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ABSTRACT. This paper proposes a methodology to price bonds jointly issued by a
group of countries—Eurobonds in the euro-area context. We consider two types
of bonds: the first is backed by several and joint (SJG) guarantees, the second fea-
tures several but not joint (SNJG) guarantees. The pricing of SJG and SNJG bonds
reflects different assumptions regarding the pooling of debtors’ fiscal resources.
We estimate fiscal limits for the six largest euro-area economies over 2008-2021
and deduce counterfactual Eurobond prices. For the 5-year maturity, SNJG bond
yield spreads would have been about three times larger than SJG ones over the
estimation sample. Hence, issuing SJG bonds could result in gains at the aggre-
gate level. Notwithstanding our model also predicts that gains may temporarily
vanish in periods of acute fiscal stress. We finally envision post-issuance redistri-
bution schemes whereby gains stemming from the issuance of SJG bonds could be
shared among participating countries; we argue that these schemes may alleviate
the reduction in market discipline resulting from common bonds issuance.
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1. INTRODUCTION

Following the last financial crisis and the COVID-19 pandemic, sovereign debts across the

euro area have risen to levels unprecedented since the Second World War. In this context, the

sustainability of fiscal positions—especially in the peripheral Member States—has been called
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into question. Against this backdrop, numerous academics, policymakers, and analysts have

discussed proposals for issuing common bonds—often referred to as Eurobonds. The rationale

behind such common bonds is most often, and more or less explicitly, a debt service relief

for peripheral member states (Beetsma and Mavromatis, 2014; Favero and Missale, 2012). An

ulterior motive backing common issuances is to ensure financial stability, notably by addressing

the demand of financial institutions for safe assets (Brunnermeier et al., 2017).1 Moreover, if

issued on a large scale, a joint debt instrument is advocated as a useful device to increase bond

market liquidity in the euro area (Hellwig and Philippon, 2011).

Surprisingly, the different proposals for common debt issuance seldom come with pricing

attempts.2 Arguably, this shortage of quantitative analysis may have contributed to the lack

of support for common bond issuances. This paper offers a way to explore the pricing of joint

sovereign debt instruments.

Guarantees play a significant role in the pricing of joint debt instruments. Our analysis fo-

cuses on two polar cases: (a) the case of several and joint guarantees (SJG) whereby all countries

are jointly liable for each other’s default through the common debt instrument, and (b) the case

of several but not joint guarantees (SNJG) whereby each debtor is responsible only for a per-

centage contribution to each redemption. In the former case, participating European countries

are responsible not only for their own percentage contribution to the bond, but also for cov-

ering any other state’s unpaid contributions. In the latter case (SNJG bonds), each participant

is liable only for the debt service and principal redemption corresponding to its share of the

bond. In both cases, the joint debt instrument would trade as a single bond; it could be issued

1Although Eurobonds may constitute a way to guide the euro area towards financial stability, the objectives of
Eurobond proposals do not fully overlap with those of the European Financial Stability Facility’s (EFSF) and the
European Stability Mechanism’s (ESM) programs. Typically, the objective of the ESM is to provide financial as-
sistance to euro-area countries experiencing, or threatened by, severe financing problems; this would complement
joint issuance in times of financial distress, but goes beyond the preventive intention of a common euro-area bond.

2The evaluation of price effects remains merely speculative in this literature (Claessens, Mody, and Vallée,
2012, end of Section IV.B).
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by an independent debt agency, with funds raised, and obligations divided between partici-

pating issuers in fixed shares (see, e.g., De Grauwe and Moesen, 2009; European Commission,

2011; Delivorias and Stamegna, 2020).

In the present paper, we propose a multi-country credit-risk model where both standard

and common sovereign bonds—featuring one of the two polar types of guarantees discussed

above—can be priced. The model estimation relies on national bond prices; the sample covers

the period from 2008Q2 to 2021Q2.3 We focus on the six largest euro-area economies: Germany,

France, Italy, Spain, Netherlands, and Belgium (which account for almost 90% of the total Eu-

rozone GDP). Once the model is estimated, we compute counterfactual Eurobond prices over

the same period.

In the model, the probability of default depends on the considered entity’s fiscal space, which

can be a single country or a group of countries. The fiscal space is the distance between public

debt and the so-called fiscal limit; this limit, in turn, represents the maximum outstanding debt

that can credibly be covered by future primary budget surpluses (Bi, 2012; Bi and Leeper, 2013).

The probability of default gets strictly positive only if public debt breaks the fiscal limit, that

is, if the fiscal space is negative. In this framework, a natural way to conceive a SJG bond is to

consider that it is issued by an entity for which both underlying debtors’ fiscal revenues and

debts are pooled. By contrast, a SNJG bond is equivalent to a combination of national bonds

weighted by their participation share in the debt instrument.

Estimating the model involves the estimation of both the model parameters and the time

series of national fiscal limits. These two tasks are jointly carried out by resorting to an adap-

tation of the so-called “inversion technique” à la Chen and Scott (1993). For a given model

parametrization, formulas for the sovereign bond yield spreads are inverted to get fiscal limit

3Some bonds issued by European institutions can be seen as proxies for Eurobonds (see end of Subsection 6.1,
where we compare our model-implied SJG prices with the latter). However, for the time being, there are not
enough of these bonds to determine constant-maturity interest rates on a sufficiently long sample.
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estimates.4 The maximum likelihood function can then be computed; it is maximized to yield

the estimated model parametrization.

Our model features a good fit of the observed term-structure of bond yield spreads across

all countries; this fit is comparable to the one obtained in term-structure studies where default

intensities are purely latent and have no macro-finance interpretation. We also obtain sizeable

estimates of sovereign credit risk premiums, defined as those components of sovereign spreads

that would not exist if agents were risk-neutral. Moreover, to the best of our knowledge, this

paper is the first to provide time-varying estimates of fiscal limits for euro-area countries.5

Our counterfactual analysis results highlight the importance of guarantees on Eurobond pric-

ing. By design, yield spreads associated with Eurobonds featuring several but not joint guar-

antees (SNJG) are close to the (issuance-weighted) average of country-specific spreads. By con-

trast, common bonds with several and joint guarantees (SJG) benefit from fiscal diversification

effects resulting in a sizeable credit spread compression: across the estimation sample and dif-

ferent maturities, the SNJG bond yield spread was about three times larger than the SJG one.

However, the model also predicts that SJG advantages diminish when expected fiscal spaces

reduce at the euro-area scale, up to potential inversion; this turned out to be the case for two

quarters in our sample—2011Q4 and 2012Q1, the peak of the euro-area debt crisis—and for

the longer maturity only. Hence, except for strongly adverse fiscal conditions, raising funds

through a joint liability debt instrument—the SJG bond—may reduce aggregate debt service in

the presence of heterogenous fiscal conditions. Interestingly, for shorter maturities, the yield

4We posit reduced-form dynamics for national debts and fiscal limits and derive resulting bond pricing. Our
approach shares some similarities with the Black-Scholes-Merton model (Black and Scholes, 1973; Merton, 1974,
and its numerous extensions) in that it also features a default threshold. As noted by Duffie and Singleton (2003,
Subsection 3.2.2), the tractability of the Black-Scholes-Merton model rapidly declines as one allows for a time-
varying default threshold. Although our framework features a time-varying debt threshold, tractability is pre-
served thanks to approximation formulas—presented in Appendix B—that build on the literature on shadow-rate
term-structure models (see, e.g., Krippner, 2015; Wu and Xia, 2016).

5Pallara and Renne (2021) provide time-varying estimates of fiscal limits for eight non-euro-area economies;
therein, each country is considered independently from the others.
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spread associated with the SJG bond is, at times, lower than the German bond one. (The Ger-

man bonds, called Bunds, are considered the safest bond in the euro area.) Even when this is not

the case, i.e. when SJG yields are higher than those of the bonds issued by the best-rated coun-

tries, one can envision post-issuance redistribution schemes under which all countries eventu-

ally benefit from common issuances. One such scheme is to distribute the overall gains in such

a way as to achieve a reduction in “post-redistribution yields” that is the same in all countries

(w.r.t. the yield on their respective national bonds). For the 10-year maturity, this reduction

would have been about 30 basis points on average over the estimation sample.

The main concern associated with common debt issuance usually pertains to moral hazard.

Under several and joint guarantees issuance schemes, some countries might be tempted to issue

more debt given that the interest rate on jointly-guaranteed debt is less sensitive to an individ-

ual debt increase than non-guaranteed debt. Although our reduced-form modeling framework

does not deal with moral hazard in a structural way, our findings remain valid under the con-

ditions that (i) the amount of debt issued under the SJG scheme is relatively small or that (ii)

some form of ex-post redistribution of the yield gains applies. First, as long as a sizable share of

countries’ funding needs are met with the issuance of national bonds, the overall debt service

remains sensitive to countries’ indebtedness. Thus, in the absence of redistribution schemes

(case (i)), a necessary condition for market discipline to remain effective is to limit the issuance

of Eurobonds. In our calculation, we typically envision that jointly-issued debt does not exceed

5% of total consolidated GDP. Second, we show that some ex-post yield gains’ redistribution

schemes may dampen moral hazard effects (case (ii)). For instance, considering the above-

mentioned scheme—in which the issuance of SJG bonds ultimately translates into the same

yield reduction for all involved countries—the funding costs of the different countries remain

sensitive to the national fiscal conditions, thereby alleviating concerns of reduced fiscal disci-

pline stemming from the issuance of common bonds. More precisely, for this scheme, we obtain
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that the slope of the curve relating post-redistribution yields to indebtedness is similar to that

associated with national bonds (but, for each country, the former curve is below the latter as

long as the issuance of SJG bonds is associated with aggregate gains).

The rest of this paper is organized as follows. Section 2 reviews related literature. The model

is developed in Sections 3 (stylized version) and 4 (full-fledged version). Section 5 describes

the estimation strategy. Section 6 discusses the results. Section 7 summarizes our findings and

makes concluding remarks. The appendix gathers technical results; an online appendix pro-

vides additional details, proofs and results.

2. RELATED LITERATURE

This paper contributes to the growing literature on sovereign credit risk and its pricing.

Specifically, this paper is among the first to provide a quantitative assessment of Eurobonds’

pricing. To do so, we develop a novel credit risk model where default intensities explicitly

depend on fiscal variables.

2.1. Eurobonds. Various policy-oriented papers discuss pros and cons of common bond is-

suance in the euro area, and propose different forms of common bonds. Several of these studies

stress that, if issued in large scale, a joint debt instrument could reduce market fragmentation

and compete, in terms of size and liquidity, with the US bond market (Giovannini, 2000; Hell-

wig and Philippon, 2011). De Grauwe and Moesen (2009) and Claessens et al. (2012) argue that

joint debt issuance can reduce borrowing costs for stressed sovereigns, allowing for gains at the

aggregate level. Following the Great Financial Crisis and the euro-debt crisis, common debt

issuance has been advocated by several policy-oriented studies as a device to enhance finan-

cial stability, notably because such a safe asset could break the “bank-sovereign doom loop”

(European Commission, 2011; Brunnermeier et al., 2017; Delivorias and Stamegna, 2020). The
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challenges associated with joint debt issuances include coordination issues, political hurdle in

transferring sovereignty to the EU level, and the removal of incentives for sound budgetary

policies under the current fiscal discipline methods (Claessens et al., 2012). According, among

others, to Delpla and Von Weizsacker (2010) and Claessens et al. (2012), common debt issuance

calls for enhanced institutional frameworks and ex-ante surveillance to strengthen fiscal disci-

pline.

TABLE 1. Eurobond proposals: main features

Features Joint bond denomination
Stability bondsa Euro-billsb Blue/Red bondsc ESBies/EJBiesd

Approach no. 1 Approach no. 3

Guarantees SJGe SNJG f SJG
(10% of GDP)

Only blue: SJG
(60% of GDP)

Tranching ✓ ✓ ✓

Poolingg ✓ ✓ ✓ ✓ ✓

New
issuanceh ✓

✓
(partial)

✓
(partial)

✓
(partial)

Risk of
moral
hazard

✓ ✓ ✓ ✓

Coordinated
revenue
management

✓ ✓

Coordinated
debt
management

✓ ✓ ✓ ✓

Pricing
attempt
in the study

✓
(partial

and
incomplete)

Notes: This table shows key features of some prominent euro-area joint debt instrument proposals in the litera-
ture. a: European Commission (2011); b: Hellwig and Philippon (2011); c: Delpla and Von Weizsacker (2010); d:
Brunnermeier et al. (2017); e: Joint and several guarantees; f : Several but not joint guarantees; g: with “Pooling”
we mean the pooling or common issuance of sovereign debts (either ex ante or ex post via pooling a portfolio of
sovereign debts); h: with “New Issuance” we mean the issuance of a new debt instrument replacing totally or
partially national bond issuance.

In Table 1, we review the features of some prominent proposals for a European joint debt

instrument. Three proposals involve joint guarantees, but with varying proportions: the “Sta-

bility bond” approach no. 1 of the European Commission (2011) considers a full replacement
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of standard national issuances by those of an SJG bond; only short-term debt instruments,

amounting to 10% of GDP, would benefit from joint guarantees under the “Eurobills” scheme

proposed by Hellwig and Philippon (2011); under the blue/red scheme of Delpla and Von Weiz-

sacker (2010), European countries would pool their public debt up to the Maastricht Treaty

threshold—60% of GDP—under joint and several liability as senior (“blue”) debt, while debt

above this threshold would be issued as junior (“red”) debt.

Other schemes depart from joint liability and consist of the partial substitution of European

Member States’ national issuance with several but not joint guarantees (SNJG) bonds. This is for

instance the case of the “Stabilitity bond” approach no. 3 of the European Commission (2011).6

In this scheme, Member States would retain liability for their respective share of “Stabilitity

bond” issuance—as well as for their national issuances, naturally.7 Due to the several but not

joint guarantees, moral hazard would be mitigated.

The absence of joint guarantees also underlies Brunnermeier et al. (2017) proposal. Differ-

ently from the “Stability bond” approach no. 3 (European Commission, 2011), their proposal

does not imply any substitution of national issuance. In their scheme, two synthetic tranches

would be created out of a portfolio of (standard) national sovereign bonds, the senior and the

junior tranche being respectively dubbed “European Safe Bonds” (ESBies) and “European ju-

nior bonds” (EJBies). As safe and liquid assets, ESBies would help limit financial institutions’

exposure to sovereign credit risk, and thereby break the so-called sovereign-bank doom loop.

Brunnermeier et al. (2017) simulate the loss given default of ESBies and EJBies under different

tranching scenarios, thereby providing a partial pricing attempt for their instruments.

A few theoretical studies focus on Eurobonds. Tirole (2015) studies the effect of common

bonds’ issuance, focusing on the moral hazard implications. He distinguishes between two

6Issuance of bonds with several but not joint guarantees can be centralized (e.g., joint debt agency, European
Commission, 2011; Delivorias and Stamegna, 2020) or left decentralized (De Grauwe and Moesen, 2009).

7The credit quality of a “Stabilitity bond” underpinned by several but not joint guarantees would be close to
the weighted average of the credit qualities of the euro-area Member States.
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forms of solidarity in a finite-horizon two-country setup: ex-post (spontaneous), e.g., bailouts,

and ex-ante (contractual), e.g., joint-bond issuance. Given that one country’s default imposes

collateral damage on the other country, Tirole (2015) finds that ex-ante (respectively ex-post) sol-

idarity is optimal when both countries exhibit a similar (resp. different) risk profile. Tsiropoulos

(2019) builds a two-country general-equilibrium model of sovereign default and finds that wel-

fare consequences of introducing SJG bonds hinge critically on the timing of their introduction.

Lastly, Dávila and Weymuller (2016) study the optimal design of flexible joint borrowing agree-

ments between a safe and a risky country; they find gains under joint liability schemes.

2.2. Reduced-form approaches and sovereign risk premiums. The present study draws ex-

tensively from the reduced-form approaches for pricing sovereign credit risk. Ang and Longstaff

(2013) consider multi-factor affine models allowing for both systemic and sovereign-specific

credit shocks to price the term structures of US states and Eurozone Member States. Estimating

the default intensities for 26 countries, Longstaff, Pan, Pedersen, and Singleton (2011) find that

the risk premium represents about a third of credit spreads on average. Monfort and Renne

(2014) also estimate substantial sovereign risk premiums in euro-area sovereign spreads, em-

ploying a model allowing for both credit and liquidity effects. These studies show a close fit

of sovereign bond yields/spreads and provide useful estimates of sovereign risk premiums.

However, they do not explicitly account for the economic forces driving the movements of the

sovereign default probabilities. By contrast, Borgy, Laubach, Mésonnier, and Renne (2011) and

Hördahl and Tristani (2013) propose sovereign credit risk frameworks where default intensi-

ties explicitly depend on fiscal variables, and demonstrate that the fiscal environment is able to

capture part of the fluctuations of sovereign credit spreads.

