

Fusarium species, *Scedosporium* species, and *Lomentospora prolificans*: A systematic review to inform the World Health Organization priority list of fungal pathogens

Tina Marinelli [®]1,[†], Hannah Yejin Kim [®]2,^{3,4,†}, Catriona L. Halliday [®]5, Katherine Garnham [®]6, Olivia Bupha-Intr⁷, Aiken Dao [®]2,^{8,9}, Arthur J. Morris¹⁰, Ana Alastruey-Izquierdo [®]11, Arnaldo Colombo [®]12, Volker Rickerts [®]13, John Perfect [®]14, David W. Denning [®]15, Marcio Nucci [®]16, Raph L. Hamers [®]17,¹⁸, Alessandro Cassini [®]19,^{20,§}, Rita Oladele [®]21, Tania C. Sorrell [®]2,⁴, Pilar Ramon-Pardo [®]22, Terence Fusire [®]23, Tom M. Chiller [®]24, Retno Wahyuningsih [®]25,²⁶, Agustina Forastiero²², Adi Al-Nuseirat [®]27, Peter Beyer [®]28, Valeria Gigante [®]29, Justin Beardsley [®]2,³⁰, Hatim Sati [®]29,[‡], Jan-Willem Alffenaar [®]2,^{3,4,‡} and C. Orla Morrissey [®]31,^{*},[‡]

¹Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia

²Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, New South Wales, Australia

³Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, New South Wales, Australia

⁴Department of Pharmacy, Westmead Hospital, Westmead, New South Wales, Australia

- ⁵Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
- ⁶Department of Infectious Diseases and Microbiology, Gold Coast University Hospital, Southport, Queensland, Australia
- ⁷Department of Infection Services, Wellington Regional Hospital, Wellington, New Zealand
- ⁸Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
- ⁹Children's Hospital at Westmead, Westmead, New South Wales, Australia
- ¹⁰Department of Clinical Microbiology, Auckland City Hospital, Grafton, Auckland, New Zealand
- ¹¹Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- ¹²Departamento de Medicina, Division of Infectious Diseases, Hospital São Paulo, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- ¹³Robert Koch Institute Berlin, Berlin, Germany
- ¹⁴Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, North Carolina, USA

¹⁵Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK

- ¹⁶Universidade Federal do Rio de Janeiro and Grupo Oncoclinicas, Rio de Janeiro, Brazil
- ¹⁷Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- ¹⁸Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- ¹⁹Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland
- ²⁰Public Health Department, Lausanne, Switzerland
- ²¹Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria

²²Department of Communicable Diseases Prevention, Control and Elimination, Pan American Health Organization, Washington, District of Columbia, USA

- ²³South East Asia Region Office, World Health Organization, New Delhi, India
- ²⁴Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- ²⁵Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- ²⁶Department of Parasitology, Faculty of Medicine, Universitas Kristen, Jakarta, Indonesia
- ²⁷Department of Health Systems, World Health Organization, Regional Office of the Eastern Mediterranean, Cairo, Egypt
- ²⁸Global Antibiotics Research and Development Partnership, Drugs for Neglected Diseases Initiative, Geneva, Switzerland
- ²⁹AMR Division, World Health Organization, Geneva, Switzerland
- ³⁰Westmead Institute for Medical Research, Westmead, New South Wales, Australia

³¹Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia

*To whom correspondence should be addressed. Professor C. Orla Morrissey, MD, PhD, Department of Infectious Diseases, Alfred Health and Monash University, Level 2, Burnet Building, 85 Commercial Road, Melbourne, Victoria, Australia. Tel: +619076 5436. E-mail: orla.morrissey@monash.edu [†]Shared first authorship.

[‡]Shared last authorship.

[§]Previous employee of World Health Organization.

Received: September 20, 2023. Revised: November 1, 2023. Accepted: December 7, 2023

© The Author(s) 2023. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact <email>journals.permissions@oup.com

Abstract

Recognizing the growing global burden of fungal infections, the World Health Organization established a process to develop a priority list of fungal pathogens (FPPL). In this systematic review, we aimed to evaluate the epidemiology and impact of infections caused by *Fusarium* spp., *Scedosporium* spp., and *Lomentospora prolificans* to inform the first FPPL. PubMed and Web of Sciences databases were searched to identify studies published between January 1, 2011 and February 23, 2021, reporting on mortality, complications and sequelae, antifungal susceptibility, preventability, annual incidence, and trends. Overall, 20, 11, and 9 articles were included for *Fusarium* spp., *Scedosporium* spp., and *L. prolificans*, respectively. Mortality rates were high in those with invasive fusariosis, scedosporiosis, and lomentosporiosis (42.9%–66.7%, 42.4%–46.9%, and 50.0%–71.4%, respectively). Antifungal susceptibility data, based on small isolate numbers, showed high minimum inhibitory concentrations (MIC)/minimum effective concentrations for most currently available antifungal agents. The median/mode MIC for itraconazole and isavuconazole were ≥ 16 mg/l for all three pathogens. Based on limited data, these fungi are emerging. Invasive fusariosis increased from 0.08 cases/100 000 admissions to 0.22 cases/100 000 admissions over the time periods of 2000–2009 and 2010–2015, respectively, and in lung transplant recipients, *Scedosporium* spp. and *L. prolificans* were only detected from 2014 onwards. Global surveillance to better delineate antifungal susceptibility, risk factors, sequelae, and outcomes is required.

Key words: Fusarium, Scedosporium apiospermum, Lomentospora prolificans, invasive fungal disease, fungemia, antifungal resistance, mortality, epidemiology.

Introduction

Fusarium species (spp.), *Scedosporium* species (spp.), and *Lomentospora prolificans* are mycelial moulds classified as hyphomycetes. While phylogenetically and morphologically distinct, these pathogens have several similarities including their propensity to cause localized infections in immunocompetent hosts and disseminated infections in immunocompromised hosts. These fungi are difficult to treat, owing to intrinsic multidrug resistance, and are reported to be on the increase.^{1,2}

Fusarium spp. are ubiquitous in the environment and cause disease in plants, animals, and humans. The distribution of human disease is worldwide, and Fusarium has been reported as a hospital-acquired pathogen.³ While more than 70 species can cause fusariosis, F. solani species complex (SC) and F. oxysporum SC are responsible for 50%-60% and 20% of human cases, respectively.⁴⁻⁶Fusarium spp. typically enter the host through the airways or direct mucocutaneous inoculation, resulting in superficial (keratitis and onychomycosis), locally invasive (cellulitis, sinusitis), or disseminated infections (often with positive blood cultures).⁷ Dissemination is facilitated by adventitial sporulation and classically occurs in immunocompromised patients, especially those who are neutropenic or have impaired T-cell immunity. Prognosis is dependent on the immune status of the host, with poor survival seen in those with hematologic malignancies.⁸

Scedosporium spp. and L. prolificans are pathogenic fungi that survive in various environments, including sewage and decaying matter.9-11 The genus Scedosporium contains at least 10 species of which S. apiospermum and S. boydii are the most frequently isolated and distributed worldwide. Scedosporium aurantiacum is more common in parts of Europe and Australia, accounting for 50% of all environmental Scedosporium isolates.^{11,12}Lomentospora prolificans (formerly S. prolificans) is morphologically and phylogenetically distinct from Scedosporium spp. and occurs mainly in Australia, Spain, and the United States of America.^{12,13} In immunocompromised hosts, Scedosporium spp. and L. prolificans most commonly cause invasive fungal disease (IFD). Angioinvasion and adventitial sporulation in tissue facilitate dissemination, and blood cultures are frequently positive.^{14,15} Dissemination is more common in hematopoietic stem cell transplant (HSCT) recipients compared with solid organ transplant recipients (SOT), and the attributable mortality in those with acute leukemia is up to 77%.^{16,17} In immunocompetent hosts,

Scedosporium spp. can cause localized infection of the skin, muscles, bones, and joints, particularly following trauma and brain abscesses following near-drowning. Pulmonary colonization with *Scedosporium* spp. and *L. prolificans* is typically associated with structural lung disease, such as bronchiectasis and cystic fibrosis (CF), resulting in chronic inflammation and the potential for progression to IFD in those who go on to lung transplantation or develop a hematologic malignancy.^{12,18–20}

Given their increasing importance, this systematic review aimed to evaluate infections due to *Fusarium* spp., *Scedosporium* spp., and *L. prolificans* against a set of criteria: mortality, inpatient care, complications and sequelae, antifungal susceptibility, preventability, annual incidence, global distribution, and emergence in the 10 years from January 1, 2011 to February 23, 2021. The generated data identified knowledge gaps for *Fusarium* spp., *Scedosporium* spp., and *L. prolificans* informing the fungal priority pathogens list (FFPL) of the World Health Organization (WHO).²¹

Methods

Study design

A systematic review was performed using the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) Guidelines.²²

Inclusion and exclusion criteria

Studies were included if they reported data on the following: (a) adults and/or pediatric populations; (b) Fusarium spp., Scedosporium spp., or L. prolificans; (c) at least 1 criterion (mortality, inpatient care [hospital length of stay], complications/sequelae, antifungal susceptibility, preventability [preventive measures]), annual incidence, global distribution, and emergence [increasing in incidence or geographical range]) in the prior 10 years; (d) retrospective or prospective observational studies, randomized controlled trials, epidemiological or surveillance studies; and (e) were published between January 1, 2011 and February 23, 2021. Studies were excluded if they had/were: (a) non-human data only (animals and plants only); (b) non-fungal data only (bacteria, viruses, and parasites only); (c) no data on the relevant pathogens or criteria; (d) data on novel antifungals in pre-clinical studies or earlyphase trials or non-licensed antifungals only; (e) data on *in*

vitro resistance mechanisms only; (f) case reports or conference abstracts; (g) not in English; and (h) outside the study time frames.

