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Abstract
Recent developments in tree-ring research offer great potential for reconstructing past climate changes;
determining the frequencies of natural hazards; and assessing the availability of freshwater resources over
timescales that extend well into the pre-instrumental period. Here, we review the state of dendrochro-
nological research in the Himalaya and outline future directions for tree-ring-based hydrological recon-
structions in a region that has a pressing societal need to understand the causes and consequences of past,
present and future changes in the hydrological cycle. We used ‘tree ring’ and ‘Himalaya’ as keywords to
identify scholarly articles from theWeb of Science that were published between 1994 and 2022. The resulting
173 publications were separated by their spatial coverage into the western, central and eastern Himalaya, as
well as their scientific purpose (e.g. reconstructing growth-climate relationships, temperature, precipitation,
streamflow, floods, droughts, etc.). Our analysis shows that dendrochronological research in the Himalaya
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primarily focused on understanding growth-climate relationships using annual tree-ring widths measurements
obtained for coniferous species, and their application in climate reconstructions. Reconstructions of hy-
drological processes such as streamflows, and extremes such as glacial and landslide lake outburst floods, have
received less attention. Recent advances in dendrochronology, including blue intensity (BI), quantitative wood
anatomy (QWA), and tree-ring stable isotopes (TRSI) should be combined to improve the resolution and
accuracy of hydrological reconstructions in all parts of the Himalaya. Such studies may allow us to better
understand the effects of climate change and the Himalayan water resources for its lowland surroundings.
They may also facilitate decision-making processes for mitigating the impacts of climate change on natural
hazards, and for better managing water resources in the region.

Keywords
Dendrochronology, tree rings, stable isotopes, quantitative wood anatomy, blue intensity, hydrological
reconstructions, natural hazard reconstructions, Himalaya

Himalayan hydrology

Mountains are sometimes referred to as ‘water
towers’ (Viviroli et al., 2007) in terms of water re-
sources, because they locally enhance precipitation
but also transfer runoff from winter storage to
summer runoff; or from ice accumulation in colder
years to ice melt in warmer years. The mountain
cryosphere can hence be an important source of
freshwater resources for millions of people living in
both mountains and the adjacent low-lying flood-
plains. Glaciers and seasonal snow cover contribute
freshwater to 1.4 billion people in the Himalayan
river basins of the Indus, Ganges, Brahmaputra,
Yangtze and Yellow Rivers (Immerzeel et al., 2010).
The Himalayan water towers are highly vulnerable to
climate warming due to a rapid acceleration in glacier
melt (Immerzeel et al., 2020), a situation that will
continue for many decades (Wijngaard et al., 2018)
albeit to an extent that is still unclear (Immerzeel
et al., 2010; Kääb et al., 2012). The rapid recession of
glaciers and increase in ice melt due to climate
warming leads to a temporary increase in runoff that
is known as a ‘glacial subsidy’ (Collins, 2008). Over
time, such increases in runoff will slow down and
eventually reverse as glaciers become smaller
(Chandel and Ghosh, 2021). Whilst such ice losses
may be compensated to some extent by increasing
precipitation in the future (Chandel and Ghosh, 2021;
Immerzeel et al., 2013; Khadka et al., 2020; Singh
et al., 2019b), ice loss is likely to be a dominant

signal in future changes in runoff (Lutz et al., 2014)
and a challenge for managing water resources
(Immerzeel et al., 2012; Kehrwald et al., 2008;
Maurer et al., 2019) in the Himalaya. By comparison
to western and central Himalaya, few studies have
addressed glacier recession and its hydrological
implications in the eastern Himalaya despite known
hydrological differences; whilst snow and glacier
melt are particularly important contributions to
runoff for western Himalayan rivers, rainfall (mostly
monsoon rainfall) is more important for rivers in the
eastern Himalaya (Lutz and Immerzeel, 2013).

Besides water resources, natural hazards related to
glacier retreat are also a concern. In some regions of
the Himalaya, the rapid recession of glaciers due to
climate warming is leading to the formation of nu-
merous glacial lakes. These glacial lakes can be
hazardous to communities and infrastructure because
of their potential to breach catastrophically and to
cause Glacial Lake Outburst Floods (Islam and Patel,
2021; Quincey et al., 2007), triggering a sudden
release of water and sediment (Khanal et al., 2015).
As with the question of water resources, glacial lake
formation under changing climate is better under-
stood in some regions than others.

Despite the importance of Himalayan hydrolog-
ical processes, such as snow and glacier melt to both
water resources (e.g. streamflow) and hazards (e.g.
floods) there are relatively few hydrological studies
available for the Himalaya (Chalise et al., 2003;
Chandel and Ghosh, 2021; Immerzeel et al., 2012;
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Irvine-Fynn et al., 2017; Kirkham et al., 2019; Li
et al., 2017; Qazi et al., 2019; Ragettli et al., 2015;
Singh et al., 2016, 2020; Thayyen and Gergan, 2010;
Viviroli et al., 2007), especially those that extend
back to before the instrumental measurement period.
Long-term (e.g. centennial to millennial) recon-
structions of hydrology, including streamflow and
floods in the ungauged or poorly gauged Himalayan
rivers, are critical for developing a sound under-
standing of the impacts that changes in climate may
have on hydrological conditions at the basin scale.
Systematic and widespread measurements of river
flow only really begin in the 1950s and such records
are most common for the river plains downstream.
One alternative is to use the hydrological records
contained in tree rings to extend records back in time.
Trees are ‘natural data loggers’ that may record
valuable hydrological information in their annual
rings from before the start of instrumental records.
Thus, the aim of this paper is to review how the
analysis of tree rings may assist both long-term
climate and hydrological reconstructions in the Hi-
malaya in ways that can inform both water resource
management and hazard mitigation.

Himalayan dendrochronology

Dendrochronology is a well-established science
initially proposed by Andrew Ellicott Douglass at the
beginnings of the 20th century and that provides
estimates of both the annual growth of woody plants
and other environmentally relevant information
through the analysis of physical or chemical prop-
erties of tree-ring wood (Bannister, 1963; Coulthard
and Smith, 2013; Fritts, 1976; Fritts et al., 1965;
Shroder, 1976; Smith and Lewis, 2006). Tree-ring
methods have been applied across many different
disciplines, including archaeology, for example,
dendroprovenancing (Cherubini, 2021; Cherubini
et al., 2022; Domı́nguez-Delmás, 2020; Wilson
et al., 2017), environmental reconstructions includ-
ing hydroclimatic parameters, such as temperature
(Aryal et al., 2020) and precipitation (Tejedor et al.,
2020), streamflow (Akkemik et al., 2008), floods
(Speer et al., 2019), droughts (He et al., 2018) and
events such as snow avalanches (Laxton and Smith,
2009; Luckman, 2010; Yadav and Bhutiyani, 2013),

landslides (Chalupová et al., 2020), forest fires
(Brown et al., 2020), air pollution episodes
(Ballikaya et al., 2022; McLaughlin et al., 2002),
insect outbreaks (Büntgen et al., 2009) and fungal
attacks (Cherubini et al., 2002, 2021). Tree-ring
based environmental reconstructions have two ma-
jor advantages. First, they provide high-resolution
(e.g. annual to intra-annual) proxy information over
longer time-scales (e.g. centuries or millennia) than
the conventional instrumental records. Second, the
distribution of trees is almost global, meaning that
tree-ring reconstructions are possible over very large
spatial and temporal scales throughout terrestrial
ecosystems (Bridge, 2005).