2.3. Theory of fiscal limits. Our paper relates to the literature studying the concept of fiscal

limit, namely the maximum outstanding debt that a country could credibly sustain. In Bi (2012),

Leeper (2013), Bi and Leeper (2013), Bi and Traum (2012), the concept of fiscal limit corresponds
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to the net present value of future maximum primary surpluses.8 These maximum surpluses

represent those surpluses implicit in the peak of the Laffer curve (Trabandt and Uhlig, 2011).

After having introduced an estimated parametric reaction function of primary surpluses in a

model of debt accumulation, Ghosh et al. (2013) show that there is a point—akin to the fiscal

limit—where the primary balance cannot keep pace with the rising interest burden as debt

increases. Beyond this point, debt dynamics becomes explosive and the government becomes

unable to fully meet its obligations. Collard, Habib, and Rochet (2015) also exploit the idea of

a maximum primary surplus to derive a measure of debt limit. More recently, Mehrotra and

Sergeyev (2020) combine disaster risk and fiscal fatigue. In their framework, as in Lorenzoni

and Werning (2013), debt dynamics are subject to a tipping point situation: in some instances,

the public debt can be on an unsustainable path without immediately triggering default.

In the present paper, we do not make the maximum surplus explicit and we rely on a reduced-

form approach. Assuming that the default intensity becomes strictly positive when the effective

(observed) debt is higher than the (unobserved) fiscal limit, we infer the latter from bond prices.

3. STYLIZED MODEL

As mentioned above, a crucial ingredient of our modelling framework is the relationship

between the fiscal space—the difference between the fiscal limit and debt—and the sovereign

probability of default. The parametric function we retain to model this relationship is presented

in Subsection 3.1. Before incorporating this ingredient in a standard asset pricing model (in

Section 4), we present a stylized model in Subsection 3.2. In Subsection 3.3, we elaborate on the

pricing of SJG and SNJG common bonds in this simplified framework; and we discuss resulting

asset-pricing mechanisms in Subsection 3.4.

8We refer to Aguiar and Amador (2014) or Yue and Wei (2019) for a general presentation of the theory of
sovereign debt.
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3.1. Sovereign default probability. On each date t, we assume that the default probability of

country j (j = A, B) is given by

1 − exp(−λj,t), (1)

where the default intensity λj,t is assumed to negatively depend on the fiscal space, defined as

the distance between fiscal limit-to-GDP (ℓj,t) and debt-to-GDP (dj,t). Specifically:9

λj,t = α max(0, dj,t − ℓj,t). (2)

The previous formulation implies that the probability of default is strictly positive only if the

fiscal space is negative, i.e. if debt stands above the fiscal limit. Parameter α characterizes the

nature of the fiscal limit: if α is large, the fiscal limit is “strict”, as the probability of default

becomes large as soon as debt breaches the fiscal limit; for lower values of α, the fiscal limit is

“soft”, as negative fiscal spaces then do not necessarily trigger default.

The notion of soft fiscal limit is consistent with the widespread idea that it is difficult to assess

sovereign debt sustainability (e.g., Warmedinger et al., 2017; Debrun et al., 2019), which gives

rise to “grey areas” where default becomes likely but can also be avoided. The World Bank

and the IMF themselves reckon that, alongside quantitative approaches, the use of judgment is

needed to assess sovereign debt sustainability (IMF and World Bank, 2021).

In the rest of the present section, we consider the case of α = 1, implying a relatively soft

concept of fiscal limit: for a fiscal space of −1% of GDP, the probability of default is 1%.10

9It can be seen that we have λj,t = max(0, λj,t), with λj,t = α × (dj,t − ℓj,t). Using the vocabulary introduced
by Black (1995), λj,t can be interpreted as a “shadow default intensity.” Alternatively, to have a non-negative in-
tensity, λj,t could be modeled as a quadratic function of the fiscal space (see, e.g., Doshi et al., 2013). However, it is
impossible to have a monotonous relationship between the (non-negative) default intensity and the covariates in a
quadratic framework (while such a monotonous relationship is expected to hold in the present context). Coroneo
and Pastorello (2020) also employ the shadow-rate approach to price sovereign bonds issued by different coun-
tries; contrary to the present paper though, sovereign default probabilities (or default intensities) are not explicitly
modeled in their yields-only reduced-form framework. Therefore, the framework of Coroneo and Pastorello (2020)
does not allow to recover sovereign probabilities of default, and cannot preclude negative default probabilities.

10Low values of α allow for approximate pricing formulas (Appendix B) that are intensively used in our empir-
ical analysis (Section 4). As shown by Footnote 11, these approximate formulas are not needed in the context of
the stylized model.



12

3.2. Assumptions of the stylized model. Investors are risk-neutral and risk-free interest rates

are zero. In this context, the date-t price of a one-period zero-coupon zero-recovery-rate bond

issued by j is simply given by:

P(j)
t,1 = Et exp(−max[0, dj,t+1 − ℓj,t+1]), (3)

where Et denotes the expectation conditional on the information available to the investor as of

date t.

For each country, the fiscal limit-to-GDP (ℓj,t) is constant, fixed at ℓj, and the debt-to-GDP

ratios are i.i.d. Gaussian:  dA,t

dB,t

 ∼ N


 dA

dB

 ,

 σ2 ρσ2

ρσ2 σ2


 . (4)

In this context, the prices of zero-coupon bonds (see eq. 3) admit closed-form solutions de-

duced from standard results on truncated normal distributions.11

3.3. Common bonds. We consider two types of common bonds: the first is backed by several

and joint (SJG) guarantees, whereby each issuing country guarantees the totality of the obliga-

tions, and the second features several but not joint (SNJG) guarantees, whereby each issuing

country guarantees only its share of the joint instrument.

A natural way to conceive the SJG bond is to consider that it is issued by a synthetic area

where both fiscal revenues and debts are pooled, and to assume that this area also features a

probability of default of the form of (1). Denoting by ω the vector of GDP weights, the price of

SJG bond is given by:12

P(SJG)
t,1 = Et exp(−max[0, ω · dt+1 − ω · ℓ]), (5)

11Formally, P(j)
t,1 is given by:

Φ

(
ℓj − dj

σ

)
+

(
1 − Φ

(
ℓj − dj

σ

))
exp

(
α(ℓj − dj) +

α2σ2

2

){
1 − Φ

(
ℓj − dj

σ
+ ασ

)}/{
1 − Φ

(
ℓj − dj

σ

)}
.

12ω is such that ω = [ωA, 1 − ωA], with ωA = YA/(YA + YB), where Yj is country j’s GDP.
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where ω · dt+1 = ωAdA,t+1 + ωBdB,t+1 and ω · ℓ = ωAℓA,t+1 + ωBℓB,t+1 are, respectively, the

GDP-weighted debt-to-GDP ratio and the GDP-weighted fiscal limit.

Regarding the SNJG bond, the absence of joint guarantee implies that the payoff of this bond

is of the form ω · (1−Dt+1), where Dt+1 = [DA,t+1,DB,t+1] is the vector of default indicators—

a default indicator being equal to 1 in the case of default, and to 0 otherwise.13 In other words,

the payoff is equal to 1 if none of the countries default on date t + 1, ωA (respectively ωB) if

only B (resp. A) defaults on date t + 1, and 0 if both countries default. This implies that the

price of a SNJG bond is given by:

P(SNJG)
t,1 = ωAEt(1 −DA,t+1) + ωBEt(1 −DB,t+1) = ω · Pt,1, (6)

with Pt,1 = [P(A)
t,1 , P(B)

t,1 ].

3.4. Calibration and resulting yields. The different calibrations used in this section are sum-

marized in Table 2. In our baseline case, we set the average fiscal spaces of both countries to

20% (= ℓj − dj = 100% − 80%), and the two countries are alike in all respects. In particular,

they have the same (GDP) size, i.e. ωA = ωB = 50%, and the correlation between debts is set to

50%. In this baseline case, the yields on one-year national bonds are equal to 28 basis points.14

In this baseline context, where both countries are similar, it also comes that SNJG bond prices

are equal to those of country-specific bonds (see eq. 6, with P(A)
t,1 = P(B)

t,1 ); the SNJG bond yield

is therefore also equal to 28 basis points. By contrast, the price of the SJG bond is higher, the SJG

bond yield being of 13 basis points. This results from the fact that, for the synthetic “pooled”

area, the probability to have an (average) debt-to-GDP larger than the (average) fiscal limit is

13We conceive state 1 (default) as an absorbing case. Given that the default state is a stopping time—in the
sense that, in a case of default, the last payoff is on the default date—we can make this assumption without loss of
generality (even when we will consider longer-term bonds).

14Since, in the stylized model described in this section, risk-free yields are taken equal to zero, bond yields
essentially correspond to credit spreads. In addition, since the recovery rate is also zero, yields here coincide with
probabilities of default. These restrictions are relaxed in the extended model (Section 4).
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lower than for a single country. Formally:

P(ωAdA,t + ωBdB,t ≥ ℓ) < P(dj,t ≥ ℓ), j = A, B, (7)

which is true as long as the correlation between the two debt-to-GDP ratios is strictly lower

than 1. The fact that the SJG bond yield is lower than national bond yields implies that both

countries would reduce their debt service through the issuance of joint-liability bonds.

TABLE 2. Calibrations of stylized models

Baseline Symmetric case Asymmetric case
(A and B are alike) (B’s fiscal space ≤ A’s fiscal space)

A.1 A.2 A.3 B.1 B.2 B.3
σ 12.5%
ℓA,B 100%
dB 80% 75%→95% 95% 95% 95%
dA 80% 75%→95% 75%→95%
ρ 50% 0%→100% 0%→100%
ωA 50% 0%→100% 0%→100%

Notes: This table summarizes the calibrations used in our stylized model. The first column shows the calibration of
the baseline case (represented by a vertical grey line in the first row of plots of Figure 1). The average fiscal space
of country j corresponds to ℓj − dj, and ωA denotes the relative GDP size of country A (such that ωB = 1 − ωA).

The baseline situation discussed above is represented by a vertical grey bar in the first row

of plots in Figure 1. These plots further show how the SNJG and SJG yields are affected with

respect to: (Panel A.1) changes in the fiscal spaces of the two countries, (Panel A.2) changes in

the correlation across debts, and (Panel A.3) changes in the relative size of country A (in terms

of GDP).

Panel A.1 shows that both SJG and SNJG bond yields nonlinearly decrease when fiscal spaces

increase. It also shows that SJG bond yields are consistently lower than those of SNJG bonds.

Panel A.2 illustrates the importance of debt co-movements to account for the yield reduction

resulting from joint guarantees: while the SNJG bond yield is not affected by changes in debts’

correlations, the yield of a SJG bond is reduced by a factor of 8 when the correlation decreases

from 100%—in which case all bonds are equivalent—to 0%. Panel A.3 focuses on the effect of

the two countries’ relative sizes. In the extremes, when the relative size of country A is either 0
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FIGURE 1. Two-country stylized model mechanisms

A. Yields in the symmetric case (Countries A and B alike, same fiscal space)

B. Yields in the asymmetric case (B's fiscal space = 5% < A's fiscal space)
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Notes: These plots show the yields-to-maturity, expressed in basis points, of different types of one-period bonds; it
also shows how these yields are affected by changes in the calibration of the stylized model (see Table 2 for details
regarding the baseline calibration and the alternative calibrations underlying Panels A.1 to B.3 of this figure).
Three types of bonds are considered: national, or country-specific, bonds issued by countries A and B; a bond with
several and joint guarantees (SJG); and a bond with several but not joint guarantees (SNJG). See Subsection 3.4
for more details. On each row of plots, the vertical grey line represents the same situation—the “baseline” case of
Table 2.

or 1, there is no difference between SJG and SNJG bonds. As in the case of debt co-movement,

and because we consider two equally-risky countries for the time being, the relative size of

country A has no effect on the SNJG yield. But it has on the SJG yield; the effect is maximum

when the two countries are equally large, corresponding to a situation where diversification

effects are maximum.15

15Formally, this is because the variance of the aggregate debt-to-GDP ratio—that is σ2(ω2
A + (1 − ω2

A) +

2ρωA(1 − ωA))—admits a minimum for ωA = 1
2 .
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The second row of plots in Figure 1 displays results obtained in an asymmetric situation,

where country B is riskier than country A. We fix the fiscal space of country B to 5%, keeping

A’s one at 20%. National bond yields are now different for the two countries, and we add them

to each plot. Up to small convexity effects, it can be checked that SNJG yields are equal to the

GDP-weighted averages of the two national bond yields. In particular, in Panel B.3, where we

modify the relative size of country A from 0 to 1, the SNJG bond yield goes from the (higher)

country-B yield to the (lower) country-A yield. Regarding the difference between SNJG and

SJG yields, an interesting situation is captured by Panel B.1: for low values of country A’s fiscal

space, not only is the SJG bond yield below the SNJG one (i.e. the average of the two national

bond yields), it is also lower than the safer country’s bond yields. Finally, Panel B.2 shows that

when the two countries do not have the same average fiscal space, a correlation of 1 across

debts does not imply that the SJG and the SNJG bonds are equivalent. In this extreme case, and

contrary to the symmetric case, diversification effects are still at play in the SJG bond pricing:

the SJG bond yield is 1.5 times lower than the SNJG one.

To end with, it is interesting to note that, in this framework, diversification mechanisms can

have adverse effects on SJG bonds prices when expected fiscal spaces are negative enough.

Intuitively, when this is the case, the distribution of the joint fiscal space (and therefore of the

default intensity, see eq. 2) turns out to be more concentrated on the “wrong side” of zero,

yielding to lower prices for SJG bonds. We discuss this situation in greater details in Online

Appendix I.

4. MODEL

In this section, we enrich the stylized model to make it amenable to the data. We consider

N countries. While the conditional probabilities of default remain as in Subsection 3.1—with

default intensities that depend on fiscal spaces—debt-to-GDP ratios and fiscal limits are now

time-varying; in addition, the state vector is augmented with a stochastic short term interest
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rate (Subsection 4.1). The representative investor is now risk averse, her risk preferences being

captured by a reduced-form stochastic discount factor (Subsection 4.2). After having derived

prices of zero-coupon risk-free bonds, we discuss the pricing of zero-coupon bonds with non-

zero recovery rates and bond yield spreads (Subsection 4.3). The ability to swiftly price risk-free

bonds and yield spreads is crucial to estimate the model (Section 5).

4.1. Dynamics of the state vector. Fiscal limits follow autoregressive processes of order one.

For country j:

ℓj,t = (1 − ρℓ)ℓj + ρℓℓj,t−1 + εℓ,j,t, (8)

where the εℓ,j,t’s are Gaussian white noise shocks.

The formulation of debt-to-GDP dynamics is inspired by standard debt accumulation pro-

cesses, where debt-to-GDP depends on its first lag and on the budget surplus. Specifically:16

dj,t = ρddj,t−1 + {γj + γj,t}, (9)

where γj + γj,t proxies for country j’s primary deficit (expressed as a fraction of GDP). The

cyclical part of the deficit, γj,t, is assumed to follow an autoregressive process of order one:

γj,t = ργγj,t−1 + εd,j,t. (10)

Three remarks are in order. First, since γj,t is of mean zero, eq. (9) implies that the uncon-

ditional mean of dj,t is given by dj = γj/(1 − ρd). Second, from eqs. (9) and (10), it comes

that dj,t follows an autoregressive process of order two; one can indeed easily check that dt =

(1 − ργ)(1 − ρd)dj + (ρd + ργ)dt−1 − (ρdργ)dt−2 + εd,j,t. Third, considering that both ρd and ργ

are in [0, 1[, the debt process is stationary. Since investors use the previous processes to price

government bonds, our framework implicitly excludes snowball effects and related multiple

16Standard debt-to-GDP accumulation processes read dt =
1+rt
1+gt

dt−1 + γ̃t, where rt denotes the apparent interest
rate (i.e., debt service over debt outstanding), gt denotes GDP growth, and γ̃t is the primary deficit.
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equilibria (that would give rise to non-stationary processes). This can be attributed to investors’

limited rationality.

Fiscal-limit shocks (εℓ,j,t) and debt shocks (εd,j,t) can be correlated. Formally, using the nota-

tions εd,t = [εd,1,t, . . . , εd,N,t]
′ and εℓ,t = [εℓ,1,t, . . . , εℓ,N,t]

′, we set: εd,t

εℓ,t

 ∼ i.i.d.N (0, Ω) , with Ω =

 Ωd Ω′
ℓ,d

Ωℓ,d Ωℓ

 .

The structures of Ωd, Ωℓ, and Ωℓ,d will be explained below, in Subsection 5.3, which details the

estimation strategy and the parameter constraints.