Search strategy

We conducted a comprehensive search for studies published in English using the PubMed and Web of Science Core Collection databases between January 1, 2011 and February 23, 2021. On PubMed, the search was optimized using medical subject headings (MeSH) and/or keyword terms in the title/abstract for *Fusarium* spp., *Scedosporium* spp., or *L. prolificans* and each criterion. On the Web of Science, MeSH terms are not available, and therefore topic search (TS), title (TI), or abstract (AB) search was used. The final searches are detailed in the supplementary materials.

PubMed and related databases are underpinned by a standardized taxonomy database. Thus, using a species name as a search term retrieved articles containing obsolete or updated nomenclature.²³

Study selection

The final search results from each database were imported into the reference manager, Endnote[™], and the online systematic review software, Covidence® (Veritas Health Innovation, Australia), and duplicates were removed. The remaining articles underwent title and abstract screening based on the inclusion criteria, and no reasons were provided for excluding articles at this step. Then, full text screening was performed on the remaining articles to determine eligibility for inclusion, and the reasons for excluding any articles were recorded. The title/abstract screening and full text screenings were performed independently by (H.Y.K. and O.B.I. [Fusarium spp.], H.Y.K. and A.M. [Scedosporium spp.], H.Y.K. and J.B. [L. *prolificans*]) in Covidence[®]. Discrepancies were resolved by a third reviewer (J.W.A.). Any additional relevant articles identified from the reference lists of the included articles were added.

Data extraction

Data from the final set of eligible articles were extracted for each relevant criterion by the screening reviewers (H.Y.K. and J.B.) and were independently checked for accuracy by another reviewer (C.O.M.).

Risk of bias assessment

Risk of bias assessments were independently performed by two reviewers (H.Y.K. and C.O.M.) for the included studies. Risk of bias tools for randomized trials (ROB version 2) and non-randomized studies (RoBANS) were used for this assessment.^{24,25} For the overall risk, using the ROB 2 tool, the studies were rated low, high, or some concerns. Using the RoBANS tool, the studies were rated as low, high, or unclear risk.

This systematic review was intended to inform on specific criteria; therefore, we used each criterion as an outcome of the study and assessed if any bias was expected based on the study design, data collection, or analysis in that particular study. With this approach, studies classified as unclear or high overall risk were still considered for analysis.

Data synthesis

The extracted data on the outcome criteria were quantitatively (e.g., proportions [%], mean, median, range) analyzed or reported in the tables as text, depending on the amount and nature of the data.

Results

Study selection

Between January 1, 2011 and February 23, 2021, the PubMed and Web of Science Core Collection databases yielded 315 and 306 articles on *Fusarium* spp. (Fig. 1a), 210 and 251 articles on *Scedosporium* spp. (Fig. 1b), and 94 and 92 articles on *L. prolificans*, respectively (Fig. 1c). After excluding the duplicated and irrelevant articles, 40, 41, and 16 articles underwent full-text screening of which 20, 11, and 9 articles on *Fusarium* spp., *Scedosporium* spp., and *L. prolificans*, respectively, were deemed eligible for inclusion in the final analysis (Fig. 1a–c).

Risk of bias

The overall risk of bias for each study of Fusarium spp., Scedosporium spp., and L. prolificans is presented in Table 1. Five (25%) studies examining *Fusarium* spp. were classified as low risk of bias in the domains used for classification (i.e., study design, data collection, or data analysis). Fourteen (70%) studies on Fusarium spp. were classified as unclear risk of bias. This was because these studies did not define the eligibility criteria or population groups and/or consider the confounding variables (Supplementary Table 1). One (5%) study on Fusar*ium* spp. was classified as high risk, as isolates were randomly selected for molecular confirmation rather than specifically selected based on the clinical meta-data.²⁶ For Scedosporium spp., seven (63.6%) studies were classified as low risk of bias in the domains used for classification. Four (36.4%) studies on Scedosporium spp. were classified as unclear risk of bias related to unclear eligibility criteria or population groups and/or unclear confirmation/consideration of confounding variables (Supplementary Table 1). Four (44.4%) studies of L. prolificans were classified as low risk of bias in the domains used for classification, and three (33.3%) were classified as unclear risk of bias, all related to unclear eligibility criteria or population groups and/or unclear confirmation/consideration of confounding variables (Supplementary Table 1). Two studies (22.2%) by Seidel et al. were classified as high risk, as the studies included data from a mixed fungal registry and from the literature.^{27,28}

Analysis of the criteria

Mortality

Thirty-day mortality rates associated with invasive fusariosis ranged from 42.9% to 66.7% in three studies (Table 2).^{5,29,30} High rates were seen in cases where *F. solani* SC and *F. proliferatum* were isolated (66.7% and 62.5%, respectively).⁵ Perez-Nadales et al. demonstrated that 90-day mortality was significantly higher in neutropenic patients compared with non-neutropenic patients (38/58 [65.9%] vs. 17/58 [28.6%]; P = .01) (Table 2).¹ Four studies reported on mortality rates

Figure 1a. Flow diagram for selection of studies included in the systematic review of *Fusarium* species. Based on: Preferred Reporting Items for Systematic Review and Meta-Analyses: The PRISMA Statement.

associated with IFD due to *Scedosporium* spp. (Table 2). Day 42 mortality was 18.2% (6/33) in an analysis of cases from the FungiScope® registry (Table 2).²⁷ One study found a 90-day mortality rate of 46.3% (25/54), but this study did not differentiate between IFD due to *Scedosporium* spp. or *L. prolificans.*³¹ More recently, a French study reported a 90-day mortality rate of 18.6% (13/70) for invasive scedosporiosis (Table 2).³² IFD due to *L. prolificans* is associated with significantly higher mortality rates (11/22 [50%]) compared with scedosporiosis (6/33 [18.2%]) (P = .018),²⁷ which may explain the differences observed in the 90-day mortality rates

between the studies of Slavin et al. and Bronnimann et al. (Table 2). 31,32

Inpatient care, complications, and sequelae

We found no data on the length of hospital stay for infections due to *Fusarium* spp., *Scedosporium* spp. or *L. prolificans*. Four studies reported on the complications and sequelae of keratitis and corneal ulcers due to *Fusarium* spp. (Table 3). Corneal perforations were reported in up to 30.8% of patients with *Fusarium* keratitis.^{33,34} Surgical management with therapeutic penetrating keratoplasty was required in up to

Figure 1b. Flow diagram for selection of studies included in the systematic review of *Scedosporium* species. Based on: Preferred Reporting Items for Systematic Review and Meta-Analyses: The PRISMA Statement.

83.3%, $^{33-35}$ enucleation/evisceration was performed in 7/89 (7.8%), and 20 (22.5%) had a corneal transplant³⁶ (Table 3). No study reported on the complications or sequelae of infection due to *Scedosporium* spp. or *L. prolificans*.

Antifungal susceptibilities

Twelve (60%), four (36.4%), and four (44.4%) studies reported on the antifungal drug susceptibility profiles of *Fusarium* spp., *Scedosporium* spp., and *L. prolificans* isolates, respectively. The methods are summarized in Supplementary Table 2. Susceptibility data for azoles and other antifungal agents are outlined in Tables 4 and 5.

In most (8/12 [66.6%]) studies examining *Fusarium* spp., the isolates were obtained solely from superficial sites (Supplementary Table 2).^{26,35-41} Two studies (16.7%) examined isolates from both superficial sites and deep tissues, including the bloodstream.^{42,43} Only one (8.3%) study examined *Fusarium* isolates obtained solely from invasive/deep tissue infection.⁵ No origin for the *Fusarium* isolates was reported in one (8.3%) study (Supplementary Table 2).⁴⁴

No clinical breakpoints have been established for *Fusarium* spp., so resistance rates cannot be reported. Median/mode minimum inhibitory concentrations (MIC) or MIC₉₀ values were ≥ 16 mg/l for itraconazole and isavuconazole for the

Figure 1c. Flow diagram for selection of studies included in the systematic review of *Lomentospora prolificans*. Based on: Preferred Reporting Items for Systematic Review and Meta-Analyses: The PRISMA Statement.

most common *Fusarium* spp. (Table 4).^{5,39,41–43} Overall, median/mode MIC values for voriconazole were higher for *F. solani* SC than for non-*solani Fusarium* spp. (8 mg/l vs. 2– 8 mg/l) (Table 4).^{36,37,43} Oechsler et al. reported that the median voriconazole MIC value for *F. solani* SC was statistically significantly higher than for non-*solani Fusarium* spp. (16 vs. 4 mg/l; P < .001).³⁵ Posaconazole median/mode MIC values ranged from 8 to 16 mg/l for *F. solani* SC^{36,37,43} and were highly variable for non-*solani Fusarium* spp. (0.5– 16 mg/l)^{36,37,43} (Table 4).

