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How should fitness be measured to determine which phenotype or “strategy” is uninvadable when evolution occurs in a group-

structured population subject to local demographic and environmental heterogeneity? Several fitness measures, such as basic

reproductive number, lifetime dispersal success of a local lineage, or inclusive fitness have been proposed to address this question,

but the relationships between them and their generality remains unclear. Here, we ascertain uninvadability (all mutant strategies

always go extinct) in terms of the asymptotic per capita number of mutant copies produced by a mutant lineage arising as a single

copy in a resident population (“invasion fitness”). We show that from invasion fitness uninvadability is equivalently characterized

by at least three conceptually distinct fitness measures: (i) lineage fitness, giving the average individual fitness of a randomly

sampled mutant lineage member; (ii) inclusive fitness, giving a reproductive value weighted average of the direct fitness costs and

relatedness weighted indirect fitness benefits accruing to a randomly sampled mutant lineage member; and (iii) basic reproductive

number (and variations thereof) giving lifetime success of a lineage in a single group, and which is an invasion fitness proxy. Our

analysis connects approaches that have been deemed different, generalizes the exact version of inclusive fitness to class-structured

populations, and provides a biological interpretation of natural selection on a mutant allele under arbitrary strength of selection.
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It is well established that, in general, adaptiveness is not increased
by short-term evolution, since recombination can interact with
natural selection to decrease survival and fecundity of individuals
in a population along an evolutionary trajectory (Moran 1964;
Eshel 1991; Ewens 2004). In contrast, when long-term evolution
can be described by a substitution process where a population
transitions from one fixed allele to another through the recurrent
invasion of mutant alleles, an increase in adaptiveness may occur
over time as the result of natural selection being the predominant
evolutionary force (with genetic drift and recombination not play-
ing any significant role, Eshel 1991; Gillespie 1991; Hammerstein
1996; Desai and Fisher 2007).

By way of a “trait substitution sequence process” a pop-
ulation may then evolve in the long term toward fixation of an
uninvadable strategy (i.e., a strategy that is resistant to the invasion
by any alternative strategy, e.g., Eshel 1991, 1996; Hammerstein

1996; Weissing 1996; Van Cleve 2015). An uninvadable strategy
characterizes an endpoint of evolution and is “the best” among a
specified set of alternatives because it maximizes an evolutionary
relevant fitness measure, for the resident strategy at the uninvad-
able state (Eshel 1991, 1996; Hammerstein 1996; Weissing 1996).
Uninvadable strategies can thus be seen as adaptations (sensu
Reeve and Sherman 1993), and they can be determined by an evo-
lutionary invasion analysis even without knowing anything about
the details and intricacies of the substitution process (or whether
it will really indeed converge in the long run). As a result, evolu-
tionary invasion analysis has become a very successful approach
to understand theoretically long-term phenotypic evolution (e.g.,
Fisher 1930; Hamilton 1967; Maynard Smith 1982; Eshel and
Feldman 1984; Parker and Maynard Smith 1990; Charlesworth
1994; Ferrière and Gatto 1995; Metz et al. 1996; McNamara et al.
2001; Lion and van Baalen 2007; Metz 2011; van Baalen 2013).
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When a mutant allele arises as a single copy in a population
whose reproduction occurs at discrete time points, its invasion
fitness1 allows to determine whether the mutant allele will even-
tually go extinct or survive in the population (Tuljapurkar 1989;
Metz et al. 1992; Charlesworth 1994; Rand et al. 1994; Ferrière
and Gatto 1995; Caswell 2000). Invasion fitness is the per capita
number of mutant copies produced asymptotically over a time step
of the reproductive process by the mutant lineage descending from
the initial mutation and when assumed overall rare in the popula-
tion. Intuitively, this is a gene-centered measure of evolutionary
success (sensu Dawkins 1976, 1978). Technically, invasion fitness
is the dominant eigenvalue of a matrix determining the transitions
between the different states in which the mutant allele can reside
(Cohen 1979; Tuljapurkar 1989; Ferrière and Gatto 1995; Caswell
2000; Tuljapurkar et al. 2003). Since evolutionary biologists of-
ten try to understand adaptations in terms of the fitness properties
exhibited by individuals, such as their survival and fecundity, it is
important to understand the exact interpretation of invasion fitness
in terms of individual-centered fitness components.

Interpreting invasion fitness this way seems clear in panmic-
tic populations. In the absence of genetic conflict within indi-
viduals, maximizing invasion fitness (for the resident population
at the uninvadable state) amounts to maximizing the (lifetime)
fitness of a randomly sampled mutant individual, which is deter-
mined by its survival and fecundity schedules in stage-structured
populations (Eshel and Feldman 1984; Charlesworth 1994;
Hammerstein 1996; Weissing 1996; Caswell 2000). This result
relies on the assumption that mutants are rare in the population,
which allows one to neglect the interactions between individu-
als carrying the mutant allele in the invasion analysis. But when
genetic mixing is limited, due to family or spatial population struc-
ture, interactions between mutants can no longer be neglected, as
such interactions will necessarily occur locally, at the level of the
interaction group even if the mutant is globally rare. In this case,
three broad fitness measures have been proposed to ascertain the
fate–establishment when rare or extinction–of a mutant allele.

First, one can seek to compute invasion fitness directly and
exactly. Since in a group-structured population, the mutant is un-
likely to be locally rare, one needs to track groups with different
numbers of mutant alleles (i.e., the local distribution of mutants).
Invasion fitness then becomes the eigenvalue of a matrix describ-
ing the transitions between different group states (Bulmer and
Taylor 1980; Motro 1982; Bulmer 1986; van Baalen and Rand
1998; Courteau and Lessard 1999; Wild 2011). The interpretation
of invasion fitness in terms of individual-centered fitness com-
ponents is then no longer straightforward. In order to understand

1What we here call invasion fitness is often called geometric growth rate

in evolutionary demography and biology (Cohen 1979; Tuljapurkar 1989;

Caswell 2000; Tuljapurkar et al. 2003; Ellner and Rees 2006).

exactly what invasion fitness represents biologically, it needs to
be unpacked and expressed in terms of individual-centered prop-
erties. In constant environments with stable group size, invasion
fitness can be expressed as the individual fitness of a randomly
sampled carrier of the mutant allele from the lineage descending
from the initial mutation (Mullon et al. 2016). But so far no gen-
eral interpretation of invasion fitness has been provided for group
structured populations subject to local heterogeneities, such as
demographic or environmental fluctuations.

Second, due to the computational difficulty to determine in-
vasion fitness exactly, one can seek to evaluate an invasion fit-
ness proxy that predicts the direction of selection in exactly the
same way. The basic reproductive number–the total number of
successful offspring produced by an individual over its lifetime–
is the usual invasion fitness proxy for panmictic populations in
evolutionary biology and epidemiology (Diekmann et al. 1990;
Cochran and Ellner 1992; Mylius and Diekmann 1995; Caswell
2000; Ellner and Rees 2006). This number is computed as the
eigenvalue of the next-generation matrix, whose maximization is
equivalent to maximizing invasion fitness, for the resident pop-
ulation at the uninvadable state (Caswell 2000; Ellner and Rees
2006). In a group structured population, the usual invasion fitness
proxy is the total number of successful emigrants produced by a
mutant lineage over its lifetime when the lineage was started in
a single group by some distribution of immigrants (Parvinen and
Metz 2008; Massol et al. 2009). This approach to determine the
fate of a mutant (introduced in Metz and Gyllenberg 2001 but see
also Chesson 1984) has been used more often under the form of
the total number of successful emigrants produced by a mutant
lineage over its lifetime in a group that was founded by a sin-
gle immigrant (Metz and Gyllenberg 2001; Ajar 2003; Parvinen
et al. 2003; Cadet et al. 2003). These applications require that
individuals disperse independently from each other and not in
clusters, which excludes propagule dispersal. However, a fitness
measure should in general be able to account for propagule dis-
persal, which is a relevant case in practice since new groups in
social insect or mammals often result from fission or budding of
the parental group (Clobert et al. 2001). This raises the question of
the general connection between invasion fitness and the lifetime
number of emigrants produced by a lineage, and more gener-
ally, the interpretation of the latter in terms of individual-centered
fitness components.

Third, one can seek to compute first-order effects of selection
on mutant allele frequency change, which allows to predict the
fate of a mutant under weak selection and is sufficient to ascertain
convergence stability (Taylor 1996; Rousset 2004). Convergence
stability is required in order for a continuous or quantitative trait
to be a (local) endpoint of an evolutionary trajectory characterized
by a trait substitution sequence (Christiansen 1991; Geritz et al.
1998; Leimar 2009). The direct fitness method of social evolution
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theory (e.g., Taylor and Frank 1996; Frank 1998; Rousset 2004)
achieves precisely that and has perhaps been the most popular
approach among all alternative methods for studying evolution
in (spatially) structured populations since it often leads to ana-
lytical results. This approach quantifies the effect on selection
of local interactions between individuals carrying a mutant allele
by using relatedness coefficients and ascertains the direction of
selection on a mutant lineage by way of the inclusive fitness effect
(Hamilton 1964). The inclusive fitness effect (sensu Hamilton
1964) is a weak selection decomposition of the change in the
individual fitness of a randomly sampled carrier of the mutant
allele into direct effects, resulting from an individual express-
ing the mutant (instead of the resident allele), and indirect ef-
fects weighted by relatedness among group members, resulting
from group neighbors expressing the mutant. The inclusive fit-
ness effect has helped understanding the selection pressure on
very diverse phenotypes including the sex-ratio, reproductive ef-
fort, genomic imprinting, dispersal, menopause, parasite viru-
lence, interactive behavior, senescence, and niche construction
in group structured populations (e.g., Taylor 1988; Haig 1997a;
Frank 1998; Gandon 1999; Pen 2000; Taylor and Irwin 2000;
Lehmann 2008; Lion and Gandon 2009; Sozou 2009; Wild et al.
2009; Johnstone and Cant 2010; Ronce and Promislow 2010;
Akçay and Van Cleve 2012; Lion 2013).

Despite their apparent differences, it has been emphasized
that the various fitness measures are in fact tightly connected
(Rousset 2004, p. 194, Akçay and Van Cleve 2016). For exam-
ple, when groups are of constant size, the inclusive fitness effect
amounts to evaluating the sensitivity of the number of emigrants
or of invasion fitness with respect to variation in continuous trait
values (Ajar 2003; Lehmann et al. 2015; Mullon et al. 2016),
but the general connection between invasion fitness, inclusive fit-
ness, and reproductive numbers (invasion fitness proxies), has not
been worked out under arbitrary mutant trait types and selection
strength with local demographic and/or environmental hetero-
geneities.

The aim of this article is to fill these gaps by providing a
general interpretation of invasion fitness in terms of individual-
centered fitness components and connecting formally to each
other the different fitness measures. Our results highlight the con-
ceptual unity underlying fitness measures and resolve some long
standing issues about how inclusive fitness fits in under arbitrary
mutant type and strength of selection.

Model
LIFE CYCLE

We consider a population of haploid individuals divided into an
infinite number of groups. The population is censused at dis-
crete time demographic periods. In each period, each group,

independently from each other, can be in one of a finite num-
ber of demographic-environmental states s ∈ S, where S is the
state space. A state can specify the number of individuals in a
group (“demographic” state) and/or any environmental factor af-
fecting the survival and/or reproduction of all individuals within
a group (“environmental” state). For simplicity of presentation,
we consider a scenario without individual heterogeneity state
(Diekmann et al. 1990; Caswell 2000) or individual class structure
(Taylor 1996; Rousset 2004) within groups, such as age structure,
sex structure, or stage structure. We will later discuss extensions
to these cases, which are essentially a matter of notation.

