower bounds exceed the 99.9% and 0.01% quantiles of 𝑟𝑇 , for example 
𝑟(𝑗) = 𝑟0 + 8

(
𝑗 − 𝐾

2

)
∕𝐾 ⋅ �̂�𝑇 , for 𝑗 = 1, 2, … , 𝐾 and uneven 𝐾 . In this case, 𝑖0 = (𝐾 + 1)∕2. Note, that centering around 𝑟0 in this way is only rea-

sonable if it is not too far from the long-term mean 𝜃.

We denote the interval around 𝑟(𝑗), 1 ≤ 𝑗 ≤ 𝐾 , by

[
𝑟(𝑗)

]
∶=

(
𝑟(𝑗−1) + 𝑟(𝑗)

2
,
𝑟(𝑗) + 𝑟(𝑗+1)

2

]
. (7)

We proceed as follows: Using the same grid for each rate 𝑟1, … , 𝑟𝑇 allows us to speed up calculations significantly. For subsequent rates (𝑟𝑡−1, 𝑟𝑡), we 
apply a two-dimensional trapezoidal rule based on rectangles 𝑟𝑡−1 × 𝑟𝑡 =

[
𝑟(𝑖)

]
×
[
𝑟(𝑗)

]
, 𝑖, 𝑗 = 1, 2, … , 𝐾 . On each of these rectangles, we assume that the 

conditional moment-generating function is constant, approximated by 𝜙𝑟(𝑖) ,𝑟(𝑗) (𝑢), that is:

𝔼
[
e𝑢⋅𝐿𝑡−1,𝑡

|||| 𝑟𝑡−1 ∈
[
𝑟(𝑖)

]
, 𝑟𝑡 ∈

[
𝑟(𝑗)

]]
≈ 𝔼

[
e𝑢⋅𝐿𝑡−1,𝑡

|||| 𝑟𝑡−1 = 𝑟(𝑖), 𝑟𝑡 = 𝑟(𝑗)
]
= 𝜙𝑟(𝑖) ,𝑟(𝑗) (𝑢) . (8)

The probability mass over the rectangle 𝑟𝑡−1 × 𝑟𝑡 ∈
[
𝑟(𝑖)

]
×
[
𝑟(𝑗)

]
is approximately the same as the integrated density over 𝑟𝑡−1 × 𝑟𝑡 ∈ 𝑟(𝑖) ×

[
𝑟(𝑗)

]
and thus 

we find the probabilities

ℙ
(
𝑟𝑡 ∈

[
𝑟(𝑗)

] |||| 𝑟𝑡−1 ∈
[
𝑟(𝑖)

])
≈ ℙ

(
𝑟(𝑗−1) + 𝑟(𝑗)

2
< 𝑟𝑡 ≤ 𝑟(𝑗) + 𝑟(𝑗+1)

2

||||| 𝑟𝑡−1 = 𝑟(𝑖)

)
=Φ

⎛⎜⎜⎝
𝑟(𝑗)+𝑟(𝑗+1)

2 − 𝜇𝑖

�̂�1

⎞⎟⎟⎠−Φ
⎛⎜⎜⎝

𝑟(𝑗−1)+𝑟(𝑗)

2 − 𝜇𝑖

�̂�1

⎞⎟⎟⎠ =∶ 𝑝𝑖𝑗 , (9)

for any combination 𝑖 × 𝑗 ∈ {1, 2, … , 𝐾} × {1, 2, … , 𝐾}, where 𝜇𝑖 = e−𝜅 ⋅ 𝑟(𝑖) + 𝜃(1 − e−𝜅 ) and �̂�2
1 = 𝜎2𝑟

2𝜅 (1 − e−2𝜅 ). These probabilities together with the 
conditional moment-generating functions define the scenario matrix 

(
Q(𝑢)

)
𝑖,𝑗

≈
(
𝜙𝑟(𝑖) ,𝑟(𝑗) (𝑢) ⋅ 𝑝𝑖𝑗

)
𝑖,𝑗

. The scenario probabilities 𝑝𝑖𝑗 in each row of this 
matrix sum up to 1, that is ∑𝐾

𝑖=1 𝑝𝑖𝑗 = 1. The moment-generating function of the logarithm of the discounted payoff variable 𝑍𝑇 can be expressed in 
terms of this matrix, see Theorem 3.4.

Theorem 3.4 (Moment-generating function L𝑇 (𝑢)). We approximate the moment-generating function L𝑇 (𝑢) of the logarithm of the time-0 value of the 
payoff 𝑌𝑇 by L̂𝑇 (𝑢) through a matrix iteration

L𝑇 (𝑢) = (𝑃0)𝑢 ⋅ 𝟏′𝑖0 Q(𝑢)𝑇 𝟏 ≈ (𝑃0)𝑢 ⋅ 𝟏′𝑖0 Q̂(𝑢)𝑇 𝟏 = L̂𝑇 (𝑢) , (10)

where 𝟏 = (1, … , 1)′ and ′ denotes the transposition of a vector. 𝟏𝑖0
is a unit vector that has an entry of 1 in the 𝑖0-th position. For a matrix Q ∈ℝ𝐾×𝐾 , note 

that 
(
Q
)𝑇 ∶= Q ⋅Q⋯ Q. The scenario matrix Q(𝑢) has entries(
Q(𝑢)

)
𝑖,𝑗

= 𝔼
[
e𝑢⋅𝐿𝑡−1,𝑡

|||| 𝑟𝑡−1 ∈
[
𝑟(𝑖)

]
, 𝑟𝑡 ∈

[
𝑟(𝑗)

]]
⋅ℙ

(
𝑟𝑡 ∈

[
𝑟(𝑗)

] |||| 𝑟𝑡−1 ∈
[
𝑟(𝑖)

])
. (11)

Using (8), (9), these entries can be approximated as 
(
Q(𝑢)

)
𝑖,𝑗

≈
(
Q̂(𝑢)

)
𝑖,𝑗

= 𝜙𝑟(𝑖) ,𝑟(𝑗) (𝑢) ⋅ 𝑝𝑖𝑗 , where 𝑝𝑖𝑗 is as in (9) and 𝜙𝑟(𝑖) ,𝑟(𝑗) (𝑢) was defined in Theorem 3.1.

Proof. We use the fact that, conditional on the annual interest rates 𝑟1, … , 𝑟𝑇 , the annual increments of our underlying are independent. Adapting 
a conditioning idea from Hieber (2017) for regime switching models to our setting yields

L̂𝑇 (𝑢) = (𝑃0)𝑢 ⋅ 𝔼
[
e−𝑢⋅∫ 𝑇

0 𝑟𝑠 d𝑠e
𝑢⋅
∑𝑇

𝑡=1 max
(
𝑔, 𝛼 ln

(
𝑆𝑡

𝑆𝑡−1

))]
= (𝑃0)𝑢 ⋅ 𝔼

[
𝔼

[
𝑇∏

𝑡=1
e𝑢⋅𝐿𝑡−1,𝑡

|||| 𝑟1
]]

= (𝑃0)𝑢 ⋅
𝐾∑

𝑖=1
𝔼
[
1{

𝑟1∈
[
𝑟(𝑖)

]}e𝑢⋅𝐿0,1

]
𝔼

[
𝑇∏

𝑡=2
e𝑢⋅𝐿𝑡−1,𝑡

|||| 𝑟1 ∈ [
𝑟(𝑖)

]]

= (𝑃0)𝑢 ⋅
(
𝔼
[
1{

𝑟1∈
[
𝑟(1)

]}e𝑢⋅𝐿0,1

]
⋯𝔼

[
1{

𝑟1∈
[
𝑟(𝐾)]}e𝑢⋅𝐿𝑡−1,𝑡 )

])
⋅

⎛⎜⎜⎜⎜
𝔼
[∏𝑇

𝑡=2 e
𝑢⋅𝐿𝑡−1,𝑡

|||| 𝑟1 ∈ [
𝑟(1)

]]
⋮[∏𝑇 𝑢⋅𝐿 | [ (𝐾)]]

⎞⎟⎟⎟⎟

18

⎜⎝ 𝔼 𝑡=2 e 𝑡−1,𝑡 ||| 𝑟1 ∈ 𝑟 ⎟⎠
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= (𝑃0)𝑢 ⋅ 𝟏′𝑖0 ⋅Q(𝑢)

⎛⎜⎜⎜⎜⎜⎝

∑𝐾
𝑗=1 𝔼

[
1{

𝑟2∈
[
𝑟(𝑗)

]}e𝑢⋅𝐿1,2
|||| 𝑟1 ∈ [

𝑟(1)
]]

𝔼
[∏𝑇

𝑡=3 e
𝑢𝐿𝑡−1,𝑡

|||| 𝑟2 ∈ [
𝑟(𝑗)

]]
⋮∑𝐾

𝑗=1 𝔼
[
1{

𝑟2∈
[
𝑟(𝑗)
]}e𝑢⋅𝐿1,2

|||| 𝑟1 ∈ [
𝑟(𝐾)]]𝔼[∏𝑇

𝑡=3 e
𝑢⋅𝐿𝑡−1,𝑡

|||| 𝑟2 ∈ [
𝑟(𝑗)

]]
⎞⎟⎟⎟⎟⎟⎠

= (𝑃0)𝑢 ⋅ 𝟏′𝑖0
(
Q(𝑢)

)2
⋅

⎛⎜⎜⎜⎜⎜⎝
𝔼
[∏𝑇

𝑡=3 e
𝑢⋅𝐿𝑡−1,𝑡

|||| 𝑟2 ∈ [
𝑟(1)

]]
⋮

𝔼
[∏𝑇

𝑡=3 e
𝑢⋅𝐿𝑡−1,𝑡

|||| 𝑟2 ∈ [
𝑟(𝐾)]]

⎞⎟⎟⎟⎟⎟⎠
=⋯ = (𝑃0)𝑢 ⋅ 𝟏′𝑖0 Q(𝑢)𝑇 𝟏 .