The amphotericin B MIC values for *Fusarium* spp. were comparatively lower than those of azoles, with most (8/12

[66.7%]) studies describing median MIC, mode MIC, and MIC₉₀ values of 1–4 mg/l (Table 5).^{35–37,39–41,43} There was a trend toward higher median amphotericin B MIC values for *E solani SC* isolates as compared with nonsolani Fusarium spp. (P = .07) (Table 5).³⁵ Using our pre-specified criteria, we found very limited susceptibility data on echinocandins. One study reported median minimum effective concentration (MEC) values of 16 mg/l for caspofungin (Table 5).^{26,37} Median MIC values were high (>32 mg/l) for flucytosine and variable for natamycin (4– 16 mg/l).^{35,37,39} Limited data were available for terbinafine, with one study reporting MIC values of 0.5 and 4 mg/l

Medical Mycology, 2024, Vol. 62, No. 00

T 1 1		<u> </u>		C I .	C			c .	- ·		0 1					-	D 1.C.
labl	רב	()veral	I risk	of hias	s tor the	e includer	SELICIES	tor	Fusarium	snecies	Scedos	noriiim s	SNACIAS	and	l omentosn	ora F	rolificans
10.01			11101	or brut			otaaloo	101	i abanann c	pooloo,	0000000	pontanni c	pooloo,	anai	Lonnontoop	oru r	ronnouno

Author	Year	Risk	Reference
Fusarium species			
Al-Hatmi et al.	2015	Unclear	[85]
Broutin et al.	2020	Unclear	[42]
dos Santos et al.	2020	Unclear	[36]
dos Santos et al.	2019	Unclear	[37]
Espinel-Ingroff et al.	2016	Unclear	[43]
Galletti et al.	2015	Unclear	[38]
Guevara-Suarez et al.	2016	Unclear	[86]
Gupta et al.	2016	High	[26]
Hassan et al.	2016	Unclear	[39]
He et al.	2017	Unclear	[40]
Homa et al.	2013	Unclear	[87]
Manikandan et al.	2019	Unclear	[41]
Oechsler et al.	2013	Low	[35]
Pérez-Nadales et al.	2021	Unclear	[1]
Prajna et al.	2017	Low	[33]
Prajna et al.	2012	Low	[34]
Tortorano et al.	2014	Unclear	[5]
Triest et al.	2015	Unclear	[44]
Varon et al.	2016	Low	[29]
Varon et al.	2014	Low	[30]
Scedosporium species			
Alvarez-Uria et al.	2020	Low	[51]
Bronnimann et al.	2021	Low	[32]
Castanheira et al.	2012	Unclear	[47]
Chang et al.	2019	Low	[52]
Lackner et al.	2014	Unclear	[48]
Lackner et al.	2012	Unclear	[45]
Larcher et al.	2021	Low	[53]
Sedlacek et al.	2015	Unclear	[46]
Seidel et al.	2020	Low	[27]
Slavin et al.	2015	Low	[31]
Vazirani et al.	2021	Low	[2]
Lomentospora prolificans			
Jenks et al.	2020	Low	[68]
Lackner et al.	2011	Unclear	[49]
Schwarz et al.	2019	Low	[54]
Schwarz et al.	2017	Low	[55]
Sedlacek et al.	2015	Unclear	[46]
Seidel et al.	2020	High	[27, 28]
Seidel et al.	2019	High	[28]
Vazirani et al.	2021	Low	[2]
Wu et al.	2020	Unclear	[50]

for F. oxysporum SC and F. solani SC, respectively (Table 5).³⁸

Scedosporium spp. drug susceptibilities were predominantly reported for *S. apiospermum* and *S. boydii* (Tables 4 and 5).^{32,45,46} Most (3/4 [75%]) studies were laboratory-based surveillance studies involving North and South America and several European countries (Table 4 and Supplementary Table 2).^{45–47} Castanheira et al. compared Clinical and Laboratory Standards Institute with European Committee on Antimicrobial Susceptibility Testing broth microdilution methods and showed highly concordant results between the two methods (essential agreement 96.3%–100%) (Tables 4 and 5).⁴⁷

MIC₉₀ values for isavuconazole and itraconazole were $\geq 16 \text{ mg/l}$ and 2 to $\geq 16 \text{ mg/l}$ for *S. apiospermum* and *S. boydii*, respectively (Table 4).^{32,45,46} MIC₉₀ values for posaconazole were variable and were as high as $\geq 16 \text{ mg/l}$; although, some studies reported lower values of 2–4 mg/l (Table 4).^{32,45,46} Voriconazole showed the lowest MIC₉₀ values out of all the azoles tested, ranging from 0.5 to 2 mg/l (Table 4).^{32,45,46}

MIC₅₀ and MIC₉₀ values for amphotericin B were high, mostly ranging between 8 and >16 mg/l for both *S. apiospermum* and *S. boydii* (Table 5). MEC₉₀ for the echinocandins was as high as 8–16 mg/l, although lower values (MIC₉₀ or MEC₉₀ of 1–4 mg/l) were reported in some studies (Table 5).^{32,45,46} Lackner et al. observed cross-resistance within *S. apiospermum* and *S. boydii* between the different azoles (Spearman's rank coefficient of 0.37–0.77; P < .0001), and between the different echinocandins (Spearman's rank coefficient of 0.66–0.90; P < .0001), but not between azoles and echinocandins.⁴⁵ Furthermore, Lackner et al. observed two sub-populations of MIC distribution (rather than a normal distribution) for all drugs except voriconazole, and no predictable antifungal resistance pattern between species.^{45,48}

Each of the *L. prolificans* antifungal susceptibility studies included small numbers of isolates ranging from 6 to 42, with only two (50%) studies reporting on more than 30 isolates (Tables 4 and 5).^{28,46,49,50} Due to the lack of established clinical breakpoints, rates of resistance were not determined, and only MIC or MEC results were reported. Both Wu et al. and

	Lomentospora proliticans.	
	, and L	
	Scedosporium species	
	pecies,	
	-usarium s	
	lue to /	
:	disease c	
	tungal	
	nvasive	
	/ trom L	
	VIortality	

Table 2. Mortality from invasiv	'e fungal disea	se due to <i>Fusarium</i> s _k	secies, <i>Scedosporium</i> ,	r species, and <i>Lome</i>	ntospora prolificans.			
Author	Year	Study design	Study period	Country	Level of care	Population description (N)	Number of patients with pathogen (N)	Mortality type <i>n/N</i> (%)
F <i>usarium</i> species Perez-Nadales et al. ¹	2021	RCS MC	2000-2015	Spain	Tertiary	Patients with invasive fusariosis	5	90-day mortality: Overall mortality: 33/58 (56.9%) Overall mortality statistically significantly higher in neutropenic patients c/w non-neutropenic patients: 38/58 (65.9%) vs.
Tortorano et al. ⁵	2014	RCS MC	2007-2008	Italy, Serbia, Greece, Czeck/Slovak Republic, Norway, Sweden, Turkey	Tertiary	Patients with hematological malignancy, hematological diseases, HSCT, or solid organ cancer and proven/probable	26	 F = .01 30-day mortality: 30-day mortality: 22/48 (46%) Fusarium solani: 6/9 (66.7%) Fusarium Fusarium: proliferatum: 10/16 (62.5%)
Varon et al. ²⁹	2016	PCS SCS	2008-2014	Brazil	Tertiary	Patients with hematological malignancy, HSCT, or on immunosuppression (211)	211 Observation period: 6/54 (11%) Intervention period: 8/157 (5.1%) No statistically significant difference: ($P = .20$)	30-day mortality: Overall cohort: 12.1% Invasive fusariosis: 6/14 episodes (42.9%) Non-invasive: 23/225 episodes (10.2%) Statistically significant difference: 07.0
Varon et al. ³⁰	2014	PCS SCS	2008-2009	Brazil	Tertiary	Patients with hematological malignancy, hematological diseases, HSCT or on immunosuppression (61)	Invasive fusariosis: 6/61 (9.8%)	4/6 (66.7%)