Local state fluctuations in the population due to demographic
or environmental processes will result in population level patterns
of temporal and spatial heterogeneity, and this will depend on
the level of dispersal between groups. Dispersal may occur be-
tween groups by individuals alone or by groups of individuals
(i.e., propagule dispersal), but dispersal is always assumed to be
uniform between groups in the population; in other words, we
consider an island model of dispersal (Wright 1931). This set-
up allows us to represent classical models where the group state
determines local group size, such as metapopulation processes
(e.g., Chesson 1981; Metz and Gyllenberg 2001; Rousset and
Ronce 2004), insect colony dynamics (e.g., Frank 1998; Avila
and Fromhage 2015), compartmentalized replication like in the
stochastic corrector model for prebiotic evolution (e.g., Szathmary
and Demeter 1987; Grey et al. 1995), or when the state determines
the local abiotic environment in a group (e.g., Greenwood-Lee and
Taylor 2001; Wild et al. 2009; Rodrigues and Gardner 2012).

We assume that only two alleles can segregate in the pop-
ulation, a mutant allele of type τ and a resident allele of type
θ where the set of all possible types is called !. Suppose that
initially the population is monomorphic or fixed for the resi-
dent type θ and that a single individual mutates to type τ. Will
the mutant “invade” the population and increase in frequency?
If the resident type θ is such that any mutant type τ ∈ ! goes
extinct with probability one, we will say that θ is uninvad-
able. A state that is uninvadable is an evolutionarily stable state.
Our aim is to characterize uninvadability mathematically and
biologically.

THE RESIDENT DEMOGRAPHIC EQUILIBRIUM

Following standard assumptions for the dynamics of mutant-
resident substitutions (Eshel and Feldman 1984; Eshel 1996;
Hammerstein 1996; Weissing 1996; Metz et al. 1996), we as-
sume that a mutant can only arise in a resident population that
is at its demographic equilibrium, and we start by characterizing
this equilibrium. Our main assumption is that the stochastic pro-
cess describing the state dynamics of a focal group in the resident
population is given by a discrete time Markov chain on a finite
state space (Karlin and Taylor 1975; Iosifescu 2007), where the
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time scale is that of a demographic period (i.e., the scale at which
births, deaths, dispersal, and other demographic events occur).

Because groups may affect each other demographically
through dispersal, the transition probabilities for this Markov
chain may depend endogenously on the resident population dy-
namics. But since there is an infinite number of groups, the in-
finite set of interacting Markov chains (one for each group) can
be described as a single (inhomogeneous) Markov chain, whose
transition probabilities are functions of the expected value of the
process (Chesson 1981, 1984). We assume that this finite Markov
chain is regular, irreducible and aperiodic, and thus has a station-
ary distribution (Iosifescu 2007, p. 123, Supporting Information
(SI) Appendix A). As any local group is assumed to be bounded
in size (finite carrying capacity), the process necessarily involves
density-dependent ecological feedback on the resident population
(e.g., Metz and Gyllenberg 2001; Cadet et al. 2003; Lehmann et al.
2006; Alizon and Taylor 2008 for concrete applications).

THE MUTANT MULTITYPE BRANCHING PROCESS

We now introduce a mutant into the backdrop of the resident pop-
ulation in its stationary demographic regime. Denote by Mt (s, i)
the random number of groups in the population that are in state
s ∈ S and have exactly i ∈ I (s) = {1, 2, . . . , n(s)} mutant in-
dividuals at time t = 0, 1, 2, . . . where n(s) is the number of
individuals in a group in state s and t = 0 is the time of ap-
pearance of the mutant. Denote by mt = (Mt (s, i))s∈S,i∈I (s) the
vector collecting the Mt (s, i) random variables and e(s) a vec-
tor of the same dimension but whose (s, 1)-th component is
equal to one, otherwise zero. Starting with a single initial mu-
tant of type τ in a focal group in state s at time t = 0, namely
m0 = e(s), we are interested in finding a necessary and suffi-
cient condition for the mutant type τ to go extinct in finite time
with probability one for any state s ∈ S (formally, a condition for
Pr[mt = 0 for some t ∈ N | m0 = e(s)] = 1 for all s ∈ S).

Since we are interested only in characterizing the condition
under which the mutant goes extinct, we assume that it will always
remain rare in the total population (conditional on extinction) and
approximate the dynamics of the mutant as a multitype branch-
ing process (Harris 1963; Karlin and Taylor 1975; Kimmel and
Axelrod 2015), as in previous group structured population models
with selection (e.g., Grey et al. 1995; Wild 2011; Mullon et al.
2016). It is then sufficient to focus on the (regular) matrix A whose
(s ′, i ′; s, i) element, denoted a(s ′, i ′ | s, i), is the expected num-
ber of groups in genetic-demographic-environmental state (s ′, i ′)
that are “produced” over one demographic time period by a focal
group in state (s, i) when the population is otherwise monomor-
phic for θ. For comparison with previous formalizations, it is
relevant to note that we generally interpret these elements as de-
scribing changes in group state over one demographic time period
(one life cycle iteration) as going from one “adult” stage (settled

individuals in a group) to the next (e.g., Rousset 2004, Fig. 3.1),
and not as going from the juveniles stage after dispersal to the
next such state (e.g., Metz and Gyllenberg 2001).

It is useful to decompose the A matrix transition elements as

a(s ′, i ′ | s, i) = p(s ′, i ′ | s, i) + d(s ′, i ′ | s, i), (1)

which consists of two terms representing two distinct biologi-
cal processes. The first is the intragroup (or intracompartmental)
change described by the transition probability p(s ′, i ′ | s, i) that
a focal group in state (s, i) turns into a group in state (s ′, i ′) after
one demographic time period. The second process is the success
of a group in replacing other groups by reproduction or fission,
which is represented by d(s ′, i ′ | s, i) that measures the expected
number of groups in state (s ′, i ′) produced by emigration from,
or fission, of a focal group of state (s, i). By “producing” a group
of state (s ′, i ′), we mean that for a metapopulation process a fo-
cal group in state (s, i) in a parental generation leaves i ′ ∈ I (s ′)
mutant offspring in a group that will be in state s ′ after one de-
mographic time period. For compartmental replication processes
(e.g., Grey et al. 1995) this means producing (by replication) a
group in state (s ′, i ′).

INVASION FITNESS

It follows from standard results on multitype branching processes
(Harris 1963; Karlin and Taylor 1975; Kimmel and Axelrod 2015)
that the lineage descending from a single mutant τ arising in any
of the demographic states of the resident θ population, will go
extinct with probability one if the leading eigenvalue ρ(τ, θ) of
A(τ, θ) is less than or equal to 1. Namely, extinction occurs with
probability one if and only if

ρ(τ, θ) ≤ 1, (2)

where ρ(τ, θ) satisfies

ρ(τ, θ)uA(τ, θ) = A(τ, θ)uA(τ, θ) (3)

and uA(τ, θ) is the leading right eigenvector of A(τ, θ).
The interpretation of invasion fitness ρ(τ, θ) is that it gives

the per capita number of mutant copies produced by an average
trajectory of the mutant lineage; that is, the collection of indi-
viduals descending from the individual in which the mutation
appeared (Cohen 1979; Tuljapurkar et al. 2003). In the long-run,
the average mutant lineage grows in the direction of uA(τ, θ) so
that this vector can be interpreted as an asymptotic distribution
of group genetic-demographic-environmental states containing at
least one individual belonging to the mutant lineage. Namely,
element (s, i) of uA, that is uA(s, i), is the asymptotic probabil-
ity of s-type groups with i ≥ 1 mutants; this interpretation holds
whether the mutant lineage goes extinct or invades the population
(Harris 1963, p. 44).
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It follows directly from the construction of the model that
ρ(θ, θ) = 1; namely, the invasion fitness of a resident lineage in
a resident population is equal to one (see SI Appendix A for a
proof). This implies that a resident type θ ∈ ! is uninvadable if,
and only if,

ρ(τ, θ) ≤ 1 ∀τ ∈ !. (4)

Thus θ is uninvadable only if θ solves the maximization problem
maxτ∈! ρ(τ, θ).

Now that we have a mathematical characterization of unin-
vadability in terms of invasion fitness ρ(τ, θ), we present three
different fitness measures that are all related to ρ(τ, θ) and are
all expressed in term of biological quantities that have appeared
previously in the literature. All these quantities are derived in
the SI from the elements a(s ′, i ′ | s, i), p(s ′, i ′ | s, i), and/or
d(s ′, i ′ | s, i) (eq. 1), and the explicit mathematical expressions
are given in Table 1.

Three ways of understanding
selection
LINEAGE FITNESS

First, we let the lineage fitness of a mutant type τ in a resident θ

population be

W (τ, θ) =
∑

s ′∈S

∑

s∈S

∑

i∈I (s)

w(s ′ | s, i)q(i | s)q(s), (5)

where w(s ′ | s, i) is the expected number of successful “offspring”
(possibly including the parent through survival), which settle in
groups of type s ′, given that the parent is a mutant residing in
a group in state (s, i). Lineage fitness also depends on the prob-
ability q(i | s) that, conditional on being sampled in a group in
state s, an individual randomly sampled from the mutant lineage
has i − 1 mutant neighbors. This can be thought of as the con-
ditional mutant experienced profile distribution, and q(s) is the
probability that an individuals randomly sampled from the mu-
tant lineage finds itself in a group in demographic-environmental
state s. Note that these two distributions depend on the uA(s, i)
asymptotic distribution (Table 1). When there is only one demo-
graphic state, W (τ, θ) reduces to equation (A.1) of Day (2001)
and equation (A.7) of Mullon et al. (2016).

Lineage fitness W (τ, θ) is the statistical average over all
genetic-demographic-environmental states of the number of mu-
tant replica copies produced by a representative carrier of the
mutant allele. That is, the fitness of a randomly sampled car-
rier of the mutant allele from its lineage, where w(s ′ | s, i) is an
individual-centered fitness component variously called “direct,”
“personal,” or “individual” fitness in social evolutionary theory
(e.g., Frank 1998; Rousset 2004), and will be here referred to as
individual fitness. Individual fitness involves offspring reaching

adulthood in the group of the parent and in other groups through
dispersal, and can thus also be written as

w(s ′ | s, i) = wp(s ′ | s, i) + wd(s ′ | s, i). (6)

Here, wp(s ′ | s, i) is the expected number of philopatric off-
spring, which settle in a group in state s ′, given that the par-
ent is a mutant that reproduced in a group in state (s, i), while
wd(s ′ | s, i) is such offspring produced by dispersal, and thus
reach adulthood in other groups in state s ′. This decomposition
of individual fitness matches the decomposition of the element
of the transition matrix of the mutant given in equation (1) (see
Table 1 and SI Appendix E, where we further decompose these
terms into subcomponents that have appeared previously in the
literature).

In the SI Appendix B, we show that invasion fitness of the
mutant is exactly equal to its lineage fitness; namely,

W (τ, θ) = ρ(τ, θ). (7)

This equation immediately implies that θ is uninvadable if it solves
the maximization problem maxτ∈! W (τ, θ). In other words, the
type is uninvadable if it “maximizes” lineage fitness, which will
prevent any mutant type from increasing when rare.

Lineage fitness can be interpreted as a gene-centered measure
of fitness (Dawkins 1976, 1978), as this perspective emphasizes
that it is the combined fitness effects of all replica gene copies of
a mutant lineage in the population that matters for selection (e.g.,
Dawkins 1976; Haig 1997b; Rousset 2004; van Baalen 2013; see
also Akçay and Van Cleve 2016). Accordingly, lineage fitness
W (τ, θ) can be thought of as the goal function of a focal strategic
gene (Dawkins 1976; Haig 1997b, 2012); namely, a gene (lin-
eage) attempting to maximize its own transmission for a popula-
tion where individuals behave according to the strategy of another
gene. Finally, we note that the condition for uninvadability, equa-
tion (7), can also be interpreted as a version for class-structured
population of the seminal uninvadability condition obtained for
multilocus systems in panmictic populations, where the statistical
average is over multilocus equilibrium genetic states (Eshel and
Feldman 1984, eq. 10; Eshel et al. 1998, eq. 7).