The short-term risk-free interest rate also follows an auto-regressive process:17

it = (1 − ρi)i + ρiit−1 + σiηi,t, ηi,t ∼ i.i.d.N (0, 1). (11)

Let us denote by dt and ℓt two N-dimensional vectors gathering countries’ debt-to-GDP ratios

and fiscal limits, respectively. Under the previous assumptions, it is easily seen that the state

vector Xt = [it, it−1, d′t, d′t−1, ℓ′t]
′ follows a vector autoregressive process of order one.18 That is:

Xt = µ + ΦXt−1 + Σηt, (12)

where ηt ∼ i.i.d.N (0, I), and where µ, Φ, and Σ (with Ω = ΣΣ′) are detailed in Appendix A.

4.2. Stochastic discount factor and the term structure of risk-free rates. We assume that arbi-

trage opportunities do not exist, which ensures the existence of a positive stochastic discount

factor (s.d.f.). Following Ang and Piazzesi (2003), we posit a reduced-form exponential affine

s.d.f. between dates t and t + 1:

Mt,t+1 = exp(−it)
ξt+1

ξt
, (13)

17This Gaussian process does not exclude negative nominal interest rates. Hence, this model is not consistent
with the existence of the Zero Lower Bound (ZLB). This simple model however conveniently accommodates the
period during which risk-free European nominal rates have been negative (indicating that the Effective Lower
Bound, ELB, is lower than zero).

18We include the lagged short-term interest rate, it−1, in the state vector because the defaultable-bond pricing
formulas are easier to derive if it−1 can be expressed as a linear combination of Xt (see the notation below eq. a.7).
Moreover, Xt includes dt−1 because, as mentioned above, dt follows an auto-regressive process of order two under
eqs. (9) and (10).
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where ξt+1 follows:

ξt+1 = ξt exp
(
−1

2
ψ′

tψt − ψ′
tηt+1

)
, (14)

ψt being a vector of prices of risk that linearly depends on Xt:

ψt = ψ0 + ψ1Xt. (15)

In this context, it is well-known that risk-free bond prices admit closed-form recursive so-

lutions. Specifically, the date-t price of a risk-free zero-coupon bond of maturity h is given by

(proof in Online Appendix III):

Bt,h = exp(Ah + BhXt), (16)

where A1 = 0 and B1 = [−1, 0, . . . ]′ and, for h > 1: Ah = Ah−1 + B′
h−1(µ − Σψ) + 1

2 B′
h−1ΣΣ′Bh−1

Bh = B1 + Φ′Bh−1.
(17)

Equivalently, the yield of a risk-free zero-coupon bond of maturity h is given by:

i0
t,h = −1/h(Ah − B′

hXt). (18)

4.3. Zero-coupon bonds with non-zero recovery rates and sovereign bond yield spreads.

Consider a zero-coupon bond of maturity h issued by country j. Our recovery payoff assump-

tion is based on the “Recovery of Treasury” (RT) convention of Duffie and Singleton (1999):

on date t + k, with 0 < k ≤ h, the payoff of the considered bond is zero, unless the country

defaults on date t + k, in which case the bond payoff is assumed to be the fraction RR (re-

covery rate) of the price of a risk-free zero-coupon bond of equivalent residual maturity, i.e.

exp[−(h − k)i0
t+k,h−k]. Formally, the payoffs of this bond are of the form:19 RR × exp(−(h − k)i0

t+k,h−k)× (Dj,t+k −Dj,t+k−1) if 0 < k < h,

1 −Dj,t+k + RR × (Dj,t+k −Dj,t+k−1) if k = h.

19Note that Dj,t is valued in {0, 1}, state 1 being the default state, which is absorbing. As a result, Dj,t+k −
Dj,t+k−1 is equal to zero, except once, on the default date, where it is equal to 1. In reality, the default state is not
absorbing. However, given that the default state is a stopping time—in the sense that, in a case of default, the last
payoff is on the default date—we can make this assumption without loss of generality.



20

Denoting by Mt,t+k the stochastic discount factor between dates t and t + k (i.e., Mt,t+k =

Mt,t+1 × · · · ×Mt+k−1,t+k) and after some algebra (Online Appendix VI), one obtains the fol-

lowing expression for the price of this bond:

P (j)
t,h = (1 − RR)× Et

(
Mt,t+h(1 −Dj,t+h)

)
+ RR × Bt,h, (19)

where Bt,h, the price of the risk-free bond (Subsection 4.2), is equal to Et(Mt,t+h), and the con-

ditional expectation Et
(
Mt,t+h(1 −Dj,t+h)

)
corresponds to the date-t price of a zero-coupon

zero-recovery-rate bond of maturity h providing a payoff of 1 on date t + h if country j has not

defaulted before t + h, and zero otherwise. Online Appendix B details the computation of the

latter conditional expectation.

Sovereign bond yields for country j are given by:

i(j)
t,h = − log(P (j)

t,h )/h, (20)

and sovereign spreads are computed as follows (i0
t,h being given by eq. 18):

s(j)
t,h = i(j)

t,h − i0
t,h. (21)

5. ESTIMATION

5.1. Data. We consider six European countries: Germany, France, Italy, Spain, Netherlands,

and Belgium. These countries’ GDPs account for close to 90% of euro-area’s GDP. The data

are quarterly and span the period from 2008Q2 to 2021Q2. Sovereign yields and the 3-month

Overnight Indexed Swap (OIS) interest rate—our short-term risk-free rate—are extracted from

Thomson Reuters Datastream. Following Monfort and Renne (2014), risk-free yields of maturi-

ties of 2, 3, 5, and 10 years are proxied for by the difference between German bond yields and

German CDSs of matching maturities. Observations of sovereign spreads (s(j)
t,h ’s in eq. 21) are

computed as the difference between national bond yields and these risk-free yields. We con-

sider three maturities of bond yield spreads: 3, 5, and 10 years. Time series of gross government

debts and GDPs are collected from the Eurostat ESA2010 database.
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5.2. Estimation approach. The model can be cast into a state-space form, with (i) transition

equations describing the dynamics of the state variables (this is eq. 12) and (ii) measurement

equations describing the relationships between observed financial market data—prices and

yield spreads—and the state vector. Let us denote by Θ the set of model parameters,20 the

state-space model is of the form:

(i) Xt = F (Xt−1, ηt; Θ), (reformulation of eq. 12)

(ii) Yt = G(Xt; Θ) + ξt,

where Xt = [it, it−1, d′t, d′t−1, ℓ′t]
′ is the state vector, Yt denotes the vector of financial market data

(gathering risk-free yields and sovereign spreads), and ξt is a vector of i.i.d. Gaussian measure-

ment errors. Function G stands for pricing formulas, associating the state Xt to risk-free yields

and sovereign spreads. While the risk-free rates are affine in Xt (see eq. 18), this is not the

case for sovereign spreads because of the nonlinearity of the default intensity (resulting from

the “max” operator in eq. 2). The vector of state variables Xt is only partially observed by the

econometrician since the N national fiscal limits (ℓt) are latent. We therefore face two types of

unknowns: the model parameters and the fiscal limits. We address this problem by employing

“inversion techniques”. These techniques, originally introduced by Chen and Scott (1993) in

the term structure literature, consist in estimating the latent pricing factors by inverting a non-

singular system relating prices to latent factors. This system results from the assumption that

some of the observed prices are modeled without errors. In the present case, we assume that, for

each country, the averages of the three sovereign spreads (with maturities 3, 5, and 10 years) are

perfectly priced. Under this assumption, we can recover the fiscal limits and, simultaneously,

compute the likelihood function associated with the considered model parametrization.21 This

20We have Θ = {i, ρi, σi, d1, . . . , dN , ρd, ℓ1, . . . , ℓN , ρℓ, ργ, Ωd, Ωℓ, Ωℓ,d, ψ0, ψ1}.
21The likelihood then involves an adjustment term corresponding to the determinant of the Jacobian matrix

associated with the non-singular system; this adjustment results from the transformation of the observables to the
latent components (see e.g. Ang and Piazzesi, 2003, Appendix B). Computational details are given in the Online
Appendix VIII.
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opens the door to maximum-likelihood estimation. Online Appendix VIII provides computa-

tional details.

5.3. Parameter constraints and estimates. To facilitate the estimation and ensure plausible fis-

cal limit estimates, some parameters are calibrated or restricted to lay in pre-specified intervals.

For all countries, we set the stationary debt-to-GDP ratio dj and the unconditional mean of

the short term rate i to their respective sample averages. We restrict the unconditional standard

deviation of the short-term rate to be larger than 0.8%, which is slightly lower than the sample

standard deviation. To favor numerical stability, we impose upper bounds, of 0.999, to all

autoregressive parameters. We set the bounds for the unconditional mean of the fiscal limit (ℓ

in Table 3) to lie in between 0% and 300% of GDP.22 We restrict the autoregressive parameter

of the γj,t’s—the proxies for the cyclical components of primary surpluses—to be larger than

0.7, given that the cross-country average of the autocorrelations of primary balance is 0.8. The

maximum Sharpe ratio, that characterizes the pricing of risk, is supposed to lie between 0.5

and 1.5 (it is set to one in Cochrane and Saa-Requejo, 2000).23 The standard deviations of the

measurement errors associated with yields and sovereign spreads are respectively set to 10

basis points and to 10% of the country-wise sample standard errors of sovereign spreads.

The model parameters include the conditional covariance matrix of Xt, i.e., Ω = ΣΣ′ (see

eq. 12). Freely estimating all the parameters of this matrix would be numerically challenging.

Instead, we design an approach that, while capturing the sample correlation structure of debt

shocks, remains parsimonious. It works as follows:

22The bounds on the unconditional mean of fiscal limits is based on the observation that the average of estimates
obtained by Ghosh et al. (2013) and Collard et al. (2015) fall within the same interval (and are never above 220% of
GDP for the set of countries here analyzed). These (static) estimates are reported in Table 7 in Appendix XII.

23Setting bounds on the maximum Sharpe ratio is an approach that is employed by, e.g., Jiang et al. (2019). A
maximum Sharpe ratio below 0.5 would be inconsistent with the empirical evidence, as Sharpe ratios above 0.5 are
frequent (e.g., Lettau and Ludvigson, 2010; Hong and Linton, 2020). Note that, in our framework, the maximum
Sharpe ratio is not constant since it depends on the short term rate it dynamics (see Appendix C). The maximum
Sharpe ratio that we effectively constrain is the one evaluated at the average of the state vector, which is close to
its sample average given that it is fairly constant over the sample. More details are provided in Appendix C.
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(i) For a considered parametrization of ρd, ργ, and of the dj’s (see eqs. 9 and 10), one can

recover estimates of the εd,j,t’s. We perform a PCA analysis of the resulting shocks, and we

denote the resulting standardized PCAs by ηd,k,t’s (k =, 1, . . . , N). At that stage, we have:

εd,t = Γdηd,t, (22)

where Γd is the matrix of PCA weights, that is such that Var(εd,t) = ΓdΓ′
d (using that Var(ηd,t) =

I). Note that the parameters of the first column of Γd are larger as they correspond to the first

PCA. In other words, ηd,1,t accounts for the largest common variance of the εd,j,t’s (k =, 1, . . . , N).

(ii) We further assume that the fiscal-limit shocks admit the same structure, up to a multi-

plicative factor. More precisely, we assume that:

εℓ,t = Γℓηℓ,t, (23)

with Γℓ = ζΓd and Var(ηℓ,t) = I. Again, by construction, the first column of Γℓ contains larger

parameters. That is, ηℓ,1,t is the main common driver of the fiscal-limit shocks. In the estimation,

we restrict ζ to be between 0.5 and 1.5.

(iii) In order to allow for correlation between debts and fiscal limits in a parsimonious way,

we assume that the two “main common shocks,” namely ηd,1,t and ηℓ,1,t, are correlated. Specif-

ically, we assume that these shocks admit the following decomposition:

ηd,1,t =
√

1 − ρd,ℓη̃d,1,t +
√

ρd,ℓη̃d,ℓ,t (24)

ηℓ,1,t =
√

1 − ρd,ℓη̃ℓ,1,t +
√

ρd,ℓη̃d,ℓ,t, (25)

where η̃d,ℓ,t, η̃d,1,t, and η̃ℓ,1,t are independent standard Gaussian shocks. Together, eqs. (24) and

(25) imply that ρd,ℓ is the correlation between ηd,1,t and ηℓ,1,t.

Hence, the complete vector of independent shocks affecting the system (eq. 12) is:

ηt =

[
ηi,t η̃′

t

]′
∼ i.i.d.N (0, I), with η̃t =

[
η̃d,ℓ,t η̃′

d,t η̃′
ℓ,t

]′
, (26)
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where η̃d,t = [η̃d,1,t, ηd,2,t, . . . , ηd,N,t]
′ and η̃ℓ,t = [η̃ℓ,1,t, ηℓ,2,t, . . . , ηℓ,N,t]

′. Appendix A details the

shape of matrices Σ and Ω (with Ω = ΣΣ′) that results from these assumptions.

To discipline the estimation further, we adopt a parsimonious specification for the prices of

risk (ψt in eqs 14 and 15). First, we assume that only the first entry of ψt—that corresponds to

interest-rate risk—is time-varying. Specifically, we have: ψ1,t = ψi,0 + ψi,1it. As a result, matrix

ψ1 (eq. 15) is filled with zeros, except its (1, 1) entry, which is equal to ψi,1.24 Second, as regards

debt and fiscal-limit shocks (η̃t), we assume that the s.d.f. depends only on the main common

shocks, namely η̃d,1,t and η̃ℓ,1,t. Formally, we posit:

ψ0 = [ψi,0, 0,−ν, 01×(N−1), ν, 01×(N−1)]
′. (27)

If ν > 0, this specification ensures that the s.d.f.—that can be seen as the ratio of marginal

utilities—goes up when there is an increase in the main common debt shock η̃d,1,t or a decrease

in the main common fiscal-limit shock η̃ℓ,1,t (see eqs. 13 and 14).

The resulting model parametrization is given in Table 3. Several of the restrictions described

above turn out to be binding, which we indicate by “†” in the table. We find, in particular, that

the unconditional average of the fiscal limit, namely ℓ, hits the upper bound of 300%. However,

as we find that ρℓ is close to one, this implies that ℓt almost follows a random walk process and,

thus, ℓ is only weakly identified.

5.4. Sovereign spreads fit and credit risk premiums. Figure 2 shows the fit of sovereign spreads.

The fit is comparable to the one obtained in term-structure studies where default intensities are

purely latent and have no macro-finance interpretation.

On Figure 2, model-implied spreads (dotted black lines) result from eq. (21), which involves

formulas using the stochastic discount factor Mt,t+1 that itself depends on prices of risk ψ

(eq. 14). The black solid lines represent the (model-implied) spreads that would be observed if

24 This specification for ψ1,t implies that the risk-neutral dynamics of the short-term rate it is it = (1 − ρii −
σiψi,0) + (ρi − σiψi,1)it−1 + σiη

∗
i,t, where η∗

i,t ∼ i.i.d.N (0, 1) under the risk-neutral measure (see Online Appen-
dix II).
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TABLE 3. Model parametrization

Param. Value Param. Value

ρd 0.970 ρd,ℓ 0.745
ρℓ 0.997 ℓ 3.000†

ργ 0.700† ζ 1.500†

ρi 0.938
√

Var(it) 0.008†

ρQ
i 0.999† maxSR 0.500†

α 0.083 ν 0.321

dDE 0.714‡ dFR 0.938‡

dIT 1.311‡ dES 0.862‡

dNL 0.591‡ dBE 1.050‡

i 27.11‡

Notes: The subscript † indicates parameters for which the restrictions described in 5.3 turn out to be binding in
the context of the constrained maximum likelihood estimation. The subscript ‡ indicates parameters that are
calibrated: dj is set to the observed sample mean of debt-to-GDP of country j; i is set to the sample mean of the
short-term rate (3-month OIS rate), it is expressed in basis points (annualized). maxSR and ν determine the vector
of prices of risk ψ (see eq. 14 and Appendix C). We have the following relationship between ρi and ρQ

i : ρQ
i = ρi −

σiψi,1, where ψi,1 is the (1, 1) entry of matrix ψ1 (see Online Appendix II). Parameter ρd,ℓ is the correlation between
the two “main common components” of debts and fiscal limits (see eqs. 24 and 25). Parameter ζ determines the
covariance matrix of fiscal-limit shocks (see eq. 23). Parameter α is the elasticity of the probability of default to the
fiscal space (see eq. 2).

agents were not risk averse; these spreads are obtained by implementing the formulas implicit

in eq. (21) after having set the prices of risk to zero. The differences between the two types

of model-implied spreads correspond to credit-risk premiums. Our results indicate that these

risk premiums are sizeable. The ratio between the two types of spreads, which reflects the

importance of risk premiums, is broadly comparable to the ones found in sovereign credit-risk

studies based on reduced-form intensity approaches (e.g. Pan and Singleton, 2008; Longstaff

et al., 2011; Monfort and Renne, 2014; Monfort et al., 2020).