Author	Year	Study design	Study period	Country	Level of care	Population description (N)	Number of patients with pathogen (N)	Mortality type n/N (%)
<i>Scedosporium</i> species Bronnimann et al. ³²	2021	RCS MC	2005–2017	France	Tertiary	Patients with proven/probable invasive scedosporiosis or lomentosporiosis* (90)	76	30-day mortality: 7/75 (9.3%) 3-month mortality: 13/70 (18.6%) 3-month mortality significantly higher in patients with malignancy: 15/32 (46.9%) vs. $6/51$
Seidel et al. ²⁷	2020	RCS MC	1990–2019	Argentina, Australia, Australia, Australa, Belgium, Canada, France, Germany, Greece, India, Italy, Mexico, New Zealand, Portugal, Russia, South Korea, Spain, United Kingdom, United Kingdom,	SZ	Patients ≤18 years with proven/probable invasive scedosporiosis or lomentosporiosis (55)	Invasive <i>Scedosporium</i> spp. disease: 33	(0.000) (0.0
Slavin et al. ³¹	2015	RCS MC	2004–2012	Australia	Tertiary	Patients with proven/probable non-Aspergillus mould disease (162)	Invasive <i>Scedosporium</i> spp. disease: 25	90-day mortality: 25/54 (46.3%) ^{\$}

uthor	Year	Study design	Study period	Country	Level of care	Population description (N)	Number of patients with pathogen (N)	Mortality type <i>n/N</i> (%)
omentospora prolificans enks et al. ⁶⁸	2020	MC	January 2008-September 2019	Australia (n = 17), United States (n = 11), Germany (n = 8), (n = 8), (n = 5)	Mixed	Patients proven/probable IFD due to <i>Lomentospora</i> <i>prolificans</i> ^{&}	4	IFD-attributable mortality: 21/40 (5.5.5%) Statistically significant increase in 28-day survival in those who received combination therapy cw monoherapy: 15/24 (62.5%) vs. 4/16 (25%); P = .027 P = .027 P = .027 P = .027 P = .027 Day 84 and 360 survival in those treated with voriconazole and terbinafine as cw any other antifungal regimen: Log rank $P = .024$ and
idel et al. ²⁷	2020	MC	1990–2019	Australia, Brazil, France, India, South Korea, Spain, Sweden, United Kingdom, United States	SZ	Patients ≤18 years with proven/probable invasive scedosporiosis or lomentosporiosis [#] (55)	Lomentospora prolificans: 22	039, respectively Day 42 mortality in patients with invasive <i>Lomentospora</i> <i>prolificans</i> disease: 11/22 (50%) Statistically significantly higher than in those with invasive <i>Scedosporium</i> spp. disease: 11/22 (50%) vs. 6/33 (18.2%); P = .018 All Ml All immunocompromised patients died within 42 days of the diagnosis of invasive disease due to <i>Lomentospora</i> <i>prolificans</i> .

Author	Year	Study design	Study period	Country	Level of care	Population description (N)	Number of patients with pathogen (N)	Mortality type <i>n/N</i> (%)
Seidel et al. ²⁸	2019	RCS MC	January 2000– August 2017	Australia, Japan, Umited States, Spain, France, Germany, India, India, India, India, Trance, Brazil, Poland	Mixed	Patients with proven/probable invasive scedosporiosis or lomentosporiosis (273)	Lomentospora prolificans (56)	Day 42 mortality: Immunocompromised: 59% Immunocompetent: 17.6% Statistically significant difference P = .004 Day 42 mortality in those with a malignancy: 71.4% 90% of those with a hematological malignancy fungemia

⁴ If patient had evidence at baseline of skin lesion(s) infected with *Fusarium* species, then patient was started on or changed to voriconazole or posaconazole prophylaxis *Based on isolates already characterized at National Reference Center for Invasive Mycoses and Antifungals (NRCMA).
^{*} If patient had evidence at baseline of skin lesion(s) infected with *Fusarium* species, then patient was started on or changed to voriconazole or posaconazole prophylaxis *Based on isolates already characterized at National Reference Center for Invasive Mycoses and Antifungals (NRCMA).
^{*} Scedosporium species and Lomentospora prolificans combined.
^{*} Scedosporium, France, Italy, The Netherlands, and Spain.
^{*} Identified from the FungiScope[®] Registry.

sarium species.
ue to Fu
nfection du
quelae of i
s and sec
Complication
Table 3.

Author	Year	Study design	Study period	Country	Level of care	Population description (N)	Complications and sequelae
dos Santos et al. ³⁶	2020	RCS MC	2005-2016	NL	NS	Patients with <i>Fusarium</i> keratitis (89)	Corneal transplantation: 20 (22.5%) Enucleation/evisceration: 7 (7.8%)
Oechsler et al. ³⁵	2013	RCS SCS	May 2005-June 2007	ASU	Tertiary	Patients with Fusarium keratitis (52)	Fusarium solani vs. non-solani Fusarium: Follow-up BCVA: 20/118 vs. 20/36 Therapeutic penetrating keratoplasty: 7 vs. 0
Prajna et al. ³³	2017	Pre-specified analysis of RCT [#] MC	May 2010–November 2015	India, Nepal, USA	Tertiary	Patients with fungal corneal ulcers and visual acuity ≤20/400 (72/240 culture positive for <i>Fusarium</i>) (240)	Corneal perforations: Total: 19 (26.4%) Placebo arm: 12/33 (30.8%) Oral voriconazole arm; 7/39 (17.9%) Therapeutic penetrating keratoplasty:
Prajna et al. ³⁴	2012	Pre-specified analysis of RCT# MC	November 2007–May 2008	USA India	Tertiary	Patients with fungal corneal ulcers (120)	15/19 (68.4%) Fusarium Corneal perforations: Topical voriconazole group: 6/23 ($26.1%$) Topical natamycin group: 1/21 ($4.8%$) OR 33.4 (95% CI 1.16-96.2.9; $P = .041$) Therapeutic penetrating keratoplasty: Topical voriconazole group: 5/6 ($83.3%$) Topical natamycin group: 1/6 ($16.7%$)

N, number; RCS, retrospective cohort study; MC, multicenter; NL, Netherlands; NS, not stated; SCS, single-center study; USA, United States of America; BCVA, best corrected visual acuity; RCT, randomized controlled trial; OR, odds ratio; CI, confidence interval. #Analysis pre-specified in a randomized trial comparing natamycin to voriconazole for the treatment of fungal keratitis (⁸⁸)

Table 4. Susceptibility testing	of Fusarium specie	es, <i>Scedosporium</i> spec	sies, and <i>Lomentospora prolificans</i> to	azole antifungal agents.		
Author	Year	MIC determination method	Isavuconazole	Itraconazole	Posaconazole	Voriconazole
Fusarium species Broutin et al. ⁴²	2020	EUCAST	Fusarium fujikuroi: (n = 31) MIC $(\mu g/ml)$ GM: 13.68 MIC ₅₀ : > 16 MIC ₅₀ : > 16 Fusarium solani SC: (n = 22) MIC $(\mu g/ml)$ GM: 14.02 MIC $(\mu g/ml)$ GM: 14.02 MIC ₅₀ : > 16 MIC ₅₀ : > 16 MIC ₅₀ : > 16 MIC ₅₀ : > 16 MIC ₅₀ : > 16 SC: MIC ₅₀ : > 16 MIC ₅₀ : > 16			
			(n = 17) MIC (µmg/ml) GM: 9.41 MIC ₅₀ : 8 MIC ₉₀ : >16			
dos Santos et al.* ³⁶	2020	EUCAST			Fusarium solani SC: (n = 32) MIC (mg/l) Mode: 16 Fusarium oxysporum SC: (n = 22) MIC (mg/l) MIC (mg/l) Mode: 16 Fusarium fujikuroi SC:	Fusarium solani SC: (n = 32) MIC (mg/l) Mode: 8 Range: 4-16 Fusarium oxysporum SC: (n = 22): MIC (mg/l) Mode: 4
					(n = 15) MIC (mg/l) Mode: 16 Range: 0.25–16	Range: $2-16$ <i>Fusarium fujikuroi</i> SC: (n = 15) MIC (mg/l) Mode: 4 Range: $1-8$

	;	MIC determination			-	-
Author	Year	method	Isavuconazole	Itraconazole	Posaconazole	Voriconazole
dos Santos et al.* ³⁷	2019	EUCAST			Fusarium solani SC:	Fusarium solani SC:
					(n = 43)	(n = 43)
					MIC (mg/l)	MIC (mg/l)
					Median: 16	Median: 8
					Range: 8–16	Range: 4–16
					Fusarium oxysporum SC:	Fusarium oxysporum SC:
					(n = 24):	(n = 24):
					MIC (mg/l)	MIC (mg/l)
					Median: 16	Median: 4
					Range: 16	Range: 2–16
					Fusarium fujikuroi SC:	Fusarium fujikuroi SC:
					(n = 16)	(n = 16)
					MIC (mg/l)	MIC (mg/l)
					Median: 2	Median: 4
					Range: 0.25–16	Range: 1–8
					Fusarium dimerum SC:	Fusarium dimerum SC:
					(n = 12)	(n = 12)
					MIC (mg/l)	MIC (mg/l)
					Median: 16	Median: 8
					Range: 1–16	Range: 2–8