The entries of Q(𝑢) are(
Q(𝑢)

)
𝑖,𝑗

= 𝔼
[
e𝑢⋅𝐿𝑡−1,𝑡

|||| 𝑟𝑡−1 ∈
[
𝑟(𝑖)

]
, 𝑟𝑡 ∈

[
𝑟(𝑗)

]]
⋅ℙ

(
𝑟𝑡 ∈

[
𝑟(𝑗)

] |||| 𝑟𝑡−1 ∈
[
𝑟(𝑖)

])
.

Note that these do not depend on the time 𝑡 since, conditioned on the same preceding and succeeding interest rates 𝑟(𝑖) and 𝑟(𝑗), the annual returns 
and discount factors are identically distributed. □

Remark 3.5. In practice, we avoid computing 𝑇 matrix-matrix products in (10) by iteratively computing 𝑇 matrix-vector products Q̂(𝑢)𝑇 𝟏 =
Q̂(𝑢)(Q̂(𝑢)𝑇−1𝟏). Therefore, our algorithm implicitly computes the moment-generating function for the same policy with all maturities in one run. 
This allows to incorporate mortality and cancellation probabilties that are independent of the financial market prior to maturity 𝑇 .

Letting 𝐾 → ∞ and thus reducing the size of the intervals, our approximation of the interest rates converges weakly to the true process, see 
Theorem 3.6. In Section 5, we discuss the choice of the number of gridpoints 𝐾 .

Theorem 3.6 (Weak convergence). Let (�̄�𝐾
𝑡 )𝑡∈ℕ be a discrete time process that uses the transition probabilities described in (9) and let the grid points 𝑟(𝑗) be 

chosen so that ℙ(𝑟1 ∈ [𝑟(𝑗)]) ∈ O(1∕𝐾), 𝑗 = 1, … , 𝐾 . Then, for all 𝑡 ∈ℕ, �̄�𝑡 converges weakly to the continuous process 𝑟𝑡 in (1).

Proof. See the Appendix B. □

3.2. Quantile and tail probability estimation

We are interested in quantiles of the undiscounted payoff variable 𝑌𝑇 . For our cliquet option with maturity 𝑇 and a constant 𝐺 ∈ℝ, we have:

𝑃𝑇 (𝐺) ∶= ℙ
(
ln(𝑌𝑇 ) > 𝐺

)
=

∞

∫
𝐺

𝑝𝑇 (𝑠)d𝑠 ,

where 𝑝𝑇 denotes the density of the logarithm of 𝑌𝑇 . To compute these tail probabilities given the moment-generating function of the logarithm of 
𝑌𝑇 , we apply the fast Fourier algorithm, see, for example, Carr and Madan (1999).

We introduce a dampening coefficient 𝛾 ∈ (0, ∞) to define a dampened probability 𝑑𝑇 (𝐺) and its Fourier transformation 𝜓𝑇 (𝑣) as

𝑑𝑇 (𝐺) ∶= e𝛾𝐺𝑃𝑇 (𝐺), 𝜓𝑇 (𝑣) =

∞

∫
−∞

ei𝑣𝐺𝑑𝑇 (𝐺) d𝐺 .

Then, we can relate these two quantities via

𝑃𝑇 (𝐺) = e−𝛾𝐺

2𝜋

∞

∫
−∞

e−i𝑣𝐺𝜓𝑇 (𝑣) d𝑣 = e−𝛾𝐺

𝜋

∞

∫
0

e−i𝑣𝐺𝜓𝑇 (𝑣) d𝑣 , (12)

where we can express

𝜓𝑇 (𝑣) =

∞

∫
−∞

ei𝑣𝐺

∞

∫
𝐺

e𝛾𝐺𝑝𝑇 (𝑠) d𝑠d𝐺 =

∞

∫
−∞

𝑝𝑇 (𝑠)

𝑠

∫
−∞

e(i𝑣+𝛾)𝐺 d𝐺 d𝑠 =

∞

∫
−∞

𝑝𝑇 (𝑠)
e(i𝑣+𝛾)𝑠

𝛾 + i𝑣
d𝑠 =

L𝑇 (𝛾 + i𝑣)
𝛾 + i𝑣

.

It is possible to simultaneously calculate these probabilities for various thresholds 𝐺𝑘 via fast Fourier transformation.

To this end, let 𝑣𝑗 = 𝜂(𝑗 − 1) and 𝐺𝑘 = 𝑏 +𝜔(𝑘 −1) for 𝜂, 𝜔 > 0 and 𝑗, 𝑘 = 1, … , 𝑁 , 𝑁 ∈ℕ, such that 𝜔𝜂 = 2𝜋
𝑁

. A standard Simpson’s rule applied to (12)

gives

𝑃𝑇 (𝐺𝑘) ≈
e−𝛾𝐺𝑘

𝜋

𝑁∑
𝑗=1

e−i𝑣𝑗𝐺𝑘𝜓(𝑣𝑗 ) ⋅
𝜂

3

(
3 + (−1)𝑗 − 𝛿𝑗−1

)
= e−𝛾𝐺𝑘

𝜋

𝑁∑
𝑗=1

e−i
2𝜋
𝑁

(𝑗−1)(𝑢−1)e−i𝑏𝑣𝑗
L𝑇 (𝛾 + i𝑣𝑗 )

𝛾 + i𝑣𝑗

⋅
𝜂

3

(
3 + (−1)𝑗 − 𝛿𝑗−1

)
,

where 𝛿𝑛 is equal to 1 for 𝑛 = 0 and zero otherwise. This immediately allows to apply fast Fourier transformation.

An application of this technique for calculating exceedance probabilities is to consider a capped index participation that limits the maximum 
19

reward for the policyholder at time 𝑇 at some upper barrier 𝐺𝑘.
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Fig. 1. Sample paths of Markov chain approximations �̌� (left column) and annual rounding to the nearest grid point as in the SM method (right column) for 𝐾 = 8
(first row) and 𝐾 = 87 grid points (second row). The parameters have been chosen as in Table 1.

4. Benchmarks: Markov chain approximation, Fourier pricing and PROJ

Different from our approach, several authors approximate the interest rate process by a Markov chain. Using the discrete grid introduced earlier, 
this means that the interest rate can only take discrete values 𝑟(1), 𝑟(2), … , 𝑟(𝐾), summarized in the vector 𝒓 ∶= (𝑟(1), 𝑟(2), … , 𝑟(𝐾))′ ∈ℝ𝐾 . The Markov 
chain approximation (�̌�𝑡)𝑡≥0 is defined by a suitable choice of the intensity matrix 𝑸 = (𝑞𝑘,𝑗 )𝑘,𝑗 that defines the transition between the 𝐾 states. For 
𝑘, 𝑗 = 1, 2, … , 𝐾 , an example is

𝑞𝑘,𝑗 =

⎧⎪⎪⎨⎪⎪⎩

𝜎2𝑟 −𝜅(𝜃−𝑟(𝑘))𝑐𝑘

𝑐𝑘−1(𝑐𝑘−1+𝑐𝑘)
if 𝑗 = 𝑘− 1 ,

𝜎2𝑟 +𝜅(𝜃−𝑟(𝑘))𝑐𝑘−1
𝑐𝑘(𝑐𝑘−1+𝑐𝑘)

if 𝑗 = 𝑘+ 1 ,

−𝑞𝑘,𝑘−1 − 𝑞𝑘,𝑘+1 if 𝑗 = 𝑘 ,

(13)

where 𝑐𝑘 ∶= 𝑟(𝑘+1) − 𝑟(𝑘). The approximation (13) was introduced by Lo and Skindilias (2014) as a generalization of Kushner and Dupuis (2001) and 
Chourdakis (2004). It is designed to match the first two moments of the original interest rate process. However, this formula can only be applied for 
sufficiently small 𝑐𝑘 that is for large enough 𝐾 . Otherwise, if we get negative entries off the main-diagonal of 𝑸, we can resort to an approximation 
by Piccioni (1987) which only matches the first moment of the original process.