Let us stress that, in the present model, credit risk premium are time-varying even if the

prices of risk associated with debt and fiscal-limit shocks are constant. This stems from the

conditional heteroskedasticity of the default intensity inherent to our model.25

25Intuitively, a risk premium can be seen as the product of a price of risk times a risk quantity. Hence, the risk
premium is time-varying if at least one of its two multiplicative constituents (prices of risk or the risk quantity) also
is. In standard Gaussian affine term-structure models, prices of risk are time-varying but the risk quantity—that
is the conditional variance of the factors—is constant. The opposite is true In the present model: prices of risk are
constant (except for the short-term risk-free interest rate), but the conditional variance of the default intensity, i.e.,
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FIGURE 2. Model fit of sovereign bond yield spreads
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Notes: Model-implied sovereign spreads result from eq. (21). Dashed lines represent the (model-implied) spreads
that would be observed if agents were not risk averse (obtained also by eq. 21, but after having set the prices of
risk, that are the components of ψ, to zero). The differences between the two types of model-implied spreads
(dotted and solid lines) correspond to credit-risk premiums.

Lastly, Figure 3 shows that the model captures a substantial share of the fluctuations of risk-

free rates across all maturities.

α max[0, (dt − ℓt)] (see eq. 2) is time-varying (because of the max operator). See Online Appendix VII for additional
explanation.
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FIGURE 3. Model fit of risk-free yields
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Notes: The model implied risk-free yields (grey solid line) result from eq. (18). Interest rates are annualized, and
expressed in percentage points.

5.5. Fiscal limit estimates. To the best of our knowledge, the present paper is the first to pro-

pose time-varying estimates of fiscal limits (together with Pallara and Renne, 2021). These

estimates, expressed in percent of GDP, are displayed in Figure 4. On a given quarter, if debt-

to-GDP (dj,t, black solid line) is higher than the fiscal limit (ℓj,t, grey solid line), then, the proba-

bility of default is strictly positive (see eq. 1). Everything else equal, if debt-to-GDP stays above

the black dotted line (respectively in the grey-shaded area) for four quarters in a row, then the

annual default probability of the considered country would be larger than 10% (respectively in

]0%, 10%]). For what follows, and unless differently specified, our numbers refer to the thresh-

old fiscal limit estimates, namely the grey solid lines in Figure 4. According to our estimates,

the global financial crisis of 2008 translated into a decrease of the fiscal limits. On average, fiscal

limits decreased by 10 percent of GDP between 2008 and 2009.26 From the beginning of 2010 to

early 2012, amid the European sovereign debt crisis, fiscal limits recorded an average decrease

close to 20 percent of GDP. Notably, the “whatever it takes” statement by Draghi (2012, July) and

the European Central Bank (ECB) announcement of the Outright Monetary Transactions (OMT)

26This may be seen as a consequence of transfers from private to public debts through explicit channels (bank
bailouts) or implicit ones (debt and deposit guarantees), along the logic of the so-called sovereign-bank nexus (see
e.g. Jordà, Schularick, and Taylor, 2016).
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were followed by a 5 p.p. jump in the average fiscal limit (from 2012Q2 to 2012Q4).27 After the

euro-debt crisis, and until the onset of the COVID-19 pandemic, fiscal limits across countries

show an increasing trend on average, translating into a widening of fiscal space in Europe. Fis-

cal limits decrease by 5 p.p. on average across countries during the pandemic, from mid-2020

until the end of the estimation sample. In Online Appendix XIV, we report a set of sensitivity

analyses based on varying key parameters in the model. Specifically, in Figure XIV.5 (Online

Appendix XIV), we show the fiscal limit estimates across different model specifications.

6. RESULTS

6.1. Pricing Eurobonds. In Figure 5, we compare counterfactual yield spreads associated with

common bonds benefitting from several and joint guarantees (SJG) and bonds with several

but not joint guarantees (SNJG). By design, the latter is close to the debt-weighted average of

country-specific observed sovereign spreads. The difference between SNJG and SJG is posi-

tive and sizeable across the estimation sample. This result suggests that raising funds through

a joint liability debt instrument—the SJG bond—may substantially reduce debt service in the

presence of heterogenous fiscal conditions. This is due to the associated diversification of fiscal

risks across countries: as long as the fiscal positions across countries are not perfectly corre-

lated, one can expect gains from common bond issuance in the presence of joint and several

guarantees (SJG) w.r.t. several but not joint guarantees (SNJG). On average across the estima-

tion sample, the ratio of SNJG bond yield spread on the SJG one is approximately equal to 7,

3.5 and 2 for the 3-, 5- and 10-year maturities, respectively. Over the estimation sample and ma-

turities, the wedge between SJG and SNJG bond yields is equal, on average, to approximately

35 basis points. Notably, for the 10-year maturity, the SJG bond yield spread is higher than the

SNJG one by roughly 10 basis points between 2011Q4 and 2012Q1. This implies that aggregate

27The OMT represents a mechanism aimed to “safeguard an appropriate monetary policy transmission and the
singleness of the monetary policy” (2012, August).
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FIGURE 4. Fiscal limits
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Notes: These plots display estimated fiscal limits (ℓj,t) and observed public debts (dj,t), both expressed in % of
GDP. On a given quarter, if debt-to-GDP is higher than the fiscal limit (grey solid line), then the probability of de-
fault is strictly positive (see eq. 1). Everything else equal, if debt-to-GDP (black solid line) stayed above the black
dotted line (respectively in the grey-shaded area) for four quarters in a row, then the annual default probability
of the considered country is larger than 10% (respectively in ]0%, 10%]). On each plot, the vertical bars indi-
cate important dates (monetary-policy decisions and/or noteworthy pivotal economic events): All countries—
10/05/2010: Announcement of Securities Market Program (SMP); 02/08/2012: ECB announces it may undertake
outright transactions in sovereign bond markets (OMT); 22/01/2015: ECB announces expanded asset purchase
programme to include bonds issued by euro area central governments, agencies and European institutions (com-
bined monthly asset purchases to amount to e60bn); 04/03/2015: Announcement of the Public Sector Purchase
Programme (PSPP); 12/09/2019: Announcement that net purchases will be restarted under the Governing Coun-
cil’s asset purchase programme (APP) at a monthly pace of e20bn as from 1 November 2019. Italy—12/11/2011:
Berlusconi resigns from office (BTP/Bund spread is over 550 bps); 04/03/2018: Populist parties (M5S and Lega)
win the majority of votes in Italian government elections. Spain—11/12/2012: ESM (European Stability Mecha-
nism) disburses e39.5bn for recapitalisation of banking sector; 05/03/2013: ESM disburses e1.9bn.

gains would have been slightly negative under issuance with joint and several guarantees dur-

ing these two quarters. This finding parallels the discussion presented at the end of Section 3

concerning the possibility of a reversion of gains arising from SJG bond issuance compared to
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SNJG one. Given the turmoil jointly faced by European member states during the euro-debt

crisis, several debt-to-GDP ratios prove larger than fiscal limits (see Figure 4 in Subsection 5.5),

this leads to detrimental diversification effects. Such effects revert the probability of default

that is larger in the SJG bond case compared to the national bond cases causing negative yield

gains (see Online Appendix I for further discussion on the detrimental diversification effects).

For the sake of comparison, we add the German bond yield spreads in Figure 5 (black circles).

Interestingly, during the great financial crisis, the baseline SJG spread lays below the German

yield spread for the 3-year and 5-year maturity. Hence, diversification effects underyling the

SJG bond pricing might, at times, prove beneficial also for fiscally virtuous countries in the euro

area—and not only for the peripheral Member States. Notwithstanding, even in the scenarios

under which SJG bond yields are higher than Bunds’ ones, one can design post-issuance re-

distribution schemes translating into gains to all countries. This is discussed in Subsections 6.2

and 6.3.

The magnitudes of our model-implied SJG and SNJG bond spreads are broadly in line with

those pertaining to observed proxies of (SJG) Eurobonds. We consider as Eurobond proxies

those bonds issued by the following European institutions: the European Investment Bank

(EIB), the European Financial Stability Facility (EFSF), the European Stability Mechanism (ESM),

and the European Commission itself, which, against the backdrop of the COVID-19 crisis, has

initiated large-scale issuance programs.28 These bonds benefit from various types of guaran-

tees, which makes them close to SJG bonds.29 Figure 6 shows the spreads between such bonds

28These programs notably include the SURE program (for “Support to mitigate Unemployment Risks in an
Emergency”) and the Next-Generation-EU program. See, e.g., the investor presentation of the European Com-
mission (12 March 2021), available at https://ec.europa.eu/info/sites/default/files/about_the_
european_commission/eu_budget/ip_07.2021.pdf. The EU already had issued some bonds before 2020,
in particular in the context of the Euratom loans.

29To justify Moody’s top rating (Aaa) for the EU’s bond programs, the rating agency points out, for
example, that “the multiple layers of debt service protection, including explicit recourse to extraordi-
nary support [. . . ] creates the equivalent of a joint and several undertaking and obligation on the part
of EU member states to provide financial support to the EU” (https://www.moodys.com/research/
Moodys-affirms-the-European-Unions-Aaa-rating-outlook-stable--PR_430731).

https://ec.europa.eu/info/sites/default/files/about_the_european_commission/eu_budget/ip_07.2021.pdf
https://ec.europa.eu/info/sites/default/files/about_the_european_commission/eu_budget/ip_07.2021.pdf
https://www.moodys.com/research/Moodys-affirms-the-European-Unions-Aaa-rating-outlook-stable--PR_430731
https://www.moodys.com/research/Moodys-affirms-the-European-Unions-Aaa-rating-outlook-stable--PR_430731
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FIGURE 5. Counterfactual bond yield spreads
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Notes: This figure compares counterfactual yield spreads (versus risk-free interest rates) associated with common
bonds benefitting from several and joint guarantees (SJG) and bonds with several but not joint guarantees (SNJG).
For the sake of comparison, we also add German bond yield spreads (circles).

and the German benchmark bond (the Bund) of equivalent residual maturity. It also displays,

in grey, proxies of SNJG spreads, computed as GDP-weighted averages of 10-year national

spreads versus the Bund. It appears that the prices of the different SJG Eurobond proxies are

close to each other. The red dots indicate the model-implied SJG and SNJG bond spreads (ver-

sus Germany). The plot shows that the model captures a substantial amount of the fluctuations

of observed spreads.

Our framework also offers the possibility to consider “partial” SNJG and SJG bonds whose

emission is circumscribed to a smaller set of countries excluding, for instance, either “super”
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FIGURE 6. Observed proxies of common bond spreads versus 10-year German benchmark
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Notes: This figure shows bond yield spreads w.r.t. the German 10-year benchmark bond. Black and blue (respec-
tively grey) lines correspond to proxies for SJG bonds (resp. SNJG bonds). We consider bonds issued by the Euro-
pean Investment Bank (EIB), the European Financial Stability Facility (EFSF), the European Stability Mechanism
(ESM), the European Union (EU, NEXT GEN EU). The SNJG proxy (grey lines) is computed as a GDP-weighted av-
erage of national-bond spreads (versus Germany). The data are at the daily frequency (20-day moving averages);
they span the period from February, 9 2016 to November 1, 2021. The dates reported in the legend of the figure
correspond to maturity dates (2029 or 2031) of the specific bonds. The spreads are computed as the differences in
asset swap spreads w.r.t. to the Bund; (see Online Appendix XI for more details). As of November 2021, the credit
ratings of the considered European institutions were as follows (Moody’s/S&P/Fitch): EIB (Aaa/AAA/AAA),
EFSF (Aa1/AA/AA+), ESM (Aa1, AAA/AAA), and EU (Aaa/AA/AAA).

core member states (Germany and Netherlands) or peripheral ones (Italy and Spain). The re-

sults of such counterfactual exercises are reported in Online Appendix XIII. The main finding

is that the wedge between “partial” SJG and SNJG bonds is smaller compared to the baseline

scenario (under which all countries participate in the joint issuance), which reflects enhanced

diversification effects in the latter case.

Online Appendix XIV reports the results of analyses where we study the sensitivity of SJG

bond yield spreads to changes in several important parameters, or in the way these parameters

are constrained within the estimation (see Subsection 5.3). The order of magnitude of the spread

between SJG and SNJG bonds appear to be robust to these changes.
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6.2. Aggregate gains and redistribution. In Subsection 6.1, we have seen that the price of a

common debt instrument might be lower than the German one (equivalently, Eurobond yields

are higher than Bund ones). However SJG bond prices are usually higher than SNJG ones. Since

the latter correspond to a weighted average of national bond prices, replacing national bonds

with SJG bonds results in aggregate gains. These gains could be redistributed ex-post—i.e. after

issuance—across all countries. In that case, and considering only strictly positive redistribution

weights, the issuance of SJG bonds would eventually result in a reduction in funding costs for

all countries (w.r.t. the issuance of national bonds).30 Naturally, the number of redistribution

schemes is infinite. In this subsection, we focus on three situations. In the first one (Scheme

A), countries pay the same yield (i.e., there is no redistribution); in the second one (Scheme B),

gains are distributed in proportion to GDP; in the third one (Scheme C), gains are distributed

in such a way that the interest rate reduction—relative to the respective national bond rates—

is the same for all countries. Formulas used to perform these exercises are detailed in Online

Appendix IX.31

Table 4 shows the results of these counterfactual exercises. We focus on 5-year bonds (5 years

roughly being to the average issuance maturity in the euro area), and three periods: begin-

ning of the estimation sample (2008Q2), midst of the euro debt crisis (2011Q4), and end of

the estimation sample (2021Q2). The three upper panels (A, B and C) of Table 4 correspond

to the three SJG-based schemes described above. For the sake of comparison, the lower panel

(Panel D) shows results for the SNJG case, for which there are no aggregated gains. For this

latter case (Scheme D), we consider only the situation in which all countries pay the same in-

terest rate (i.e. the SNJG issuance yield). Table 4 also reports post-redistribution yields, which

are the differences between national bond yields and reductions in the funding costs (or “yield

30In some sense, any scheme involving strictly positive weights can be seen as Pareto-improving.
31This online appendix also reports results of schemes where the funding costs of Germany and France are left

unchanged (see Online Appendix IX.5).
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gains”) resulting from the considered schemes. In addition, we show redistribution weights;

these weights indicate how aggregate gains are shared across countries.

Let us stress that the reported reduction in the funding cost (or yield gain) pertains to one

given bond, and not to the whole debt outstanding. To be sure: a yield gain of 100 basis points

(say) would effectively translate into a reduction of yearly aggregate funding costs ofe1bn if an

outstanding amount of e100bn of SJG bonds was issued. This being said, to give an idea of the

amounts potentially involved, the top part of Table 4 indicates the aggregate gains that would

have resulted from the issuance of the equivalent of approximately 5% of the euro-area GDP

(e500bn) during the three considered quarters. For instance, for the same face value (e500bn),

issuing SJG bonds instead of SNJG bonds in 2008Q2 would have increased the issuance pro-

ceeds by e2.78bn. For 2011Q4 and 2021Q2, the gains would have been e3.3bn and e5.73bn,

respectively.

Panel A of Table 4 characterizes the scheme where there is no redistribution of the aggregated

gains (Scheme A). As illustrated by our results, this scheme can result in negative “gains” for

some countries: funding costs for Germany, France and Netherlands get considerably higher in

2011Q4. Italy and Spain are the countries that benefit the most out of the SJG issuance scheme in

2011Q4: the spread between post-redistribution and national yields is equal to 280 basis points

for Italy and 224 basis points for Spain.

By contrast, Schemes B and C are such that all countries mechanically benefit from the is-

suance of SJG bonds. These two schemes deliver similar results (see Panels B and C of Table 4).

While yield reductions are modest before and during the sovereign debt crisis period (around

15 basis points), they become more sizeable at the end of the estimation sample (about 25 basis

points in 2021Q2).

Figure 7 displays the time series of yield gains associated with Scheme C. We consider three

maturities: 3, 5 and 10 years. For the 3- and 5-year maturity, yield gains peak at the end of the
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euro-debt crisis, between 2012Q4 and 2013Q1, reaching approximately 75 and 65 basis points,

respectively. As regards the 10-year maturity, yield gains associated with scheme C revolve

around 35 basis points before and after the euro-debt crisis, while, between 2011Q4 and 2012Q1,

they turn out to be negative (around -10 basis points). For further details on this finding con-

cerning negative yield gains, we reference to the previous subsection and the discussion at the

end of Subsection 3.