		MIC				
Author	Year	method	Isavuconazole	Itraconazole	Posaconazole	Voriconazole
				,		,
Espinel-Ingroff et al. ⁴⁵	2016	CLSI		Fusarium solani SC:	Fusarium solani SC:	Fusarium solani SC:
				(n = 338)	(n = 357)	(n = 555)
				MIC (µg/ml)	MIC (µg/ml)	MIC (µg/ml)
				Mode: 16	Mode: 8	Mode: 8
				Range: 0.5 to >16	Range: 1 to >16	Range: $0.5 \text{ to } > 16$
				Fusarium oxysporum SC:	Fusarium oxysporum SC:	Fusarium oxysporum SC:
				(n = 148)	(n = 148)	(n = 200)
				MIC (µg/ml)	MIC (µg/ml)	MIC (µg/ml)
				Mode: 16	Mode: 2	Mode: 4
				Range: 1 to >16	Range: $0.5 \text{ to } > 16$	Range: $0.5 \text{ to } > 16$
				Fusarium verticillioides:	Fusarium verticillioides:	Fusarium verticillioides:
				(n = 96)	(n = 113)	(n = 143)
				MIC (µg/ml)	MIC (µg/ml)	MIC (µg/ml)
				Mode: 16	Mode: 0.5	Mode: 2
				Range: 1 to >16	Range: ≤ 0.25 to >16	Range: $0.5 \text{ to } > 16$
				Fusarium proliferatum:	Fusarium proliferatum:	Fusarium proliferatum:
				(n = 60)	(n = 49)	(n = 74)
				MIC (µg/ml)	MIC (µg/ml)	MIC (µg/ml)
				Mode: 16	Mode: 2	Mode: 4
				Range: 1 to >16	Range: 1 to >16	Range: 1 to >16
				Fusarium dimerum SC:	Fusarium dimerum SC:	Fusarium dimerum SC:
				(n = 45)	(n = 48)	(n = 53)
				MIC (µg/ml)	MIC (µg/ml)	MIC (µg/ml)
				Mode: 16	Mode: 8	Mode: 8
				Range: 1 to >16	Range: $0.5 \text{ to } > 16$	Range: 1–16
				Fusarium	Fusarium	Fusarium
				incarnatum–Fusarium	incarnatum-Fusarium	incarnatum–Fusarium
				equiseti SC:	equiseti SC:	equiseti SC:
				(n = 20)	(n = 19)	(n = 20)
				MIC (µg/ml)	MIC (µg/ml)	MIC (µg/ml)
				Mode: 8	Mode: 4	Mode: 4
				Range: 1 to >16	Range: 0.5–16	Range: $0.5 \text{ to } > 16$
Gupta et al. ^{#26}	2016	CLSI			MIC (µg/ml)	MIC (µg/ml)
					Range: 0.5 to >16	Range: 1–8

		MIC determination				
Author	Year	method	Isavuconazole	Itraconazole	Posaconazole	Voriconazole
Hassan et al.* ³⁹	2016	CLSI M38-A2		Fusarium solani SC: (n = 54)		Fusarium solani SC: $(n = 54)$
				MIC (µg/ml) Median: 16		MIC (µg/ml) Median: 4
Manikandan et al.* ⁴¹	2019	CLSI		Range: 2–32 Fusarium spp.:		Range: 0.5–8 Fusarium spp.:
				(n = 200)		(n = 200) MIC (mo/ml)
				MIC_{50} : 32		MIC_{50} : 4
				MIC ₉₀ : 32		MIC ₉₀ : 8
<u></u>	2012			Kange: 4–32		Kange: $1-8$
Occusier et al.	C107	CT3I				rusarum soum $(n = 44)$
						MIC (µg/ml)
						MIC_{50} : 16
						MIC ₉₀ : 16
						Range: 4 to >16 (on $n = 15$
						only)
						Non-solani Fusarium spp.
						(n = 14)
						MIC (µg/ml)
						MIC_{50} : 4
						MIC_{90} : 4
						Range: 2 to >16 (on $n = 12$
						only)
						Statisitcally significant
						difference in median MIC:
						16 vs. 4: P < .001

16

Author	Year	MIC determination method	Isavuconazole	Itraconazole	Posaconazole	Voriconazole
Tortorono et al 5	2014	ETICACT		Eucomina troliforation.	Eucarium troliforatium.	Eucarium tradiforatium.
TULULATIO EL AL.	L107	TOUNDI		(n - 16)	1 usanum promenum: (n — 16)	(n-16)
				MIC (mg/l)	MIC (mg/l)	MIC (mg/l)
				GM: 12.88	GM: 5.91	GM: 6.44
				MIC_{50} : ≥ 16	$MIC_{50} \ge 16$	MIC ₅₀ : 8
				MIC_{90} : ≥ 16	MIC_{90} : ≥ 16	$MIC_{90} \ge 16$
				Range: 1 to ≥ 16	Range: 025 to ≥ 16	Range: 2 to ≥ 16
				Fusarium verticillioides:	Fusarium verticillioides:	Fusarium verticillioides:
				(n = 15)	(n = 15)	(n = 15)
				MIC (mg/l)	MIC (mg/l)	MIC (mg/l)
				GM: 1.74	GM: 0.35	GM: 1.20
				MIC_{50} : 1	MIC_{50} : 0.25	MIC ₅₀ : 1
				MIC ₉₀ : 2	$MIC_{90}: 0.5$	MIC ₉₀ : 2
				Range: 1 to ≥ 16	Range: 0.25–0.5	Range: 0.5–2
				Fusarium solani:	Fusarium solani:	Fusarium solani:
				(n = 14)	(n = 14)	(n = 14)
				MIC (mg/l)	MIC (mg/l)	MIC (mg/l)
				GM: 16.00	GM: 13.79	GM: 13.12
				MIC_{50} : >16	MIC_{50} : >16	MIC_{50} : >16
				$MIC_{90} \ge 16$	$MIC_{90} \ge 16$	$MIC_{90} \ge 16$
					Range: 1 to ≥ 16	Range: 4 to ≥ 16
Triest et al. ^{\$44}	2015	EUCAST				Fusarium oxysporum SC:
		E.DEF 9.1				(n = 47)
						MIC_{100} (µg/ml)
						Range: 4 to >16
						Fusarium verticillioides:
						(n = 39)
						MIC_{100} (µg/ml)
						Range: 2 to >16
						Fusarium solani:
						(n = 21)
						MIC ₁₀₀ (μg/ml <u>)</u>
						Range: 2 to >16
						Fusarium dimerum SC:
						(n = 17)
						MIC_{100} (µg/ml)
						Range: 4–16
						Fusarium proliferatum:
						(n = 16)
						$MIC_{100} (\mu g/m]_{1}$
						Range: 2 to >16

Author	Year	MIC determination method	Isavuconazole	Itraconazole	Posaconazole	Voriconazole
<i>Scedosporium</i> species Bronnimann et al. ³²	2021	EUCAST [†]		Scedosporium apiospermum: (n = 48) MIC (mgl)	Scedosporium apiospermum: (n = 48) MIC (mg/l)	Scedosporium apiospermum: (n = 48) MIC (mg/l)
				MIC ₅₀ : 1 MIC ₉₀ : 1 Range: $0.25-16$ Scedosporium boydii: (n = 15) MIC (mg/l) MIC ₅₀ : 0.5 MIC ₅₀ : 2 Range: $0.125-16$	$\begin{array}{c} \operatorname{MIC}_{50:1} \\ \operatorname{MIC}_{50:2} \\ \operatorname{Range:} 0.25-2 \\ \operatorname{Scedosporium} boydii: \\ (n = 15) \\ \operatorname{MIC} (mg/l) \\ \operatorname{MIC}_{50:0} \\ \operatorname{MIC}_{50:16} \\ \operatorname{Range:} 0.15-16 \end{array}$	MIC ₅₀ : 0.5 MIC ₉₀ : 1 Range: $0.06-2$ <i>Scedosporium boydii</i> : (n = 15) MIC (mg/l) MIC ₅₀ : 0.25 MIC ₉₀ : 0.5 Range: $0.25-0.5$
Castanheira et al. ⁴⁷	2012	CLSI EUCAST		Scenesor or the second	Seedos portum spp.: (n = 63) MIC/MEC (µg/ml) range: CLSI: 0.5 to >8 EUCAST: 0.5 to >8 %EA: 96.8 %EA: 96.8 Seedos portum a pios permum: (n = 28) MIC/MEC (µg/ml) range: CLSI: 0.5 to >8 CLSI: 0.5 to >8 (n = 28)	Scedosportum spp.: (n = 63) MIC/MEC (µg/ml) range: CLSI: 0.25 to >8 EUCAST: 0.25 to >8 %EA: 98.8 %EA: 98.8 Scedosportum apiospermum: (n = 28) MIC/MEC (µg/ml) range: CLSI: 0.25 to >8 CLSI: 0.25 to >8 MIC/MEC (µg/ml) range: CLSI: 0.25 to >8 MIC/MEC (µg/ml) range: MIC/MEC (µg/ml) range: CLSI: 0.25 to >8 MIC/MEC (µg/ml) range: MIC/MEC (µg/ml) range: CLSI: 0.25 to >8 MIC/MEC (µg/ml) range: MIC/MEC (µg/ml) range:
Lackner et al. ⁴⁵	2012	CLSI M38-A2	Scedosporium apiospermum: (n = 124) MIC (µg/ml) GM: 7.1 MIC ₅₀ : 8 MIC ₅₀ : 8 MIC ₅₀ : 8 Range: 1 to >16 Scedosporium boydii: (n = 44) MIC (µg/ml)	$\begin{aligned} & \label{eq:constraint} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$	buckash: 0.5 to > 8 %EA: 96.3 Scedosporium apiospermum: ($n = 124$) MIC (μg /ml) GM: 2.0 MIC $_{50}$: 16 MIC $_{50}$: 16 Range: 0.25 to > 16 Scedosporium boydii: ($n = 44$) MIC (μg /ml)	buccash: 0.25 to > 8 %EA: 100 Scedosporium apiospermum: ($n = 124$) MIC (μg /ml) GM: 0.9 MIC $_{50}$: 1 MIC $_{50}$: 2 Range: 0.25 to > 8 Scedosporium boydii: ($n = 44$) MIC (μg /ml)
			GM: 5.8 MIC ₅₀ : 8 MIC ₉₀ : 16 Range: 0.5 to >16	GM: 11.8 MIC ₅₀ : > 16 MIC ₉₀ : > 16 Range: 0.125 to >16	GM: 1.5 $MIC_{50}: 1$ $MIC_{90}: > 16$ Range: 0.125 to > 16	GM: 0.7 MIC ₅₀ : 0.5 MIC ₉₀ : 2 Range: 0.125–2