This approximation of the interest rate process is fundamentally different from our approach, since �̌�𝑡 does not behave like a Vasicek model 
within one year. This is in contrast to the SM method where the interest rate process between consecutive annual time points follows a Vasicek 
model. A visualization of the two approximations is given in Fig. 1 for 𝐾 = 8 and 𝐾 = 87.

4.1. Fourier pricing

Given the intensity matrix 𝑄, the discounted characteristic function 𝝋𝑡(𝑢, 𝒓) ∶=
{
𝜑
(𝑘,𝑗)
𝑡 (𝑢, 𝒓)

}
𝑘,𝑗

is given explicitly in terms of a matrix exponential:

𝜑
(𝑘,𝑗)
𝑡 (𝑢) ∶= 𝔼

[
1{�̌�𝑡=𝑟(𝑗)} e

−∫ 𝑡
0 �̌�𝑠 d𝑠+i𝑢 ln(𝑆𝑡∕𝑆0)

|||| 𝑟0 = 𝑟(𝑘)
]
= 𝟏′

𝑘
exp

(
𝑸𝑡+ diag

(
− 𝒓+ i𝑢

(
𝒓+ 𝜆− 1

2
𝜎2

𝑆

)
− 1

2
𝜎2

𝑆
𝑢2
)
𝑡
)
𝟏𝑗 . (14)

Given (14), let us introduce the matrices:{
D
}

𝑘,𝑗=1,2,…,𝑛
∶= 𝔼

[
1{�̌�𝑡=𝑟(𝑗)}e

−∫ 𝑡
𝑡−1 �̌�𝑠 d𝑠

|||| 𝑟𝑡−1 = 𝑟(𝑘)
]
= exp

(
𝑸− diag(𝒓

))
,

{
C (𝑏)

}
∶= 𝔼

[
1 (𝑗) e−∫ 𝑡

𝑡−1 �̌�𝑠 d𝑠
[(

𝑆 ∕𝑆
)𝛼 − e𝑔

]+ || 𝑟 = 𝑟(𝑘)
]
= 1

∞

𝝋
(
𝑣− i𝛿

)
⋅ 𝑓

(
i𝛿 − 𝑣

)
d𝑣 , (15)
20

𝑘,𝑗=1,2,…,𝑛 {�̌�𝑡=𝑟 } 𝑇 0 || 𝑡−1 2𝜋 ∫
−∞

𝑇 𝑔
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where 𝛿 ∈ (0, ∞) is a dampening coefficient. To compute the expectation, we derive

𝑓𝑔(𝑢) ∶= ∫
ℝ

e𝑖𝑢𝑦
[
e𝛼𝑦 − e𝑔

]+
d𝑦 =

∞

∫
𝑔
𝛼

e(𝛼+i𝑢)𝑦 d𝑦− e𝑔

∞

∫
𝑔
𝛼

ei𝑢𝑦 d𝑦 = e𝑔(1+ i𝑢
𝛼
) 𝛼

i𝑢(𝛼 + i𝑢)
.

From Hieber (2017), we then obtain:

𝔼[𝑍𝑇 ] = 𝑃0 ⋅ 𝟏′𝑘
(
e𝑔D(1) +C (𝑔)

)𝑇
𝟏 . (16)

This requires to compute the Fourier integral (15).

4.2. PROJ method

An alternative to the SM method is the projection method (PROJ) introduced by Kirkby (2015), Cui et al. (2017). The method approximates 
numerical integrals using a B-spline basis, is very general and has a variety of applications. We apply PROJ to compute the expectation:

𝔼
[
e𝐿𝑡−1,𝑡

|||| �̌�𝑡−1 = 𝑟(𝑘), �̌�𝑡 = 𝑟(𝑗)
]
=

∞

∫
0

ℎ𝑘,𝑗 (𝑦) ⋅ 𝑓 (𝑦) d𝑦 , (17)

where 𝑓 (𝑦) is the density of the integrated interest rate 𝑦 = ∫ 𝑡

𝑡−1 �̌�𝑠 d𝑠 and ℎ𝑘,𝑗 (𝑦) the expectation given 𝑦 = ∫ 𝑡

𝑡−1 �̌�𝑠 d𝑠. PROJ projects the density 
𝑓 (𝑦) on a basis of transformed hat functions 𝜑[1](𝑦) = (1 − |𝑥|)1[−1,1](𝑦). More specifically, PROJ uses the linear B-spline basis {𝜑𝑎,𝑛(𝑦)}𝑛=1,2,…,𝑁 ∶={√

𝑎 ⋅𝜑[1](𝑎(𝑥 − 𝑥𝑛)
)}

𝑛=1,2,…,𝑁
with resolution 𝑎 > 0 and grid points 𝑥𝑛 = 𝑥1 + (𝑛− 1)∕𝑎, 𝑛 = 1, 2, … , 𝑁 .

The coefficients 𝛽𝑎,𝑛 of the approximation 𝑓 (𝑦) ≈∑𝑁
𝑛=1 𝛽𝑎,𝑛 ⋅𝜑𝑎,𝑛(𝑦) by 𝑁 ∈ℕ basis functions are available as an integral

𝛽𝑎,𝑛 =
⟨
𝑓 (𝑦) , 𝜑𝑎,𝑛(𝑦)

⟩
= 12𝑎

3
2

𝜋

∞

∫
0

𝑓 (𝜉) ⋅ e−i𝑥𝑛𝜉 ⋅
sin2

( 𝜉

2𝑎

)
𝜉2
(
2 + cos 𝜉

𝑎

) d𝜉 , (18)

see Kirkby (2015), Cui et al. (2017) or the Appendix C for details. The integral (18) can efficiently be solved by discrete Fourier transformation 
(DFT). From (14), we obtain the Fourier transform 𝑓 (𝜉) ∶= ∫ ∞

−∞ e−𝑖𝜉𝑦𝑓 (𝑦) d𝑦 of the integrated interest rate process 𝑦 = ∫ 𝑡

𝑡−1 �̌�𝑠 d𝑠:

𝑓 (𝜉) = 𝔼
[
e−i𝜉 ∫ 𝑡

𝑡−1 �̌�𝑠 d𝑠
|||| �̌�𝑡−1 = 𝑟(𝑘) �̌�𝑡 = 𝑟(𝑗)

]
=

𝔼
[
1{�̌�𝑡=𝑟(𝑗)} e−i𝜉

∫ 𝑡
𝑡−1 �̌�𝑠 d𝑠 ||| �̌�𝑡−1 = 𝑟(𝑘)

]
ℙ
(
�̌�𝑡 = 𝑟(𝑗)

||| �̌�𝑡−1 = 𝑟(𝑘)
) =

𝟏′
𝑘
exp

(
𝑸− i𝜉 diag(𝒓)

)
𝟏𝑗

𝟏′
𝑘
exp

(
𝑸
)
𝟏𝑗

, (19)

with 𝒓 ∶= (𝑟(1), 𝑟(2), … , 𝑟(𝐾)) and 𝑸 = (𝑞𝑘,𝑗 )𝑘,𝑗 as in (13). We finally obtain:

∞

∫
0

ℎ𝑘,𝑗 (𝑦) ⋅ 𝑓 (𝑦) d𝑦 ≈
𝑁∑

𝑛=1
𝛽𝑎,𝑛 ⋅

𝑥𝑛

∫
𝑥𝑛−1

ℎ𝑘,𝑗 (𝑦) ⋅𝜑𝑎,𝑛(𝑦) d𝑦 =∶
𝑁∑

𝑛=1
𝛽𝑎,𝑛 ⋅ 𝜃

𝑘,𝑗
𝑎,𝑛 .

For a small resolution 𝑎, the terms 𝜃𝑘,𝑗
𝑎,𝑛 are computed by a composite Simpson‘s rule:

𝜃𝑘,𝑗
𝑎,𝑛 ≈

√
𝑎

3

(
ℎ𝑘,𝑗 (𝑥𝑛 − 𝑎∕2) + ℎ𝑘,𝑗 (𝑥𝑛) + ℎ𝑘,𝑗 (𝑥𝑛 + 𝑎∕2)

)
. (20)

In Appendix C, we derive the function ℎ𝑘,𝑗 explicitly as:

ℎ𝑘,𝑗 (𝑦) ∶= 𝔼
[
𝑒𝐿𝑡−1,𝑡

|||| �̌�𝑡−1 = 𝑟(𝑘), �̌�𝑡 = 𝑟(𝑗),

𝑡

∫
𝑡−1

�̌�𝑠 d𝑠 = 𝑦
]
= e𝑔−𝑦Φ

( 𝑔

𝛼
− 𝜇𝑘,𝑗 (𝑦)
𝜎𝑘,𝑗

)
+ e𝛼𝜇𝑘,𝑗 (𝑦)+

𝛼𝜎2
𝑘,𝑗
2 −𝑦Φ

(
𝛼𝜎2

𝑘,𝑗
+ 𝜇𝑘,𝑗 (𝑦) −

𝑔

𝛼

𝜎𝑘,𝑗

)
, (21)

where 𝜇𝑘,𝑗 (𝑦) = 𝜅
𝜎𝑆

𝜎𝑟

(
𝑟(𝑘) − 𝑟(𝑗)

)
+ 𝑦

(
1 − 𝜌

𝜎𝑆

𝜎𝑟
𝜃
)
−
(
𝜌

𝜎𝑆

𝜎𝑟
𝜃 + 𝜎2𝑠

2

)
and 𝜎2

𝑘,𝑗
= 𝜎2

𝑆
(1 − 𝜌2).