INCLUSIVE FITNESS

Let us now decompose individual fitness as

w(s ′ | s, i) = w◦(s ′ | s) − c(s ′ | s) + b(s ′ | s)
(

i − 1
n(s) − 1

)

+ ϵi (s ′, s), (8)

where w◦(s ′ | s) is the expected number of surviving offspring,
which settle in groups of type s ′, given that the parent is a
resident reproducing in a group in state s in a monomorphic
resident population, and where the superscript ◦ will throughout
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Table 1. Definitions of the functions and vectors used for lineage fitness, inclusive fitness, and the reproductive numbers.

Function Definition

a(s ′, i ′ | s, i) Expected number of groups in state (s ′, i ′) that are “produced” over one
demographic time period by a focal group in state (s, i). This is element
(s ′, i ′; s, i) of the matrix A = P + D.

p(s ′, i ′ | s, i) Probability that a focal group in state (s, i) turns into a group in state (s ′, i ′)
after one demographic time period. This is element (s ′, i ′; s, i) of the
matrix P.

d(s ′, i ′ | s, i) Expected number of groups in state (s ′, i ′) produced by emigration or fission
by a focal group in state (s, i). This is element (s ′, i ′; s, i) of the matrix D.

w(s ′ | s, i) = 1
i

∑
i ′∈I (s ′) i ′a(s ′, i ′ | s, i) Expected number of successful offspring, which settle in groups of type s ′,

and are produced by a single mutant individual given that it resides in a
group in state (s, i).

wp(s ′ | s, i) = 1
i

∑
i ′∈I (s ′) i ′ p(s ′, i ′ | s, i) Expected number of successful philopatric offspring, which settle in groups

of type s ′, and are produced by a single mutant individual given that it
resides in a group in state (s, i).

wd(s ′ | s, i) = 1
i

∑
i ′∈I (s ′) i ′d(s ′, i ′ | s, i) Expected number of successful dispersing offspring, which settle in groups of

type s ′, and are produced by a mutant individual given that it resides in a
group in state (s, i).

wp(s ′ | s, i) = wp(s ′, s, i)p(s ′ | s, i) Here, wp(s ′, s, i) is the expected number of successful philopatric offspring
given that the offspring settle in a group in state s ′ and the parent
reproduces in a group in state (s, i).

p(s ′ | s, i) =
∑

i ′∈I (s ′) p(s ′, i ′ | s, i) Probability that a group will be in state s ′ in the offspring generation given
that it was in state (s, i) in the parental generation.

wd(s ′ | s, i) =
∑

x∈S wd(s ′, x, s, i) p̃(s ′ | x, s, i)p◦(x) Here, wd(s ′, x, s, i) is the expected number of dispersing offspring that a
single mutant produces given that it resides in a group in state (s, i) and
given that the group where the offspring settle is in state s in the offspring
generation and was in state x in the parental generation (with 0 mutants).

p̃(s ′ | x, s, i) Probability that a group that was in state (x, 0) in the parental generation, and
has been colonized by a mutant descending from a group in state (s, i), will
become a group in state s ′ in the offspring generation.

uA(s, i) Asymptotic probability that a mutant lineage finds itself in a group in state
(s, i). This is element (s, i) of the right eigenvector uA of A associated to
its leading positive eigenvalue ρ, namely, ρuA = AuA.

q(s) =
∑

i∈I (s) iuA(s,i)∑
s∈S

∑
i∈I (s) iuA(s,i) Asymptotic probability that a randomly drawn mutant lineage member find

itself in a group in state s. Note that the denominator∑
s∈S

∑
i∈I (s) iuA(s, i) is the average size of the mutant lineage in a group.

q(i | s) = iuA(s,i)∑
i∈I (s) iuA(s,i) Asymptotic probability that, conditional on being sampled in a group in state

s, a randomly sampled mutant individual from the mutant lineage finds
itself in a group with i mutants.

w◦(s ′ | s) Expected number of successful offspring, which settle in groups of type s ′,
and are produced by a single mutant individual given that it resides in a
group in state s in a monomorphic resident population.

v◦(s) =
∑

s ′∈S v◦(s ′)w◦(s ′ | s) Reproductive value of a single individual reproducing in a group in state s in
a monomorphic resident population.

−c(s ′ | s) Additive effect on the individual fitness of an individual stemming from it
switching to the expression of the mutant allele and holding everything
else constant.

b(s ′ | s) Additive effect on the individual fitness of a mutant stemming from the whole
set of neighbors switching to the expression of the mutant allele and
holding everything else constant.

r (s) =
∑

i∈I (s)
(i−1)

(n(s)−1) q(i | s) Asymptotic probability that, conditional on being sampled in a group in state
s, an individual carrying the mutant experiences a randomly sampled
neighbor that also carries the mutant allele. This is a measure of pairwise
relatedness between individuals in a group.

(Continued)
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Table 1. Continued.

Function Definition

w(s ′ | s, τ j , τ−j) Expected number of successful offspring, which settle in groups of type s ′, and
are produced by a single individual j with phenotype τ j given that it resides in
a group in state s and that its group neighbors have phenotype profile
τ−j =(τ1, . . . , τj−1, τj+1, . . .τn(s)−1).

q◦(s ′) =
∑

s∈S w◦(s ′ | s)q◦(s) Stationary probability of randomly sampling an individual from its lineage in a
group in state s when the population is monomorphic for the resident allele.

q◦(s) = p◦(s)n(s)/n̄◦ Here, n̄◦ =
∑

s∈Ss n(s)p◦(s) is the average group size in a monomorphic
resident population.

p◦(s ′) =
∑

s∈S p◦(s ′ | s)p◦(s) Stationary probability that a group is in state s in a resident monomorphic
population, where p◦(s ′|s) denotes the neutral transition probability from state
s to s ′ (possibly depending endogenously on the distribution p◦(s)).

uR(s, i) Asymptotic probability that a group initiated by a local lineage starts in state
(s, i). This is element (s, i) of the right eigenvector uR satisfying
RmuR = RuR, where R = D(I − P)−1 is the next-generation matrix and Rm

the metapopulation reproductive number.
q0(s, i) = i t̄(s,i)

NL(τ,θ) Probability that an individual randomly sampled from the mutant lineage over its
lifetime in a single group finds itself in a group in state (s, i).

t̄(s ′, i ′) =
∑

s∈S
∑

i∈I (s) t(s ′, i ′ | s, i)uR(s, i) Average of the expected amount of time the mutant lineage spends in state (s ′, i ′)
over its lifetime in a single group.

t(s ′, i ′ | s, i) Expected number of demographic times steps the mutant lineage spends in state
(s ′, i ′) over its lifetime in a single group given that the group started in state
(s, i). This is element (s ′, i ′; s, i) of the matrix (I − P)−1 of sojourn times.

NL(τ, θ) =
∑

s∈S
∑

i∈I (s) i t̄(s, i) Average total size of the mutant lineage over its lifetime in a single group.
NF(τ, θ) =

∑
s∈S

∑
i∈I (s) iuR(s, i) Expected number of founders in a single group of the mutant lineage.

Notes See the SI for a proof of these quantities

denote a quantity that is evaluated in the absence of natural selec-
tion, that is a process determined by the monomorphic resident
population. Individual fitness also depends on −c(s ′ | s), which is
the additive effect on its individual fitness stemming from an in-
dividual switching to the expression of the mutant allele, b(s ′ | s),
which is the additive effect on the individual fitness of a mu-
tant stemming from the whole set of neighbors switching to the
expression of the mutant, and (i − 1)/(n(s) − 1), which is the fre-
quency of mutants in a the neighborhood of a mutant individual
in a group with i mutants in state s. The direct effect c(s ′ | s) and
the indirect effect b(s ′ | s) are obtained by minimizing the mean
squared error ϵi (s ′, s) in the linear prediction of individual fitness
(see Box 1 for details).

BOX 1. Weighted least square
regression
We here show how to obtain the cost c(s ′ | s) and benefit
b(s ′ | s) in equation (8). These are found by minimizing for
each pairs of states (s ′, s) the sum of squared errors ϵi (s ′, s)
weighted by the probabilities q(i | s):

Q(c, b) =
∑

i∈I (s)

ϵi (s ′, s)2q(i | s).

That is, from equation (8), we minimize

Q(c, b) =
∑

i∈I (s)

[
w(s ′ | s, i) −

(
w◦(s ′ | s) − c(s ′ | s)

+ b(s ′ | s)
(i − 1)

n(s) − 1

)]2

q(i | s),

with respect to c and b. From the prediction theorem for
minimum square error prediction (Karlin and Taylor 1975,
p. 465), we then have

∑
i∈I (s) ϵi (s ′, s)q(i | s) = 0 for all s ′ ∈ S

and s ∈ S, which is one of the main features we use to obtain
the expression for inclusive fitness (SI Appendix C).

We let the inclusive fitness of a mutant type τ in a resident θ

population be

WIF(τ, θ) = 1 +
∑

s ′∈S

∑

s∈S
v◦(s ′)

[
−c(s ′ | s) + b(s ′ | s)r (s)

]
q(s), (9)

where v◦(s) is the reproductive value of a single individual re-
producing in a group in state s in a monomorphic population of
the resident type. This is the relative expected asymptotic con-
tribution of a single resident individual in state s to the popula-
tion when it is monomorphic for the resident (Table 1 and see
Taylor 1990; Taylor and Frank 1996; Rousset 2004; Grafen 2006;
Lehmann and Rousset 2014 for discussions of this concept).
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Inclusive fitness also depends on the probability r (s) that,
conditional on being sampled in a group in state s, an individual
carrying the mutant experiences a randomly sampled neighbor
that also carries the mutant allele. This is a measure of pairwise
relatedness between two individuals in a group (see Table 1).
In a monomorphic resident population, relatedness [then given
by r◦(s)] reduces to the standard concept of probability of iden-
tity by descent between two randomly sampled group members
(e.g., Frank 1998; Rousset 2004). In sum, the inclusive fitness
WIF(τ, θ) of a randomly sampled mutant from the lineage distribu-
tion q(s) is the reproductive-value weighted average individual fit-
ness cost c(s ′ | s) of carrying the mutant allele and the relatedness
weighted individual indirect fitness benefit b(s ′ | s) of carrying the
mutant.

We show in the SI Appendix C that inclusive fitness is exactly
equal to invasion fitness of the mutant; that is,

WIF(τ, θ) = ρ(τ, θ). (10)

Hence, a strategy θ is uninvadable if and only if inclusive fit-
ness is maximized at θ in the sense that θ solves the problem
maxτ∈! WIF(τ, θ). This shows that, regardless of the force of se-
lection, uninvadability can be expressed in terms of the three stan-
dard measures of “value” emphasized by social evolution theory
(Frank 1998; Rousset 2004): (i) the direct cost and indirect benefit
within each class of an individual expressing the mutant, (ii) the
pairwise relatedness between interacting individuals, and (iii) the
neutral reproductive value of the descendants in each class.