Author	Year	MIC determination method	Isavuconazole	Itraconazole	Posaconazole	Voriconazole
Sedlacek et al. ¹⁴⁶	2015	CLSI M38-A2 [‡]		Scedosporium apiospernum: (n = 52) MIC (µg/ml) GM: 10.3 MIC ₉₀ : >16 Range: 1 to >16 Scedosporium boydii: (n = 34) MIC (µg/ml) GM: 7.8 MIC ₉₀ : >16 Range: 1 to >116 Range: 1 to >116	Scedosporium apiospermum: (n = 52) MIC (µg/ml) GM: 2.6 MIC ₉₀ : >16 Range: 0.5 to >16 Scedosporium boydii: (n = 34) MIC (µg/ml) GM: 1.8 MIC (µg/ml) GM: 1.8 MIC ₉₀ : 4 Range: 0.5 to >16	Scedosporium apiospernum: (n = 52) MIC (µgml) GM: 1.05 MIC ₉₀ : 2 Range: 0.5–4 Scedosporium boydii: (n = 34) MIC (µgml) GM: 0.85 MIC ₉₀ : 1 Range: 0.5–2
<i>Lomentospora protificans</i> Lackner et al. ⁴⁹	2011	CLSI M38-A2	(n = 34) MIC (µg/ml) GM: 5.8 MIC50: 8 MIC50: 16 Range: 0.5 to >16	(n = 34) MIC (µg/ml) GM: 5.8 MIC ₅₀ : 5.8 MIC ₅₀ : 16 Range: 0.5 to >16	(n = 34) MIC (µg/ml) GM: 5.8 MIC ₅₀ : 8 MIC ₅₀ : 16 Range: 0.5 to >16	(n = 34) MIC (µg/ml) GM: 5.8 MIC ₅₀ : 8 MIC ₅₀ : 16 Range: 0.5 to > 16
Sedlacek et al. ^{¶46}	2015	CLSI M38-A2 [‡]		(n = 12) MIC (µg/ml) GM: 32.0 MIC ₉₀ : > 16 Banes: > 16	(n = 12) MIC (µg/ml) GM: 32.0 MIC ₉₀ : >16 Banger >16	(n = 12) MIC (µg/ml) GM: 30.2 MIC90: >16 Range: 16 to >16
Seidel et al. ²⁸	2019	CLSI EUCAST		(n = 51) MIC (mg/l) Median: 16 IOR: 16–32	(<i>n</i> =-10) MIC (mg/l) Median: 32 IOR: 28–32	(n = 17) MIC (mg/l) Median: 8 IOR: 6-16
Wu et al. ⁵⁰	2020	CLSI	(n = 42) MIC $(\mu g/m)$ GM: 28.51 MIC ₅₀ : >16 MIC ₉₀ : >16 Median: >16 Mode: >16	(n = 42) MIC (µg/ml) GM: 30.97 MIC ₅₀ : > 16 MIC ₉₀ : > 16 Median: > 16 Mode: > 16	(n = 42) MIC (µg/ml) GM: 30.45 MIC ₅₀ : >16 MIC ₅₀ : >16 Median: >16 Mode: >16	(n = 42) MIC (µg/ml) GM: 27.48 MIC ₅₀ : > 16 MIC ₉₀ : > 16 Median: > 16 Mode: > 16
Data reported as it appears in the	te source papers.			- - - -		

MIC, minimum inhibitory concentration; EUCAST, European Committee on Antimicrobial Susceptibility Testing; SC, species complex; *n*, number; GM, geometric mean; MIC₃₀, MIC required to inhibit the growth of 50% of isolates; MIC₃₀, MIC required to inhibit the growth of 90% of isolates; CLSI, Clinical and Laboratory Standards Institute; spp., species, MIC₁₀₀, 100% inhibitory concentration; MEC, minimum effective concentration; %EA, %essential agreement (±2log_2 dilutions); IQR, interquartile range.

*Nail samples only.

⁵For itraconazole and posaconazole all isolates tested had MIC₁₀₀ higher than the maximum concentration tested (i.e., >16 μg/ml]. [†]With modifications.⁸⁸[†] ¶Respiratory specimens from cystic fibrosis patients. [‡]Modified reading time when the growth control was positive (most often after 48 h of incubation).

	Ë	
	ge)
	σ	
	ga	2
	Ĕ	
2	Ē	
	ant	
	ē	
1	g	
	9	
	ŝ	
	ĕ	
ţ	50	
	0	
	à	
	'n	
	õ	
	ŝ	
	5	
	e	
	Ē	
	0	
	Ĕ	
		•
	0	
	0	
	ğ	
	00	
	5	
	ž	
	ğ	
	S	
	00	
,	ğ	
	B	
	õ	
	g	
	S	
	Ē	
	Ľ	
	Sa	
ι	7	
	╘	
	0)
	Ē	ĺ
	ŝŝ	
	ę	
	≥	
ł		
5	Ħ	
	ec	
	SS	
,	20	
	2	
	د ک	