In the Himalaya, tree-ring studies began in the late
1980s with the assessment of the potential of different
tree species for environmental reconstruction
(Bhattacharyya et al., 1988; Ramesh et al., 1985).
Despite the occurrence of a wide variety of taxa suited
to dendrochronology (e.g. Larix griffithiana, Tsuga
dumosa, Abies densa, Juniperus indica, Pinus wall-
ichiana), only a few have been used for the recon-
struction of temperature (Aryal et al., 2020;
Bhattacharyya and Chaudhary, 2003; Borgaonkar
et al., 2018; Chaudhary and Bhattacharyya, 2000;
Chaudhary et al., 1999; Gaire et al., 2023; Khandu
et al., 2022; Krusic et al., 2015; Yadava et al., 2015)
and precipitation (Khan et al., 2020; Sano et al., 2013;
Shah, 2018; Singh et al., 2021; Yadav, 2011; Yadav
et al., 2014) across the Himalaya (Figure 1). The same
is the case for hydrological reconstructions such as
streamflow (Cook et al., 2013; Gaire et al., 2022;
Misra et al., 2015; Rao et al., 2020; Shah et al., 2013,
2014; Singh and Yadav, 2013). Figure 1 also shows
that most tree-ring studies are available in the western
and central Himalaya, whereas the eastern Himalaya
has received less attention. However, it is important to
clarify that this figure was prepared based on tree-ring
records available in the International Tree-Ring Data
Bank (ITRDB) and it seems that the ITRDB records
do not appear to be complete. A number of dendro-
chronological studies do not appear therein (e.g.
Borgaonkar et al., 2018; Chaudhary et al., 1999; Shah
et al., 2013, 2014; Shekhar and Bhattacharyya, 2015;
Yadava et al., 2015).

Since the start of dendrochronological studies in the
late 1980s, an initial focus has been on understanding
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growth-climate relationships and reconstruction of pa-
leoclimates (e.g. temperature and precipitation), both
using conventional tree-ring width measurements
(Bhattacharyya et al., 1988, 1992; Bhattacharyya and
Yadav, 1999; Hughes, 1992; Yadav, 1992). Palae-
ohydrological studies using tree-rings have received less
attention (Figure 2). Recent advances in dendrochro-
nology, including the analysis of earlywood (EW) and
latewood (LW)widths from digital images, blue intensity
(BI), quantitative wood anatomy (QWA) and tree-ring
stable isotopes (TRSI) have yet to be applied widely
across the Himalaya (Bhattacharyya and Shah, 2009; Li
et al., 2021; Pandey et al., 2018; Singh et al., 2016).

Growth characteristics of Himalayan tree rings

The primary focus of tree-ring research in the Hi-
malaya has been understanding growth-climate rela-
tionships and reconstructions of past climate,mostly in
the western and central parts (Figure 1). Different tree
species respond differently to different climatic and
topographic conditions and, as a result, the main

growth period of any one tree species varies between
species (Borgaonkar et al., 2011; Dolezal et al., 2016;
Krusic et al., 2015; Schwab et al., 2018; Torbenson
et al., 2016). Such variability in growth period be-
tween species means that the elements of annual
climate that are recorded may vary between trees. In
general, the growth period for Himalayan trees is
found within the window March to September (Singh
et al., 2009). For Himalayan larch (L. griffithiana), the
favourable growing season is from May to July
(Chaudhary and Bhattacharyya, 2000), during the
period of increasing temperature towards the peak of
the summer (Aryal et al., 2020). Spring (March to
May) is the suitable period for Himalayan hemlock (T.
dumosa) (Aryal et al., 2020); winter (December to
February) for sal (Shorea robusta) in the Central
Himalaya (Baral et al., 2019), and autumn and winter
(October to February) for toon (Cedrela toona) in the
eastern Himalaya (Shah and Mehrotra, 2017). Tree
growth in the Western and Central Himalaya is limited
by precipitation between March and May, whereas in
the eastern Himalaya it is the air temperature that

Figure 1. Tree-ring studies in the Himalaya that are available in the ITRDB (Data source: NOAA), with the upper inset
showing the global distribution of tree-ring sampling sites.
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mainly controls tree growth (Figure 3(a)–(c)). This is
probably due to the effect of the Indian Summer
Monsoon (ISM) from June to September and sufficient
moisture availability (Borgaonkar et al., 2018). The
availability of moisture acts as a limiting factor for tree
growth at higher tree lines, as has been shown across
the Hindu Kush Himalayan regions (Liang et al.,
2014; Schwab et al., 2018; Zheng et al., 2021).
Growth reduces with the reduction in moisture content
of the air and in the soil, as well as with the availability
of surface and groundwater during the onset of the
growing season (Ahmad et al., 2020; Yadav et al.,
2004). Studies have suggested that the moisture deficit
not only limits tree growth but also often produces
locally absent rings (Ram, 2012; Sigdel et al., 2018).
Therefore, identifying absent rings in the trees can

unravel long-term changes in moisture availability,
and so aid reconstruction of droughts in the Himalaya
(Singh et al., 2016; Thomte et al., 2022). Yet, to do so
requires cross-correlation within and potentially be-
tween species. Unfortunately, the ring-width chro-
nologies both within- and between-species are often
poorly correlated (Chaudhary et al., 1999). This not
only reflects different sensitivities to hydroclimate
forcing but also more local factors such as the
availability of sunlight, cloud cover and biotic com-
ponents including soil biochemical and microbio-
logical characteristics.

This short summary emphasises that applying
dendrochronology in the Himalaya is not straight-
forward because of both species effects and also
regional and altitudinal variation in the climate

Figure 2. Multi-dimensional applications of dendrochronology in the Himalaya (Data source: web of science; keywords
used: tree ring, Himalaya).
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parameters that limit tree growth. It is reflected in
weak correlations between ring growth and precip-
itation across the Himalaya, but especially in the
Eastern Himalaya. However, the differential re-
sponse of tree species and regional and local vari-
ation in the influences on growth rates also opens up
an opportunity. If choice of tree species as well as
regional and local influences can be used to design an
appropriate sampling strategy, then it may be pos-
sible to tease out growth-climate relations that reveal
different elements of climate and wider environ-
mental history. Further, with developments in den-
drochronology, such as studying both early and
latewood growth, it may be possible to reconstruct
growth-climate relationships to yield seasonal dif-
ferences in hydroclimate forcing. We show below the
potential of these new approaches.

Tree-ring based hydroclimatic reconstructions

Over the years, the understanding of growth-climate
relationships allowed researchers to reconstruct climate

history (i.e. temperature and precipitation) across the
Himalaya (Table 1). As a result, a number of re-
constructed temperature records for several hundred
years are now available. Lower temperatures until the
20th century have been reported (Borgaonkar et al.,
2018) and associated with reduced solar irradiance and
volcanic eruptions (Krusic et al., 2015; Singh et al.,
2022), and the glacial expansion of the ‘Little Ice Age’
(Rowan, 2017; Singh and Yadav, 2000; Yadav et al.,
2011). A warming trend in temperature from the early
twentieth century has been noted in reconstructed
records (Aryal et al., 2020; Rastogi et al., 2023; Singh
et al., 2022; Singh and Yadav, 2000) and associated
with glacier recession (Krusic et al., 2015; Rastogi
et al., 2023). Studies have successfully established
the linkage between higher tree-ring growth during
warm periods and lower growth during cold periods
near Himalayan glaciers (Borgaonkar et al., 2011,
2018). For instance, Singh and Yadav (2000) identified
that the early 20th century was among the longest
periods of prominent slow growth rates of the Hima-
layan blue pine (P. wallichiana) in the Gangotri basin in

Figure 3. Pearson correlation coefficient between tree-ring chronology and temperature, precipitation, streamflow (a–
c) and tree-ring O-isotope chronology and temperature and precipitation (d–f) in the Western, Central and Eastern
Himalaya (Data source: references in Table 1).
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the western Himalaya. This was followed by an abrupt
growth release from the 1950s with the highest growth
in the year 1998 most likely due to warmer winters
(Singh et al., 2022). In the Karakoram region, located in
the western part of the Himalaya, a 438-year long
reconstructed April–July temperature record also
shows the same warming trend, but starting from the
mid-19th century (Asad et al., 2017).