Three points about inclusive fitness WIF(τ, θ) are worth em-
phasizing. First, the regression approach displayed in equation (8)
(and Box 1) is standard in population genetics, it underlies quan-
titive genetics and has been used before in social evolution (e.g,
Fisher 1930; Queller 1992; Frank 1997; Lynch and Walsh 1998;
Ewens 2004; Gardner et al. 2011). Second, while the regression
coefficients in equation (8) may be very difficult to evaluate in
practice and do not solve any computation problem, they can be
useful for interpretation, for instance for defining altruism in an
operational way (Rousset 2015). Third, for inclusive fitness to be
equal to invasion fitness, the normalization of the reproductive
values (the v◦(s)’s) cannot be arbitrary chosen and must satisfy
the constraint

∑

s∈S
v◦(s)q(s) = 1, (11)

(see SI Appendix C; otherwise, we only obtain the weaker re-
sult that WIF(τ, θ) ≤ 1 ⇐⇒ ρ(τ, θ) ≤ 1). This normalization
means that the reproductive value weighted average fitness
w◦(s ′ | s) of a resident individual living in a resident monomor-
phic population and sampled from the mutant lineage asymp-
totic demographic-environmental state distribution is equal to one

[since
∑

s∈S
∑

s ′∈S v◦(s ′)w◦(s ′ | s)q(s) =
∑

s∈S v◦(s)q(s)]. This
expectation of the fitness of resident individuals weighted accord-
ing to how mutants are distributed among states has an intuitive
meaning: it corresponds to the expected per capita number of gene
copies produced in the long term by the collection of residents
that are “replaced” by members of the mutant lineage. This idea
can be seen as the generalization to class-structured populations
of the “basic reproductive unit which, if possessed by all the in-
dividuals alike, would render the population both stationary and
nonevolutionary” (Hamilton 1964, p. 2). This basic unit is part
of the foundational construction of inclusive fitness at the level
of the allele or type (Hamilton 1964, p. 6). As such, we suggest
that the normalization, equation (11), is an integral part of the
definition of the exact version of inclusive fitness.

REPRODUCTIVE NUMBERS

We now turn to invasion fitness proxies. Let the metapopulation
reproductive number of a mutant type τ in a resident θ population
be

Rm(τ, θ) = 1
NF(τ, θ)

∑

s ′∈S

∑

s∈S

∑

i∈I (s)

wd(s ′ | s, i)i t̄(s, i), (12)

where NF(τ, θ) is the expected number of mutants settling in the
same group and that descend from the same natal group initially
settled by some distribution of mutant immigrants (see Table 1).
The triple sum represents the expected number of successful emi-
grants produced by all individuals descending from these settlers
over the lifetime of their lineage in a single group. This depends
on the expected number wd(s ′ | s, i) of emigrant offspring that
settle in groups of type s ′ (see eq. 6) and on the expected amount
of time t̄(s, i) that a mutant lineage spends in a single group in
state (s, i) in the stationary distribution of initial group states of
the mutant lineage. In summary, the metapopulation reproduc-
tive number gives the expected number of successful emigrants
produced by a lineage during its whole sojourn time in a single
group and per capita of the number of founders belonging to that
lineage. When there is only one demographic-environmental state
and one founding mutant, equation (12) reduces to equation (3)
of Ajar (2003).

Although the explicit expression of Rm(τ, θ) (the right-hand
of eq. 12) does not appear previously in the literature, this ex-
pression corresponds precisely to the leading eigenvalue of the
next-generation matrix often considered in the evolutionary de-
mography literature (Caswell 2000; Ellner and Rees 2006, see
Table 1 and SI Appendix D). Further, if the number of founders is
always equal to one (NF(τ, θ) = 1), then Rm (eq. 12) is consistent
with the expression for the metapopulation reproductive number
given in Massol et al. (2009, eqs. 12–13), who considered the
next-generation matrix under a continuous time reproductive pro-
cess. It then follows from these considerations and standard results
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(see SI Appendix D) that the reproductive number Rm(τ, θ) pre-
dicts whether or not the mutant invades in the same way as invasion
fitness ρ(τ, θ); namely

Rm(τ, θ) ≤ 1 ⇐⇒ ρ(τ, θ) ≤ 1. (13)

Hence, a strategy is uninvadable if, and only if, the basic metapop-
ulation reproductive number is maximized.

The reproductive number Rm counts (emigrant) successful
offspring as produced by a whole set of individuals in the lineage,
and, by contrast to W (τ, θ) and WIF(τ, θ), is not individual cen-
tered. In order to have a reproductive number that is expressed
in terms of the individual fitness of a representative carrier of the
mutant allele, we let lineage fitness proxy of a mutant type τ in a
resident θ population be given by

R0(τ, θ) =
∑

s ′∈S

∑

s∈S

∑

i∈I (s)

w(s ′ | s, i)q0(i | s)q0(s). (14)

Here, q0(i | s)q0(s) = q0(s, i) is the probability that an individual
randomly sampled from the mutant lineage over its lifetime in a
single group finds itself in a group in state (s, i) (see Table 1),
with q0(s) being the probability of being in state s and q0(i | s)
the conditional probability that there are i mutants in that state.
The expression in (14) is a direct analogue of lineage fitness,
equation (5), the only difference is in the mutant profile distribu-
tions; for R0(τ, θ) the profile distribution depends on the average
time the lineage spends in a single group in state (s, i) (which
depends on the stationary distribution of initial groups states, see
Table 1), whereas for lineage fitness the profile distribution de-
pends on the asymptotic distribution uA(s, i) that the lineage is in
a group in state (s, i). Because the right hand side of equation (14)
corresponds to the general verbal individual-centered interpreta-
tion of the basic reproductive number given in previous work (e.g.,
Diekmann et al. 1990; Caswell 2000), we used the notation R0

to denote it. When there is only one demographic state, R0(τ, θ)
reduces to equation (3) of Lehmann et al. (2015).

We show in the SI Appendix D that the reproductive number
R0(τ, θ) predicts whether or not the mutant invades in the same
way as invasion fitness ρ(τ, θ); that is,

R0(τ, θ) ≤ 1 ⇐⇒ ρ(τ, θ) ≤ 1. (15)

RESULTS SUMMARY

Summarizing all the above results, we have shown that for an
uninvadable type θ:

ρ(τ, θ) = W (τ, θ) = WIF(τ, θ) ≤ 1

⇐⇒ Rm(τ, θ) ≤ 1 ⇐⇒ R0(τ, θ) ≤ 1 ∀τ ∈ !. (16)

Discussion
Our results demonstrate that the different fitness measures that
have been proposed so far all equivalently determine which strat-
egy is uninvadable, and that they can all be connected through
their relationship to invasion fitness. The mathematical theory we
present thus provides a formal framework for understanding the
broad notion that fitness measures must align (e.g., Metz et al.
1992; Rousset 2004; Roff 2008; Akçay and Van Cleve 2016).
Our results also reveal interesting features of the different fitness
measures, which we now discuss.

LINEAGE AND INCLUSIVE FITNESS

Uninvadability can be equivalently characterized in terms of lin-
eage fitness or inclusive fitness. This duality is interesting as these
two gene-centered fitness measures are expressed in terms of
different individual-centered fitness components experienced by
representative carriers of the mutant allele. Lineage fitness is ex-
pressed only in terms of the individual fitness of a randomly drawn
individual carrying the mutant, where the carrier is drawn from the
asymptotic distribution of group states experienced by members
of the mutant lineage (all genetic-demographic-environmental
states). In contrast, inclusive fitness is expressed in terms of the
direct fitness cost and relatedness weighted indirect fitness ben-
efit accruing to a randomly drawn carrier of the mutant allele
from its lineage. Writing fitness in terms of costs and benefits
requires making a comparison between the number of offspring
produced by an individual expressing the mutant allele relative
to expressing the resident allele from its lineage. But in order for
this comparison to depend only on selective effects and not on
environmental features (like being lucky to be born in a resource
full environment), how the fitness value of an offspring depends
on the demographic and/or environmental state in which it settles
needs to be taken into account. Thus, each offspring needs to be
appropriately weighted according to the demographic and/or envi-
ronmental state in which it will reproduce to guarantee that in the
absence of selection the mutant will not increase (or decrease) in
frequency in the population (Taylor 1990; Rousset 2004; Grafen
2006).

We find that these weights are the reproductive values of
the monomorphic resident population regardless of the strength
of selection on the mutant. The intuitive interpretation for this
result is that reproductive value weighting allows one to average
the number of offspring produced by an individual in different
demographic-environmental states by taking into account their
proportionate long-term contribution to the population, such that
in the absence of selection invasion fitness is equal to one (SI
Appendix A). By averaging over the reproductive values in a
monomorphic resident population, inclusive fitness then allows
determining whether the increase (or decrease) of the number
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of descendants that a typical carrier of the mutant allele leaves
in a resident population and relative to the typical carrier of the
resident allele, is due solely to effects of selection. This result is
consistent with previous population genetic formulations of allele
frequency change in class-structured populations under arbitrary
strength of selection (Lehmann and Rousset 2014). Our analy-
sis thus generalizes the exact version of inclusive fitness (e.g.,
Queller 1992; Frank 1997; Gardner et al. 2011; Rousset 2015)
to class-structured populations and variable number of interac-
tion partners, and shows that the standard neutral reproductive
value weighting (e.g., Taylor and Frank 1996; Rousset 2004) is
maintained in this generalization.

Inclusive fitness makes explicit that the force of selection on
a mutant allele depends on (i) how individuals in different de-
mographic and environmental states contribute differently to the
gene pool and on (ii) the genetic association between individu-
als due to local common ancestry, regardless of the complexity
of the biological situation at hand and the strength of selection.
These biological features, hidden in the other fitness measures,
also become apparent if one considers only the first-order ef-
fects of selection on invasion fitness when the evolving traits
have continuous values. This is the situation usually considered
in the adaptive dynamics and inclusive fitness literature where one
looks for local evolutionary attractors, the so-called convergence
stable strategies (Taylor 1996; Geritz et al. 1998; Rousset 2004;
Dercole and Rinaldi 2008). In this situation, the selection gradi-
ent on the mutant allele we derive (i.e., the sensitivity of invasion
with respect to changes in trait value, Box 2) boils down to and
generalizes the inclusive fitness effect derived previously by the
direct fitness method (Taylor and Frank 1996; Rousset 2004, see
Box 2 and the SI Appendix E for this connection). Hence, our
model makes explicit that the direct fitness method amounts to
computing the sensitivity of the invasion fitness of the mutant
with respect to changes in mutant strategy under a general class
structure and with environmental heterogeneity (see also Rousset
2004, pp. 194–196 for a conjecture on that point).

BOX 2. Sensitivity of invasion
fitness and invasion implies
substitution
We here provide an expression for the derivative of inva-
sion fitness (i.e., the sensitivity of invasion fitness) for a
one-dimensional quantitative trait; that is, when ! = R. This
derivative is sufficient to evaluate singular strategies and con-
vergence stable states (Taylor 1996; Rousset 2004; Lehmann

and Rousset 2014). In the SI Appendix E, we prove that the
sensitivity of invasion fitness is

∂ρ(τ, θ)
∂τ

=
∑

s ′∈S

∑

s∈S
v◦(s ′)

[
∂w(s ′ | s, τ j , τ− j )

∂τ j

+ (n(s) − 1)
∂w(s ′ | s, τ j , τ− j )

∂τk
r◦(s)

]
q◦(s)

where w(s ′ | s, τ j , τ− j ) is the individual fitness of an individ-
ual with phenotype τ j , when its group members have pheno-
type profile τ− j = (τ1, . . . , τ j−1, τ j+1, . . . τn(s)−1), which is
the vector collecting the phenotypes of the n(s) − 1 neigh-
bors of an individual j and k ̸= j , and all derivatives are
evaluated at the resident values θ. Note that here, both the
probability q◦(s) that a mutant experiences a group in state s
and relatedness r◦(s) are evaluated in a monomorphic resident
population (neutral process). Given further specific biological
assumptions on the underlying demographic process, we then
recover from the above derivative the expression for the in-
clusive fitness effect derived by the direct fitness method for
the island model (Taylor and Frank 1996; Rousset and Ronce
2004 and SI Appendix E).