In Online Appendix XIV (Figure XIV.7), we show the yield gains associated with Scheme C

across different sensitivity exercises. The order of magnitude of these gains appears to be fairly

robust to the considered changes in the model parametrization.

It is important to mention that our results do not take into account potential higher-order

effects. The mechanisms underlying such effects would be as follows: if the average funding

cost of a government decreases—because part of its funding needs are met with Eurobonds—

then expected future debt would decrease because of lower debt service. (For this to hold, one

has to assume, however, that the decrease in future debt service will not be compensated by

higher primary deficits.) If agents effectively expect lower future debt levels, then bond prices

move. That is, the initial funding cost effects are followed by second-order ones. This, in turn,

reduces future debt service, and so on. This issue is complicated to handle, especially in the

context of a reduced-form approach like ours. Nevertheless, in Online Appendix X, we propose

an iterative approach aimed at gauging the potential impacts of such higher-order effects. For

moderate levels of SJG bond issuance—we consider, therein, that 20% of the euro-area debt is

issued in the form of SJG bonds—our results point to relatively mild higher-order effects.

6.3. Moral hazard and redistribution schemes. Usual concerns associated with common debt

issuance pertains to moral hazard (see, e.g., Claessens et al., 2012; Favero and Missale, 2012;

Tirole, 2015; Dávila and Weymuller, 2016): knowing that part of their debt is guaranteed by

other countries, some countries may be tempted to increase their spending—and start issuing
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TABLE 4. Effect of redistribution schemes on funding costs

2008-06-30 2011-12-31 2021-06-30

SJG

A.G.a e2.78 bn e3.3 bn e5.73 bn

Panel A: SJG, Same funding costs (i.e. no ex-post redistribution)

redist.
weigth

post redist.
yield

yield
gain

redist.
weigth

post redist.
yield

yield
gain

redist.
weigth

post redist.
yield

yield
gain

DE 7% 436 3 -262% 306 -119 1% -10 1
FR 18% 436 10 -99% 306 -62 16% -10 15
IT 43% 436 31 325% 306 280 55% -10 67
ES 14% 436 16 165% 306 224 25% -10 47
NL 11% 436 19 -44% 306 -87 1% -10 3
BE 8% 436 26 15% 306 52 2% -10 13

Panel B: SJG, Redistribution based on GDP weights

redist.
weigth

post redist.
yield

yield
gain

redist.
weigth

post redist.
yield

yield
gain

redist.
weigth

post redist.
yield

yield
gain

DE 33% 425 14 33% 172 14 33% -32 23
FR 24% 433 14 24% 228 15 24% -18 23
IT 19% 453 14 19% 568 18 19% 34 23
ES 12% 438 14 12% 512 17 12% 14 23
NL 8% 442 14 8% 204 15 8% -29 23
BE 4% 448 14 4% 342 16 4% -19 23

Panel C: SJG, Same yield gains across countries

redist.
weigth

post redist.
yield

yield
gain

redist.
weigth

post redist.
yield

yield
gain

redist.
weigth

post redist.
yield

yield
gain

DE 33% 425 14 35% 171 15 33% -32 23
FR 24% 433 14 25% 228 15 24% -18 23
IT 19% 453 14 17% 570 15 19% 35 23
ES 12% 438 14 11% 514 15 12% 15 23
NL 8% 442 14 8% 203 15 8% -29 23
BE 4% 448 14 4% 342 15 4% -20 23

SNJG

A.G. e0 bn e0 bn e0 bn

Panel D: SNJG, Same funding costs

redist.
weigth

post redist.
yield

yield
gain

redist.
weigth

post redist.
yield

yield
gain

redist.
weigth

post redist.
yield

yield
gain

DE − 450 -11 − 321 -135 − 13 -22
FR − 450 -4 − 321 -78 − 13 -8
IT − 450 17 − 321 264 − 13 44
ES − 450 2 − 321 208 − 13 24
NL − 450 5 − 321 -103 − 13 -20
BE − 450 12 − 321 36 − 13 -10

a: Aggregate gains. Notes: This table compares post-redistribution funding costs across countries under the two issuance schemes (SJG and
SNJG) and under different redistribution schemes described in Subsection 6.2. We focus on the 5-year maturity and on three periods: beginning
of the estimation sample (2008Q2), midst of the euro debt crisis (2011Q4) and end of the estimation sample (2021Q2). Yields are expressed in
basis points. Aggregate gains (reported at the top of the table) are computed under the assumption that total issuance is equal to 5% of aggregate
GDP. In each panel, for all countries and dates, we show the redistribution weights, the post-redistribution yields, and the spread between
national yields and the post-redistribution yields (that are the yield gains). Under SNJG (Panel D), redistribution weights are unnecessary
since there are no aggregated gains. See Online Appendix IX for computational details.
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FIGURE 7. Yield gains associated with redistribution scheme with same yield
gains across countries
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Notes: This figure shows yield gains associated with redistribution Scheme C (same yield gains across countries)
throughout the whole estimation sample and for different maturities. See Subsection 6.2 for details regarding this
redistribution scheme. Yield gains are expressed in basis points.

more debt—since the interest rate on jointly-guaranteed debt is less sensitive to an individual

debt increase than non-guaranteed debt.

Although our reduced-form modeling framework does not allow to explore such mecha-

nisms in a structural way, it can illustrate how market discipline would be impaired by mas-

sive issuance of SJG bonds. Specifically, we perform counterfactual exercises in which Italy and

Spain decide to deviate from their current debt level, all else being equal. We then observe the

changes in spreads induced by these modifications. We consider two dates: 2011Q4 (euro-area

debt crisis) and 2021Q2 (end of the estimation sample). Figure 8 shows the results. For each

date and each country, large increases in the debt-to-GDP ratio result in modest increases in

SJG and SNJG Eurobond spreads (see, respectively, the grey and black solid lines).32 These

increases are far lower than those of national bond yields (grey dashed line). This illustrates

32The SJG bond yield proves higher than the SNJG one under a sizeable rise in Italian indebtedness in 2011Q4
(top left panel of Figure 8). This stems from the fact that diversification effects become detrimental when expected
joint fiscal limits are overcome by pooled debts (see discussion at the end of Section 3 and, also, Subsection 6.1).
In this scenario, the probability of default is reversed (larger for SJG than for national bonds, on average), causing
negative yield gains (see Online Appendix I for further details on detrimental diversification effects).
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the moral hazard issue: under the issuance of common bonds, and if the each country pays

the issuance SJG/SNJG yield (i.e., under Schemes A or D), then the ability of financial markets

to restore fiscal discipline via rising interest rates is hampered. Let us stress that the strength

of this hampering effect depends on the extent to which national issuances would be replaced

with eurobonds: as long as a sizable share of countries’ funding needs are met with the issuance

of national bonds, the overall debt service remains sensitive to countries’ indebtedness. In other

words, under Schemes A or D, a necessary condition for market discipline to remain effective

is to limit the issuance of eurobonds (as suggested by Delpla and Weizsacker, 2010; Hellwig

and Philippon, 2011). The simulation results suggest that moral hazard effects are dampened

under Schemes B and C (see black dashed lines in Figure 8); these schemes indeed imply that

post-redistribution funding costs remain sensitive to countries’ indebtedness showing a simi-

lar slope as national bond yields (grey dashed line). Moreover, these post-redistribution yields

remain lower than national bond yields as long as aggregate gains are positive.33

7. CONCLUDING REMARKS

This paper aims at pricing bonds jointly issued by a group of countries. Our focus is on

Eurobonds, which are debt instruments jointly issued by euro-area countries. We consider two

types of common bonds: the first features joint and several guarantees (SJG bond); the second

is characterized by several but not joint guarantees (SNJG bond). To price these two types of

common bonds, we develop a novel multi-country sovereign credit risk framework. Our model

captures the joint dynamics of national bond prices, sovereign debt, and the fiscal limit—the

level of debt beyond which the risk of default is no longer zero.

33Post-redistribution yields under Scheme B and C are above the Italian national bond yield in 2011Q4 when
Italian debt-to-GDP ratio considerably grows (top left panel in Figure 8). As mentioned in Footnote 32, this find-
ing of negative aggregate yield gains arise from the reversal of diversification effects under periods of particular
turmoil.
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FIGURE 8. Moral hazard risk and redistribution: counterfactual exercise
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Panel B. 2021 Q2
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Notes: This figure shows the increase in different bond spreads (w.r.t. to risk-free rates) resulting from counterfac-
tual increases in Italian indebtedness (left column of plots) or Spanish indebtedness (right column of plots), all else
being equal. The two rows correspond to different periods, namely 2011Q4 (euro-area sovereign debt crisis) and
2021Q2 (end of the estimation sample). The different schemes (A to D) are described in Subsection 6.2.

Estimating the model involves both determining the model parameterization and countries’

fiscal limits. Thanks to the tractability of our asset-pricing framework, these two tasks are oper-

ated jointly. Our estimation sample comprises data associated with the sixth largest euro-area

economies over the period 2008-2021. The estimated model fits observed sovereign spreads
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across maturities and countries. To the best of our knowledge, this paper is the first to provide

time-varying estimates of fiscal limits for the euro area.

The estimated model is exploited to examine the pricing of (counterfactual) SJG and SNJG

bonds. In most instances, yields associated with SNJG bonds are higher than those associated

with their SJG equivalents. Notably, across the estimation sample and maturities, the SNJG

bond yield spread, w.r.t. a risk-free rate, is three times larger than the SJG one. Interestingly,

our model shows also that aggregate gains associated with SJG bond issuance might consider-

ably decrease when expected fiscal spaces reduce at the euro-area scale, up to potential inver-

sion. Therefore, in the presence of heterogenous and not too adverse fiscal conditions, raising

funds through SJG bonds may lower aggregate debt service (w.r.t. situations where only na-

tional bonds and/or SNJG bonds are issued). We discuss potential ex-post redistributions of

such aggregate gains, and we show that some of these redistribution schemes may alleviate the

reduction in market discipline resulting from joint bond issuances.
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APPENDIX A. Xt’S DYNAMICS

Denote by d and ℓ the unconditional means of vectors dt and ℓt, respectively. The state vector Xt =

[it, it−1, 0, d′t, d′t−1, ℓ′t]
′, follows the vector autoregressive process of order one given in eq. (12), with:

µ =



(1 − ρi)i

0

(1 − ρd)d

0N×1

(1 − ρℓ)ℓ


, Φ =



ρi 0 0 0 0

1 0 0 0 0

0 0 ρdIdN×N 0 0

0 0 IdN×N 0 0

0 0 0 0 ρℓIdN×N


, ΣΣ′ =



σ2
i 0 · · ·

0 0 · · ·
...

... Ωd 0N×N Ω′
ℓ,d

0N×N 0N×N 0N×N

Ωℓ,d 0N×N Ωℓ


.

Let us detail the parametrization of matrices Ωd, Ωℓ, and Ωℓ,d. The structure exposed in Subsection 5.3

implies that we have, for shocks εd,t and εℓ,t (appearing in eqs. 8 and 10):34

εd,t = ΓdΓ̃dη̃t (a.1)

εℓ,t = ΓℓΓ̃ℓη̃t, (a.2)

34Note that ηt = [ηi,t, η̃′
t]
′ (see eq. (26)).
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where (i) η̃t = [η̃d,ℓ,t, η̃′
d,t, η̃′

ℓ,t]
′ ∼ i.i.d.N (0, I) (hence, the dimension of η̃t is (1 + 2N)× 1) , (ii) Γd and Γℓ

are based on PCA (see Subsection 5.3), and (iii) with

Γ̃d =

 √
ρd,ℓ

√
1 − ρd,ℓ 01×(N−1) 01×N

0(N−1)×1 0(N−1)×1 IN−1 0(N−1)×N

 (a.3)

Γ̃ℓ =

 √
ρd,ℓ 01×N

√
1 − ρd,ℓ 01×(N−1)

0(N−1)×1 0(N−1)×N 0(N−1)×1 IN−1

 . (a.4)

With these notations, we have:

Σ =



σi 01×(2N+1)

0 01×(2N+1)

0N×1 ΓdΓ̃d

0N×1 0N×(2N+1)

0N×1 ΓℓΓ̃ℓ


.

Therefore, noting that Γ̃ℓΓ̃′
ℓ = Γ̃dΓ̃′

d = I, we have Ωd = ΓdΓ′
d, Ωℓ = ΓℓΓ′

ℓ, and Ωℓ,d = ΓℓΓ̃ℓ(ΓdΓ̃d)
′.

APPENDIX B. PRICING OF ZERO-COUPON ZERO-RECOVERY RISKY BONDS

Denote by P(j)
t,h the date-t price of a zero-coupon bond providing a payoff of 1 on date t + h if country

j has not defaulted before t + h, and zero otherwise. We have:

P(j)
t,h = E

Q
t (Λt,t+h(1 −Dj,t+h)) = E

Q
t
{

exp(−it − · · · − it+h−1)(1 −Dj,t+h)
}

= E
Q
t

{
E

Q
t
{

exp(−it − · · · − it+h−1)(1 −Dj,t+h)|Xt+h, Xt+h−1, . . .
}}

= E
Q
t

{
exp(−it − · · · − it+h−1 − λj,t+1 − · · · − λj,t+h)

}
, (a.5)

where the last equality is obtained under the assumption that Dt does not cause Xt in the Granger’s or

Sims’ sense (Monfort and Renne, 2013, Proposition 3). Note here that the risk-neutral dynamics of Xt (Q)

is easily deduced from the physical one, characterized by eq. 12 (eq. II.2 in Online Appendix II).

Because the default intensities λj,t involve a max operator (see eq. 2), eq. (a.5) does not admit closed-

form solutions. We follow Wu and Xia (2016) and look for an approximation for the following “forward”
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rate:

pj,h−1,h = − log(P(j)
t,h ) + log(P(j)

t,h−1). (a.6)

Then, we get an approximation to P(j)
t,h by taking the exponential of the cumulated forward rates. The ap-

proximation is essentially based on log E[exp(Z)] ≈ E(Z) + 1
2 V(Z), which is exact when Z is Gaussian,

but not if it is truncated Gaussian, as is the case here.

As detailed in the Online Appendix IV, we get:

pj,k−1,k ≈ δ′µQ
t,k + Φ

µQ
j,t,k

σQ
j,k

 µQ
j,t,k + ϕ

−
µQ

j,t,k

σQ
j,k

 σQ
j,k −

1
2

(
qj,t,k(δ + δj)

′ΓQ
k,0(δ + aj) + (1 − qj,t,k)δ

′ΓQ
k,0δ

)

−
k−1

∑
i=1

(
qj,t,k−i(δ + δj)

′ΓQ
k,i(δ + δj) + (1 − qj,t,k−i)δ

′ΓQ
k,iδ

)
, (a.7)

where δ = [0, 1, 0, . . . ]′ (in such a way that it−1 = δ′Xt), and where δj = [0, 0, αe′j, 01×N ,−αe′j]
′ (ej denoting

the jth column vector of the N × N identity matrix), qj,t,k = Φ
(

µQ
t,k

/
σQ

j,k

)
, and



µQ
t,k = E

Q
t (Xt+k) = (Id − ΦQ)

−1
(Id − ΦQk

)µQ + ΦQkXt,

ΓQ
k,0 = V

Q
t (Xt+k) = Ω + ΦQΓQ

k−1,0ΦQ′, with ΓQ
1,0 = Ω

= Ω + ΦQΩΦQ′
+ · · ·+ ΦQk−1ΩΦQk−1′,

ΓQ
k,i = CovQ

t (Xt+k, Xt+k−i) = ΦQiΓQ
k−i,0 if k − i > 0,

where µQ = µ − Σψ0 and ΦQ = Φ − Σψ1 (see Online Appendix II).

APPENDIX C. MAXIMUM SHARPE RATIO

The maximum Sharpe ratio for a one-period investment is given by (Hansen and Jagannathan, 1991):

maxSRt =

√
Vart(Mt,t+1)

Et(Mt,t+1)
.

In the present context, the exponential affine form of our s.d.f. (13) implies that:

maxSRt =

√
Vart exp(−ψ′εt+1)

Et exp(−ψ′εt+1)
=
√

exp(ψ′
tψt)− 1.
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Since ψ1 is a matrix of zeros, except the (1,1) entry that is equal to ψi,1, and using the specification of ψ0

given in eq. (27), we obtain maxSRt =
√

exp([ψi,0 + ψi,1it]2 + 2ν2)− 1. Denoting by maxSR the value of

maxSRt obtained when the state vector is at its average value, we get:

maxSR =
√

exp([ψi,0 + ψi,1i]2 + 2ν2)− 1. (a.8)

The short-term interest rate it remained constant for most of our estimation sample (from 2012 to 2021),

it was therefore often close to i (≈ 0.3%). As a result, we have maxSRt ≈ maxSR for most of the sample.