Table 1

Choice of parameters for the contract and the financial market.

co
n
tr

a
ct

initial capital 𝑃0 1

guarantee level 𝑔 0.015

participation rate 𝛼 0.422

maturity in years 𝑇 25

fi
n
a
n
ci

a
l

m
a
rk

e
t

initial interest rate 𝑟0 0.03

long-term mean interest rate level 𝜃 0.03

mean reversion speed 𝜅 0.3

volatility of the interest rate process 𝜎𝑟 0.015

constant risk premium of interest rate 𝜆𝑟 −0.23
correlation parameter 𝜌 0.15

volatility of the asset process 𝜎𝑆 0.1

constant risk premium of asset process 𝜆𝑆 0.03
21
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5. Numerical results

For numerical experiments, we implemented the methods described in Sections 3 and 4 in R on a personal computer with 16 GB RAM and 
11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00 GHz. Generally, we looked at a contract maturing after 𝑇 = 25 years. All parameters for this 
implementation are listed in Table 1. They have been chosen in accordance with the existing literature (e.g. Barbarin and Devolder, 2005; Graf et 
al., 2011; Hieber et al., 2019). However, we adjusted the initial interest rate to be in line with the EURIBOR 1-week rates in May 2023. We also 
reduced the volatility 𝜎𝑆 to account for the fact that the investment strategy of the insurer will usually focus on less risky investments than the 
overall stock market. Furthermore, we chose the participation rate 𝛼 by creating a fair policy assuming a constant interest rate equal to the long-term 
mean 𝜃. That is, it is designed by the premium equivalence 𝔼ℚ[𝑍𝑇 ] = 𝑃0 that is assumed to be true for a constant interest rate scenario 𝑟𝑡 = 𝜃 = 𝑟0
for all 𝑡.

5.1. Convergence

Fig. 2. Comparison of absolute error and computation time between the SM method, the PROJ method for different values of 𝑁 , and Monte-Carlo simulations. The 
parameters have been chosen as in Table 1.

Panel (A): absolute error compared to the Monte-Carlo simulation with 106 scenarios in relation to the number of discretization points 𝐾 . Panel (B): absolute error of 
all methods compared to true solution (obtained by a fine approximation with 𝐾 = 10 001 in the SM method). Panel (C): time spent on calculations for all methods.

The left image in Fig. 2 shows the error of the PROJ method and the SM method in relation to a Monte-Carlo-simulation with 106 scenarios. We 
can see that all estimations reach a plateau after using 50 to 100 discretization points for the interest rate. At this point, our approach entered the 
95% confidence interval of the Monte-Carlo simulations and thus outperforms its accuracy afterwards. The middle image shows the absolute error of 
all methods for different amounts of grid points in comparison to a very fine approximation by our method with 10 001 points. The estimations with 
the SM method almost perfectly exhibit a quadratic convergence. Note that the sudden drop for the SM method at 𝐾 = 5 and for the PROJ method 
at 𝐾 = 11 are random. In these instances, the grid approximation is by chance very close to the true solution. We can also see that the precision of 
the PROJ method is not only limited by the number of discretization points 𝐾 , but also by the number of terms 𝑁 used in the fast Fourier transform, 
since for 𝑁 = 27 and 𝑁 = 210, it is not as close to the finest approximation as a Monte-Carlo simulation with 104 paths.

For 𝐾 = 87 grid points, the SM method first outperforms a Monte-Carlo simulation with 106 scenarios and has a relative error of 0.013%. The 
calculations for a maturity of 25 years took approximately 0.004 seconds. Generally, we can see on the right side of Fig. 2 that both methods have a 
complexity of O(𝐾2), while the computation of every matrix entry in the PROJ method requires 𝑁 times as many calculations for determining the 
elements of the fast Fourier algorithm compared to one calculation in the SM method.

5.2. Analysis of interest rate risk

Table 2

Expected discounted payoff, 99%-quantile of the ratio between the terminal payoff 
and the value of the underlying at maturity Q99%(𝑌𝑇 ∕𝑆𝑇 ) and the probability of 
being underfunded, that is ℙ(𝑌𝑇 > 𝑆𝑇 ), for different values of 𝜎𝑟 . The remaining 
parameters are chosen as in Table 1.

𝜎𝑟 0 0.005 0.010 0.015 0.020 0.025 0.030

𝔼ℚ(𝑍𝑇 ) 0.999 1.002 1.011 1.024 1.043 1.068 1.098

Q99%(𝑌𝑇 ∕𝑆𝑇 ) 1.586 1.757 1.989 2.291 2.691 3.207 3.864

ℙ(𝑌𝑇 > 𝑆𝑇 ) 11.4% 15.7% 21.1% 27.3% 33.7% 39.9% 45.5%

Expected discounted payoffs for different levels of the mean reversion speed 𝜅, the interest rate volatility 𝜎𝑟 and the correlation parameter 𝜌 are 
22

shown in Tables 2 to 4. Note that a Vasicek model with 𝜎𝑟 = 0 and 𝜃 = 𝑟0 is equivalent to assuming a constant interest rate 𝑟0. These values are 
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Table 3

Expected discounted payoff, 99%-quantile of the ratio between the terminal payoff 
and the value of the underlying at maturity Q99%(𝑌𝑇 ∕𝑆𝑇 ) and the probability of 
being underfunded, that is ℙ(𝑌𝑇 > 𝑆𝑇 ), for different values of 𝜅. The remaining 
parameters are chosen as in Table 1.

𝜅 0.10 0.25 0.40 0.55 0.70 0.85 1.00

𝔼ℚ(𝑍𝑇 ) 1.108 1.031 1.016 1.011 1.008 1.006 1.005

Q99%(𝑌𝑇 ∕𝑆𝑇 ) 4.277 2.478 2.083 1.929 1.846 1.795 1.761

ℙ(𝑌𝑇 > 𝑆𝑇 ) 47.4% 30.3% 23.2% 19.8% 17.9% 16.7% 15.8%

Table 4

Expected discounted payoff, 99%-quantile of the ratio between the terminal payoff 
and the value of the underlying at maturity Q99%(𝑌𝑇 ∕𝑆𝑇 ) and the probability of 
being underfunded, that is ℙ(𝑌𝑇 > 𝑆𝑇 ), for different values of 𝜌. The remaining 
parameters are chosen as in Table 1.

𝜌 −0.9 −0.6 −0.3 0.0 0.3 0.6 0.9

𝔼ℚ(𝑍𝑇 ) 1.011 1.015 1.019 1.022 1.026 1.029 1.032

Q99%(𝑌𝑇 ∕𝑆𝑇 ) 1.376 1.640 1.897 2.160 2.430 2.714 3.009

ℙ(𝑌𝑇 > 𝑆𝑇 ) 12.7% 18.7% 22.9% 26.0% 28.4% 30.3% 31.9%

computed under the risk-neutral measure ℚ. Low values of 𝜅 increase the likelihood for longer periods of interest rates deviating from the long-

term mean 𝜃. Particularly low interest rate periods reduce the discounting effect while the payoff is still bounded from below by the guaranteed 
level, whereas the stronger discounting effect of high interest rate periods is partially compensated by larger returns from the underlying fund. 
For all values, this effect is even more pronounced on the 99%-quantile of the ratio between the undiscounted payoff 𝑌𝑇 and the investment in 
the underlying 𝑆𝑇 since these predominantly include extreme scenarios with long low-interest rate periods. This means, for example, that for an 
extreme value of 𝜅 = 0.1, the investment in the underlying covers less than 1

4.277 ≈ 24% of the guaranteed payoff to the policyholder. The quantiles, 
that is Q99%(𝑌𝑇 ∕𝑆𝑇 ), are determined under the real-world measure ℙ. Also, we can see that the probability for 𝑌𝑇 > 𝑆𝑇 , i.e. of being underfunded, 
is affected considerably.

A similar effect can be identified on varying values of 𝜎𝑟 where an increased volatility results in larger deviations from the long-term mean 𝜃
and the effects of low and high interest rate periods are the same as described before. However, increasing the volatility does not affect the length 
of these periods, but their gap to the long-term mean.