The arguments developed in Rousset (2004, p. 149,
p. 196) and Rousset and Ronce (2004) show that, when the
phenotypic deviation δ = τ − θ between mutant and resident is
small (|δ| ≪ 1), the change # p̄ in reproductive value weighted
average mutant frequency p̄ in the total population is

# p̄ = p̄(1 − p̄)δS(θ) + O(δ2), (X.1)

where S(θ) = ∂ρ(τ, θ)/∂τ|τ=θ is the selection gradient on
the mutant allele. Hence, under weak selection and when
δS(θ) > 0 invasion of the mutant implies substitution, a re-
sult that holds generally under spatial structure (Rousset 2004,
p. 206, Lehmann and Rousset 2014). It follows immediately
that under a trait substitution sequence dynamics, the selection
gradient S(θ) is sufficient to ascertain convergence stability
(Leimar 2009); a convergence stable strategy θ∗ satisfying

dS(θ)
dθ

∣∣∣∣
θ=θ∗

< 0. (X.2)

Importantly, under weak selection, the selection gradient on
the mutant allele derived from invasion fitness allows not only to
determine wether the mutant invades the population when at low
frequency, but also whether it will fixate in the whole population
(Box 2). Hence, invasion implies substitution can be predicted
from the selection gradient alone in which case evolution can be
described as a trait substitution sequence process. The selection
gradient is thus sufficient to compute local convergence stability,
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and to establish which strategies will be local attractors of the
evolutionary dynamic (Box 2).

Overall, our analysis demonstrates connections between the
various theoretical approaches for characterizing adaptations in
heterogeneous populations. But depending on the type of ques-
tions and insight desired, either inclusive or lineage fitness for-
mulations might be better suited. For instance, lineage fitness
may be easier to measure, as it only relies on measuring the
individual fitness of a representative sample of individuals of
the mutant type (see Akçay and Van Cleve 2016 for further
discussions on using invasion fitness measures for empirical
system).

REPRODUCTIVE NUMBERS

We also derived an explicit expression for the metapopulation
reproductive number, Rm, which was shown to depend on the ra-
tio of the total lifetime number of successful emigrants produced
by a typical group colonized by members of the mutant lineage,
to the expected number of colonizers of such a typical group.
Reproductive numbers are the usual invasion fitness proxies in
evolutionary biology and epidemiology (Diekmann et al. 1990;
Cochran and Ellner 1992; Mylius and Diekmann 1995; Caswell
2000; Ellner and Rees 2006) and are usually used as they sim-
plify the characterization of the condition under which a mutant
invades. They circumvent the need to compute explicitly invasion
fitness ρ, (the eigenvalue of the transition matrix A), and only
require a matrix inversion (SI Appendix D). When individuals
disperse independently and not in clusters (i.e., no propagule dis-
persal), the metapopulation reproductive number reduces to the
number of successful emigrants produced over the lifetime of a
lineage initiated by a single mutant, which has been often used
as a fitness proxy in concrete applications as it even further sim-
plifies the computation (Metz and Gyllenberg 2001; Ajar 2003;
Parvinen et al. 2003; Cadet et al. 2003). Our results are consistent
with the formal proof of the use of this number derived by Massol
et al. (2009) for a continuous time demographic-environmental
process.

Three points are worth mentioning concerning the reproduc-
tive number Rm. First, while no relatedness appears explicitly in
it, its take inclusive fitness effects into account in qualitatively
the same way as inclusive fitness (or lineage fitness) does. Sec-
ond, the metapopulation reproductive number counts successful
emigrant offspring produced by a whole set of individuals, and
thus does not give net successful offspring produced by a repre-
sentative carrier of the mutant allele. In order to have the latter
invasion fitness proxy, which keeps the attractive computational
features of the metapopulation reproductive number, we derived
an expression for lineage fitness proxy R0. This is the individual
fitness of a mutant lineage member randomly sampled from the
distribution quantifying the lifetime of the mutant lineage in a

single group. This allows one to determine uninvadability with
the same generality and computational cost as Rm, but with the
same biological interpretation as lineage fitness.

Finally, if one is interested only in ascertaining local conver-
gence stability, then computing the selection gradient in the form
of the inclusive fitness effect (Box 2) is even simpler than evaluat-
ing the basic reproductive number. This is because the full mutant
distribution need not be known in order to ascertain convergence
stability, and all relevant information about mutant–mutant in-
teractions is captured by neutral relatedness coefficients, whose
computations requires matrices of much lower dimensions than
those for evaluating the reproductive numbers (Rousset and Ronce
2004, p. 134 provide a procedure of how to evaluate numerically
the selection gradient for complex models). In summary, if only
convergence stability is of interest, then compute the inclusive
fitness effect. If higher order terms are needed (for instance to de-
termine disruptive selection), then evaluate a reproductive number
(see Mullon et al. 2016 for situations where convergence stability
and disruptive selection can be ascertained analytically). If the
exact extinction probability is needed, then there is no way out
and one must compute the exact expression for invasion fitness
(i.e., invasion fitness ρ(τ, θ)).

LIMITATIONS AND GENERALIZATIONS

To obtain our results, we assumed a population of infinite size
but allowed for limited dispersal between any group and local
demographic and/or environmental state fluctuations. This allows
to describe, in at least a qualitative way, different metapopu-
lation processes as well as group (or propagule) reproduction
processes subject to local demographic and environmental
stochasticity. Conceptually, our qualitative results concerning the
generic form of the fitness concepts considered here should carry
over to isolation-by-distance models and to finite total popula-
tion size where evolutionary success is ascertained by the fixation
probability of the mutant allele.

We also only considered discrete time halploid reproduction,
but diploid reproduction would not produce qualitatively different
results concerning the expressions of lineage fitness, inclusive
fitness, or the reproductive numbers. In the case of diploidy, one
needs to add an additional class structure within each demographic
state so that individuals are either homozygous or heterozygous
and produce these two types of offspring. The same extension
is needed for individual heterogeneity or class structure within
groups such as age or stage structure (see Box 3 and SI Appendix
F for an example involving stage structure). Further, provided one
places some biological reasonable restrictions on the growth of
group sizes, standard results about multitype branching processes
suggest that extensions to (i) a countable number of demographic-
environmental states, (ii) an uncountable number of such states,
and (iii) continuous time processes (respectively, Kimmel and
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Axelrod 2015, p. 160, Harris 1963, p. 70, and Athreya 1968,
p. 351) should be relatively straightforward and all calculations
should carry over conceptually unchanged [where sums over state
S are replaced by appropriate integrals for case (ii)]. To paraphrase
Metz et al. (1992, p. 198), such extensions require some care with
definitions, replacing the word matrix by linear operator, some
mathematical headaches, but are unlikely to yield to any new
fundamental biological insight.

BOX 3. Lineage and inclusive
fitness for within group
heterogeneity
Suppose that each group is of constant size and that there is
no demographic-environmental heterogeneity, but that each
individual within a group can belong to one of nc classes (like
age-structure) where the set of classes is C = {1, . . . , nc}. For
such a class structured population, we show in the SI Appendix
F that the lineage fitness of a mutant τ in a θ population is

W (τ, θ) =
∑

i∈I

∑

y∈C

∑

x∈C
w(y, x, i)q(x, i), (X.3)

where w(y, x, i) is the expected number of class y offspring
produced by a class x mutant when in a group in state i =
(i1, . . . , inc ) ∈ I , which is the vector of the number of mutant
alleles in class 1 to nc. Here, I = (I1 × · · · × Inc )\0 is the
set of possible group states with Ix = {0, 1, . . . , nx } being the
set of the number of mutant alleles in class x and nx is the
number of individuals in that class. In complete analogy with
the demographically structured population case, q(x, i) is the
probability that a randomly sampled lineage member finds
itself in class x and its group state is i. The inclusive fitness
for this model is

WIF(τ, θ) = 1 +
∑

y∈C

∑

x∈C
v◦(y)

[

− c(y, x)

+
∑

z∈C
bz(y, x) r (z | x)

]

q(x),

where q(x) is the probability that a randomly sampled indi-
vidual from the mutant lineage finds itself in class x , c(y, x)
is the additive effect on the number of class y offspring pro-
duced by a class x individual when expressing the mutant
instead of the resident allele, bz(y, x) is the additive effect
on this fitness stemming from group neighbors in class z ex-
pressing the mutant instead of the resident allele, and r (z | x)
is the probability that, conditional on being sampled in class

x , an individual carrying the mutant experiences a randomly
sampled neighbor in class z that also carries the mutant allele.

For this class-structured population the sensitivity of in-
vasion fitness, ∂ρ(τ, θ)/∂τ, is again equivalent to the selection
gradient computed by the direct fitness method and is available
in the literature (Leturque and Rousset 2002, eq. 2). Allow-
ing for both within group heterogeneity and demographic-
environmental fluctuations is only a matter of extending the
notations. In that case, each demographic state will determine
a distribution over the number of individuals in each class
within groups.

Our approach, however, breaks down conceptually when
there are global environmental fluctuations affecting all groups
in the population simultaneously, in which case a stochastic ver-
sion of invasion fitness (the stochastic growth rate) needs to be
used to ascertain uninvadability (Svardal et al. 2015), and where
the basic reproductive number does not necessarily alleviate any
computation (Bacaër and Khaladi 2013). Hence, a completely
general interpretation of invasion fitness in terms of individual-
centered fitness components, covering all possible biological het-
erogeneities, is still lacking. But for local heterogeneities, there is
a generality and consistency in the interpretation of the force of
a selection on a mutant allele that befits the generality of natural
selection.
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Appendix A: Properties of the monomorphic resident population

The demographic equilibrium for a monomorphic resident ✓ population described in the main

text can be expressed as

p

�(s0) =
X

s2S
p

�(s0 | s)p�(s), (A.1)

where p

�(s) is the neutral stationary probability that a group is in state s and p

�(s0 | s) denotes

the (neutral) transition probability from state s to s

0 (possibly depending endogenously on the

distribution p

�(s), e.g., Metz and Gyllenberg, 2001; Cadet et al., 2003; Lehmann et al., 2006;

Alizon and Taylor, 2008).

We now prove that in a monomorphic ✓ population the neutral transition matrix A

� has

dominant eigenvalue ⇢(✓, ✓) = 1. We do so by constructing a positive left eigenvector v

�
> 0

of A� with unit eigenvalue (i.e., such that v�
A

� = v

�). Then, since A

� is irreducible and non-

negative (and v

�
> 0), the Perron-Frobenius theorem tells us that the dominant eigenvalue of A�

is one (e.g., Karlin and Taylor, 1975). We construct v� = (v�(1, 1), . . . , v�(1, n(1)), v�(1, 2), . . .)

with (s, i) element

v

�(s, i) = v

�(s)i, (A.2)

where v

�(s) > 0 corresponds to the reproductive value of an individual in class s (see Taylor,

1996 and Rousset, 2004). By definition, the reproductive value satisfies the recursion

v

�(s) =
X

s

02S
v

�(s0)w�(s0 | s). (A.3)

To show that our construction of v� is a left eigenvector of A�, we first write the (s, i) element

1



of v�
A

� by using eq. A.2 as

X

s

02S

X

i

02I(s0)

v

�(s0, i0)a�(s0, i0 | s, i) =
X

s

02S

X

i

02I(s0)

v

�(s0)i0a�(s0, i0 | s, i). (A.4)

Then, we note that the total expected number of mutant individuals in a group of type s

0

produced by a group of type (s, i) can be written as

X

i

02I(s0)

i

0
a

�(s0, i0 | s, i) = w

�(s0 | s)i, (A.5)

since the right hand side is the total expected number of mutant individuals in a group of type s0

produced by a group of type (s, i), and where, owing to neutrality, fitness w�(s0 | s) is independent

of i. Using eq. (A.5) first and (A.3) second, the (s, i) element of v�
A

� can thus be written as

X

s

02S

X

i

02I(s0)

v

�(s0)i0a�(s0, i0 | s, i) =
X

s

02S
v

�(s0)w�(s0 | s)i

= v

�(s)i

= v

�(s, i),

(A.6)

i.e., as the (s, i) element of v�, which shows that our construction of v� (as given by eq. (A.2))

is indeed a left eigenvector of A� with unit eigenvalue, as required.