In terms of precipitation, the summer monsoon
precipitation from June to September influences tree
growth in the Himalaya (Dhyani et al., 2023). One of
the reasons for a strong monsoon influence is that the
monsoon brings moisture at the same time of year as
warmer conditions favourable for tree growth (Shah
et al., 2023). These phenomena make trees in the
Himalaya a unique climate archive and create op-
portunities for palaeohydrological reconstructions.
Some of the environmental responses of Himalayan
tree growth have been confirmed by studies of both
tree-ring anatomical and stable isotope analyses
(Baral et al., 2022; Chauhan et al., 2022; Malik et al.,
2020; Pandey et al., 2018; Sano et al., 2013; Singh
et al., 2019a, 2019b; Treydte et al., 2006). In the
central Himalaya, Panthi et al. (2017) found that the
ring-width chronology of Himalayan spruce was
positively correlated with pre-monsoon (March–
May) precipitation (r = 0.42, p < .05) and negatively
correlated with February–March temperature
(r = �0.55, p < .05). They further investigated the
climate sensitivity of this species and identified the
highest positive correlation between tree growth and
the self-calibrated Palmer Drought Severity Index
(scPDSI) (r = 0.65, p < .001) of March–May, which
indicates the influence of moisture availability as a
factor limiting growth of Himalayan spruce at higher
altitudes. Such significant correlation allowed re-
construction of 289 years (1725–2013) of scPDSI in
the central Himalaya. In the lower Satluj river basin
in the western Himalaya, Yadav (2011) reconstructed
596 years of March–June rainfall records from 1410
to 2005 using the Himalayan cedar (Cedrus deodara
(Roxb.) G. Don). They reported a decadal trend of
decreasing precipitation in the last decade of the 20th

century. However, this is the opposite to what Singh
et al. (2006) found in Gangotri, in the western Hi-
malaya. Their 438 years (1560–1997) of re-
constructed precipitation using the same tree species,

recorded an unprecedented increase in precipitation
in the 20th century, which along with the late 19th

century yielded the wettest conditions of the past
1000 years (Treydte et al., 2006). In a similar study,
Singh et al. (2009) reconstructed 694 years (1310–
2004) of March–July precipitation using Chilgoza
pine (Pinus gerardiana) and Himalayan cedar. They
found that Himachal Pradesh in the western Hima-
laya experienced the driest period (1773–1802)
during the 18th century and the wettest period (1963–
1992) in the 20th century. A wet period, between
1971 and 1984 (mean precipitation of 264 mm), has
also been recorded in P. wallichiana tree-ring
chronologies in the western part of the Nepal Hi-
malaya by Gaire et al. (2017). Thus, there seems to be
a gradient in the extent of moisture limited tree
growth in this region, limitation becoming more
intense from the central to the eastern Himalaya and
reflecting a similar gradient in the hydrological im-
portance of the Indian Summer Monsoon.

Tree-ring based streamflow reconstructions

Growth rates may be used in hydrological reconstruc-
tion if trees respond to differences in precipitation
amounts and these translate into differences in runoff
rates. Correlating instrumented periods of measured
streamflow with tree-ring growth records may then be
used to extend into non-instrumented periods under the
assumption that the relationship between precipitation,
runoff and tree growth has remained constant through
time (Loaiciga and Michaelsen, 1993; Meko and
Graybill, 1995; Woodhouse and Lukas, 2006). How-
ever, this is not always straight-forward. As the distance
between a tree and the river increases, so does the
uncertainty in the reconstructed streamflow due to a
growing possibility of other intervening factors in-
cluding slope, soil and air moisture, and groundwater. In
the basins influenced by glacier melt, changes in the rate
of snow and glacier-melt contribution to the river may
also alter the relation between growth rate and
streamflow (Leonelli et al., 2019). However, even if
there are suitable trees in a river catchment, and such
influences can be controlled for, extracting the riverflow
records stored in tree rings is challenging since there are
no biological or physical laws that describe the rela-
tionships between tree growth, climate and hydrology.
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Rather, such relationships are commonly based upon
empirical transfer functions that relate measured growth
to hydrological characteristics (e.g. streamflow). For
these transfer functions, the simplest is to use statistical
approaches such as a regression between a dependent
variable (e.g. tree-ring width or density) and an inde-
pendent variable (a measured hydrological parameter).
Such regression analysis has been successfully used for
reconstruction of river flows and flow extremes across
the globe (Harley et al., 2017; Li et al., 2019; Maxwell
et al., 2017; Meko and Graybill, 1995; Nguyen et al.,
2020; Nguyen and Galelli, 2018; Schulman, 1945a,
1945b; Strange et al., 2019; Therrell et al., 2020;
Woodhouse and Lukas, 2006; Zhang et al., 2020), in-
cluding in high mountain regions such as the Himalaya
(Cook et al., 2013; Khan et al., 2022; Rao et al., 2020;
Shah et al., 2014).

In contrast to climate reconstructions, only a few
among a wide variety of Himalayan tree species have
been used for hydrological reconstruction
(Bhattacharyya and Shah, 2009). Rao et al. (2020)
reconstructed 696 years (1309–2004) of July to
September streamflow in the Brahmaputra River in the
eastern Himalaya. Their reconstructed mean annual
streamflow (46,993 ± 812 m3s�1) was significantly
higher (7.8%) than the instrumental mean annual
streamflow (43,350 m3s�1, p < .01) between 1956 and
2011. In a similar study, Shah et al. (2014) re-
constructed streamflow for 205 years (1790–1994)
from March (of the previous year) to February (of the
current year) in the Lachen River located in northern
Sikkim in the eastern Himalaya. Their reconstructed
streamflow for the period 1790 to 1994was based on a
correlation (r = 0.68, p < .01) between tree-ring
growth and streamflow during an instrumented pe-
riod (1977–1994). The flow in this river has been
declining since the 1990s as a result of changing
climate (Shekhar and Bhattacharyya, 2015), particu-
larly due to increasing variability in the Indian
Summer Monsoon. In the western Himalaya, Shah
et al. (2013) reconstructed a 151-year long (1834–
1984) March–April streamflow record in the Beas
River. It was based on a correlation (r = 0.78, p < .05)
between the annual ring width and observed stream-
flow at the Thalout gauging station during the period
1974 to 1984. Singh and Yadav (2013) reconstructed a

711 years (1295–2005) long previous December to
current July streamflow records in the Satluj River,
based on a correlation (r = 0.58, p < .05) between
annual ring width and streamflow during the obser-
vation period 1923 to 2004. In the upper Indus River,
Cook et al. (2013) reconstructed May to September
streamflow records for 557 years (1452–2008). The
mean annual streamflow (3545 m3s�1) in their study
was 3.5% lower (p < .05) than the observed mean
annual streamflow (3674m3s�1). As expected, many of
these tree-ring studies were able to detect high-flow
events (in wet periods) and low-flow (particularly
during dry periods) including the year 1918 across the
Himalaya. The latter was amongst the most severe
drought years in the last century, affecting 70% of India
(Shah et al., 2013). Extreme high- and low-flow periods
were also identified in the eighteenth century and linked
to widespread limited rainfall, known as the Great East
India mega-drought of 1792–1796 (Cook et al., 2010).