When we vary the correlation parameter 𝜌, the effect is less distinct, but still considerable. Note, however, that values of 𝜌 = ±0.9 are extreme 
choices for the correlation parameter. We can observe that negative correlations lead to less risky contracts and lower prices. This is due to the fact 
that negative values for the correlation parameter 𝜌 result in an overall lower volatility of the underlying asset process in (2) and vice-versa. Thus, 
we can conclude that modelling interest rates stochastically strongly influences the expected disounted payoff and will usually reveal a higher value 
than constant interest rates.

Fig. 3. Probability that the ratio between the terminal payoff and the value of the underlying at maturity 𝑌𝑇 ∕𝑆𝑇 exceeds thresholds 𝐺 for different values of the 
long-term mean 𝜃. The dashed line at 𝐺 = 1 marks the probability of being underfunded. The remaining parameters have been chosen as in Table 1.

To manage the risk of an equity-indexed annuity, it is necessary to evaluate the probability that the underlying fund can cover the guaranteed 
expenses at maturity, and quantiles of the potential loss, that is to describe the distribution of the solvency ratio 𝑌𝑇 ∕𝑆𝑇 . This relative Value-at-Risk 
is computed using the SM method as explained in Remark 3.2. In Fig. 3, we plot the tail function of the solvency ratio 𝑌𝑇 ∕𝑆𝑇 , that is the probability 
23

that 𝑌𝑇 ∕𝑆𝑇 exceeds thresholds 𝐺. Note that the tail function at the threshold 𝐺 = 1 describes the probability that 𝑌𝑇 > 𝑆𝑇 and thus that the initial 
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investment can not cover the payment at maturity. Lowering the long-term mean interest rate 𝜃 from 0.03 to 0.02 increases this probability from 
27.3% to 40.8%. The ratio 𝑌𝑇 ∕𝑆𝑇 in the 1% least favourable scenarios, that is the 99%-quantile of this quotient, for 𝜃 = 0.03 is above 2.76, compared 
to 1.59 under constant interest rates. In other words, with a probability of 1%, the underlying fund covers only around 1∕2 of the payments to the 
policyholder. This imbalance intensifies to 3.35 for 𝜃 = 0.01 showing how sensitive extreme events are to changes in the underlying assumptions and 
thus giving another reason for modelling interest rates stochastically.

6. Conclusion

This article introduces the scenario-matrix (SM) method for evaluating the risks of equity-indexed annuities with a cliquet-style payoff structure. 
This approach is fundamentally different from a Markov chain approximation, but has some analogy to the case of regime switching models (see, e.g. 
Hieber, 2017). In the case of a Vasicek-Black-Scholes model, it outperforms benchmark techniques such as the PROJ method in terms of speed and 
accuracy and is easy to implement. Approximating the moment-generating function of the log-payoff allows us to describe the whole distribution of 
the payoff. In contrast to the existing literature, we consider quantile estimation and offer an access to the relative Value-at-Risk.

In numerical studies, we are able to show convergence with quadratic order. The algorithm is computationally less expensive and provides more 
accurate results than existing approaches. The sensitivity analysis suggests that first, modelling interest rates stochastically considerably influences 
the risk assessment when compared to constant interest rates. Second, changes in the financial market should be considered in the management of 
these products.

We introduced the SM method adapted to the special case of a Vasicek-Black-Scholes model that leads to very convenient formulas in The-

orem 3.1. This technique can, however, be applied and extended to much more general settings. First, it is straightforward to use a different 
stochastic interest rate model, for example a two-factor Hull-White model. Second, the scenarios might incorporate not only interest rate risk but 
also a stochastic volatility (see also Cui et al., 2017; Kirkby, 2023). Instead of conditioning on 𝑟(𝑘) and 𝑟(𝑗), the scenario matrix conditions on pairs 
(𝑟(𝑘), 𝜎(𝑘)) and (𝑟(𝑗), 𝜎(𝑗)) for an appropriately chosen volatility grid 𝜎(𝑘), 𝑘 = 1, 2, … , 𝐾 . A further possible research direction would be to estimate the 
scenario matrix immediately from data without specifying a model, see the recent results on data-driven estimations (e.g. Li and Forsyth, 2019).

In future research, it may be interesting to incorporate several additional contract features. First, instead of fixing the maturity time, we may 
consider early contract terminations and mortality. Second, it could be interesting to analyse the effect of the investment strategy of the underlying 
fund on the contract payoff and its risk, see also Chen and Hieber (2016) for the case of a maturity guarantee. Third, in this article, we focus on 
a single contract or a portfolio of homogeneous contracts. In practice, we may be interested in the risk management of a heterogeneous portfolio 
(see also Hieber et al., 2019). If the SM method cannot be adapted to such settings, the estimates can at least serve as control variates to speed up 
computations for solvency ratios or absolute Value-at-Risks.
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Appendix A. Proof of Theorem 3.1

Definition A.1. Using the notation 𝑃𝑢(𝑡 − 1, 𝑡) = 𝔼ℚ

[
e−𝑢∫ 𝑡

𝑡−1 𝑟𝑠 d𝑠
]
, the 𝑢-scaled 𝑡-forward measure ℚ𝑡

𝑢 is defined via

dℚ𝑡
𝑢

dℚ
= e−𝑢∫ 𝑡

𝑡−1 𝑟𝑠 d𝑠

𝑃𝑢(𝑡− 1, 𝑡)
= exp

⎛⎜⎜⎝−𝑢𝜎𝑟

𝑡

∫
𝑡−1

𝑔𝜅 (𝑡− 𝑠) d𝑊 (1)
𝑠 + 1

2
𝑢2𝜎2

𝑟

𝑡

∫
𝑡−1

𝑔𝜅 (𝑡− 𝑠)2 d𝑠
⎞⎟⎟⎠ . (22)

The integrated interest ∫ 𝑡

𝑡−1 𝑟𝑠 d𝑠 and the log return ln(𝑆𝑡∕𝑆𝑡−1), both conditional on the interest rates 𝑟𝑡 and 𝑟𝑡−1, under the pricing measure ℚ
and the 𝑢-scaled 𝑡-forward measure ℚ𝑡

𝑢 respectively, are distributed as

𝑡

∫
𝑡−1

𝑟𝑠 d𝑠
||| 𝑟𝑡, 𝑟𝑡−1 ∼ Nℚ(𝜇,Σ2) ,

ln(𝑆𝑡∕𝑆𝑡−1)
||| 𝑟𝑡, 𝑟𝑡−1 ∼ Nℚ𝑡

𝑢
(𝜇, Σ̃2) ,

where 𝜇, ̃𝜇, Σ, ̃Σ are derived in the following. Using the t-forward measure ℚ𝑡
𝑢 as introduced in (22), we know that according to Girsanov’s Theorem 

in the form of (Shreve, 2010, Theorem 5.4.1),

𝑊
(1)
𝑡 = 𝑊

(1)
𝑡 + 𝑢 ⋅ 𝜎𝑟

𝑡

∫
𝑡−1

𝑔𝜅 (𝑡− 𝑠) d𝑠

and 𝑊 (2)
𝑡 are Brownian motions under ℚ𝑡

𝑢.

Therefore, we can use this change of measure to decouple the integrated interest rate and the annual returns of the underlying stock as follows:[
e−𝑢∫ 𝑡

𝑡−1 𝑟𝑠 d𝑠
𝑢⋅𝐿𝑡−1,𝑡

|| ] [
𝑢⋅𝐿𝑡−1,𝑡

|| ]

24

𝜙𝑟𝑡−1 ,𝑟𝑡
(𝑢) = 𝑃𝑢(𝑡− 1, 𝑡) ⋅ 𝔼ℚ 𝑃𝑢(𝑡− 1, 𝑡)

e || 𝑟𝑡−1, 𝑟𝑡 = 𝑃𝑢(𝑡− 1, 𝑡) ⋅ 𝔼ℚ𝑡
𝑢

e || 𝑟𝑡−1, 𝑟𝑡



Insurance Mathematics and Economics 114 (2024) 15–28S. Günther and P. Hieber

= 𝑃𝑢(𝑡− 1, 𝑡) ⋅

(
𝔼ℚ𝑡

𝑢

[
e𝑢⋅𝑔1{

𝛼 ln
(

𝑆𝑡
𝑆𝑡−1

)
⩽𝑔

} |||| 𝑟𝑡−1, 𝑟𝑡

]
+ 𝔼ℚ𝑡

𝑢

[
e
𝑢⋅𝛼 ln

(
𝑆𝑡

𝑆𝑡−1

)
1{

𝛼 ln
(

𝑆𝑡
𝑆𝑡−1

)
>𝑔

} |||| 𝑟𝑡−1, 𝑟𝑡

])
. (23)

To determine the distribution of ∫ 𝑡

𝑡−1 𝑟𝑠 d𝑠, given 𝑟𝑡−1, 𝑟𝑡, under the risk neutral measure ℚ, we use that for a Vasicek interest rate model, we have 
(see (Shreve, 2010, Chapter 4.4))

𝑟𝑡 = e−𝜅𝑟𝑡−1 + 𝜃(1 − e−𝜅 ) + 𝜎𝑟e−𝜅𝑡

𝑡

∫
𝑡−1

e𝜅𝑠 d𝑊 (1)
𝑠 ,

𝑡

∫
𝑡−1

𝑟𝑠 d𝑠 = 𝑔𝜅 (1) 𝑟𝑡−1 + 𝜃
(
1 − 𝑔𝜅 (1)

)
+ 𝜎𝑟

𝑡

∫
𝑡−1

𝑔𝜅 (𝑡− 𝑠) d𝑊 (1)
𝑠 ,

ln
(

𝑆𝑡

𝑆𝑡−1

)
=

𝑡

∫
𝑡−1

𝑟𝑠 d𝑠−
1
2

𝜎2
𝑆
+ 𝜎𝑆

(
𝜌(𝑊 (1)

𝑡 −𝑊
(1)
𝑡−1) +

√
1 − 𝜌2(𝑊 (2)

𝑡 −𝑊
(2)
𝑡−1)

)
.