Appendix B: Lineage fitness

We here prove that ⇢(⌧, ✓) = W (⌧, ✓). To that aim, we first note that eq. (A.5) holds out of

neutrality so that

X

i

02I(s0)

i

0
a(s0, i0 | s, i) = w(s0 | s, i)i. (B.1)

Second, we let n = (1, 2, . . . , n(1), 1, 2 . . . , n(2), 1, 2, . . . , n(s), ...), which lists the number of mu-

tants in each state. Premultiplying ⇢uA = AuA by n gives n · ⇢uA = (n ·AuA), where · is the

2



dot product. Using eq. (B.1) we have

⇢(⌧, ✓) =
1

n · uA
(n ·AuA)

=
1

n · uA

X

s

02S

X

i

02I(s0)

X

s2S

X

i2I(s)

i

0
a(s0, i0 | s, i)uA(s, i)

=
1

n · uA

X

s

02S

X

s2S

X

i2I(s)

w(s0 | s, i)iuA(s, i). (B.2)

Using the definitions of q(i | s) and q(s) given in the Table 1 of the main text (where
P

s2S q(s) =

1 and
P

i2I(s) q(i | s) = 1), we can then write

⇢(⌧, ✓) =
X

s

02S

X

s2S

X

i2I(s)

w(s0 | s, i)q(i | s)q(s). (B.3)

The right hand side is exactly W (⌧, ✓), whereby ⇢(⌧, ✓) = W (⌧, ✓).

Appendix C: Inclusive fitness

Here, we prove that the uninvadability condition can be expressed in terms of inclusive fitness.

For this, we premultiply ⇢uA = AuA by v

�, which gives v� · ⇢uA = (v� ·AuA). Using eq. (A.2)

then entails

⇢(⌧, ✓) =
1

v

� · uA

X

s

02S

X

i

02I(s0)

X

s2S

X

i2I(s)

v

�(s0)i0a(s0, i0 | s, i)uA(s, i)

=
1

v

� · uA

X

s

02S

X

s2S

X

i2I(s)

v

�(s0)w(s0 | s, i)iuA(s, i). (C.1)

We now let

VT(⌧, ✓) =
v

� · uA

n · uA
=

X

s2S
v

�(s)q(s), (C.2)

which is the average reproductive value in a monomorphic resident population of an individual

that is randomly sampled from the asymptotic mutant lineage distribution (instead of being

3



sampled from the resident lineage distribution). With this, we have

⇢(⌧, ✓) =
1

VT(⌧, ✓)

X

s

02S

X

s2S

X

i2I(s)

v

�(s0)w(s0 | s, i) iuA(s, i)

n · uA
. (C.3)

Using

iuA(s, i)

n · uA
=

 
iuA(s, i)P

i2I(s) iuA(s, i)

! P
i2I(s) iuA(s, i)

n · uA

!
= q(i | s)q(s), (C.4)

we have

⇢(⌧, ✓) =
1

VT(⌧, ✓)

X

s

02S

X

s2S

X

i2I(s)

v

�(s0)w(s0 | s, i)q(i | s)q(s). (C.5)

We now use the regression equation form for w(s0 | s, i) (eq. (8) of the main text), insert it into

eq. (C.5) and obtain

⇢(⌧, ✓) =
1

VT(⌧, ✓)

X

s

02S

X

s2S

X

i2I(s)

v

�(s0)


w

�(s0 | s)� c(s0, s) + b(s0, s)
(i� 1)

n(s)� 1
+ ✏

i

(s0, s)

�
q(i | s)q(s) ,

which becomes

⇢(⌧, ✓) =
1

VT(⌧, ✓)

"
X

s

02S

X

s2S
v

�(s0)w�(s0 | s)q(s)

+
X

s

02S

X

s2S

X

i2I(s)

v

�(s0)

✓
�c(s0, s) + b(s0, s)

(i� 1)

n(s)� 1

◆
q(i | s)q(s)

3

5
, (C.6)

since the minimummean square error used to obtain c(s0, s) and b(s0, s) ensures that
P

i2I(s) ✏i(s
0
, s)q(i |

s) = 0 for all s

0 2 S and s 2 S (see Box 1). Using eq. (A.3), the double sum in the

first line of eq. (C.6) is seen to be VT(⌧, ✓), and using the definition of relatedness r(s) =
P

i2I(s) [(i� 1)/(n(s)� 1)] q(i | s) (Table 1), we can simplify the sum on the second line of

eq. (C.6) using the expression for inclusive fitness (eq. (9) of the main text) to obtain

⇢(⌧, ✓) =
1

VT(⌧, ✓)
[VT(⌧, ✓)� 1 +WIF(⌧, ✓)] , (C.7)
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whence

⇢(⌧, ✓) = 1 +
1

VT(⌧, ✓)
[WIF(⌧, ✓)� 1] . (C.8)

Since, VT(⌧, ✓) > 0, we have

⇢(⌧, ✓)  1 () WIF(⌧, ✓)  1. (C.9)

Hence, a type ⌧ is uninvadable if it solves max
⌧2⇥ WIF(⌧, ✓).

This results (eq. (C.9)) holds regardless of the normalization of the neutral reproductive

values v�(s), which, so far, we made no assumptions about. Hence, we can choose a constant of

proportionality in the reproductive values (normalize) such that

v

�(s) =
X

s

02S
v

�(s0)w�(s0 | s) and VT(⌧, ✓) =
X

s2S
v

�(s)q(s) = 1. (C.10)

When this holds, eq. (C.7) gives

⇢(⌧, ✓) = WIF(⌧, ✓), (C.11)

namely, invasion fitness is exactly equal to inclusive fitness. However, when eq. (C.10) holds, the

constant of proportionality in the neutral reproductive values is a function of the mutant type

⌧ as well as the resident type ✓ (since q(s) depends on the mutant), which should be taken into

mind when explicit calculations are done under this assumption.

Appendix D: Reproductive numbers

D.1 Metapopulation reproductive number Rm

Here, we prove the uninvadability condition expressed in terms of the metapopulation repro-

ductive number. According to our notations, the mean matrix of the branching process can be
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decomposed as

A = P+D, (D.1)

where P is the matrix collecting the p(s0, i0 | s, i) elements and D is the matrix collecting the

d(s0, i0 | s, i) elements (see eq. (6) or Table 1). Note that matrix P is formally the transient matrix

of the absorbing Markov chain (Grinstead and Snell, 1997, p. 417) describing the dynamics of

the mutant in a single group and whose only absorbing state is the extinction of the mutant in

that group.

An application of the next generation theorem (Caswell, 2000; Thieme, 2009) shows that

Rm(⌧, ✓)  1 () ⇢(⌧, ✓)  1, (D.2)

where Rm is the leading eigenvalue of the next generation matrix

R = D (I�P)�1
. (D.3)

The elements of this matrix are

r(s0, i0 | s, i) =
X

&2S

X

j2I(&)

d(s0, i0 | &, j)t(&, j | s, i), (D.4)

where t(&, j | s, i) is the expected number of demographic time steps the mutant lineage spends

in state (&, j) over its lifetime in a single group given that the group started in state (s, i). These

sojourn times are elements of the so-called fundamental matrix (I�P)�1 (Grinstead and Snell,

1997, p. 419). The interpretation of r(s0, i0 | s, i) is that it gives the total expected number of

groups in state (s0, i0) produced through dispersal over the lifetime of the mutant lineage in a

single group that started in state (s, i). Accordingly, matrix R has a leading right eigenvector

uR, which satisfies

RmuR = RuR, (D.5)
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and whose element uR(s, i) is the asymptotic probability that a group initiated by a local mutant

lineage starts in state (s, i) and where
P

s2S
P

i2I(s) uR(s, i) = 1.

Using the above, we now rewrite Rm using the same line of argument as for lineage fitness.

Hence, we first let

X

i

02I(s0)

i

0
d(s0, i0 | s, i) = wd(s

0 | s, i)i, (D.6)

where wd(s0 | s, i) is the total expected successful number of immigrants in groups in state s0 pro-

duced by a single mutant given that it was reproducing in a group in state (s, i). Premultiplying

RmuR = RuR by n and using eq. (D.6) entails that

Rm(⌧, ✓) =
1

n · uR

X

s

02S

X

i

02I(s0)

X

s2S

X

i2I(s)

i

0
r(s0, i0 | s, i)uR(s, i)

=
1

n · uR

X

s

02S

X

i

02I(s0)

X

s2S

X

i2I(s)

X

&2S

X

j2I(&)

i

0
d(s0, i0 | &, j)t(&, j | s, i)uR(s, i)

=
1

n · uR

X

s

02S

X

s2S

X

i2I(s)

X

&2S

X

j2I(&)

wd(s
0 | &, j)jt(&, j | s, i)uR(s, i). (D.7)

In order to further simplify Rm we set

t̄(&, j) =
X

s2S

X

i2I(s)

t(&, j | s, i)uR(s, i), (D.8)

which is the average of the expected amount of time the mutant lineage spends in state (&, j)

over its lifetime in a single group. We also let

NF(⌧, ✓) = n · uR =
X

s2S

X

i2I(s)

iuR(s, i), (D.9)

which is the expected number of founders of the mutant lineage in a group. Inserting these

expressions into eq. (D.7), we have

Rm(⌧, ✓) =
1

NF(⌧, ✓)

X

s

02S

X

s2S

X

i2I(s)

wd(s
0 | s, i)it̄(s, i). (D.10)
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D.2 Reproductive number R0

We will now rewrite eq. (D.10) in terms of the individual-centered lineage fitness proxy R0(⌧, ✓).

For this, we set

NL(⌧, ✓) =
X

s2S

X

i2I(s)

it̄(s, i), (D.11)

which is the expected total size of the mutant lineage over its lifetime in a single group. Extending

the argument of Mullon and Lehmann (2014, Appendix A), this is also

NL(⌧, ✓) = NF(⌧, ✓) +
X

s

02S

X

s2S

X

i2I(s)

wp(s
0 | s, i)it̄(s, i), (D.12)

since NF(⌧, ✓) is the expected number of mutant individuals founding a single group and the sum

is the expected number of mutant o↵spring settling locally and produced over the lifetime of the

mutant lineage in that group. Subtracting eq. (D.11) from eq. (D.12), inserting into eq. (D.10)

and using eq. (6)of of the main text, we can write

Rm(⌧, ✓) =
1

NF(⌧, ✓)

0

@
NF(⌧, ✓) +

X

s

02S

X

s2S

X

i2I(s)

w(s0 | s, i)it̄(s, i)�NL(⌧, ✓)

1

A

=
1

NF(⌧, ✓)

�
NF(⌧, ✓) +NL(⌧, ✓)R0(⌧, ✓)�NL(⌧, ✓)

�
, (D.13)

where the second line follows from using eq. (14). Inserting eq. (14) of the main text and

eq. (D.13) into eq. (D.10) gives

Rm(⌧, ✓) = 1 +
NL(⌧, ✓)

NF(⌧, ✓)
(R0(⌧, ✓)� 1) , (D.14)

which shows that Rm(⌧, ✓)  1 () R0(⌧, ✓)  1, whereby

R0(⌧, ✓)  1 () ⇢(⌧, ✓)  1. (D.15)

We note that in order to compute R0(⌧, ✓) (or Rm(⌧, ✓)) one needs to compute the matrix
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R and its leading right eigenvector (eq. (D.5)), which allows to evaluate t̄(s, i) and q0(s, i) (see

Table 1). Matrix R will often be of much smaller dimensions that A (see Massol et al., 2009) and

is obtained from the transient matrix P of the absorbing Markov chain describing the dynamics

of the mutant in a single group (the discrete time analogue of matrix G̃ in Massol et al., 2009,

eq. 11 and of matrix B̃ in Metz and Gyllenberg, 2001, eq. 5.a, who both considered a continuous

time process) and matrix D (the analogue of the second term in eq. 11 of Massol et al., 2009).

Appendix E: Connections to previous inclusive fitness theory results

We here provide di↵erent connections to fitness components that appear in the literature.