Tree-ring based studies in the Himalaya are not only
useful for reconstructing streamflow but also for pro-
viding evidence of systematic shifts in hydrological
functioning such as between wet and dry periods, high-
and low-flow periods, and their relationship with flood
intensity (Figure 4). Although these studies have been
undertaken in different locations in the Himalaya, there
are common periods of high and low streamflow, as
well as wetter and drier conditions. A reconstructed 50
year period of high-flows from 1953 to 2002 (Singh
and Yadav, 2013) matches a reconstructed 30 years
long wet period from 1968 to 1997 (Singh et al., 2006).
The Western Himalaya has experienced several pro-
longed low flows (e.g. 50 to 100 years) and dry periods
(e.g. 30 to 40 years), compared to Central and Eastern
Himalayas where the length of these periods are rel-
atively shorter (i.e. between 10 and 20 years). Such
long period of low flow in the Western Himalayan
rivers can be caused by below average winter snowfall
(Cook et al., 2013). This can be linked with the in-
creasing drought risk in Western Himalaya (Ahmad
et al., 2020; Khan et al., 2020, 2022). Unlike in the
western Himalaya, the frequencies of high-flow and
wet periods along with flood events have increased in
the Central and Eastern Himalayas. This is likely due to
long-term changes in climatic conditions, particularly
changes in the Indian Summer Monsoon.
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In general, dendrochronological studies consider
a flood year as being one in which there is an un-
expected peak in the reconstructed streamflow record
assumed to reflect an excessive amount of rainfall
received by the catchment over a few days or weeks.
For instance, in the eastern Himalaya, Rao et al.
(2020) identified several years with peaks in their
reconstructed streamflow, such as in 1998
(60,312 m³/s) compared to their reconstructed mean
streamflow (i.e. 46,993 m³/s). On this basis, they
considered it as a flood event and compared it to the
instrumental discharge (i.e. 62,840 m³/s) in 1998.
This was one of the most devastating flood events in
the Brahmaputra River Basin. They also found that
out of 18 recorded flood events, 3 (17%), and 6
(33%) floods occurred during high-flow and wet
periods, respectively. Similarly in the Western Hi-
malaya, 8 out of 19 flood events (i.e. 42%) were
observed during prolonged high-flow periods, and 7
(39%) during wet periods. Singh and Yadav (2013)

and Singh et al. (2006) have reconstructed five
common flood years, occured in 1978, 1988, 1993,
1995 and 1997 during wet and high-flow periods. No
floods were recorded during the low-flow and dry
periods. However, there are exceptions to these
patterns. For instance, in the eastern Himalaya, two
flood events (1918 and 1922) were recorded during
the low-flow period of 1914 to 1925 (Table 2), and
the flood in 1966 occurred during the dry period of
1956 to 1986 (Rao et al., 2020). This is most likely
due to warming that led to less precipitation (e.g.
monsoon disturbance) but a higher rate of glacier
melt which could have caused a glacial lake outburst
flood, or maybe an earthquake induced landslide lake
outburst flood. No tree-ring based flood records are
available for the Central Himalaya. Therefore, given
the fact that the high- and low-flow and dry and wet
periods are becoming more frequent and shorter in
the Himalayas, more tree-ring studies across a wider
spatio-temporal scale would help to model long-term

Figure 4. Periods of prolonged low and high flow periods, dry and wet periods, and their relationship with the increasing
frequencies of flood events across the Himalaya (Data source: flood events (Ballesteros-Cánovas et al., 2017, 2020; Rao
et al., 2020); low flow and high flow periods (Gaire et al., 2022; Shah et al., 2014; Singh and Yadav, 2013); dry and wet
periods (Gaire et al., 2017; Rao et al., 2020; Singh et al., 2006); cold and warm periods (Aryal et al., 2020; Borgaonkar et al.,
2018; Singh et al., 2022).
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changes in hydrologic conditions for mitigating flood
risk and managing water resources at the basin
scales.

Reconstructions of flood events

Besides streamflow, tree rings can be central to re-
construct paleofloods (Stoffel and Bollschweiler,
2008) with a yearly precision (Ruiz-Villanueva
et al., 2010). Such information can be extracted by
identifying anatomical deformities in tree rings (e.g.
cell damage) and paleo-stage indicators (PSI) on
stems (Ballesteros et al., 2011). A PSI is a record of
the damage at a certain height in a tree that ideally
represents water-level during a flood (George, 2010).
PSIs in trees that lead to anatomical deformities in
tree rings may also be useful for the reconstruction of
magnitude-frequency relationships that are used for
risk assessment and engineering design (Stoffel,
2010), but establishing such relationships are ex-
tremely challenging particularly in ungauged or
poorly gauged catchments (Ballesteros-Canovas
et al., 2020). Moreover, transforming such infor-
mation into hydraulic models needs to use numerical
and statistical algorithms. One such example is to use
a Bayesian Markov Chain Monte Carlo (MCMC)
algorithm due to its advantage of providing a
complete representation of large and historical flood
records by deriving flood quantiles (i.e. amount of
water corresponding to a flood return period, for
example, 10, 100, 500 or 1000 years) in a homo-
geneous region (Gaume et al., 2010; Reis and
Stedinger, 2005). It then systematically allows for
an estimate of the peak discharge of particular events
(Jarrett and England, 2002). These methods have
proved successful for detecting paleoflood events
from tree rings in different river basins around the
world (Ballesteros et al., 2011; Ballesteros-Cánovas
et al., 2011; Ballesteros-Canovas et al., 2020; Dı́ez-
Herrero et al., 2013; Génova et al., 2018; Harrison
and Reid, 1967; Quesada-Román et al., 2020; Ruiz-
Villanueva et al., 2010), supporting the feasibility of
similar work in the Himalaya (Ballesteros-Cánovas
et al., 2015, 2017, 2020).

During recent decades, the frequency and mag-
nitude of flood events in the Himalaya have been
reported as increasing in parallel with rising

temperature and decreasing precipitation including
and a weakening of the summer monsoon under
changing climate (Gaire et al., 2019, 2022; Panthi
et al., 2017; Zhan et al., 2017). A number of den-
drochronological studies are available (the majority
in the western Himalaya) that have reconstructed
paleofloods using PSI marks (e.g. scars) in the trees
adjacent to the river. For instance, Ballesteros-
Cánovas et al. (2020) identified 64 flood events in
the Kashmir valley, which were dated back to the
early 7th century and estimated the magnitude of
these historical floods including the biggest flood in
2014 (2200 m3s�1). In another study, Ballesteros-
Cánovas et al. (2017) successfully reconstructed 33
past flood events in the Kullu valley. In the eastern
Himalaya, Speer et al. (2019) reconstructed three
flood events (1967, 1989 and 2009) in the Dhur river,
Bhutan. The 2009 flood was closely associated with
one of the most severe cyclones in recent decades
(1940–2018) in May 2009. In the Brahmaputra river
basin in the eastern Himalaya, Rao et al. (2020)
undertook streamflow reconstruction using multi-
ple ring-width chronologies available in the Inter-
national Tree Ring Databank (ITRDB) and revealed
that the tree rings recorded a total of 18 flood events,
including 12 historical floods and 6 floods (in 1966,
1988, 1987, 1998, 2007 and 2010) during the recent
instrumental period (Table 2). The majority of the
historical floods occurred during wet and high flow
periods with a drastic increase in frequency and
magnitude in the last century (Figure 4). It is pro-
jected that the frequency and magnitude of not only
hydrologically driven flood events but also other
extreme events such as landslide lake outburst floods
(LLOFs) and glacial lake outburst floods (GLOFs)
will continue to increase in the Himalaya (Islam and
Patel, 2021; Ruiz-Villanueva et al., 2017;
Schwanghart et al., 2016; Veh et al., 2020; Zheng
et al., 2021). These extreme events impact the normal
growth of trees and this may be seen in tree-ring
anomalies such as asymmetric rings (Shroder, 1978;
Šilhán and Stoffel, 2022). By analysing growth
disturbances in tree rings, Zhang et al. (2019) re-
constructed landslides in 1703, 1816, 1848, 1863,
1913, 1970 and in 1982 in the Qilian Mountains in
China. In the northern Tien Shan Mountains of
Kyrgyzstan, Zaginaev et al. (2016) reconstructed 27
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GLOF events between 1877 and 2015 based on
anatomical deformities in tree rings. These studies
show the potential of using tree rings for re-
constructing past extreme events in the Himalaya.
However, dendrochronological studies aimed at re-
constructing paleofloods are not widespread across
the Himalaya (Ballesteros-Cánovas et al., 2017,
2020; Rao et al., 2020; Speer et al., 2019). This limits
our knowledge about the magnitude of unrecorded
paleoflood events in many Himalayan river basins.
More tree-ring based hydrological studies may be
crucial not only for developing long-term past flood
records but also establishing relationships with wet
and dry periods, periods of high-flow and low-flow at
the basin scales.