Using Itô’s isometry, we can describe the distribution of ∫ 𝑡

𝑡−1 𝑟𝑠 d𝑠 and 𝑟𝑡 under ℚ as a two-dimensional normal distribution with parameters

𝜇1 ∶= 𝔼ℚ

⎡⎢⎢⎣
𝑡

∫
𝑡−1

𝑟𝑠 d𝑠
⎤⎥⎥⎦ = 𝑔𝜅 (1)𝑟𝑡−1 + 𝜃

(
1 − 𝑔𝜅 (1)

)
,

𝜇2 ∶= 𝔼ℚ
[
𝑟𝑡

]
= e−𝜅𝑟𝑡−1 + 𝜃(1 − e−𝜅 ) ,

𝜎2
11 ∶= Varℚ

⎛⎜⎜⎝
𝑡

∫
𝑡−1

𝑟𝑠 d𝑠
⎞⎟⎟⎠ =

𝜎2
𝑟

𝜅2

(
1 − 𝑔𝜅 (1) −

𝜅

2
𝑔𝜅 (1)2

)
,

𝜎2
22 ∶= Varℚ(𝑟𝑡) =

𝜎2
𝑟

2
𝑔𝜅 (2) ,

𝜎12 ∶= Covℚ
⎛⎜⎜⎝𝑟𝑡,

𝑡

∫
𝑡−1

𝑟𝑠 d𝑠
⎞⎟⎟⎠ =

𝜎2
𝑟

2
𝑔𝜅 (1)2 .

Therefore, under ℚ, (Eaton, 2007, Proposition 3.13) shows that

𝑡

∫
𝑡−1

𝑟𝑠 d𝑠
||| 𝑟𝑡, 𝑟𝑡−1 ∼N (𝜇,Σ2) , (24)

with

𝜇 ∶= 𝜇1 + 𝜎12𝜎
−2
22 (𝑟𝑡 − 𝜇2) , Σ2 ∶= 𝜎2

11 − 𝜎2
12𝜎

−2
22 .

To express these values in the form of Theorem 3.1, it is helpful to write

𝜎12𝜎
−2
22 =

𝑔𝜅 (1)2

𝑔𝜅 (2)
=

𝑔𝜅 (1)(1 − 𝑒−𝜅 )
(1 + 𝑒−𝜅 )(1 − 𝑒−𝜅 )

=
𝑔𝜅 (1)
1 + 𝑒−𝜅

. (25)

To determine the distribution of ln
(
𝑆𝑡∕𝑆𝑡−1

)
, given 𝑟𝑡, 𝑟𝑡−1, under ℚ𝑡

𝑢, we calculate

𝑟𝑡 = e−𝜅𝑟𝑡−1 + 𝜃(1 − e−𝜅 ) + 𝜎𝑟e−𝜅𝑡
⎛⎜⎜⎝

𝑡

∫
𝑡−1

e𝜅𝑠 d𝑊 (1)
𝑠 −

𝑡

∫
𝑡−1

e𝜅𝑠𝑢𝜎𝑟𝑔𝜅 (𝑡− 𝑠) d𝑠
⎞⎟⎟⎠ = e−𝜅𝑟𝑡−1 + 𝜃(1 − e−𝜅 ) − 𝑢

𝜎2
𝑟

2
𝑔𝜅 (1)2 + 𝜎𝑟e−𝜅𝑡

𝑡

∫
𝑡−1

e𝜅𝑠 d𝑊 (1)
𝑠 ,

𝑡

∫
𝑡−1

𝑟𝑠 d𝑠 = 𝑔𝜅 (1)𝑟𝑡−1 + 𝜃
(
1 − 𝑔𝜅 (1)

)
+ 𝜎𝑟

⎛⎜⎜⎝
𝑡

∫
𝑡−1

𝑔𝜅 (𝑡− 𝑠) d𝑊 (1)
𝑠 −

𝑡

∫
𝑡−1

𝑢𝜎𝑟𝑔𝜅 (𝑡− 𝑠)2 d𝑠
⎞⎟⎟⎠

= 𝑔𝜅 (1)𝑟𝑡−1 + 𝜃
(
1 − 𝑔𝜅 (1)

)
− 𝑢

𝜎2
𝑟

𝜅2

(
1 − 𝑔𝜅 (1) −

𝜅

2
𝑔𝜅 (1)2

)
+ 𝜎𝑟

𝑡

∫
𝑡−1

𝑔𝜅 (𝑡− 𝑠) d𝑊 (1)
𝑠 ,

ln
(

𝑆𝑡

𝑆𝑡−1

)
=

𝑡

∫
𝑡−1

𝑟𝑠 d𝑠−
1
2

𝜎2
𝑆
+ 𝜎𝑆

⎛⎜⎜⎝
𝑡

∫
𝑡−1

𝜌d𝑊 (1)
𝑠 −

𝑡

∫
𝑡−1

𝜌𝑢𝜎𝑟𝑔𝜅 (𝑡− 𝑠) d𝑠+

𝑡

∫
𝑡−1

√
1 − 𝜌2 d𝑊 (2)

𝑠

⎞⎟⎟⎠
= 𝑔𝜅 (1)𝑟𝑡−1 + 𝜃

(
1 − 𝑔𝜅 (1)

)
− 𝑢

𝜎2
𝑟

𝜅2

(
1 − 𝑔𝜅 (1) −

𝜅

2
𝑔𝜅 (1)2

)
− 1

2
𝜎2

𝑆
− 𝑢

𝜎𝑆𝜎𝑟𝜌

𝜅

(
1 − 𝑔𝜅 (1)

)
+ 𝜎𝑟

𝑡

∫
𝑡−1

𝑔𝜅 (𝑡− 𝑠) d𝑊 (1)
𝑠 + 𝜎𝑆

𝑡

∫
𝑡−1

𝜌d𝑊 (1)
𝑠 + 𝜎𝑆

𝑡

∫
𝑡−1

√
1 − 𝜌2 d𝑊 (2)

𝑠 .
25
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Again, we can describe the distribution of ln
(
𝑆𝑡∕𝑆𝑡−1

)
and 𝑟𝑡 as a two-dimensional normal distribution with parameters

𝜇1 ∶= 𝔼ℚ𝑡
𝑢

[
ln
(

𝑆𝑡

𝑆𝑡−1

)]
= 𝑔𝜅 (1)𝑟𝑡−1 + 𝜃

(
1 − 𝑔𝜅 (1)

)
− 𝑢

𝜎2
𝑟

𝜅2

(
1 − 𝑔𝜅 (1) −

𝜅

2
𝑔𝜅 (1)2

)
− 1

2
𝜎2

𝑆
− 𝑢

𝜎𝑆𝜎𝑟𝜌

𝜅

(
1 − 𝑔𝜅 (1)

)
,

𝜇2 ∶= 𝔼ℚ𝑡
𝑢

[
𝑟𝑡

]
= e−𝜅𝑟𝑡−1 + 𝜃(1 − e−𝜅 ) − 𝑢

𝜎2
𝑟

2
𝑔𝜅 (1)2 ,

𝜎2
11 ∶= Varℚ𝑡

𝑢

(
ln
(

𝑆𝑡

𝑆𝑡−1

))
=

𝜎2
𝑟

𝜅2

(
1 − 𝑔𝜅 (1) −

𝜅

2
𝑔𝜅 (1)2

)
+

2𝜎𝑟𝜎𝑆𝜌

𝜅

(
1 − 𝑔𝜅 (1)

)
+ 𝜎2

𝑆
,

𝜎2
22 ∶= Varℚ𝑡

𝑢
(𝑟𝑡) =

𝜎2
𝑟

2
𝑔𝜅 (2) ,

𝜎12 ∶= Covℚ𝑡
𝑢

(
𝑟𝑡, ln

(
𝑆𝑡

𝑆𝑡−1

))
=

𝜎2
𝑟

2
𝑔𝜅 (1)2 + 𝜎𝑟𝜎𝑆𝜌𝑔𝜅 (1).