E.1 Fitness decomposition: philopatric and dispersed

We start by further decomposing the two fitness components in eq. (6) of the main text. First,

we can write

wp(s
0 | s, i) = wp(s

0
, s, i)p(s0 | s, i), (E.1)

where p(s0 | s, i) is the probability that a group will be in state s

0 in the o↵spring generation

given that it was in state (s, i) in the parental generation and wp(s0, s, i) is the expected number

of successful philopatric o↵spring given that the o↵spring settle in a group in state s

0 and the

parent reproduced in a group in state (s, i). We can also write

wd(s
0 | s, i) =

X

x2S
wd(s

0
, x, s, i)p̃(s0 | x, s, i)p�(x), (E.2)

where p

�(x) is the (neutral) probability that a group randomly sampled in the monomorphic

resident population is in state x (see eq. (A.1)). Here, p̃(s0 | x, s, i) is the probability that a

group that was in state (x, 0) in the parental generation and has been colonized by a mutant

descending from a group in state (s, i) will become a group in state s0 in the o↵spring generation,

and wd(s0, x, s, i) is the expected number of dispersing o↵spring that a single mutant produces

given that it resides in a group in state (s, i) and given that the group where the o↵spring

settle is in state s

0 in the o↵spring generation and was in state (x, 0) in the parental generation.
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The conditional fitness functions wp(s0, s, i) and wd(s0, x, s, i) are the elementary individual-

based fitness components of models in demographically structured populations (e.g., eqs. 31-32

of Rousset and Ronce, 2004, or eqs. A-7–A-9 of Lehmann et al., 2006). Most demographic explicit

models in the literature further usually assume that p̃(s0 | &, s, i) = p

�(s0 | &); namely, that the

composition of a natal group of mutants does not a↵ect the transition probability of other groups

(usually owing to the fact that individuals migrate independently from each other, e.g., Metz and

Gyllenberg, 2001; Parvinen et al., 2003; Cadet et al., 2003; Rousset and Ronce, 2004; Lehmann

et al., 2006; Alizon and Taylor, 2008; Rodrigues and Gardner, 2012).

We now prove the expressions for the two above conditional expectations (eqs. (E.1)–(E.2)).

From Table 1, the first conditional expectation (eq. (E.1)) can be written as

wp(s
0 | s, i) = 1

i

X

i

02I(s0)

i

0
p(s0, i0 | s, i) = p(s0 | s, i)

i

X

i

02I(s0)

i

0 p(s
0
, i

0 | s, i)
p(s0 | s, i)| {z }
p(i0|s0,s,i)

= wp(s
0
, s, i)p(s0 | s, i),

(E.3)

where p(i0 | s0, s, i) is the probability that a group will have i0 mutants in the o↵spring generation

given that it is in state (s, i) in the parental generation and in state s0 in the o↵spring generation.

For the last equality we used

wp(s
0
, s, i)i =

X

i

02I(s0)

i

0
p(i0 | s0, s, i), (E.4)

where wp(s0, s, i) the expected number of successful philopatric o↵spring that a single mutant

produces given that it resides in a group in state (s, i) and that the group state in the o↵spring

generation is s0.

From Table 1, the second conditional expectation (eq. (E.2)) is

wd(s
0 | s, i) = 1

i

X

i

02I(x)

i

0
d(s0, i0 | s, i), (E.5)

where, conditioning on the state of the group in the parental generation where the o↵spring
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disperse to, we can write

d(s0, i0 | s, i) =
X

x2S
d(s0, i0 | x, s, i)p�(x) =

X

x2S

d(s0, i0 | x, s, i)
p̃(s0 | x, s, i)| {z }
d(i0|s0,x,s,i)

p̃(s0 | x, s, i)p�(x). (E.6)

Here, we used in the conditioning the neutral probability p

�(x) that a group randomly sampled

in the monomorphic resident population is in demographic state x, since dispersing o↵spring

can only land in a group whose state in the parental generation is determined by the resident

dynamics. The term d(s0, i0 | x, s, i) is the expected number of groups in (s0, i0) produced by a

group in state (s0, i0) and given that they were in state (0, x) in the parental generation (with 0

mutants). We now let

d(i0 | s0, x, s, i) = d(s0, i0 | x, s, i)
p̃(s0 | x, s, i) , (E.7)

where p̃(s0 | x, s, i) is the probability that a group will be in state s

0 in the o↵spring generation,

given that it was in state (x, 0) in the parental generation and has been colonized by a mutant

descending from a group in state (s, i). Further we have

wd(s
0
, x, s, i) =

1

i

X

i

02I(s0)

i

0
d(i0 | s0, x, s, i), (E.8)

which is the expected number of dispersing o↵spring that a single mutant produces given that

it resides in a group in state (s, i) and given that the group where the o↵spring settle is in

demographic state s0 in the o↵spring generation and was in state (x, 0) in the parental generation.

Substituting eq. (E.6), we then obtain eq. (E.2).

E.2 Connection to the direct fitness method

We now connect our results to the direct fitness method (Taylor and Frank, 1996; Rousset,

2004), which, formally, consists of computing the selection gradient on a mutant type when

mutant phenotypic deviations are small relative to the resident and is su�cient to evaluate the

condition of convergence stability under essentially all conditions (Rousset, 2004; Lehmann and

Rousset, 2014). Hence, results from the direct fitness method for one-dimensional quantitative
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traits should match @⇢(⌧, ✓)/@⌧ when the type space is real valued (⇥ = R), which we henceforth

assume.

E.3 Sensitivity of invasion fitness

To prove the connection to the direct fitness approach we first derive a generic expression for

invasion fitness sensitivity @⇢(⌧, ✓)/@⌧ under our model assumptions. To that aim, we rewrite

invasion fitness by using eq. (C.5) as

⇢(⌧, ✓) =
X

s

02S

X

s2S

X

i2I(s)

v

�(s0)w(s0 | s, i)q(i | s)qv(s), (E.9)

where

qv(s) =
q(s)

VT(⌧, ✓)
. (E.10)

Since, v�(s0) depends only on the resident, we have

@⇢(⌧, ✓)

@⌧

=
X

s

02S

X

s2S

X

i2I(s)

v

�(s0)


@w(s0 | s)

@⌧

q

�(i | s)q�v(s) + w

�(s0 | s, i)@ [q(i | s)qv(s)]
@⌧

�
, (E.11)

where all derivatives, here and throughout, are evaluated at ⌧ = ✓. Using the neutral reproductive

values (eq. (A.3)), we have

X

s

02S

X

s2S

X

i2I(s)

v

�(s0)w�(s0 | s)@ [q(i | s)qv(s)]
@⌧

=
X

s2S

X

i2I(s)

v

�(s)
@ [q(i | s)qv(s)]

@⌧

. (E.12)
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Further, we have

X

s2S

X

i2I(s)

v

�(s)
@ [q(i | s)qv(s)]

@⌧

=
@

@⌧

2

4
X

s2S

X

i2I(s)

v

�(s)q(i | s)qv(s)

3

5

=
@

@⌧

2

4
X

s2S

X

i2I(s)

v

�(s)
iuA(i, s)

v

� · uA

3

5

=
@

@⌧

(1)

= 0. (E.13)

Hence, substituting eq. (E.13) into eq. (E.11) using eq. (E.10) gives

@⇢(⌧, ✓)

@⌧

=
1

V

�
T

X

s

02S

X

s2S
v

�(s0)

2

4
X

i2I(s)

@w(s0 | s, i)
@⌧

q

�(i | s)

3

5
q

�(s), (E.14)

where V

�
T = VT(✓, ✓) and without loss of generality we can normalize the elements v

�(s0) such

that

V

�
T =

X

s2S
v

�(s)q�(s) = 1, (E.15)

which is usually assumed in sensitivity analysis.

Note that w(s0 | s, i) is the individual fitness of a mutant with phenotype ⌧ when its group

members consist of i� 1 individuals with phenotype ⌧ and n(s)� i individuals with phenotype

✓. Thus, we can write

@w(s0 | s, i)
@⌧

=
@w(s0 | s, ⌧

j

, ⌧�j

)

@⌧

j

+ (n(s)� 1)
@w(s0 | s, ⌧

j

, ⌧�j

)

@⌧

k

i� 1

n(s)� 1
, (E.16)

where ⌧�j

= (⌧1, ..., ⌧j�1, ⌧j+1, ...⌧
n(s)�1) is the vector collecting the phenotypes of the neighbors

of an individual j and k 6= j. Substituting into eq.(E.14), setting V

�
T = 1, and using the definition

of relatedness given in the Table 1 gives

@⇢(⌧, ✓)

@⌧

=
X

s

02S

X

s2S
v

�(s0)


@w(s0 | s, ⌧

j

, ⌧�j

)

@⌧

j

+ (n(s)� 1)
@w(s0 | s, ⌧

j

, ⌧�j

)

@⌧

k

r

�(s)

�
q

�(s). (E.17)
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E.3.1 Connection to direct fitness method results

Here, we prove that eq. (E.17) returns exactly eqs. 26–27 of Rousset and Ronce (2004) when

states are population sizes and each individuals migrates independently from each other. This

proves that we recover in general the results obtained by the direct fitness method since the results

of Rousset and Ronce (2004) generalize those of Taylor and Frank (1996) to demographically

structured populations.

In order to show the connection, we need to prove that

q

�(s) =
p

�(s)n(s)

n̄

� , (E.18)

where n̄

� =
P

s2S n(s)p�(s) is the average group size in a monomorphic ✓ population. For this,

we first note that from the definition of q(s) (Table 1), we have

q

�(s0) =
X

i

02I(s0)

q

�(s0, i0)

=
X

i

02I(s0)

i

0
u

�(s0, i0)

n · u�
A

=
1

n · u�
A

X

i

02I(s0)

X

s2S

X

i2I(s)

i

0
a(s0, i0 | s, i)u�(s, i)

=
1

n · u�
A

X

s2S

X

i2I(s)

w(s0, s)iu�(s, i), (E.19)

which yields

q

�(s0) =
X

s2S
w

�(s0 | s)q�(s) (E.20)

and shows that the vector collecting the q

�(s) is a right unit eigenvector of the matrix with

elements w�(s0 | s). Let us now substitute the trial solution q

�(s) = n(s)p�(s)/n̄� into eq. (E.20),

whereby

n(s0)p�(s0) =
X

s2S
w

�(s0 | s)n(s)p�(s). (E.21)
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The right hand side is the total expected number of successful o↵spring in groups in state s

0

that descend from a randomly sampled group in the population. At stationarity this must be

equal to n(s0)p�(s0), since p

�(s0) is the probability of sampling a group in state s

0 and n(s0) is

the number of successful o↵spring in that group. Hence, q�(s) = n(s)p�(s)/n̄� satisfies eq. (E.20)

and eq. (E.18) holds.

We now expand eq. (E.17) by using the decomposition of individual fitness w(s0 | s, i) =

wp(s0 | s, i) + wd(s0 | s, i) (eq. (6) of the main text), which allows us to write

@w(s0 | s, ⌧
j

, ⌧�j

)

@⌧

j

=
@wp(s0 | s, ⌧j , ⌧�j

)

@⌧

j

+
@wd(s0 | s, ⌧j , ⌧�j

)

@⌧

j

. (E.22)

Each of these component will be further expanded by using eqs. (E.1)–(E.2). For the philopatric

component, from eq. (E.1) we can write

@wp(s0 | s, ⌧j , ⌧�j

)

@⌧

j

=
@wp(s0, s, ⌧j , ⌧�j

)

@⌧

j

p

�(s0 | s) + w

�
p(s

0
, s)

@p(s0 | s, ⌧ )
@⌧

j

, (E.23)

where ⌧ = (⌧1, ..., ⌧
n(s)) is the vector collecting the phenotype of all individuals in a focal patch.