Whilst PSI based tree-ring analysis may have high
potential for reconstructing paleofloods, this technique
can be biased towards larger flood events which last
for several days or weeks. In contrast, extreme events
like GLOFs or LLOFs usually have a shorter duration
(e.g. a few hours) which may not leave any noticeable
PSIs. However, they may significantly affect devel-
opment of the growth cells. In such cases, quantitative
wood anatomy is useful for detecting particular ana-
tomical features in trees and for reconstructing those
extremes in the past (Ballesteros et al., 2010; Copini
et al., 2016; Stoffel and Corona, 2014).

Tree-ring stable isotope composition

The isotopes of an element have similar chemical
properties but due to their mass differences, their
physio-chemical properties are different. This leads to
isotopic fractionation between different molecules
containing the isotopes of the same element. The
extent of fractionation reflects environmental condi-
tions including temperature, relative humidity and
rainfall intensity at the time at which water is taken up
into the wood (McCarroll and Loader, 2004).
Therefore, by separating whole tree rings or extracting
the tree-ring cellulose following standard procedures
(Green, 1963; Kagawa et al., 2015; Loader et al.,
1997) and measuring their isotopic composition, it
is possible to acquire a wide range of potentially useful
information related to plant physiology, and hydro-
climatic parameters such as relative changes in tem-
perature and also sources of water (glacial melt

water, rain or snow water infiltration) at annual to
intra-annual resolution (Hill et al., 1995; Leavitt, 2010;
Lehmann et al., 2021; Liu et al., 2004; Loader et al.,
1997, 2003; McCarroll and Loader, 2004; McCarroll
and Pawellek, 2001; Vuaridel et al., 2019). With
methodological advancement, the study of tree-ring
stable isotopes has opened up a wide range of pos-
sibilities for high-resolution climatic reconstruction
from a variety of species (Loader et al., 2003;
McCarroll and Loader, 2004).

The first tree-ring stable isotope study in the Hi-
malaya was conducted by Ramesh et al. (1985) in the
Kashmir Valley in western Himalaya. Since then a
number of other studies were added across the Hi-
malaya and in the Tibet plateau (Managave et al.,
2020; Pandey et al., 2020; Ramesh et al., 1989; Sano
et al., 2010, 2013, 2017; Singh et al., 2019b; Zeng
et al., 2017). Ramesh et al. (1985) analysed the long-
term consistency of 79% for deuterium (δD) and 84%
for carbon (δ13C) isotope compositions of tree rings in
Kashmir valley. The δD of the precipitation limited
trees can reveal climate information including mon-
soon variability (Ramesh et al., 1989). The use of δD
of the carbon-bound hydrogen isotopes (δ2H) and
oxygen isotopes (δ18O) may allow for a quantification
of changing moisture seasonality (e.g. pre- and post-
monsoon, mid-latitude westerlies) over long-time
scales. For the central Himalaya, Singh et al.,
(2019b) reconstructed 273 years of June–July mon-
soon rainfall using δ18O chronologies from three
different species (Abis pindrow, Picea smithiana,
Aesculus indica) from the Dingad valley of Uttarak-
hand. Their findings show that mean δ18O chronology
correlates positively with temperature (r = 0.40, p <
.01) and negatively with precipitation (r =�0.60, p <
.01) and with scPDSI (r =�0.41, p < .01) in July. The
negative relationship between tree-ring growth and
measured δ18O in them is often known as the ‘rain-out
effect’ or the ‘monsoon effect’ in monsoon-dominated
regions. This effect is getting stronger in the recent
decades due to decreasing rainfall (An et al., 2019;
Singh et al., 2019b), which increases the relative
importance of the monsoon season rainfall that will
likely lower δ18O values. Several studies in the recent
past have identified a long-term decreasing pattern of
the Indian SummerMonsoon across the Himalaya (An
et al., 2019; Xu et al., 2018). However, unlike the
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generally decreasing precipitation trend, an increase in
precipitation has also been observed in the Himalaya.
A study by Shrestha et al. (2012) found that the av-
erage annual precipitation has increased by 163 mm
with the highest increase of 269 mm in the Brah-
maputra valley in the eastern Himalaya during their 25
year analysis period (1982–2006). The overall in-
crease in precipitation in the Himalaya is most likely
due to an increase in atmospheric moisture content in
recent decadeswhich favours more intense rainfall and
snowfall events (Trenberth et al., 2003). In contrast,
the increase in moisture content in the atmosphere
leads to the depletion of 18O due to the increased rain-
out and a reduction in evapotranspiration, lowering the
tree-ring δ18O values (Farquhar et al., 2011; Roden
et al., 2000). A century-long (828–1998) δ18O record
from the Karakoram mountain range in the western
Himalaya allowed for a reconstruction of 1041 years
(950–1990) of October (previous year) to September
(current year) precipitation (Treydte et al., 2006). Such
long records of precipitation variabilities were in-
terpreted based on a significantly negative correlation
(r = �0.58, p < .001) between amounts of precipi-
tation and measured tree-ring δ18O during 1898–1990.
Similar results of negative correlation (r =�0.40, p <
.001) between the tree-ring δ18O chronology and
October (previous year) to March (current year)
precipitation have also been reported in the Lahaul-
Spiti region of Himachal Pradesh, in the western
Himalaya (Managave et al., 2020). Unlike the rela-
tionship between ring widths and climatic conditions,
stable isotope compositions (δ18O, δ2H) correlate
positively with temperature and negatively with pre-
cipitation across the Himalayas, and the correlations
are numerically higher (Figure 3(d)–(e)). Therefore,
more tree-ring stable isotope studies using different
species may help to improve reconstruction of past
climatic conditions, particularly the Himalayan
monsoon variabilities.

Future tree-ring research directions in
the Himalaya

To obtain an overview of Himalayan tree-ring-based
hydroclimatic reconstruction and to identify research
gaps, Table 1 provides a summary of key studies. The
resulting 173 scholarly articles separated by their

spatial coverage of western, central and eastern
Himalaya (Figure 5(a)) and grouped into three broad
categories such as quantitative wood anatomy, tree-
ring stable isotopes and traditional dendrochronol-
ogy (Figure 5(b)). There has been a consistent
increase in terms of total number of tree-ring studies,
although the eastern Himalaya remains poorly re-
searched. Studies to date remain focused on tradi-
tional growth-climate relationships with very few
studies using TRSI and even fewer using QWA
approaches. Given these data, this section reviews
the research needs for future dendrochronological
studies in the Himalaya, focusing on the Himalayan
hydrology.