When calibrating the model, it is convenient to set constraints on maxSR, rather than on ψi,0, say,

because the literature provides us with priors regarding maxSR. Accordingly, we choose to put maxSR

among the parameters and to use (a.8) to get ψi,0 (that is therefore removed from the list of degrees of

freedom). Specifically, (a.8) gives:

ψi,0 = −ψi,1i ±
√

log(maxSR2 + 1)− 2ν2.

We keep the solution that gives a positive average slope of the risk-free yield curve (that is the one for

which ± is replaced by the minus sign in the previous expression).
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APPENDIX I. NEGATIVE EXPECTED FISCAL SPACES IN THE STYLIZED MODEL

This appendix discusses the effects of negative fiscal spaces on the prices of jointly-issued bonds in our
framework. For that, we use the stylized situation described in Section 3. For the sake of simplicity, we
focus on the symmetrical situation (Countries A and B are alike). Moreover, we set to zero the correlation
between the fiscal spaces of A and B, i.e., ρ = 0 in eq. 4. (Mechanisms are more evident in this case.)

The three panels of Figure I.1 correspond to three situations. In the top panel, expected fiscal spaces
are positive; expected fiscal spaces are null in the middle panel; they are negative in the third one. In
all three cases, the distribution associated with the joint area (blue line) is narrower than the national
ones (red line). But the implications of this diversification effects, in terms of default intensities, are
different. The distributions of the default intensities are represented by the shaded areas: bluish for the
joint area (or SJG bond) and reddish for the single countries (or, approximately, SNJG bonds). Note that,
in addition to these shaded areas, the distributions of the default intensities also include (unrepresented)
Dirac masses located at zero.

In the first situation (top panel), we see that the default probability is far smaller for the SJG bond
(bluish area) than for the national bonds (reddish area). In the second case, where the average fiscal
spaces are zero, we see that diversification effects are still at play: the bluish area is more concentrated
towards zero. Finally, the third plot shows that when debts are large enough compared to fiscal limits,
then diversification effects are reversed: the probability of default is larger in the SJG bond case than in
the national bond cases (the reddish area is relatively more concentrated towards zero).

This is further illustrated by Figure I.2, that shows how the yields of SJG and SNJG bonds behave
when the average debt is larger than the average fiscal limit. In the left-hand side panel of the figure, we
plot SJG and SNJG bond yields when negative fiscal space (% of GDP) varies between −1% and −40%.
The right-hand side panel of the figure shows the difference between the two yields. It appears that
when fiscal space is large and negative, the spread between SJG and SNJG bond yields turns positive.

APPENDIX II. P TO Q DYNAMICS

The risk-neutral measure is defined with respect to the physical measure through the following Radon-
Nikodym derivative:

dQ

dP

∣∣∣∣
t,t+1

=
Mt,t+1

Et(Mt,t+1)
= exp

(
−1

2
ψ′

tψt − ψ′
tηt+1

)
,
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FIGURE I.1. SJG and SNJG Bond yields under negative fiscal space (d̄ > ℓ̄)
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Second case: debt = fiscal limit
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Third case: debt > fiscal limit

Opposite of fiscal space
This figure illustrates the influence of the sign of expected fiscal spaces on diversification effects. The context is
the one of the stylized model presented in Section 3. Blue (respectively red) elements correspond to the joint area
(respectively to single countries, or to SNJG bonds). The first panel corresponds to the conventional situation,
where the expected fiscal space is positive. In that case, the default intensity associated with the SJG bond (joint
area) is more concentrated towards zero than for the national default intensities. (To see that, compare the bluish
and reddish areas, which represent the distributions of the default intensities—excluding the Dirac mass at zero.)
The diversification effect is still at play when the fiscal space expectation is zero (middle plot); and it reverts when
the expectation of the fiscal space is negative (third and last plot). In the latter case, the distribution of the joint-area
default intensity is relatively more concentrated on the right-hand side of zero than for national default intensities.
The calibration is as in the baseline situation described in Section 3 (stylized model), except that the correlation
between debts (ρ in eq. 4) is set to zero.
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FIGURE I.2. SJG and SNJG Bond yields under negative fiscal space (d̄ > ℓ̄)
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This figure shows how the yields of SJG and SNJG bonds behave when the average debt is larger than the average
fiscal limit. The left-hand side panel of the figure displays SJG and SNJG bond yields. The right-hand side panel
reports the difference between the two types of yields. The calibration is as in the baseline situation described in
Section 3 of the paper (stylized model), except that, for expository purpose, the correlation between debts is set to
zero.

where the vector of prices of risk ψt is given in eq. (15). Under the physical measure, the conditional
Laplace transform of Xt is given by:

Et(exp(u′Xt+1)) = exp
(

u′µ + u′ΦXt +
1
2

u′ΣΣ′u
)

. (II.1)
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Let us now compute the conditional Laplace transform of Xt under the risk-neutral measure:

E
Q
t (exp(u′Xt+1)) = Et

(
exp

(
−1

2
ψ′

tψt − ψ′
tηt+1

)
exp(u′Xt+1)

)
= Et

(
exp

(
− 1

2
(ψ0 + ψ1Xt)

′(ψ0 + ψ1Xt) + u′µ + u′ΦXt + (Σ′u − ψ0 − ψ1Xt)
′ηt+1

))
= Et

(
exp

(
− 1

2
(ψ0 + ψ1Xt)

′(ψ0 + ψ1Xt) + u′µ + u′ΦXt +

1
2
(Σ′u − ψ0 − ψ1Xt)

′(Σ′u − ψ0 − ψ1Xt)

))
= exp

(
u′(µ − Σψ0) + u′(Φ − Σψ1)Xt +

1
2

u′ΣΣ′u
)

.

By analogy with (II.1), it comes that the risk-neutral dynamics of Xt reads:

Xt = µQ + ΦQXt−1 + ΣηQ
t , ηQ

t ∼ i.i.d.N (0, I), (II.2)

where µQ = µ − Σψ0, and ΦQ = Φ − Σψ1.

APPENDIX III. PRICING OF RISK-FREE BONDS

By definition of the state vector Xt = [it, it−1, dt, dt−1, ℓt], eq. (18) is satisfied for h = 1, with:

A1 = 0, and B1 = −[1, 0, . . . ]′.

Let us assume that eq. (18) holds for a maturity h − 1, with h > 1 (and for any date t). Then, the price of
a risk-free zero-coupon bond of maturity h − 1 is given by

Pt,h−1 = exp(Ah−1 + B′
h−1Xt). (III.3)

Let us then express the price of a risk-free zero-coupon bond of maturity h:

Pt,h = Et(Mt,t+1Pt,h−1) = exp(−it)E
Q
t (exp(Ah−1 + B′

h−1Xt+1)) using (III.3)

= exp(B′
1Xt)E

Q
t (exp(Ah−1 + B′

h−1[µ
Q + ΦQXt + Σηt+1])))

= exp
(

Ah−1 + B′
h−1µQ +

1
2

B′
h−1ΣΣ′Bh−1 + [B1 + ΦQ′

Bh−1]
′Xt

)
,

which leads to eq. (17), using the definitions of µQ and ΦQ given in (II.2).

APPENDIX IV. APPROXIMATE FORMULA FOR ZERO-COUPON RISKY BOND

This appendix details the approximation to the price P(j)
t,h (this price being defined though eq. a.5); the

resulting formula is given in Appendix B.
Since Xt = [it, it−1, d1,t, · · · , dn,t, ℓ1,t, · · · , ℓn,t]′, we have

it−1 = δ′Xt, (IV.4)

where δ = [0, 1, 0, . . . , 0]′. Moreover, we also introduce the following notation:

λj,t = δ′jXt,
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where δj = [0, 0, αe′j, 01×N ,−αe′j]
′, ej denoting the jth column vector of the N × N identity matrix. With

these notations, eq. (2) rewrites:
λj,t = max(0, λj,t),

that is, λj,t can be seen as a “shadow intensity”. With these notations, we can rewrite eq. (a.5) as:

P(j)
t,h = E

Q
t [exp(−δ′Xt+1 − max(0, λj,t+1)− · · · − δ′Xt+h − max(0, λj,t+h))]. (IV.5)

Let us recall the notation introduced in Appendix B:

pj,h−1,h = − log(P(j)
t,h ) + log(P(j)

t,h−1). (IV.6)

In the spirit of Wu and Xia (2016), we determine approximations to pj,h−1,h that we further use to get

approximations to P(j)
t,h , using:

P(j)
t,h = exp(pj,0,1 + pj,1,2 + · · ·+ pj,h−1,h). (IV.7)

The approximation to pj,h−1,h is essentially based on log E[exp(Z)] ≈ E(Z) + 1
2 V(Z), which is exact

when Z is Gaussian, but not if it is truncated Gaussian, as is the case here. This gives:

pj,k−1,k = E
Q
t (δ

′Xt+k + λj,t+k)−
1
2

V
Q
t (δ

′Xt+k + λj,t+k)−

−CovQ
t

(
δ′Xt+k + λj,t+k,

k−1

∑
i=1

(δ′Xt+i + λj,t+i)

)
(IV.8)

Following Wu and Xia (2016), considering that λj,t is a persistent process and introducing the following
notation:

qj,t,k = P
Q
t (dj,t+k > ℓj,t+k),

we have, for k > 0 and 0 ≤ i ≤ k:

CovQ
t (it−1+k︸ ︷︷ ︸

δ′Xt+k

, λj,t+k−i) ≈ qj,t,k−iCovQ
t (it−1+k︸ ︷︷ ︸

δ′Xt+k

, λj,t+k−i) (IV.9)

CovQ
t (λj,t+k, λj,t+k−i) ≈ qj,t,k−iCovQ

t (λj,t+k, λj,t+k−i) (IV.10)

Using the last two equations, we can rewrite eq. (IV.8) as follows:

pj,k−1,k ≈ E
Q
t (δ

′Xt+k + λj,t+k)−

−1
2

(
qj,t,kV

Q
t (δ

′Xt+k + λj,t+k) + (1 − qj,t,k)V
Q
t (δ

′Xt+k)

)
−

−
k−1

∑
i=1

(
qj,t,iCovQ

t

(
δ′Xt+k + λj,t+k, δ′Xt+i + λj,t+i

)
+

+(1 − qj,t,i)CovQ
t

(
δ′Xt+k, δ′Xt+i

))
. (IV.11)

Posing
µQ

t,k = E
Q
t (Xt+k), µQ

j,t,k = E
Q
t (λj,t+k),

σQ
j,k =

√
V

Q
t (λj,t+k), ΓQ

k,i = CovQ
t (Xt+k, Xt+k−i),
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and using λj,t = δ′jXt, we finally obtain

pj,k−1,k ≈ δ′µQ
t,k + Φ(µQ

j,t,k/σQ
j,k)µ

Q
j,t,k + ϕ(−µQ

j,t,k/σQ
j,k)σ

Q
j,k −

−1
2

(
qj,t,k(δ + δj)

′ΓQ
k,0(δ + aj) + (1 − qj,t,k)δ

′ΓQ
k,0δ

)
−

−
k−1

∑
i=1

(
qj,t,k−i(δ + δj)

′ΓQ
k,i(δ + δj) + (1 − qj,t,k−i)δ

′ΓQ
k,iδ

)
, (IV.12)

with
qj,t,k = Φ

(
µQ

t,k

/
σQ

j,k

)
.

The next appendix details a fast (coding-oriented) approach to compute the µQ
t,ks and ΓQ

k,js.

APPENDIX V. COMPUTATION OF µQ
t,k AND ΓQ

k,j

Recall Xt’s law of motion (eq. 12):

Xt = µQ + ΦQxQ
t−1 + ΣεQ

x,t, εx,t ∼ i.i.d.N (0, Id).

Using the notation Ω = ΣΣ′, we have:
µQ

t,k = E
Q
t (Xt+k) = (Id − ΦQ)

−1
(Id − ΦQk

)µQ + ΦQkXt,
ΓQ

k,0 = V
Q
t (Xt+k) = Ω + ΦQΓQ

k−1,0ΦQ′, with ΓQ
1,0 = Ω

= Ω + ΦQΩΦQ′
+ · · ·+ ΦQk−1ΩΦQk−1′,

ΓQ
k,i = CovQ

t (Xt+k, Xt+k−i) = ΦQiΓQ
k−i,0 if k − i > 0.

The estimation involves a large number of computations of the ΓQ
k,j’s. In order to speed up the com-

putation, one can employ the following approach.
Consider a vector β of dimension nx, that is the dimension of Xt, and let us denote by ξ

β
i the vector

defined by ξ
β
i = (ΦQ

x
i
)′β (β will typically be δj, or (δj + δ)). Because we have ΓQ

k,i = ΦQ
x

i
Ω+ΦQ

x
i+1

ΩΦ′
x +

· · ·+ Φk−1
x ΩΦk−1−i

x
′, it comes that:

β′Γk,jβ = ξ
β
i
′
Ωξ

β
0 + ξ

β
i+1

′
Ωξ

β
1 + · · ·+ ξ

β
k−1

′
Ωξ

β
k−1−i. (V.13)

Let us consider a maximal value for k, say H, and let us denote by Ξβ the nx × (H + 1) matrix whose wth

column is ξ
β
w−1. It can then be seen that the (i, k) entry of Ψβ := Ξβ

′ΩΞβ – which is a matrix of dimension

(H + 1)× (H + 1) – is equal to ξ
β
i−1

′
Ωξ

β
k−1. The sum of the entries (i + 1, 1), (i + 2, 2), . . . , (i + k, k) of Ψβ

therefore is
ξ

β
j
′
Ωξ

β
0 + ξ

β
i+1

′
Ωξ

β
1 + · · ·+ ξ

β
i+k−1

′
Ωξ

β
k−1,

which is equal to β′ΓQ
i+k,iβ according to (V.13). Equivalently, β′ΓQ

k,iβ is the sum of the entries (i + 1, 1),
(i + 2, 2), . . . , (k, k − i) of Ψβ.

In particular, the entry (1, 1) of Ψβ is equal to β′Γ1,0β, the sum of the entries (1, 1) and (2, 2) is equal to
β′Ωβ + β′ΦxΩΦ′

xβ = β′Γ2,0β, and, more generally, the sum of the entries (1, 1), . . . , (n − 1, n − 1) of Ψβ

is equal to β′Γn,0β.
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APPENDIX VI. PRICING ZERO-COUPON BONDS WITH NON-ZERO RECOVERY RATES

Consider a zero-coupon bond of maturity h issued by country j. Assume the recovery rate is RR. On
date t + k, with 0 < k ≤ h, the payoff of this bond is zero, unless the country defaults on date t + k, in
which case the bond payoff is assumed to be the fraction RR of the price of a risk-free zero-coupon bond
of equivalent residual maturity, i.e. exp[−(h − k)it+k,h−k] (this is the Recovery of Treasury convention—
RT—of Duffie and Singleton, 1999). Hence, the payoffs of this bond are of the form:{

RR × exp(−(h − k)it+k,h−k)× (Dj,t+k −Dj,t+k−1) if 0 < k < h,
1 −Dj,t+k + RR × (Dj,t+k −Dj,t+k−1) if k = h.

As a result, denoting by Λt,t+k the (non stochastic) discount factor exp(−it − · · · − it+k−1), the price of
this bond is given by:

P (j)
t,h = E

Q
t

(
Λt,t+h(1 −Dj,t+h) + RR

h

∑
k=1

Λt,t+k exp(−(h − k)it+k,h−k)(Dj,t+k −Dj,t+k−1)

)

= E
Q
t (Λt,t+h(1 −Dj,t+h)) + RR

h

∑
k=1

E
Q
t

[
Λt,t+kE

Q
t+k {exp(−it+k − · · · − it+h−1)} (Dj,t+k −Dj,t+k−1)

]
= E

Q
t (Λt,t+h(1 −Dj,t+h)) + RR

h

∑
k=1

E
Q
t
[
Λt,t+h(Dj,t+k −Dj,t+k−1)

]
(by the law of iterated expectations)

= E
Q
t (Λt,t+h(1 −Dj,t+h)) + RRE

Q
t (Λt,t+h)

h

∑
k=1

E
Q
t
[
(Dj,t+k −Dj,t+k−1)

]
,

where the conditional expectation E
Q
t (Λt,t+h(1 − Dj,t+h)) represents the date-t price of a zero-coupon

zero-recovery risky bond of maturity h providing a payoff of 1 on date t + h if country j has not de-
faulted before t+ h, and zero otherwise (see Appendices B for an approximation of this price). Moreover,
E

Q
t (Λt,t+hDj,t+k) = E

Q
t (Λt,t+h)E

Q
t (Dj,t+h) results from the fact that, under our assumptions regarding

the s.d.f., Dt and it are independent under the risk-neutral measure Q (as they are under P). Therefore:

P (j)
t,h = E

Q
t (Λt,t+h(1 −Dj,t+h)) + RRE

Q
t (Λt,t+hDj,t+h)

= E
Q
t (Λt,t+h(1 −Dj,t+h))− RRE

Q
t (Λt,t+h(1 −Dj,t+h)) + RRE

Q
t (Λt,t+h)

= (1 − RR)P(j)
t,h + RR exp(−hi0

t,h),

where approximation formulas for P(j)
t,h are given in Appendix B (computation details are given in Online

Appendices IV and V).