Author Year MIC determination Anidulatingin Caspofung Fiterium pocies 2020 EUCAST Caspofung Caspofung Fiterium solar 2019 EUCAST Hasarium solar dos Santos et al.** 2019 EUCAST Hasarium solar dos Santos et al.** 2019 EUCAST Fasarium solar dos Santos et al.** 2019 EUCAST Fasarium solar for an intervention Caspofung Cingli) Mecingin 16 Rangen Lis Cinglio Caspofung Cinglio for an intervention Cinglio Cinglio Cinglio	able 5. Susceptibility testing of	^r Fusarium species,	<i>Scedosporium</i> species, ar	nd Lomentospora prolifican	s to other antifungal agents.			
Fusarium species dos Santos et al. ⁴⁵ 2020 EUCAST dos Santos et al. ⁴⁷ 2019 EUCAST dos Santos et al. ⁴⁷ 2019 EUCAST firstrium solur mediam 16 mediam 16 m	uthor	Year	IC determination method	Anidulafungin	Caspofungin	Micafungin	Amphotericin B	Terbinafine
dos Santos et al.*7 2019 EUCAST Freatrium sola (median: 16 Ranges (0.5-32) Median: 16 Ranges (0.5-32) Freatrium 16 Ranges (0.65- Freatrium 16 Ranges (0.65-	<i>usarium</i> species os Santos et al.* ³⁶	2020	EUCAST				Fusarium solani SC:	
dos Santos et al. ⁴⁷ 2019 EUCAST Flasarium sola (m2) MEC (m2)) MEC (m2)) MEC (m2) MEC (m2)							(n = 3.2) MIC (mg/l)	
dos Santos et al.* ³⁷ 2019 EUCAST Fuerrinm solar MEC (mg/l) MEC (mg/l) Median: 16 Range: 0.5-32 Fuerrinm fuilk SC: (n = 24) MEC (mg/l) Median: 16 Range: 16 MEC (mg/l) MEC (mg/							Mode: 2 Range: 0 5–16	
dos Santos et al. ⁴³⁷ 2019 EUCAST Fusarium sola MEC (mg/l) Median: 16 Range: 0.5-32 Fusarium Sola MEC (mg/l) MEC (mg/l)							Fusarium	
dos Santos et al. ³⁷ 2019 EUCAST Fusarium sola ($n = 43$) MEC ($mg/1$) MEC ($mg/1$) Median: 16 Range: 0.5-32 Husarium SC ($n = 24$) MEC ($mg/1$) Median: 16 Median:							oxysporum SC:	
dos Santos et al. ⁴⁷ 2019 EUCAST Fusarium sola ($n = 43$) MEC ($mg/1$) Median: 16 Range: 0.5-32 Fusarium SC ($n = 24$) Median: 16 Range: 0.063- Fusarium fuits SC ($n = 16$) Median: 16 Range: 16							(n = 22) MIC (mg/l)	
dos Santos er al.*7 2019 EUCAST Fusarium sola MEC (mg/l) MEC (mg/							Mode: 2	
dos Santos et al.*7 2019 EUCAST Fisarium sola (n = 43) MEC $(nngl)$ MEC (ngl) MEC (ngl)							Kange: 0.23–16 Fusarium fujikuroi	
dos Santos et al. ³⁷ 2019 EUCAST Husarium solar MEC (mg/l) Median: 16 Range: 0.5–32 Husarium Solar (n = 24) MEC (mg/l) Median: 16 Range: 0.063- Fusarium fuilit SC: $(n = 12)$ MEC (mg/l) Median: 16 Range: 16 Range							SC:	
dos Santos et al.*7 2019 EUCAST Fusarium solar MEC (mg/l) MEC (mg/							(n = 15)	
dos Santos et al.* ³⁷ 2019 EUCAST Fusarium solar MEC (mg() MEC (MIC (mg/l) Mode: 2	
dos Santos et al.*37 2019 EUCAST Fusarium solar (n = 43) MEC (mg/l) MEC (mg/l) Median: 16 Range: 0.5-32 Fusarium SC (n = 24) MEC (mg/l) MEC (mg/l) Median: 16 Range: 0.063- Fusarium fuits SC: (n = 16) Median: 16 Range: 16 Rande: 1							Range: 1–4	
$ \begin{array}{l} (n = 43) \\ \text{MEC}(mgl) \\ \text{Median: 16} \\ \text{Range: } 0.5-32 \\ \text{Range: } 0.5-32 \\ \text{Fusarium} \\ \text{cysponum} \\ \text{SC} \\ (n = 24) \\ \text{MEC}(mgl) \\ \text{Median: 16} \\ \text{Range: } 0.063 \\ \text{Fusarium finite} \\ \text{SC} \\ (n = 16) \\ \text{MEC}(mgl) \\ \text{Median: 16} \\ \text{Range: 16} \\ \text{Rangei 16} \\ \text{Randei 16} \\ Rand$	os Santos et al.* ³⁷	2019	EUCAST		Fusarium solani SC:		Fusarium solani SC:	
$MEC (mgl) \\ MEC (mgl) \\ Median: 16 \\ Range: 0.5-32 \\ Fusarium SC \\ (n = 24) \\ MEC (mgl) \\ Median: 16 \\ Range: 0.063 \\ Fusarium fujik \\ SC \\ (n = 16) \\ MEC (mgl) \\ MeC (mgl) \\ Median: 16 \\ Range: 16 \\ Fusarium dime \\ SC \\ (n = 12) \\ MeC (mgl) \\ Median: 16 \\ Range: 24 \\ Range: 24 \\ Range: 26 \\$					(n = 43)		(n = 43)	
Range: $0.5-32$ Fusarium SC (n = 24) MEC (mg/l) Median: 16 Range: $0.063-$ Fusarium fujik SC: (n = 16) MEC (mg/l) Median: 16 Range: 16 Range: 16 Ran					MEC (mg/l) Median: 16		MIC (mg/l) Median: 2	
Fusarium correspondent to the equation of the					Range: 0.5–32		Range: 0.063–16	
cxysporum SC (mell) Median: 16 (mell) Median: 16 Mec (mgl) Median: 16 Range: 0.063-Fusarium fujik SC: (n = 16) MeC (mgl) Meclian: 16 MeC (mgl) Meclian: 16 Range: 16 Fusarium dime SC: (n = 12) MeC (mgl) Me					Fusarium		Fusarium	
(n = 24) $MEC (mg(l)$ $MEC (mg(l))$ $Median: 16$ $Range: 0.063-$ $Fusarium fujik$ $SC:$ $(n = 16)$ $MEC (mg(l))$ $Median: 16$ $Range: 16$ $Fusarium dime$ $SC:$ $(n = 12)$ $MEC (mg(l))$ $Median: 16$ $Range: 2-16$ $Range: 2-16$					oxysporum SC:		oxysporum SC:	
MEC (mgl) Median: 16 Median: 16 Range: 0.063-Fusarium fujik SC: $(n = 16) MEC (mgl) Median: 16 Range: 16 MEC (mgl) Median: 16 Range: 16 Fusarium dime SC: SC: (n = 12) Median: 16 Range: 16 Range: 16 Range: 16 Range: 16 Range: 17 Median: 16 Range: 17 Median: 16 Range: 17 Median: 16 Range: 27 Median: 17 Me$					(n = 24)		(n = 24)	
Range: 0.063 - Range: 0.063 - Fusarium fujik SC: (n = 16) MEC (mg/l) Median: 16 Range: 16 Fusarium dime SC: (n = 12) MEC (mg/l) MEC (mg/l) MEC (mg/l) MEC (mg/l) MEC (mg/l) MEC (mg/l) MEC (mg/l) MEC (mg/l) MEC (mg/l)					MEC (mg/l) Median: 16		MIC (mg/l) Median: 2	
Fusarium fujik SC: (n = 16) MEC (mg/l) Median: 16 Range: 16 Range: 16 Fusarium dime SC: (n = 12) MEC (mg/l) MEC (mg/l) MEC (mg/l) MEC (mg/l) MEC (mg/l)					Range: 0.063–32		Range: 0.25–16	
SC: (n = 16) MEC (mg/l) Median: 16 Range: 16 Range: 16 Fusarium dime SC: (n = 12) MEC (mg/l) MEC (mg/l) MEC (mg/l) Median: 16					Fusarium fujikuroi		Fusarium fujikuroi	
$\begin{array}{l} \begin{array}{l} (m = 10) \\ \text{MEC} (mgl) \\ \text{MEC} (mgl) \\ \text{Median: 16} \\ \text{Range: 16} \\ \text{Range: 16} \\ \text{Fusarium dime} \\ \text{SC:} \\ (n = 12) \\ \text{MEC} (mgl) \\ \text{Median: 16} \\ \text{Ranse: 2-16} \end{array}$					SC:		sc:	
Median: 16 Median: 16 Range: 16 Fusarinn dime SC: (n = 12) MEC (mgl) Median: 16 Ranse: 2-16					$(n \equiv 16)$ MEC (mg/l)		$(n \equiv 16)$ MIC (mg/l)	
Range: 16 Fusarium dime SC: (n = 12) MEC (mgl) Median: 16 Range: 2-16					Median: 16		Median: 2	
Fusarium dime SC: (n = 12) MEC (mgl) Median: 16 Ranse: 2-16					Range: 16		Range: 0.5–8	
NEC (mg/l) MEC (mg/l) Median: 16 \mathbb{R}_{2nnov} , 2-16					Fusarium dimerum		Fusarium dimerum	
Melc (mgl) Melcan: 16 Banese 7-16 Banese					SC: /==		SC: (22 - 12)	
Median: 16 Banse: 2-16					MEC (mg/l)		MIC (mg/l)	
Range 7_16					Median: 16		Median: 1	
					Kange: 2–16		Range: 0.125–2	

Terbinafine	
Amphotericin B	Fusarium solani SC: (n = 608) MIC (µg/ml) Mode: 2 Range: $\leq 0.25-16$ Fusarium oxysporum SC: (n = 226) MIC (µg/ml) Mode: 2 Range: $\leq 0.25-16$ Fusarium verticilioides: (n = 151) Mode: 2 Range: $0.5-16$ Fusarium proliferatum: (n = 151) Mode: 2 Range: $0.5-16$ Fusarium proliferatum: (n = 82) MIC (µg/ml) MOde: 2 Range: ≤ 0.25 to > 16 Fusarium dimerum SC: (n = 50) MIC (µg/ml) MOde: 1 Range: $\leq 0.25-16$ Fusarium equiseti (n = 50) MIC (µg/ml) MOde: 4 Range: $0.5-8$ Range: $\leq 0.25-16$ Fusarium equiseti (n = 20) MIC (µg/ml) MIC (µg/ml)
Micafungin	
Caspofungin	
Anidulafungin	
MIC determination method	CLSI
Year	2016
Author	Espinel-Ingroff et al. ⁴³

Author	Year	MIC determination method	Anidulafungin	Caspofungin	Micafungin	Amphotericin B	Terbinafine
Galletti et al.#38	2015	CLSI					Fusarium oxysporum: (n = 70) MIC $(\mu g/ml)$: 0.5 Fusarium solani: (n = 61) MIC $(\mu g/ml)$: 4 Fusarium subglutinans: (n = 16)
Gupta et al. ^{#26}	2016	CLSI	MEC (µg/ml)	MEC (µg/ml)		MIC (µg/ml)	
Hassan et al.* ³⁹	2016	CLSI M38-A2	Nauge: >10	Nalige: > 10		Fusarium solani SC: (n = 54)	
						MIC (µg/m1) Median: 4 Range: 0.5–8	
He et al.* ⁴⁰	2017	CLSI				Fusarium solani SC:	
						(n = 51) MIC (µg/ml)	
						MIC ₅₀ : 2 MIC ₉₀ : 4	
-						Range: 0.5–16	
Manikandan et _{al *41}	2019	CLSI				Fusarium spp.: $(n = 200)$	
41.						$MIC (\mu g/ml)$	
						MIC ₅₀ : 1 MIC ₆₀ : 1	
						Range: 0.125–8	
Oechsler et al.* ³⁵	2013	CLSI				Fusarium solani:	
						$MIC (\mu g/ml)$	
						MIC_{50} : 2	
						MIC ₉₀ : 2 MIC range: 1 to	
						>16 (on n = 43)	
						Non-solani	
						Fusarium spp.:	
						(n = 14)	
						MIC (µg/ml)	
						MIC90: 2	
						MIC range: 1–2 (on	
						n = 14)	
						Irend in difference in median MIC:	
						2 vs. 2; P = .07	