It is clear that tree-ring based hydrological re-
constructions at different spatial (i.e. smaller catch-
ment to larger river basin) and temporal (i.e. century
to millennia) scales have improved our under-
standing of the dynamics of water resources and
extreme events across the Himalaya (Ballesteros-
Cánovas et al., 2017, 2020; Cook et al., 2013;
Khan et al., 2022; Rao et al., 2020; Shah et al., 2014).
However, whilst the annual focus has been valuable,
there has yet to be significant consideration of intra-
annual hydroclimatic variabilities in the Himalaya.
Recently developed techniques in dendrochronol-
ogy, notably those that go beyond annual tree-ring
width (TRW) to consider intra-annual earlywood
width (EWW), latewood width (LWW), minimum
earlywood density (MND), maximum latewood
density (MXD) may be valuable. They may be
further aided by blue intensity (BI), quantitative
wood anatomy (QWA) and tree-ring stable isotope
(TRSI) analyses.

Maximum latewood density

Tree-ring width measurement has been considered as
the traditional method in dendrochronology for cli-
mate studies since the beginning of dendrochro-
nology (Fritts, 1976; Fritts et al., 1965). However,
more recently, the analysis of maximum latewood
density (MXD) has been recommended (Wilson
et al., 2014, 2021) and is providing substantial
amounts of paleoclimatic information as compared
with the TRW (Büntgen et al., 2017; Esper et al.,
2012; Wilson and Luckman, 2003). The method has
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become more popular with the development of x-ray
densitometry techniques for measuring wood density
(i.e. the ratio between the weight and volume of a
piece of wood) to micrometre precision (Pagotto
et al., 2017; Polge, 1970; Schweingruber et al.,
1978). The potential of wood density parameters
such as MXD for dendroclimatic research using
coniferous species was noted in the late 1990s in the
Himalaya (Borgaonkar et al., 2001; Hughes, 1992,
2001; Pant et al., 2000). Both theMXD andMND are
strongly influenced by pre-monsoon summer cli-
mate. For instance, the MXD of C. deodara from the
western Himalaya appears to be positively correlated
with pre-monsoon temperature (r = 0.39, p < .01)
and precipitation (r = 0.41, p < .01) between March
and May (Pant et al., 2000). Although the climatic
responses vary for different species and from place to
place, studies show that compared to MXD, the
MND records stronger climate signals in the western
Himalaya (Borgaonkar et al., 2001). In the Kashmir
valley, Hughes (2001) found that the relationship
between MXD and temperature became weaker from
the middle of the 20th century, but no long-term trend
was observed. Such trends of weakening growth-
climate relationship and shifting of climatic signals
may not be detectable using TRWor MXD at annual
resolutions. It creates an offset between the tree-ring
based reconstructed temperature and observed tem-
perature that is known as the divergence problem
(D’Arrigo et al., 2008). Much higher (e.g. intra-
annual) resolution studies are needed but are gen-
erally confined to restricted geographical locations in
the Himalaya. In the arid part of the Karakoram
region located in the western Himalaya, warmer
summer temperature has been shown to influence
intra-annual (both earlywood and latewood) growth
of Myricaria elengans (Dolezal et al., 2016). Their
study also recorded a similar trend of a weakening
growth-climate relationship (Hughes, 2001) and a
switching of the dominant climatic signals as the
result of rapid warming since the 1990s. Due to
climate and glacier fluctuations, such as a recent
trend of temperature warming and irregularities in
monsoon patterns, Himalayan trees may have
numerous missing or false rings (Cherubini et al.,
2003; Schweingruber et al., 1990). The latter
also known as intra-annual density fluctuations

(IADFs; (Battipaglia and Cherubini, 2022;
Battipaglia et al., 2010, 2014; Bräuning et al., 2016;
DeMicco et al., 2012, 2014; Singh et al., 2016). They
may also produce frost rings (LaMarche and
Hirschboeck, 1984; Nautiyal et al., 2019), which
develop when temperature goes below freezing point
for some time during the growing season. Under
freezing conditions, the outermost part of the weaker
cells of these rings break and create anatomical
deformities in the rings (Glerum and Farrar, 1966;
Harris, 1934). Unfortunately, not many studies have
analysed the anatomical deformities of frost rings,
false or missing rings and their relationships with the
climate in the Himalayan context. There are op-
portunities to measure not only TRW or MXD but
also EWW and LWW to understand climate dy-
namics (Nautiyal et al., 2019); and to identify
altitude-related switches between different kinds of
growth rate limitation, especially given the consid-
erable altitudinal ranges of the Himalaya (Dolezal
et al., 2019).

Blue intensity

The development of blue intensity (BI) analysis has
opened a new possibility to the community for un-
derstanding relationships between tree growth and
hydroclimate at much higher temporal resolution by
quantifying earlywood and latewood phases of tree-
ring growth during the growing season (Campbell
et al., 2011; McCarroll et al., 2002; Rydval et al.,
2014). The method of blue intensity captures the
reflectance of blue lights from the tree rings of the
scanned images (Rydval et al., 2014). The available
blue light in the surface of the rings is the result of
lignification of tracheid cells as a response to drought
and heat stress. Tracheid cells are the long, lignified
cells available in the xylem of vascular plants and
their primary purpose is to transport water through
the xylem; whereas lignification is the process of
depositing lignin (organic polymers) to strengthen
the plant vascular body. The BI technique follows
similar principles to the measurement of MXD.
However, one reason to use BI over the MXD
method is its cost-effectiveness and straight-forward
processing (Kaczka and Wilson, 2021; Wilson et al.,
2014). As a result, the BI measurement technique has
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now been incorporated into climate reconstructions
for temperature (Björklund et al., 2020; Frank and
Nicolussi, 2020; Rydval et al., 2014), and precipi-
tation (Seftigen et al., 2020) particularly for softwood
coniferous species (Schwab et al., 2018). However,
the potential of this technique is still unexplored in
the Himalaya. Schwab et al. (2018) conducted one of
the first studies using BI to analyse a century-long
growth-climate relationship in the treeline in Nepal,
central Himalaya. They found a significant negative
correlation of BI with mean winter temperature
(r = �0.43, p < .05) and positive correlation with
monthly standardised precipitation-evaporation in-
dex or SPEI (r = 0.46, p < .05) of the previous year.
This further showed that tree growth in the monsoon-
dominated belt of the Himalaya is mostly influenced
by moisture availability. In spite of the continuous
methodological development of BI, more studies are
needed to evaluate the range of blue intensity pa-
rameters such as the earlywood maximum blue in-
tensity (EWB), latewood minimum blue intensity
(LWB), as well as delta blue intensity (DB) for
various tree species (Wilson et al., 2021) across the
Himalaya not only for climatic but also for paleo-
hydrological analysis.

Quantitative wood anatomy

Dendroanatomy, most commonly called Quantitative
Wood Anatomy (QWA) is a recent development in

the field of dendrochronology and has recently be-
come a popular tool in the tree-ring community
(Pandey et al., 2018). QWA is a method for analysing
variations in the xylem anatomical features of trees,
shrubs and herbaceous species and the growth,
function and response to the environment (Von Arx
et al., 2016). The QWA has the ability to analyse cell-
to-cell growth disturbances at micro-level resolution
and to provide more detailed information such as the
timing and magnitude of lignification for BI-based
hydroclimatic reconstructions (Buckley et al., 2018).
Also the damages or changes in xylem structure (the
living cells that conduct water) produced by external
disturbances or geomorphic processes such as
landslides or snow avalanches (Stoffel and Corona,
2014) may be identified. The application of auto-
matic image processing techniques such as ROXAS
(Von Arx and Carrer, 2014) make the analysis of
quantitative data easier and faster (Fonti et al., 2009;
Von Arx et al., 2016). However, it needs very high
quality data at higher temporal and spatial resolu-
tions, as well as proper and intense sample collection
(Von Arx et al., 2016). There have been several
studies in the recent past that have considered the
response of different species to climate by using
anatomical deformities in the xylem structure
(Diaconu et al., 2017; Fonti et al., 2009; Pritzkow
et al., 2014). Also, by analysing the impacts on the
growth of vessel lumen area, the water conducting
tissue of plants which distinguishes hardwood from

Figure 5. Number of tree-ring papers over the years in parts of the Himalaya (a), and theme-based (b) over the
years.
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softwood, it is possible to identify anatomical re-
sponses after extreme events such as flash-floods or
rockfalls. In most cases those studies have been
limited to Europe, including Spain (Ballesteros et al.,
2010; Camarero and Ortega-Martı́nez, 2021), the
Netherlands (Copini et al., 2016), Sweden (Pritzkow
et al., 2014), Germany (Diaconu et al., 2017),
Switzerland (Gärtner-Roer et al., 2013), etc.