APPENDIX VII. TIME VARIABILITY OF CREDIT RISK PREMIUMS

This appendix explains why the present framework accommodates time-varying credit risk premiums
in spite of featuring constant prices of risk associated with debt and fiscal-limit shocks (that drive default
risk).

Loosely speaking, risk premiums can be seen as the product of a (a) price of risk (ψt in our framework,
see eq. 15) and (b) a quantity of risk, characterized by the amount of randomness in the system, and
measured by conditional variances. We obtain time-varying risk premiums as soon as (a) or (b) varies.
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In our model, the conditional variance associated with the default intensity varies through time because
of the non-linearity implied by the max operator, as detailed below.

To simplify, consider a situation where risk-free interest rates are null. The conditional probability of
default is given by

P(Dt = 1|Dt−1 = 0, st) = 1 − exp(−max(−st, 0)), (VII.14)

where st is the fiscal space. (Hence, the probability of default is null if st ≥ 0, and strictly positive
otherwise.) The fiscal space follows a random walk:

st = st−1 + σηt,

where ηt ∼ i.i.d.N (0, 1).
The s.d.f. is given by:

Mt,t+1 = exp
(
−νηt+1 −

1
2

ν2
)

.

With ν > 0, this model implies that the s.d.f. is higher when ηt+1 is negative, i.e., when the fiscal space
diminishes.

In this context, and with a recovery rate, the price of a one-period defaultable bond is:

Pt,1 = E
Q
t {(1 −Dt+1)} = E

Q
t {exp(−max[−st+1, 0])}

= Et

{
exp(−max[−st+1, 0]) exp

(
−νηt+1 −

1
2

ν2
)}

.

Denoting by P∗
t,1 the price of the bond that would be observed under the expectation hypothesis (ν =

0), the credit risk premium is given by:

− log Pt,1 + log P∗
t,1 = − log

(
E

Q
t {(1 −Dt+1)}

Et{(1 −Dt+1)}

)
,

with  Pt,1 = Et

{
exp

(
−max[−st − σηt+1, 0]− νηt+1 −

1
2

ν2
)}

P∗
t,1 = Et {exp(−max[−st − σηt+1, 0])} .

Consider two polar cases:

• When st is large and positive (e.g., st > 4σ), it is extremely likely that max[−st − σηt+1, 0] will be
equal to zero and, accordingly, we will have Pt,1 ≈ P∗

t,1 = 1. The credit risk premium is therefore
essentially zero.

• When st is large and negative, it is extremely likely that max[−st − σηt+1, 0] = −st − σηt+1, and,
as a result: {

Pt,1 ≈ Et
{

exp
(
st + σηt+1 − νηt+1 − 1

2 ν2)}
P∗

t,1 ≈ Et {exp(st + σηt+1)} ,

which leads, after simple algebra, to:

− log Pt,1 + log P∗
t,1 = νσ.

For intermediate values of st, the credit risk premium will vary between 0 and νσ.

Without the non-linearity stemming from the max() operator—and keeping the ψ1 entries associated
with those shocks affecting the fiscal space (i.e., the ηd’s and ηℓ’s) at zero—then the credit risk premiums
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would be constant. In the previous example, this would correspond to the situation where we would
remove the max() operator in eq. (VII.14) above.35 (The credit risk premium would then be equal to νσ

for any value of the only state variable considered in the present example, namely st.)

APPENDIX VIII. INVERSION TECHNIQUE

This appendix describes the computation of the likelihood function (see Subsection 5.2 for a general
description of our estimation approach).

We consider the following decomposition of the state vector Xt = [it, it−1, d′t, ℓ
′
t]
′:

Xt︸︷︷︸
m×1

=


X̃t︸︷︷︸

(m−N)×1

ℓt︸︷︷︸
N×1

 ,

where X̃t are the observable components of Xt.
The state vector follows a vector autoregressive process of order one (eq. 12).
The vector of observed financial data is organized as follows:

Yt =



Y(y)
t︸︷︷︸

ny×1

Y(YS)
1,t︸ ︷︷ ︸

n1×1

Y(YS)
2,t︸ ︷︷ ︸

N×1


,

where Y(y)
t is a vector of risk-free yields (of maturities 2, 3, 5 and 10 years), Y(YS)

1,t is a vector of imperfectly-

fitted bond yield spreads (e.g. maturities 2 and 10 yrs) and Y(YS)
2,t is a N × 1 vector of perfectly-fitted bond

yield spreads (in our case, the average of bond yield spreads of maturities 2, 5 and 10 years). These yields
and spreads are given by:

Y(y)
t = Ay + B′

yX̃t + ξ
(y)
t

Y(YS)
1,t = f1(X̃t, ℓt) + ξ

(YS)
t

Y(YS)
2,t = f2(X̃t, ℓt) (these spreads are perfectly fitted).

(VIII.15)

We assume that the components of ξ
(y)
t and ξ

(YS)
t are i.i.d. normally-distributed measurement errors.

The variance of each component of ξ
(y)
t is σ2

y . The variance of the ith component of ξ
(YS)
t is σ2

YS,i.
System (VIII.15) can be rewritten:{

Y(y)
t = Ay + B′

yX̃t + ξ
(y)
t

Y(YS)
1,t = f1(X̃t, f ∗2 (X̃t, Y(YS)

2,t )) + ξ
(YS)
t ,

(VIII.16)

where function f ∗2 represents the inversion of the pricing of Y(YS)
2,t , i.e.:

Y(YS)
2,t = f2

(
X̃t, ℓt

)
⇔ ℓt = f ∗2

(
X̃t, Y(YS)

2,t

)
.

35Such a purely-Gaussian specification would not be consistent with the fact that the probability of default
connot be negative. It has however be sometimes used in the literature, e.g., by Liu, Longstaff, and Mandell
(2006).
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Let us use the following notations:

Wt =


Y(y)

t

Y(YS)
1,t
X̃t

Y(YS)
2,t

 and Zt =


Y(y)

t

Y(YS)
1,t
X̃t

ℓt

 =

 Y(y)
t

Y(YS)
1,t
Xt

 .

Under the assumption that Y(YS)
2,t is perfectly fitted by the model, the information contained in Zt is the

same as that contained in Wt. But the p.d.f. of Zt, conditional on Wt−1 (or, equivalently, conditional on
Zt−1), is easier tom derive than that of Wt.

Indeed, we have:

log fZt|Zt−1
(Zt) =

−
ny

2
log(2π)− ny log σy −

1
2σ2

y

(
Y(y)

t − Ay − B′
yX̃t

)′ (
Y(y)

t − Ay − B′
yX̃t

)
−n1

2
log(2π)−

n1

∑
i=1

log σYS,i −
1
2

(
Y(YS)

1,t − f1(X̃t, ℓt)
)′

diag(1/σ2
YS)

(
Y(YS)

1,t − f1(X̃t, ℓt)
)

−m
2

log(2π)− 1
2

log(|ΣΣ′|)− 1
2
(Xt − µ − ΦXt−1)

′ (ΣΣ′)−1 (Xt − µ − ΦXt−1) , (VIII.17)

where diag(1/σ2
YS) is a diagonal matrix whose ith diagonal entry is 1/σ2

YS,i.
Remark that this does not provide us with the likelihood associated with observed data since ℓt is not

directly observed.
We have:

Wt = g(Zt),

with

g




Y(y)
t

Y(YS)
1,t
X̃t

ℓt


 =


Y(y)

t

Y(YS)
1,t
X̃t

Y(YS)
2,t

 =


Y(y)

t

Y(YS)
1,t
X̃t

f2(X̃t, ℓt)

 .

In general, we have:

fWt|Wt−1
(Wt) =

∣∣∣∣∂g−1(Wt)

∂W ′

∣∣∣∣ fZt|Zt−1
(g−1(Wt)), (VIII.18)

and, therefore:

log fWt|Wt−1
(Wt) = log

∣∣∣∣∂g−1(Wt)

∂W ′

∣∣∣∣︸ ︷︷ ︸
calculated using eq. (VIII.20)

+ log fZt|Zt−1
(g−1(Wt))︸ ︷︷ ︸

calculated using eq. (VIII.17)

, (VIII.19)

where, using the inverse function theorem and the fact that
∣∣∣ ∂g−1(Wt)

∂W ′

∣∣∣ is diagonal:

log
∣∣∣∣∂g−1(Wt)

∂W ′

∣∣∣∣ = −
N

∑
i=1

log
∂ f2(X̃t, ℓt)

∂ℓi,t
. (VIII.20)

In practice, in (VIII.17) and (VIII.20), we replace ℓt by f ∗2
(

X̃t, Y(YS)
2,t

)
—that is the fiscal limit recovered

by the inversion technique.
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The vector of observed variables can be extended to include Dt. Using the notation W∗
t = [W ′

t ,D′
t]
′

and exploiting the fact that Dt does not Granger-cause Wt, we have:

log fW∗
t |W∗

t−1
(Wt,Dt) = log fWt|Wt−1

(Wt)︸ ︷︷ ︸
calculated using eq. (VIII.19)

+ log fDt|Wt(Dt).︸ ︷︷ ︸
calculated using eq. (VIII.22)

(VIII.21)

In particular, if all the components of Dt are zero (absence of default), we have:

log fW∗
t |W∗

t−1
(Wt,Dt = 0) = log fWt|Wt−1

(Wt) +
N

∑
j=1

log
[
1 −F (dj,t − ℓj,t)

]
. (VIII.22)

APPENDIX IX. REDISTRIBUTION SCHEMES: FORMULAS AND ADDITIONAL SCHEMES

This appendix details the formulas underlying Section 6.2 of the paper.

IX.1. General formulas. Assume that, on date t, a European debt agency issues common bonds with
maturity h and face value F (it repays F at date t + h). The proceeds of the issuance are Pe

t,hF, with e ∈
{SJG, SNJG}, depending on the type of common bond that is issued. The proceeds are allocated across
countries proportionally to GDPs. Recalling that GDP weights are denoted by ωj, country j receives
ωjPe

t,hF. If country j had issued national bonds with the same face value (ωjF), it would have obtained

P(j)
t,h ωjF on date t. Therefore, at the euro-area level, the gains are:

Gt,hF = Pe
t,hF −

(
ω′Pt,hF

)
, (IX.23)

where Pt,h represent the N-dimensional vector of national prices and ω stands for the N-dimensional
vector of GDP weights. (It can be seen from the previous formula that the aggregate gains are null when
e = SNJG.)

Now, denote by ωG the redistribution weights of the gains (with ∑j ωG,j = 1). The after-gain-redistribution
proceeds are:

ω′Pt,hF + Gt,hωGF,

which is of the form ω′Pe,t,h(ωG)F, with

Pe,t,h(ωG) = Pt,h + Gt,h
ωG

ω
, (IX.24)

where, by abuse of notation, ωG
ω denotes the vector whose jth entry is ωG,j/ωj. Pe,t,h(ωG) can be inter-

preted as the pseudo issuance N-dimensional vector of prices after redistribution. The post-redistribution
yields faced by the different countries are given by the following N-dimensional vector:

ie,t,h(ωG) = −1
h

log Pe,t,h(ωG), (IX.25)

where, by abuse of notation, the log operator is applied element-wise.
Below, we describe the different after-gain redistribution schemes that we propose. Given that ag-

gregate gains for the SNJG bond issuance scheme are nil, for the latter, we only focus on the scheme in
which all countries face the same funding costs.

IX.2. Scheme where countries face the same funding costs. In this scheme, the after-redistribution
issuance price faced by all countries is the eurobond price. That is:

Pe,t,h(ωG) = Pe
t,h.
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Using Gt,h = Pe
t,h − ω′Pt,h together with (IX.24) then gives:

ωG = ω ⊙
Pe

t,h1 − Pt,h

Pe
t,h − ω′Pt,h

,

where ⊙ is the element-wise product. Note that the sign of each country’s redistribution weight ωG,j

depends on Pe
t,h − P(j)

t,h . Therefore, this scheme implies negative “gains” for those countries j whose
national bond prices are higher than that of the considered eurobond.

IX.3. Scheme with GDP weights. In this case, the redistribution weights (ωG) are equal to the GDP
weights (ω). Using Gt,h = Pe

t,h − ω′Pt,h (i.e., Eq. (IX.23)), Eq. (IX.24) gives:

Pe,t,h(ωG) = Pt,h + (Pe
t,h − ω′Pt,h)1.

IX.4. Scheme with the same yield gains across countries. Under this scheme, all countries benefit from
the same yield gain, denoted by ∆it. Denote by it,h the N-dimensional vector of national bond yields.
We want to have Pe,t,h(ωG) = exp(−h(it,h − ∆it)). Using (IX.24), we get:

Pt,h + Gt,h
ωG

ω
= exp(−h(it,h − ∆it)),

where, by abuse of notation, ωG
ω denotes the vector whose jth entry is ωG,j/ωj. This gives:

ωG =
1

Gt,h
ω ⊙

[
exp(−h(it,h − ∆it))− Pt,h

]
,

where ⊙ is the element-wise product. Since the components of ωG have to sum to one, we have:

1 = 1′
(

1
Gt,h

ω ⊙
[

exp(−h(it,h − ∆it))− Pt,h
])

,

or, using that exp(−hit,h) = Pt,h:

Gt,h = (exp(h∆it)− 1)1′(ω ⊙ Pt,h).

This further gives:

1 +
Gt,h

1′ω ⊙ Pt,h
= exp(h∆it),

and, finally:

∆it =
1
h

log
(

1 +
Gt,h

1′(ω ⊙ Pt,h)

)
.

IX.5. Scheme with no change in funding costs for Germany and France. Table 5 complements the
analysis developed in Subsection 6.2 with two additional schemes. In the first scheme (respectively
second scheme), Germany (resp. both Germany and France) faces the same funding costs it would have
faced under national issuance. Moreover, the aggregate gains are shared among the other countries on
the base of their relative GDP size.

APPENDIX X. HIGHER-ORDER EFFECTS

This appendix proposes an analysis of potential higher-order effects associated with debt-service re-
lief. The mechanisms underlying such effects would be as follows: if the average funding cost of a
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TABLE 5. Effect of redistribution schemes on funding costs (additional schemes)

2008-06-30 2011-12-31 2021-06-30

SJG

Panel A: No change in German funding cost

redist.
weigth

post redist.
yield

yield
gain

redist.
weigth

post redist.
yield

yield
gain

redist.
weigth

post redist.
yield

yield
gain

DE 0% 439 0 0% 186 0 0% -9 0
FR 36% 426 21 36% 221 22 36% -29 34
IT 28% 447 21 28% 559 26 28% 23 35
ES 18% 432 21 18% 504 25 18% 3 34
NL 11% 435 21 11% 197 22 11% -40 34
BE 7% 442 21 7% 334 23 7% -30 34

Panel B: No change in German and French funding cost

redist.
weigth

post redist.
yield

yield
gain

redist.
weigth

post redist.
yield

yield
gain

redist.
weigth

post redist.
yield

yield
gain

DE 0% 439 0 0% 186 0 0% -9 0
FR 0% 446 0 0% 243 0 0% 5 0
IT 44% 435 32 44% 545 41 44% 4 54
ES 28% 420 32 28% 490 39 28% -16 53
NL 18% 423 32 18% 185 34 18% -59 52
BE 10% 430 32 10% 321 36 10% -49 52

Notes: This table compares post-redistribution funding costs across countries under the two issuance schemes
(SJG and SNJG) and under the redistribution schemes described in IX.5. We focus on the 5-year maturity and on
three periods: beginning of the estimation sample (2008Q2), midst of the euro debt crisis (2011Q4) and end of
the estimation sample (2021Q2). Yields are expressed in basis points. Aggregate gains are computed under the
assumption that total issuance is equal to 5% of aggregate GDP. In each panel, for all countries and dates, we show
the redistribution weights ωG,j, the post-redistribution yields and the yield gains, that are the differences between
national bond yields and post-redistribution yields.

government decreases—because part of its funding needs is met with Eurobonds—then expected fu-
ture debt decreases (through lower debt service), which further decreases national bond yields (through
lower credit spreads) which, in turn, reduces again future debt service, and so on.