For a neighbour k 6= j of a focal mutant j we have

@wp(s0 | s, ⌧j , ⌧�j

)

@⌧

k

=
@wp(s0, s, ⌧j , ⌧�j

)

@⌧

k

p

�(s0 | s) + w

�
p(s

0
, s)

@p(s0 | s, ⌧ )
@⌧

k

. (E.24)

In order to expand the dispersal component in eq. (E.22), we follow the assumption of Rousset

and Ronce, 2004 that the composition of a natal group of mutants does not a↵ect the transition

probability of other groups and thus set p̃(s0 | &, s, i) = p

�(s0 | &) in eq. (E.2). Then, we can write

@wd(s0 | s, ⌧j , ⌧�j

)

@⌧

j

=
X

&2S

@wd(s0, &, s, ⌧j , ⌧�j

)

@⌧

j

p

�(s0 | &)p�(&) (E.25)

and for k 6= j

@wd(s0 | s, ⌧j , ⌧�j

)

@⌧

k

=
X

&2S

@wd(s0, &, s, ⌧j , ⌧�j

)

@⌧

k

p

�(s0 | &)p�(&). (E.26)
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Substituting eqs. (E.22)–(E.26) into eq. (E.17) yields

@⇢(⌧, ✓)

@⌧

=
X

s2S
[Sf(s) + SPr(s)]

n(s)p�(s)

n̄

� , (E.27)

where

Sf(s) =
X

s

02S
v

�(s0)

✓
@wp(s0, s, ⌧j , ⌧�j

)

@⌧

j

+
@wp(s0, s, ⌧j , ⌧�j

)

@⌧

j

(n(s)� 1)r�(s)

◆
p

�(s0 | s)

+
X

&2S

✓
@wd(s0, &, s, ⌧j , ⌧�j

)

@⌧

j

+
@wd(s0, &, s, ⌧j , ⌧�j

)

@⌧

j

(n(s)� 1)r�(s)

◆
p

�(s0 | &)p�(&)
#
,

(E.28)

and

SPr(s) =
X

s

02S
v

�(s0)


w

�
p(s

0
, s)

@p(s0 | s, ⌧ )
@⌧

j

[1 + (n(s)� 1)r�(s)]

�
(E.29)

If we let s be group size and set n(s) = s, then eqs. (E.28)–(E.29) are equivalent to eqs. (A.34)–

(A.36) of Lehmann and Rousset (2010). If we multiply eq. (E.27) by n(s0)/n(s0) and use class

reproductive values ↵�(s0) = v

�(s0)n(s0) and the definition of frequency functions of Rousset and

Ronce (2004, eqs. 33–34), then eqs. (E.28)–(E.29) are proportional to eqs. (26)–(27) of Rousset

and Ronce (2004).

Appendix F: Fixed number of age or stage classes

We here consider a situation where there is a uniform demography, i.e., each group is of constant

and same size but now each individual belongs to one of a set of fixed classes where the set

of class is given by C = {1, . . . , nc}. An example would be age structure due to overlapping

generations or di↵erent castes of social insects like workers and queens.

Let i = (i1, ..., inc) 2 i be the vector of the number of mutant alleles of type ⌧ in class 1 to

nc in a group where i is the set of possible configurations. Let I = (I1 ⇥ · · · ⇥ I

nc) \ 0 where

I

x

= {0, 1, ..., n
x

} is set of the number of mutant alleles in class x and n

x

is the number of

individuals in that class. We remove the all zero state 0 from I so that we only track states
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with at least one mutant in some class. Let A be the matrix with elements a(i0 | i) giving the

expected number of groups in state i

0 produced by a focal group in state i

0. Further, let n be

the vector collecting the total number of mutant individuals for each state; i.e., the i-th state of

n is given by x(i) =
P

y2C iy.

We now prove the expression for lineage fitness for a class-structured population (see Box 3)

for this model and proceed in the same way as in Appendices A–C. Hence, we first note that

X

i02i

i

0
y

a(i0 | i) =
X

x2C
w(y, x, i)i

x

, (F.1)

where w(y, x, i) is the expected number of class y o↵spring produced by a class x mutant when

in a group in state i. Now, from n · ⇢uA = (n ·AuA) and eq. (F.1), we have

⇢(⌧, ✓) =
1

n · uA

X

i02I

X

i2I

x(i0)a(i0 | i)uA(i)

=
1

n · uA

X

i02I

X

i2I

X

y2C
i

0
y

a(i0 | i)uA(i)

=
1

n · uA

X

i2I

X

y2C

X

x2C
w(y, x, i)i

x

uA(i)

=
X

i2I

X

y2C

X

x2C
w(y, x, i)q(x, i) (F.2)

where

q(x, i) =
i

x

uA(i)

n · uA
, (F.3)

which satisfies
P

x2C
P

i2I

q

x

(i) = 1. Defining lineage fitness as

W (⌧, ✓) =
X

i2I

X

y2C

X

x2C
w(y, x, i)q(x, i) , (F.4)

eq. (F.2) shows that ⇢(⌧, ✓) = W (⌧, ✓).

Second, we derive an expression for the inclusive fitness WIF(⌧, ✓). Inclusive fitness requires
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that we calculate reproductive values, so we gather into the vector v� the elements

v

�(i) =
X

x2C
i

x

v

�(x), (F.5)

where v

�(x) is the reproductive value of an individual in class x, which satisfies the recursion

v

�(x) =
X

y2C

X

x2C
v

�(y)w�(y, x), (F.6)

where w

�(y, x) is the neutral fitness (fitness in a monomorphic resident population). Now, from

v

� · ⇢uA = (v� ·AuA) and eq. (F.6), we have

⇢(⌧, ✓) =
1

v

� · uA

X

i02I

X

i2I

v

�(i0)a(i0 | i)uA(i)

=
1

v

� · uA

X

y2C

X

i02I

X

i2I

i

0
y

v

�(y)a(i0 | i)uA(i)

=
1

v

� · uA

X

y2C

X

x2C

X

i2I

v

�(y)w(y, x, i)i
x

uA(i)

=
1

VT(⌧, ✓)

X

y2C

X

x2C

X

i2I

v

�(y)w(y, x, i)q(x, i), (F.7)

where

VT(⌧, ✓) =
v

� · uA

n · uA
=

X

x2C
v

�(x)q(x) (F.8)

and q(x) =
P

i2I

q(x, i) is the probability of sampling a lineage member in class x. Suppose we

now form a weighted multiple regression

w(y, x, i) = w

�(y, x)� c(y, x) + b

x

(y, x)
i

x

� 1

n

x

� 1
+

X

z2C\x

b

z

(y, x)
i

z

n

z

+ ✏i(y, x) (F.9)

and least square fit the c’s and the b’s by minimizing

X

i2I

✏i(y, x)
2
q(x, i)/q(x), (F.10)
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where the weights are given by q(x, i)/q(x). This procedure guarantees that the weighted sum

of errors is zero, or that
P

i2I

✏i(y, x)(q(x, i)/q(x)) = 0. Let us further define

q(i
y

| x) =
X

i2I(i
y

)

q(x, i)/q(x), (F.11)

where I(i
y

) denotes the elements of the set I whose number of class y mutants is equal to i

y

.

Then, we can interpret q(i
y

| x) as the probability that there are i
y

mutants in class y given that

a mutant has a sampled a mutant in class x. Substituting all this into eq. (F.7), we have

⇢(⌧, ✓) =
1

VT(⌧, ✓)

X

y2C

X

x2C
v

�(y)

"
w

�(y, x)� c(y, x)

+
X

i

x

2I

+
x

b

x

(y, x)
i

x

� 1

n

x

� 1
q(i

x

| x) +
X

z2C\x

X

i

z

2I

+
z

b

z

(y, x)
i

z

n

z

q(i
z

| x)
#
q(x) (F.12)

where we only sum over the elements I+
x

= {1, . . . , n
x

} in the first sum of the second line since

w(y, x, i) = 0 for all i
x

= 0 (the second sum in the second line uses i+
z

for ease of notation).

Let us now define inclusive fitness as

WIF(⌧, ✓) = 1 +
X

y2C

X

x2C
v

�(y)

"
�c(y, x) +

X

z2C
b

z

(y, x) r(z | x)
#
q(x), (F.13)

where

r(z | x) =
X

i

z

2I

+
z


�

zx

i

x

� 1

n

x

� 1
+ (1� �

zx

)
i

z

n

z

�
q(i

z

| x) (F.14)

is the probability that, conditional on being sampled in class x, an individual carrying the mutant

experiences a randomly sampled neighbour in class z that also carries the mutant allele, and where

�

zx

is the Kronecker Delta (�
zx

= 1 if z = x, zero otherwise). Substituting eqs. (F.13)–(F.14)

into eq. (F.12) and using the definition of reproductive value (eq. (F.5)), we obtain

⇢(⌧, ✓) =
1

VT(⌧, ✓)
[VT(⌧, ✓)� 1 +WIF(⌧, ✓)] , (F.15)
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whereby

⇢(⌧, ✓)  1 () WIF(⌧, ✓)  1. (F.16)

If we now choose the normalization of the reproductive values v

�(x) (as in the section C) such

that

VT(⌧, ✓) =
X

x2C
v

�(x)q(x) = 1, (F.17)

then eq. (F.15) implies

⇢(⌧, ✓) = WIF(⌧, ✓).

20



References

Alizon, S. and P. D. Taylor, 2008. Empty sites can promote altruistic behavior. Evolution

62:1335–1344.

Cadet, C., R. Ferrière, J. A. J. Metz, and M. van Baalen, 2003. The evolution of dispersal under

demographic stochasticity. American Naturalist 162:427–41.

Caswell, H., 2000. Matrix Population Models. Sinauer Associates, Massachusetts.

Grinstead, C. M. and J. L. Snell, 1997. Introduction to Probability. second ed. American

Mathematical Society, Providence, RI.

Karlin, S. and H. M. Taylor, 1975. A First Course in Stochastic Processes. Academic Press, San

Diego.

Lehmann, L., N. Perrin, and F. Rousset, 2006. Population demography and the evolution of

helping behaviors. Evolution 60:1137–1151.

Lehmann, L. and F. Rousset, 2010. How life-history and demography promote or inhibit the

evolution of helping behaviors. Philosophical Transactions of the Royal Society B 365:2599–

2617.

———, 2014. The genetical theory of social behaviour. Philosophical Transactions of the Royal

Society B 369:1–18.

Massol, F., V. Calcagno, and J. Massol, 2009. The metapopulation fitness criterion: proof and

perspectives. Theoretical Population Biology 75:183–200.

Metz, J. and M. Gyllenberg, 2001. How should we define fitness in structured metapopulation

models? including an application to the calculation of evolutionary stable dispersal strategies.

Proceedings of the Royal Society of London Series B-Biological Sciences 268:499–508.

Mullon, C. and L. Lehmann, 2014. The robustness of the weak selection approximation for the

evolution of altruism against strong selection. Journal of Evolutionary Biology 27:2272—2282.

21



Parvinen, K., U. Dieckmann, M. Gyllenberg, and J. A. J. Metz, 2003. Evolution of dispersal

in metapopulations with local density dependence and demographic stochasticity. Journal of

Evolutionary Biology 16:143–53.

Rodrigues, A. M. M. and A. Gardner, 2012. Evolution of helping and harming in heterogeneous

populations. Evolultion 66:2065–2079.

Rousset, F., 2004. Genetic Structure and Selection in Subdivided Populations. Princeton Uni-

versity Press, Princeton, NJ.

Rousset, F. and O. Ronce, 2004. Inclusive fitness for traits a↵ecting metapopulation demography.

Theoretical Population Biology 65:127–141.

Taylor, P. D., 1996. Inclusive fitness arguments in genetic models of behaviour. Journal of

Mathematical Biology 34:654–674.

Taylor, P. D. and S. A. Frank, 1996. How to make a kin selection model. Journal of Theoretical

Biology 180:27–37.

Thieme, H. R., 2009. Spectral bound and reproduction number for infinite-dimensional popu-

lation structure and time heterogeneity. SIAM Journal of applied mathematics 70:188–211.

URL http://epubs.siam.org/doi/abs/10.1137/080732870.

22

http://epubs.siam.org/doi/abs/10.1137/080732870