In terms of climate studies, only a few have applied
QWA in the Himalaya (Chauhan et al., 2022; Dolezal
et al., 2019; Li et al., 2021; Sharma et al., 2011). There
are no QWA based tree-ring studies available in re-
lation to natural hazards. However, given the fact that
an extreme flood event can damage the internal cell
structure of a tree, reducing the vessel lumen area from
40 to 70% (Ballesteros et al., 2010; Camarero and
Ortega-Martı́nez, 2021; Copini et al., 2016), it may be
a valuable method for palaeoflood analysis, particu-
larly in the Himalaya where there is a growing evi-
dence of severe flood risk relating to glacial lake
outburst and landslide dam breach floods.

Tree-ring stable isotopes

In addition to the above methodological develop-
ments, the biggest added value to the science of
dendrochronology may come from the analysis of
whole wood or cellulose extracted tree rings for their
stable isotope compositions (e.g. carbon, oxygen,
and hydrogen). A number of studies have now been
conducted using tree-ring stable isotopes (TRSI), but
these are confined primarily to the paleoclimatic
domain. Application of TRSI analyses to wider
questions, such as hydrological histories in rivers,
has been confined mostly to Europe (Battipaglia
et al., 2010; Bert et al., 1997; Kress et al., 2009;
Lehmann et al., 2021; Vitali et al., 2022) and
America (Belmecheri et al., 2014; Levesque et al.,
2019; Szejner et al., 2021; Van deWater et al., 2002).
Studies in Europe have shown how trees growing in
deglaciated areas downstream of glaciers can benefit
from glacial runoff closer to meltwater streams
(Leonelli et al., 2014). Measuring stable isotope
compositions, particularly δ18O and δ2H values, can
allow changing water sources to be traced in glaci-
erized river basins in high mountains. Leonelli et al.
(2014) measured the δ18O from tree-ring cellulose at

different locations (i.e. at the proximity and at the
distal to the proglacial stream) downstream of Miage
Glacier in Italy and found that trees accessing the
glacial meltwater had slightly lower (�0.9 ‰) δ18O
(i.e. mean �15.7 ‰) compared to the δ18O (i.e.
mean �15.2 ‰) of trees away from the proglacial
stream accessing rainwater and local snowmelt only.
A similar trend of decreasing δ18O values in the trees
at the proximity to the river in the downstream of
Forni Glacier in Italy also indicated climate change
induced higher glacial melt (Leonelli et al., 2019). In
South America, Vuaridel et al. (2019) analysed δ2H
and found similar results in Patagonia, as the trees
close to the proglacial stream (i.e. mean δ2H
of �154.5 ± 5.1 ‰) had the highest depletion of 2H
(�22.5 ‰) compared to the trees at higher elevation
away from the proglacial steam (mean δ2H�132.0 ±
3.7‰) in the Olguin glacier basin in Chile. This
depletion also increased with global warming indi-
cating higher proportions of glacier melt waters with
increasing average summer temperatures. In non-
glacierized river basins, unlike the trend of deple-
tion in isotopic values, there could be an increase in
isotopic composition over time related to increases in
temperature and precipitation, and human-
interference such as building dams on the stream
to interrupt natural glacier-meltwater flow.

In the Himalaya, besides the snow and glacier
meltwater contributions due to changing climate,
hydrology is strongly influenced by the Indian
Summer Monsoon (Boral et al., 2019). This alters
the stable isotopic compositions in Himalayan
rivers. Some efforts have been made to sample
Himalayan rivers in ways that allow identification
of different water sources such as precipitation,
lake and river water, groundwater (Ali et al., 2020;
Boral et al., 2019; Dubey et al., 2020; Kumar et al.,
2020; Verma et al., 2018). However, these studies
have not been able to reveal long-term temporal
changes in stable isotopic compositions over a
larger spatial scale. This is where the measurement
of TRSI is relevant and may help us to improve our
understanding about how different water sources
are changing. This would be a clear advance on
current studies of TRSI in the Himalaya which
focus upon the reconstruction of temperature and
precipitation, and which are mostly confined
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within the western and central part of the Hima-
laya. No studies have focused on the TRSI com-
positions at both annual (i.e. the annual ring-width)
and intra-annual (i.e. earlywood and latewood
ring-width) resolutions to deal with snow and
glacier meltwater contributions to changing water
sources in the Eastern Himalayan river basins.

Conclusion

The Himalaya Mountain Area is a climatically and
hydrologically complex mountain range with a very
large spatial extent, one intimately bound with so-
ciety through its influence on water resource avail-
ability and natural hazards. It is also a region where in
hydrological terms much still needs to be learned as
reliable instrumental records are relatively few given
the large extent of the Himalaya, its climatic com-
plexity and strong, spatial hydroclimatic gradients.
This is a primary motivation for developing appli-
cations of dendrochronology in the Himalaya, to
extend the geographical and historical coverage
beyond that of instrumental records. In this paper, we
have reviewed progress in the application of den-
drochronology of the Himalaya. We have shown that
significant understanding beyond the instrumental
records of temperature, precipitation and wider hy-
drological changes can be achieved through the
application of more traditional dendrochronological
approaches, as well as newly developed methods.
Studies have also tended to focus more on the
western and central Himalaya. More recent devel-
opments that are relatively rare include the analysis
of wood densities and anatomies, blue intensity, and
stable isotope studies. Given the potential for these
more recent methods and techniques to unravel intra-
annual understanding, combined with evidence in the
instrumental record of more subtle shifts in Hima-
layan climate (e.g. the timing of the onset of the
summer monsoon, moisture stress), the application
of such newer techniques is likely to be of significant
value. As such, dendrochronological research could
help improve hydroclimatic interpretations including
annual and seasonal temperature and precipitation
trends, runoff, changes in water sources and also
changing flood risk in the greater Himalaya region.
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anatomical analysis of Swiss willow (Salix helvetica)
shrubs growing on creeping mountain permafrost.
Dendrochronologia 31: 97–104. DOI: 10.1016/j.
dendro.2012.09.003.

Gaume E, Gaál L, Viglione A, et al. (2010) Bayesian
MCMC approach to regional flood frequency ana-
lyses involving extraordinary flood events at un-
gauged sites. Journal of Hydrology 394(2): 101–117.
DOI: 10.1016/j.jhydrol.2010.01.008.

Génova M, Dı́ez-Herrero A, Furdada G, et al. (2018)
Dendrogeomorphological evidence of flood fre-
quency changes and human activities (Portainé basin,
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He M, Bräuning A, Grießinger J, et al. (2018) May–June
drought reconstruction over the past 821 years on the
south-central Tibetan Plateau derived from tree-ring
width series.Dendrochronologia 47: 48–57. DOI: 10.
1016/j.dendro.2017.12.006.