Assume that the government of country j issues bonds of maturity h. For notational simplicity, let
us drop the subscript h. That is, denote by yj,t the yields associated with these bonds, and by y(SJG)

j,t the
post-redistribution yields associated with the issuance of SJG bonds.

Consider a change in the funding strategy: while the whole debt was only funded through national
bonds before date t, a fraction θj of the debt gets funded by SJG bonds after that date. Note that θj de-
pends on countries given that the proceeds of a Eurobond issuance are supposed to allocated according
to GDPs (eq. 7). Specifically, we have:36

θj = θ
ωj

ωD
j

, (X.26)

36Indeed, denoting by Dj the debt outstanding of country j (i.e., Dj = djYj), we must have θjDj/(θ ∑i Di) = ωj.
Hence, θj = ωjθ(∑i Di)/Dj.
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where the ωD
j s denotes debt weights (while the ωjs are GDP weights). The previous expression shows

that, for countries whose indebtedness is larger than that prevailing at the euro-area aggregate level
(which corresponds to ωD

j > ωj), then the share of debt issued in the form of Eurobonds is lower (since
θj < θ).

For newly issued debt, the apparent yield then becomes θjy
(SJG)
j,t + (1 − θj)yj,t, which is lower than yj,t

if y(SJG)
j,t < yj,t. All else being equal, this should give rise to a decrease in debt payments, and hence in

debt. Using that the maturity of newly-issued debt duration is h, it comes that the total reduction in debt
payments, after h years, will be of the order of magnitude of:37

h ×
[
yj,t −

(
θjy

(SJG)
j,t + (1 − θj)yj,t

)]
. (X.27)

On date t, investors may take into account that debt-reduction effect when pricing bonds. (If they con-
sider, in particular, that this debt reduction will not be substituted with higher primary surpluses.) In
that case, in terms of funding cost, the first-round effect:

θjy
(SJG)
j,t + (1 − θj)yj,t < yj,t. (X.28)

would be reinforced by second-round effects resulting from lower future debt payments. And, in turn,
higher-round effects may follow. Investigating these effects, therefore, involves solving a fixed-point
problem.

We proceed as follows. We start by computing national and SJG yields using our pricing formulas
and a given value of the state vector X (that we take equal to its sample average value). Representing
our pricing formulas by function f , this first step formally is:

Y = f (X),

where Y is a vector gathering the relevant national yields and SJG yields. More precisely:

Y =


y1
...

yN

ySJG

 .

Next, we use these yields to compute the debt reduction (X.27). We then modifiy the state vector X
in such a way that, over the next h periods, the average expected debt will indeed be reduced by this
amount. (More precisely, we modify the debt trend, that is γ = d − (1 − ρd)d − ρdd−1 (eq. 9), to achieve

37Note that this is only an approximation as the exact number would also depend on future yields (since the
debt is completely renewed in h dates).
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that.38) This provides us with X(1), which we use to compute new yields:

Y (1) = f (X(1)).

The superscript (1) indicates that the resulting yields result from the first iteration. The yields in Y (1)

are going to be different from those in Y (because expected debt is lower). Hence, the debt reduction
resulting from the partial issuance of SJG bonds is higher than what is suggested by (X.27). For each
country, we then compute a novel debt reduction by using:

h ×
[
yj −

(
θy(1)SJG + (1 − θ)y(1)j

)]
,

which we use to construct a new state vector X(2), which gives a new vector of yields Y (2), and so on
until convergence.

Figure X.3 implements this approach, with a share of euro-area debt issued in the form of SJG bonds
equal to θ = 20%. We consider two redistribution schemes (see Subsection 6.2), namely Scheme A (no
redistribution after the issuance of SJG bonds) and Scheme B (where the redistribution of SJG aggregate
gains is based on GDP weights). At “Order 0”, the state vector Xt is set to its sample mean.

38The model described in Section 4 is such that, for each country:[
dt

dt−1

]
=

[
d(1 − ρd)(1 − ργ)

0

]
︸ ︷︷ ︸

=c

+

[
ρd + ργ −ργρd

1 0

]
︸ ︷︷ ︸

=F

[
dt−1
dt−2

]
+

[
εd,t
0

]
.

This implies that:

Et

[
1
h
(dt+1 + · · ·+ dt+h)

]
=

1
h
(I − F)−1

[
(h + 1)I − (I − F)−1(I − Fh+1)

]
c +

1
h
[(I − F)−1(I − Fh+1)− I]

[
dt

dt−1

]
.

We use the previous formula to look for the value of dt−1 that results in the desired change in the expected average
debt, i.e., Et

[
1
h (dt+1 + · · ·+ dt+h)

]
. (This amounts to a change in γt = dt − (1 − ρd)d − ρddt−1.)
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FIGURE X.3. Higher-order effects
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Notes: These plots illustrate potential higher-order effects stemming from the (partial) issuance of SJG bonds.
Specifically, we consider that θ = 20% of the euro-area debt is issued in the form of SJG bonds. The grey triangles
and black circles respectively correspond to Schemes A and B. (In Scheme A, there is no post-issuance redistri-
bution when SJG bonds are issued; in Scheme B, aggregate gains associated with the issuance of SJG bonds are
redistributed according to GDP weights). The first points of the plots (“Order” = 0) give the model-implied av-
erage 5-year yields associated with the different countries. If a fraction of the government funding needs is met
by issuing Eurobonds, then the average funding cost is modified (eq. X.28). This gives the second point, of the
charts (“Order” = 1), which is highlighted by a vertical grey line given that it represents the first-round effect
of issuing Eurobonds (namely, the effects presented in the main findings in Section 6). Changes in funding costs
affect expected debt trajectories, which, in turn, modify bond yields (for national and SJG bonds). The resulting
funding costs are represented by the third set of points (“Order” = 2). The following points, for higher orders,
are obtained by using the same steps, in an iterative fashion. Yields are annualized, and expressed in percentage
points.

APPENDIX XI. BONDS USED IN FIGURE 6
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TABLE 6. Bonds used in Figure 6

Issuer Eikon ticker Coupon (in percent) Maturity date
France FRGV 2.50 25-May-2030
Belgium BEGV 0.55 04-Mar-2029
Portugal PTGV 3.875 15-Feb-2030
ESM ESM 0.50 05-Mar-2029
Spain ESGV 1.95 30-Jul-2030
Netherlands NLGV 0.25 15-Jul-2029
Germany DEGV IO Str 0 04-Jul-2030
NEXTGENEU EUUNI 0 04-Jul-2031
EFSF EFSFC 2.75 03-Dec-2029
EU EUUNI 1.375 04-Oct-2029
Italy ITGV 3.50 01-Mar-2030
EIB EIB 0.25 14-Sep-2029

Notes: This table lists the bonds used in Figure 6. Asset swap spreads (ASW) are computed by Refinitiv Eikon.

APPENDIX XII. ALTERNATIVE (STATIC) FISCAL LIMIT ESTIMATES

TABLE 7. Fiscal limit static estimates in the literature

Country Ghosh et al. (2013) Collard et al. (2015)

Hist. Proj. 5% MPS MRR TVR CATA 4% MPS hist. MPS

DE 154.1 175.8 130.1 132.3 114.6 85.5 104.1 112.9
FR 170.9 176.1 146.6 148.6 119.8 97.8 117.2 40.0
IT − − 113.2 115.6 106.8 74.2 90.6 147.5
ES 218.3 153.9 144.2 146.2 119.3 95.8 115.3 115.6

Notes: All estimates are reported in percent of GDP. Estimates of Ghosh et al. (2013) – Debt limits (fiscal limits in
our terminology) are statically estimated through the interest payment schedule for the period 1985-2007. Hist.:
Estimates are based on the average interest rate / growth differential of 1998-2007, using the implied interest
rate on public debt; Proj.: The interest rate / growth differential is based on the long term government bond
yield (average for 2010-2014, IMF projections as of 2010). Estimates of Collard et al. (2015) – The computation
of maximum sustainable debts (fiscal limits in our terminology) exploits the idea of a maximum primary surplus
(MPS). In the model, there is a maximum amount that can be issued on each date (that itself depends on the MPS).
5% MPS: Case where the MPS is set to to 5%; MRR: The computation involves a maximum recovery rate; TVR:
The model features a time-varying interest rate; CATA: The model features catastrophes; 4% MPS: The MPS is set
to 5%; hist. MPS: The MPS is set to the historical peak of primary surplus-to-GDP.
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APPENDIX XIII. PARTIAL EUROBONDS

Our framework can also be used to study “partial” SNJG and SJG bonds, defined as bonds jointly
issued by a subset of countries. Specifically, we focus on the computation of SNJG and SJG bonds issued
by four countries (out of the six we consider) either excluding “super” core member states (Germany
and Netherlands), or excluding peripheral countries (Italy and Spain). These prices are computed under
the baseline estimated model, the only parameters that have to be adjusted to perform this analysis are
the weights (ω) defining the groups of issuing countries (see Subsection 3.3).

Figure XIII.4 shows the SNJG and SJG bond yield spreads across different maturities (i) under the
baseline scenario, where all countries participate in the emission, as in the main results presented in
Section 2.1 (solid lines); (ii) under the scenario in which Germany and Netherlands do not participate in
the issuance (dashed lines); and (iii) under the scenario in which peripheral member states are excluded
from the joint issuance program (dotted lines). Not surprisingly, when Italy and Spain are excluded from
the joint issuance program, yield spreads are below those obtained in the baseline scenario; and when
Germany and Netherlands do not participate, yield spreads are higher. The spread between “partial”
SJG and SNJG bonds—which reflects the aggregate yield gains—is smaller in the “partial” scenarios than
when all countries participate in the program, as diversification effects are magnified in the latter case.

APPENDIX XIV. SENSITIVITY ANALYSIS

This appendix presents the results of sensitivity analyses performed to assess the robustness of our
main baseline results. Specifically, we modify the model by changing the bounds or imposing a specific
value on some key parameters, one at the time, and run the complete estimation. More precisely:

• We exclude the COVID period (after 2020Q1) from the PCA analysis of the recovered estimates
for ϵd,j,t’s so that also Var(εd,t) = ΓdΓ′

d is modified. (Γd represents the matrix of PCA weights, see
Subsection 5.3 for details regarding Γd.)

• Considering that maxSR is constrained at the lower bound, we relax such bound by reducing it
to 0.25, instead of 0.5.

• Given that ργ is constrained at the lower bound, we relax such bound by shifting it to 0.5, instead
of 0.7.

• We impose a higher value on α (even if estimated), equal to 0.2, which corresponds to more than
double the estimated value (see Table 3 in Sec. 5).

• We set ρd,ℓ, the correlation between the two “main common shocks” (ηd,1,t and ηℓ,1,t) to zero.
• Considering that the parameter ζ is constrained at its upper bound, we relax such bound by

increasing it by 0.5 (from 1.5 to 2). Note that the parameter ζ is defined as the multiplicative factor
disciplining the relation between Γd and Γℓ (Γℓ = ζΓd) and, thus, it is pivotal for Var(εℓ,t) = ΓℓΓ′

ℓ

(see Subsection 5.3).

Figure XIV.5 shows the fiscal limit estimates under the baseline parametrization (grey thick solid lines)
and across the above-described sensitivity exercises, together with debt-to-GDP ratios (black solid lines).
Units are in percent of GDP. While the different parametrizations tend to result in shifts in the estimated
fiscal limits, it appears that the fluctuations are fairly consistent across the different specifications.

Figure XIV.6 displays the yield spreads of SJG bonds across the sensitivity exercises and for the base-
line estimation (grey thick solid line). The three panels correspond to different maturities: 3, 5, and 10
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FIGURE XIII.4. Partial SJG Eurobonds: baseline, excluding “super” core (Ger-
many and Netherlands) and excluding periphery (Italy and Spain).
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This figure shows the yield spreads in basis points across different maturities (3-, 5- and 10-year maturity) asso-
ciated with SNJG (grey lines) and SJG (black lines) bonds under three different scenarios: (i) under the baseline
scenario, where all countries participate in the emission, as in the main results presented in Section 2.1 (solid lines);
(ii) under the scenario in which Germany and Netherlands do not participate in the issuance (dashed lines); and
(iii) under the scenario in which peripheral member states are excluded from the joint issuance program (dotted
lines).

years. The blue line corresponds to a model-free approximation of the SNJG bond spread, computed as
the GDP-weighted average of the national bond spreads. We observe that the order of magnitude of the
SJG-vs-SNJG spreads is fairly robust under different model parametrizations. This is confirmed by Fig-
ure XIV.7, that shows the 3-, 5-, and 10-year maturity yield gains associated with redistribution Scheme
C (same yield gain across countries, see Subsection 6.2).
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FIGURE XIV.5. Fiscal limit estimates - Sensitivity analysis
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This figure shows the fiscal limit estimates under the baseline parametrization (grey thick solid lines) and across
different sensitivity exercises: (i) exclusion of COVID period (after 2020Q1) from the PCA analysis of the estimated
ϵd,j,t’s (black line with circles) so that Var(εd,t) = ΓdΓ′

d is modified (Γd represents the matrix of PCA weights, see
Subsection 5.3 for details regarding Γd.); (ii) the lower bound for maxSR is set to 0.25 (black line with upward-facing
triangles), considering that this bound is binding under the baseline model; (iii) the lower bound for ργ is shifted
to 0.5, instead of 0.7 (black crossed line), given that the lower bound is binding in the baseline parametrization;
(iv) α is set to 0.2 (black line with “x” marks), which corresponds to more than double the estimated value (see
Table 3 in Sec. 5); (v) the correlation between the two “main common shocks” (ηd,1,t and ηℓ,1,t), ρd,ℓ, is set to zero
(black line with rhombuses); (vi) the upper bound for ζ is shifted from 1.5 to 2 (black line with downward-facing
triangles) given that this parameter is constrained at its upper bound under the baseline parametrization (for more
details on ζ, see Subsection 5.3). Debt-to-GDP ratios for each country are also plotted (black solid lines). Units are
in percent of GDP.
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FIGURE XIV.6. SJG bond yield spreads - Sensitivity analysis
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This figure shows SJG bond yield spreads for the 3-, 5- and 10-year maturity under the baseline parametrization
(grey thick solid lines) and across different sensitivity exercises: (i) exclusion of COVID period (after 2020Q1) from
the PCA analysis of the estimated ϵd,j,t’s (black line with circles) so that Var(εd,t) = ΓdΓ′

d is modified (Γd represents
the matrix of PCA weights, see Subsection 5.3 for details regarding Γd.); (ii) the lower bound for maxSR is set to
0.25 (black line with upward-facing triangles), considering that this bound is binding under the baseline model;
(iii) the lower bound for ργ is shifted to 0.5, instead of 0.7 (black crossed line), given that the lower bound is
binding in the baseline parametrization; (iv) α is set to 0.2 (black line with “x” marks), which corresponds to more
than double the estimated value (see Table 3 in Sec. 5); (v) the correlation between the two “main common shocks”
(ηd,1,t and ηℓ,1,t), ρd,ℓ, is set to zero (black line with rhombuses); (vi) the upper bound for ζ is shifted from 1.5 to
2 (black line with downward-facing triangles) given that this parameter is constrained at its upper bound under
the baseline parametrization (for more details on ζ, see Subsection 5.3). The figure also reports the GDP-weighted
average of the observed yield spreads across maturities (grey dashed lines), which are close to SNJG bond yield
spreads (see Figure 5 in Subsection 6.1). Units are in basis points.
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FIGURE XIV.7. Yield gains associated with redistribution scheme with same yield
gains across countries - Sensitivity analysis
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This figure shows yield gains associated with redistribution scheme with same yield gains across countries for the
3-, 5- and 10-year maturity (redistribution scheme C as described in Subsection 6.2) under the baseline parametriza-
tion (grey thick solid lines) and across different sensitivity exercises: (i) exclusion of COVID period (after 2020Q1)
from the PCA analysis of the estimated ϵd,j,t’s (black line with circles) so that Var(εd,t) = ΓdΓ′

d is modified (Γd
represents the matrix of PCA weights, see Subsection 5.3 for details regarding Γd.); (ii) the lower bound for maxSR
is set to 0.25 (black line with upward-facing triangles), considering that this bound is binding under the baseline
model; (iii) the lower bound for ργ is shifted to 0.5, instead of 0.7 (black crossed line), given that the lower bound is
binding in the baseline parametrization; (iv) α is set to 0.2 (black line with “x” marks), which corresponds to more
than double the estimated value (see Table 3 in Sec. 5); (v) the correlation between the two “main common shocks”
(ηd,1,t and ηℓ,1,t), ρd,ℓ, is set to zero (black line with rhombuses); (vi) the upper bound for ζ is shifted from 1.5 to 2
(black line with downward-facing triangles) given that this parameter is constrained at its upper bound under the
baseline parametrization (for more details on ζ, see Subsection 5.3). Units are in basis points.
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