Therefore, we can conclude that, under ℚ𝑡
𝑢, we have

ln(𝑆𝑡∕𝑆𝑡−1)
||| 𝑟𝑡, 𝑟𝑡−1 ∼ N (𝜇, Σ̃2) , (26)

with

𝜇 ∶= 𝜇1 + 𝜎12𝜎
−2
22 (𝑟𝑡 − 𝜇2) , Σ̃2 ∶= 𝜎2

11 − 𝜎2
12𝜎

−2
22 .

Note that, similarly to equation (25), we find

𝜎12𝜎
−2
22 =

𝑔𝑘(1)2 + 𝑠
𝜎𝑠

𝜎𝑟
𝜌𝑔𝜅 (1)

𝑔𝜅 (2)
=

𝑔𝑘(1) + 𝑠
𝜎𝑠

𝜎𝑟
𝜌

1 + 𝑒−𝜅
.

Using (24), we get

𝑃𝑢(𝑡, 𝑡− 1) = 𝔼ℚ

[
e−∫ 𝑡

𝑡−1 𝑟𝑠 d𝑠
|||| 𝑟𝑡−1, 𝑟𝑡

]
= exp

(
−𝑢𝜇 + 𝑢2Σ2

2

)
.

With (26), we can calculate

𝔼ℚ𝑡
𝑢

[
e𝑢⋅𝑔1{

𝛼 ln
(

𝑆𝑡
𝑆𝑡−1

)
⩽𝑔

} |||| 𝑟𝑡−1, 𝑟𝑡

]
+ 𝔼ℚ𝑡

𝑢

[
e
𝑢⋅𝛼 ln

(
𝑆𝑡

𝑆𝑡−1

)
1{

𝛼 ln
(

𝑆𝑡
𝑆𝑡−1

)
>𝑔

} |||| 𝑟𝑡−1, 𝑟𝑡

]

= e𝑢𝑔ℚ𝑡
𝑢

(
ln
(

𝑆𝑡

𝑆𝑡−1

)
⩽ 𝑔

𝛼

|||| 𝑟𝑡−1, 𝑟𝑡

)
+

∞

∫
𝑔
𝛼

e𝑢𝛼𝑥
√
2𝜋Σ̃2

−1
e−

1
2

(
𝑥−𝜇

Σ̃

)2
d𝑥 = e𝑢𝑔Φ

( 𝑔

𝛼
− 𝜇

Σ̃

)
+ e𝑢𝛼𝜇+ 1

2 𝑢2𝛼2Σ̃2Φ

(
−

𝑔

𝛼
− 𝜇 − 𝑢𝛼Σ̃2

Σ̃

)
.

Inserting both results into (23), we arrive at

𝜙𝑟𝑡−1 ,𝑟𝑡
(𝑢) = e−𝑢𝜇+ 𝑢2Σ2

2

(
e𝑢𝑔Φ

( 𝑔

𝛼
− 𝜇

Σ̃

)
+ e𝑢𝛼𝜇+ 1

2 𝑢2𝛼2Σ̃2Φ

(
−

𝑔

𝛼
− 𝜇 − 𝑢𝛼Σ̃2

Σ̃

))
. □ (27)

Appendix B. Proof of Theorem 3.6

We have to show that for all 𝑟∗ ∈ℝ and all 𝑡 ∈ℕ

lim
𝐾→∞

|||ℙ(�̄�𝐾
𝑡 ⩽ 𝑟∗

)
−ℙ(𝑟𝑡 ⩽ 𝑟∗)||| = 0 ,

which we will proof by induction. Let 𝑟∗ ∈ (𝑟(𝑗), 𝑟(𝑗+1)). We have for 𝑡 = 1, that

|||ℙ(�̄�𝐾
1 ⩽ 𝑟∗) −ℙ(𝑟1 ⩽ 𝑟∗)||| = ||||ℙ(𝑟1 ⩽

1
2
(
𝑟(𝑗) + 𝑟(𝑗+1)

))
−ℙ

(
𝑟1 ⩽ 𝑟∗

)|||| ⩽ ℙ
(
𝑟1 ∈

[
𝑟(𝑗), 𝑟(𝑗+1)

])
∈ O(1∕𝐾) .

Assuming that the statement is valid for 𝑡 − 1, we find for 𝑡 > 1 that||||ℙ(�̄�𝐾
𝑡

⩽ 𝑟∗) −ℙ(𝑟𝑡 ⩽ 𝑟∗)
||||

=
||||||

𝐾∑
𝑖=1

ℙ
(
�̄�𝐾
𝑡
⩽ 𝑟∗

||| �̄�𝐾
𝑡−1 = 𝑟(𝑖)

)
⋅ℙ

(
�̄�𝐾
𝑡−1 = 𝑟(𝑖)

)
−ℙ

(
𝑟𝑡 ⩽ 𝑟∗

||| 𝑟𝑡−1 ∈
[
𝑟(𝑖)

])
⋅ℙ

(
𝑟𝑡−1 ∈

[
𝑟(𝑖)

])||||||
⩽

|||||
𝐾∑

𝑖=1

𝑟(𝑖)+𝑟(𝑖+1)

2

∫
𝑟(𝑖)+𝑟(𝑖−1)

2

ℙ
(
𝑟𝑡 ⩽ 𝑟∗

||| 𝑟𝑡−1 = 𝑥
)
−ℙ

(
𝑟𝑡 ⩽

1
2
(
𝑟(𝑗) + 𝑟(𝑗+1)

) |||| 𝑟𝑡−1 = 𝑥
)
ℙ
(
𝑟𝑡−1 ∈ d𝑥

)|||||
+
|||||

𝐾∑
𝑖=1

ℙ
(
𝑟𝑡−1 ∈ [𝑟(𝑖)]

)(
ℙ
(
𝑟𝑡 ⩽

1
2
(
𝑟(𝑗) + 𝑟(𝑗+1)

) |||| 𝑟𝑡−1 = 𝑟(𝑖)
)
−ℙ

(
𝑟𝑡 ⩽

1
2
(
𝑟(𝑗) + 𝑟(𝑗+1)

) |||| 𝑟𝑡−1 ∈
[
𝑟(𝑖)

]))|||||
+
|||||

𝐾∑
𝑖=1

ℙ
(

𝑟𝑡 ⩽
1
2
(
𝑟(𝑗) + 𝑟(𝑗+1)

) |||| 𝑟𝑡−1 = 𝑟(𝑖)
)(

ℙ
(
𝑟𝑡−1 ∈ [𝑟(𝑖)]

)
−ℙ

(
�̄�𝐾
𝑡−1 = 𝑟(𝑖)

)) |||||

26

=∶ |𝑆1|+ |𝑆2|+ |𝑆3| ∈ O(1∕𝐾) .
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Here, we used that

ℙ
(
�̄�𝐾
𝑡 ⩽ 𝑟∗

||| �̄�𝐾
𝑡−1 = 𝑟(𝑖)

)
⋅ ℙ

(
�̄�𝐾
𝑡−1 = 𝑟(𝑖)

)
+𝑆2 +𝑆3 = ℙ

(
𝑟𝑡 ⩽

1
2
(
𝑟(𝑗) + 𝑟(𝑗+1)

) ||| 𝑟𝑡−1 ∈
[
𝑟(𝑖)

])
⋅ ℙ

(
𝑟𝑡−1 ∈

[
𝑟(𝑖)

])
.

Thus, we are able to express the right hand side of the above equation as an integral in 𝑆1.

Additionally, 𝑆1 is a sum of 𝐾 integrals whose integrand is in O(1∕𝐾) by the same reasoning as for 𝑡 = 1. Furthermore, its integration area, [𝑟(𝑖)] has 
a probability weight of O(1∕𝐾) since the grid points were chosen such that ℙ(𝑟1 ∈ [𝑟(𝑗)]) ∈ O(1∕𝐾). For finite 𝑡, this property transfers from 𝑟1 to 𝑟𝑡. 
Combining these observations, 𝑆1 is in 𝐾 ⋅O(1∕𝐾2) = O(1∕𝐾).
By the same argument, in 𝑆2, ℙ(𝑟1 ∈ [𝑟(𝑗)]) is in O(1∕𝐾). Also ℙ(𝑟𝑡 ⩽

1
2 (𝑟

(𝑗) + 𝑟(𝑗+1)) | 𝑟𝑡−1 = 𝑟(𝑖)) −ℙ(𝑟𝑡 ⩽
1
2 (𝑟

(𝑗) + 𝑟(𝑗+1)) | 𝑟𝑡−1 = [𝑟(𝑖)]) is in O(1∕𝐾) since it 
varies the starting condition 𝑟𝑡−1 by no more than 𝑟(𝑖−1) − 𝑟(𝑖+1).