Hill SA, Waterhouse JS, Field EM, et al. (1995) Rapid
recycling of triose phosphates in oak stem tissue.
Plant, Cell and Environment 18: 931–936. DOI: 10.
1111/j.1365-3040.1995.tb00603.x.

Hughes MK (1992) Dendroclimatic evidence from the
western Himalaya. In: Bradley RS and Jones PD (eds)
Climate since AD 1500. London: Routledge, 415.
DOI: 10.4324/9780203430996.

Hughes MK (2001) An improved reconstruction of sum-
mer temperature at Srinagar, Kashmir since AD 1660,
based on tree-ring width and maximum latewood
density of Abies pindrow [Royle] Spach. Journal of
Palaeosciences 50(3): 13–19. DOI: 10.54991/jop.
2001.1799.

Immerzeel WW, Van Beek LPH and Bierkens MFP (2010)
Climate change will affect the Asian water towers.
Science 328(5984): 1382–1385. DOI: 10.1126/
science.1183188.

Immerzeel WW, van Beek LPH, Konz M, et al. (2012)
Hydrological response to climate change in a glaci-
erized catchment in the Himalayas. Climatic Change
110(4): 721–736. DOI: 10.1007/s10584-011-0143-4.

Immerzeel WW, Pellicciotti F and Bierkens MFP (2013)
Rising river flows throughout the twenty-first century
in two Himalayan glacierized watersheds. Nature
Geoscience 6(9): 742–745. DOI: 10.1038/ngeo1896.

Immerzeel WW, Lutz AF, Andrade M, et al. (2020) Im-
portance and vulnerability of the world’s water
towers. Nature 577(7790): 364–369. DOI: 10.1038/
s41586-019-1822-y.

Irvine-Fynn TDL, Porter PR, Rowan AV, et al. (2017)
Supraglacial ponds regulate runoff from Himalayan
debris-covered glaciers. Geophysical Research Let-
ters 44(23): 11,894–11,904. DOI: 10.1002/
2017GL075398.

Islam N and Patel PP (2021) Inventory and GLOF hazard
assessment of glacial Lakes in the Sikkim Himalayas,
India. Geocarto International 37(13): 3840–3876.
DOI: 10.1080/10106049.2020.1869332.

Jarrett RD and England JF (2002) Reliability of Paleostage
indicators for paleoflood studies. In: House PK, Webb
RH, Baker VR, et al. (eds) In Ancient Floods, Modern
Hazards: Principles and Applications of Paleoflood
Hydrology. Water Science and Application. Wash-
ington DC: American Geophysical Union, 91–109.
DOI: 10.1029/ws005p0091.
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Panthi S, Bräuning A, Zhou Z-K, et al. (2017) Tree rings
reveal recent intensified spring drought in the central
Himalaya, Nepal. Global and Planetary Change 157:
26–34. DOI: 10.1016/j.gloplacha.2017.08.012.

Panthi S, Fan Z-X, van der Sleen P, et al. (2020) Long-term
physiological and growth responses of Himalayan fir
to environmental change are mediated by mean cli-
mate. Global Change Biology 26(3): 1778–1794.
DOI: 10.1111/gcb.14910.

Polge H (1970) The use of x-ray densitometric methods in
dendrochonology. Tree-Ring Bulletin 30(1–4): 1–10.

Pritzkow C, Heinrich I, Grudd H, et al. (2014) Relationship
between wood anatomy, tree-ring widths and wood
density of Pinus sylvestris L. and climate at high
latitudes in northern Sweden. Dendrochronologia 32:
295–302. DOI: 10.1016/j.dendro.2014.07.003.

Qazi NQ, Jain SK, Thayyen RJ, et al. (2019) Hydrology of
the Himalayas. In: Dimri A, Bookhagen B, Stoffel M,
et al. (eds)HimalayanWeather and Climate and Their
Impact on the Environment. Cham: Springer. DOI: 10.
1007/978-3-030-29684-1_21.

Quesada-Román A, Ballesteros-Cánovas JA, Granados-
Bolaños S, et al. (2020) Dendrogeomorphic recon-
struction of floods in a dynamic tropical river.
Geomorphology 359: 107133. DOI: 10.1016/j.
geomorph.2020.107133.

Quincey DJ, Richardson SD, Luckman A, et al. (2007)
Early recognition of glacial lake hazards in the Hi-
malaya using remote sensing datasets. Global and
Planetary Change 56(1–2): 137–152. DOI: 10.1016/j.
gloplacha.2006.07.013.

Ragettli S, Pellicciotti F, Immerzeel WW, et al. (2015)
Unraveling the hydrology of a Himalayan catchment
through integration of high resolution in situ data and
remote sensing with an advanced simulation model.
Advances in Water Resources 78: 94–111. DOI: 10.
1016/j.advwatres.2015.01.013.

Ram S (2012) Tree growth–climate relationships of conifer
trees and reconstruction of summer season palmer
drought severity index (PDSI) at Pahalgam in Sri-
nagar, India. Quaternary International 254: 152–158.
DOI: 10.1016/j.quaint.2011.09.026.

Ram S, Singh HN, Yadav RK, et al. (2020) Reconstruction
of potential evapotranspiration over western Hima-
laya in India based on tree ring-width records.
Quaternary International 547: 145–151. DOI: 10.
1016/j.quaint.2019.05.005.

Ram S, Pandey U and Srivastava MK (2022) Tree-ring
based runoff reconstruction for western Himalaya in
India during the last two centuries. Journal of the
Indian Academy of Wood Science 20: 12–17. DOI: 10.
1007/s13196-022-00308-5.

Ramesh R, Bhattacharya SK and Gopalan K (1985)
Dendroclimatological implications of isotope coher-
ence in trees from Kashmir Valley, India. Nature 317:
802–804. DOI: 10.1038/317802a0.

Ramesh R, Bhattacharya SK and Pant GB (1989) Climatic
significance of δD variations in a tropical tree species
from India. Nature 337(6203): 149–150. DOI: 10.
1038/337149a0.

Rao MP, Cook ER, Cook BI, et al. (2020) Seven centuries
of reconstructed Brahmaputra River discharge dem-
onstrate underestimated high discharge and flood
hazard frequency. Nature Communications 11: 6017.
DOI: 10.1038/s41467-020-19795-6.

Rastogi T, Singh J, Singh N, et al. (2023) Temperature
variability over Dokriani glacier region, western
Himalaya, India. Quaternary International 664:
33–41. DOI: 10.1016/j.quaint.2023.05.013.

Reis DS and Stedinger JR (2005) Bayesian MCMC flood
frequency analysis with historical information.
Journal of Hydrology 313(1–2): 97–116. DOI: 10.
1016/j.jhydrol.2005.02.028.

Roden JS, Lin G and Ehleringer JR (2000) A mechanistic
model for interpretation of hydrogen and oxygen
isotope ratios in tree-ring cellulose. Geochimica et
Cosmochimica Acta 64(1): 21–35. DOI: 10.1016/
S0016-7037(99)00195-7.

Rowan AV (2017) The ‘Little Ice Age’ in the Himalaya: a
review of glacier advance driven by Northern
Hemisphere temperature change. The Holocene
27(2): 292–308. DOI: 10.1177/0959683616658530.

Ruiz-Villanueva V, Dı́ez-Herrero A, Stoffel M, et al. (2010)
Dendrogeomorphic analysis of flash floods in a small
ungauged mountain catchment (Central Spain).
Geomorphology 118(3–4): 383–392. DOI: 10.1016/j.
geomorph.2010.02.006.

Ruiz-Villanueva V, Allen S, Arora M, et al. (2017) Recent
catastrophic landslide lake outburst floods in the
Himalayan mountain range. Progress in Physical
Geography: Earth and Environment 41(1): 3–28.
DOI: 10.1177/0309133316658614.
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