Finally, to see that 𝑆3 is in O(1∕𝐾), we need to apply summation by parts and the induction assumption that ℙ(�̄�𝐾
𝑡−1 ⩽ 𝑟∗) −ℙ(𝑟𝑡−1 ⩽ 𝑟∗) ∈ O(1∕𝐾). □

Appendix C. PROJ method: details

This follows Kirkby (2015), Cui et al. (2017). Given the Haar scaling function 𝜑[0](𝑦) = 1[− 1
2 ,

1
2 ]
(𝑦), it is easy to show that 𝜑[1](𝑦) = 𝜑[0](𝑦) ⋆𝜑[0](𝑦).1

The Fourier transform of the Haar scaling function is given by:

�̂�[0](𝜉) =

∞

∫
−∞

e−i𝜉𝑦 ⋅𝜑[0](𝑦) d𝑦 =

∞

∫
−∞

e−i𝜉𝑦 ⋅1[− 1
2 ,

1
2 ]
(𝑦) d𝑦 =

2 ⋅ sin
(
− 𝜉

2

)
−𝜉

=
sin

( 𝜉

2

)
𝜉

2

.

This and 𝜑[1](𝑦) = 𝜑[0](𝑦) ⋆ 𝜑[0](𝑦) shows that the Fourier transform of the B-spline basis function is �̂�[1](𝜉) = 4 ⋅ sin2
( 𝜉

2

)
∕𝜉2. Obviously the function 

�̂�[1](𝜉) is symmetric and real-valued. Using the definition of scalar product for complex numbers and the Plancherel theorem, we obtain:

𝛽𝑎,𝑛 =
⟨
𝑓 (𝑦) , 𝜑𝑎,𝑛(𝑦)

⟩
=

∞

∫
−∞

𝑓 (𝑦) ⋅𝜑𝑎,𝑛(𝑦) d𝑦 = 1
2𝜋

∞

∫
−∞

𝑓 (𝜉) ⋅ �̂�𝑎,𝑛(𝜉) d𝜉 =
√

𝑎

2𝜋

∞

∫
−∞

𝑓 (𝜉) ⋅ e
−i𝑥𝑛𝜉

𝑎
�̂�(𝜉∕𝑎) d𝜉

=
√

𝑎

2𝜋

∞

∫
−∞

𝑓 (𝜉) ⋅ e
−i𝑥𝑛𝜉

𝑎
�̂�[1](𝜉∕𝑎) d𝜉 = 12

2𝜋
√

𝑎

∞

∫
−∞

𝑓 (𝜉) ⋅ e−i𝑥𝑛𝜉 ⋅
𝑎2 ⋅ sin2

( 𝜉

2𝑎

)
𝜉2
(
2 + cos 𝜉

𝑎

) d𝜉 = 12𝑎
3
2

𝜋

∞

∫
0

𝑓 (𝜉) ⋅ e−i𝑥𝑛𝜉 ⋅
sin2

( 𝜉

2𝑎

)
𝜉2
(
2 + cos 𝜉

𝑎

) d𝜉 . (28)

We evaluate the integral (28) among grid points 𝜉𝑗 = 2𝜋(𝑗 −1)𝑎∕𝑁 for 𝑗 = 1, 2, … , 𝑁 . This results in a discrete Fourier transform using the integration 
steps of length △𝜉𝑗 = 2𝜋𝑎∕𝑁 :

𝛽𝑎,𝑛 ≈
24𝑎

5
2

𝑁
⋅D𝑛(𝑯) , D𝑛(𝑯) =

𝑁∑
𝑗=1

e−i
2𝜋
𝑁

(𝑗−1)(𝑛−1) ⋅𝐻𝑗 ,

where 𝐻1 = 1∕24𝑎2 and 𝐻𝑗 = e−i𝑥1𝜉𝑗 ⋅ 𝑓 (𝜉𝑗 ) ⋅ sin2(𝜉𝑗∕2𝑎)∕(𝜉2𝑗 (2 + cos(𝜉𝑗∕𝑎))), 𝑗 = 2, 3, … , 𝑁 .

Given the financial market (1) and (2), we can exploit the affine structure of the Vasicek interest model. Given the functions 𝜂(𝑟𝑡) ∶= 𝜌
𝜎𝑆

𝜎𝑟
(𝜃 − 𝑟𝑡)

and 𝜁 (𝑟𝑡, 𝑟0) ∶= 𝜅
𝜎𝑆

𝜎𝑟
(𝑟𝑡 − 𝑟0), it is straightforward to show that 𝜌𝜎𝑆 d𝑊 (1)

𝑡 = d𝜁 (𝑟𝑡, 𝑟0) − 𝜌 ⋅ 𝜂(𝑟𝑡) d𝑡. This yields:

d ln(𝑆𝑡) =
(
𝑟𝑡 + 𝜆−

𝜎2
𝑆

2

)
d𝑡+

√
1 − 𝜌2𝜎𝑆 d𝑊 (2)

𝑡 + 𝜌𝜎𝑆d𝑊
(1)
𝑡 =

(
𝑟𝑡 + 𝜆−

𝜎2
𝑆

2

)
d𝑡+

√
1 − 𝜌2𝜎𝑆 d𝑊 (2)

𝑡 + d𝜁 (𝑟𝑡, 𝑟0) − 𝜌𝜂(𝑟𝑡) d𝑡

which can be integrated to:

ln
( 𝑆𝑡

𝑆𝑡−1

)
= 𝜁 (𝑟𝑡, 𝑟𝑡−1) + 𝜆+

𝑡

∫
𝑡−1

(
𝑟𝑠 + 𝜆− 𝜂(𝑟𝑠)

)
d𝑠−

𝜎2
𝑆

2
+
√
1 − 𝜌2𝜎𝑆

(
𝑊

(2)
𝑡 −𝑊

(2)
𝑡−1

)
.

We condition on 
(∫ 𝑡

𝑡−1 𝑟𝑠 d𝑠, 𝑟𝑡−1, 𝑟𝑡

)
= (𝑦, 𝑟(𝑘), 𝑟(𝑗)) and use the affinity of 𝜂 to show that the log-returns ln(𝑆𝑡∕𝑆𝑡−1) are normally distributed with 

mean and variance:

𝜇𝑘,𝑗 (𝑦) ∶= 𝔼
[
ln(𝑆𝑡∕𝑆𝑡−1)

]
= 𝜁 (𝑟(𝑘), 𝑟(𝑗)) + 𝑦

(
1 − 𝜌

𝜎𝑆

𝜎𝑟

𝜃
)
−
(
𝜌

𝜎𝑆

𝜎𝑟

𝜃 +
𝜎2

𝑠

2

)
, 𝜎2

𝑘,𝑗
∶= Var

(
ln(𝑆𝑡∕𝑆𝑡−1)

)
= 𝜎2

𝑆

(
1 − 𝜌2

)
. (29)

We represent the value of an equity-indexed annuity in the integral form (17) over the integrated interest rate 𝑦 = ∫ 𝑡

𝑡−1 𝑟𝑠 d𝑠, where the expected 
payoff function ℎ(𝑦) is conditioned on 𝑟𝑡−1 = 𝑟(𝑘) and 𝑟𝑡 = 𝑟(𝑗), denoted by ℎ𝑘,𝑗 (𝑦). Similarly, the density of 𝑦 = ∫ 𝑡

𝑡−1 𝑟𝑠 d𝑠 conditional on 𝑟𝑡−1 = 𝑟(𝑘) and 
𝑟𝑡 = 𝑟(𝑗) is denoted 𝑓𝑘,𝑗 (𝑦). Analogous to our proof of Theorem 3.1, we can show that:

ℎ𝑘,𝑗 (𝑦) ∶= 𝔼ℙ

[
e𝐿𝑡−1,𝑡

|||| 𝑟𝑡−1 = 𝑟(𝑘), 𝑟𝑡 = 𝑟(𝑗),

𝑡

∫
𝑡−1

𝑟𝑠 d𝑠 = 𝑦
]
= e𝑔−𝑦Φ

( 𝑔

𝛼
− 𝜇𝑘,𝑗 (𝑦)
𝜎𝑘,𝑗

)
+ e𝛼𝜇𝑘,𝑗 (𝑦)+

𝛼𝜎2
𝑘,𝑗
2 −𝑦Φ

(
𝛼𝜎2

𝑘,𝑗
+ 𝜇𝑘,𝑗 (𝑦) −

𝑔

𝛼

𝜎𝑘,𝑗

)
. (30)

1 Note that:

𝜑[1](𝑦) = 𝜑[0](𝑦)⋆ 𝜑[0](𝑦) =

∞

∫
−∞

1[− 1
2 , 12 ]

(𝑦− 𝑥) ⋅1[− 1
2 , 12 ]

(𝑥) d𝑥 =
⎧⎪⎨⎪⎩
∫ 𝑦+ 1

2

− 1
2

d𝑥 = 1 + 𝑦, 𝑦 ∈ [−1,0]

∫ 1
2

𝑦− 1 d𝑥 = 1 − 𝑦, 𝑦 ∈ [0,1]
.
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