Author	Year	MIC determination method	Anidulafungin	Caspofungin	Micafungin	Amphotericin B	Terbinafine
Tortorano et al. ⁵	2014	EUCAST				Fusarium	
						proliferatum:	
						MIC (me/l)	
						GM: 1.35	
						MIC_{50} : 1	
						MIC ₉₀ : 2	
						Range: 0.5–4	
						Fusarium	
						verticillioides:	
						(n = 15)	
						MIC_{20}	
						MICso: 4	
						Range: 2–4	
						Fusarium solani:	
						(n = 14)	
						MIC (mg/l)	
						GM: 1.05	
						MICso: 1	
						MICon: 2	
						Range: 0.5–2	
Triest et al. ⁴⁴	2015	EUCASTE.DEF 9.1				Fusarium	Fusarium
						oxysporum SC:	oxysporum SC:
						(n = 47)	(n = 47)
						MIC ₁₀₀ (µg/ml)	MIC_{100} (µg/ml)
						Range: 2 to >16	Range: 4 to >16
						Fusarium	Fusarium
						verticillioides:	verticillioides:
						(n = 39)	(n = 39)
						MIC ₁₀₀ (µg/ml)	MIC ₁₀₀ (µg/ml)
						Range: 2 to >16	Range: 0.5 to >16
						Fusarium solani:	Fusarium solani:
						(n = 21)	(n = 21)
						MIC ₁₀₀ (µg/ml)	MIC ₁₀₀ (µg/ml)
						Range: >16	Range: >16
						Fusarium dimerum	Fusarium dimerum
						SC:	SC:
						(n = 17)	(n = 17)
						MIC_{100} (µg/ml)	MIC ₁₀₀ (µg/ml)
						Range: 1–4	Range: 0.25-1
						Fusarium	Fusarium
						proliferatum:	proliferatum:
						(n = 16)	(n = 16)
						MIC ₁₀₀ (µg/ml) Range 4–16	MIC ₁₀₀ (μg/ml) Range: 2 to >16

Author	Year	MIC determination method	Anidulafungin	Caspofungin	Micafungin	Amphotericin B	Terbinafine
<i>Scedosporium</i> species Bronnimann et al. ³²	2021	EUCAST [†]		Scedosporium	Scedosporium	Scedosporium	
				apiospermum:	apiospermum:	apiospermum: /ao	
				(n = 4.6) MIC (mg/l)	$(n \equiv 4.6)$ MIC (mg/l)	(n = 4.6) MIC (mg/l)	
				MIC_{50} : 1	$MIC_{50}: 0.25$	MIC_{50} : 8	
				MIC _{90:} 2	MIC _{90:} 1	MIC ₉₀ : 16	
				Range: 0.5–8	Range: 0.125–1	Range: 1–16	
				Scedosporium	Scedosporium	Scedosporium	
				boydii:	boydii:	boydii:	
				(n = 15)	(n = 15)	(n = 15)	
				MIC (mg/l)	MIC (mg/l)	MIC (mg/l)	
				MIC_{50} : 1	MIC_{50} : 0.25	MIC_{50} : 8	
				MIC ₉₀ . 2	MIC ₉₀ : 1	MIC ₉₀ : 16	
				Range: 0.125–2	Range: 0.125–1	Range: 8–16	
Castanheira et al. ⁴⁷	2012	CLSIEUCAST	Scedosporium spp.:	Scedosporium spp.:		Scedosporium spp.:	
			(n = 63)	(n = 63)		(n = 63)	
			MEC (µg/ml) range	MEC (µg/ml) range		MIC (µg/ml) range	
			CLSI: 1 to > 8	CLSI: $0.5 \text{ to } > 8$		CLSI: 0.5–4 ⁸	
			EUCAST: 1 to > 8	EUCAST: 1 to > 8		EUCAST: 0.25–4 ^{\$}	
			%EA: 100	%EA: 96.8		%EA: 100%	
			Scedosporium	Scedosporium		Scedosporium	
			apiospermum:	apiospermum:		apiospermum:	
			(n = 28)	(n = 28)		(n = 28)	
			MEC (µg/ml) range	MEC (µg/ml) range		MIC (µg/ml) range	
			CLSI: 1–4	CLSI: $0.5 \text{ to } > 8$		CLSI: 1–4 ³	
			EUCAST: 1–4	EUCAST: 1 to > 8		EUCAST: 0.25–4 ^{\$}	
!			%EA: 100	%EA: 96.4		%EA: 100	
Lackner et al. ⁴⁵	2012	CLSI M38-A2	Scedosporium	Scedosporium	Scedosporium	Scedosporium	
			apiospermum:	apiospermum:	apiospermum:	apiospermum:	
			(n = 124)	(n = 124)	(n = 124)	(n = 124)	
			MEC (µg/ml)	MEC (µg/ml)	MEC (µg/ml)	MIC (µg/ml)	
			GM: 0.9	GM: 1.6	GM: 0.2	GM: 6.5	
			$MEC_{50}: 0.5$	MEC ₅₀ : 1	MEC_{50} : 0.125	MIC ₅₀ : 8	
			MEC_{90} : 8	MEC_{90} : 8	$MEC_{90}: 4$	MIC_{90} : >16	
			Range: 0.125 to >8	Range: 0.5 to >8	Range: 0.006 to >8	Range: 0.5 to >16	
			Scedosporium	Scedosporium	Scedosporium	Scedosporium	
			boydii:	boydii:	boydii:	boydii:	
			(n = 44)	(n = 44)	(n = 44)	(n = 44)	
			MEC (µg/ml)	MEC (µg/ml)	MEC (µg/ml)	MIC (µg/ml)	
			GM: 1.3	GM: 2.1	GM: 0.4	GM: 11.3	
			MEC_{50} : 1	MEC_{50} : 2	MEC_{50} : 0.25	MIC_{50} : 16	
			MEC_{90} : 4	MEC_{90} : 8	MEC_{90} : 8	MIC_{90} : >16	
			Range: 0.25 to >8	Range: 1 to >8	Range: 0.062 to >8	Range: 0.5 to >16	

Author	Year	MIC determination method	Anidulafungin	Caspofungin	Micafungin	Amphotericin B	Terbinafine
Sedlacek et al. ⁴⁴⁶ I o <i>ment</i> ochowa trod <i>ifi.cu</i> s	2015	CLSI M38-A2 [‡]		Scedosporium apiospermum: (n = 52) MEC ($(\mu g/m)$) GM: 8.0 MEC ₉₀ : 16 Range: 0.25-16 Scedosporium boydii: (n = 34) MEC ($(\mu g/m)$) MEC ($(\mu g/m)$) MEC ($(\mu g/m)$) MEC ($\mu g/m$) MEC ($\mu g/m$)		Scedosporium: apiospernum: (n = 52) MIC (µg/ml) GM: 7.8 MIC ₉₀ : >16 Range: 1 to >16 Scedosporium boydii: (n = 34) MIC (µg/ml) GM: 14.7 MIC ₉₀ : >16 Range: 2 to >16	
Lackner et al. ⁴⁹	2011	CLSI M38-A2	(n = 34) MEC (µg/ml) GM: 2.95 MEC ₅₀ : 4 MEC ₉₀ : 8 Range: 0.25 to >8	(n = 34) MEC (µg/ml) GM: 5.77 MEC ₅₀ : 8 MEC ₉₀ : >8 Range: 1 to >8	(n = 34) MEC (µg/ml) GM: 5.11 MEC ₅₀ : 8 MEC ₉₀ : > 8 Range: 0.25 to > 8	(n = 34) MIC (µg/ml) GM: 7.83 MIC ₅₀ : >16 MIC ₅₀ : >16 Range: 0.062 to >16	
Sedlacek et al. ¹⁴⁶	2015	CLSI M38-A2 [‡]		(n = 12) MEC (µg/ml) GM: 11.8 MEC90: 16 Barrow 8.16		(n = 12) MIC (µg/ml) GM: 32 MIC9: >16 MIC9: >16	
Seidel et al. ²⁸	2019	CLSIEUCAST			(<i>n</i> = 6) MIC (mg/l) Median: 24 10B: 0 9-33	n = 18 n = 18	
Wu et al. ⁵⁰	2020	CLSI			(m = 42) MEC ($\mu g/m$]) GM: 8.98 MEC ₅₀ : >8 MEC ₉₀ : >8 Median: >8 Mode: >8	(n = 42) MIC (µg/ml) GM: 20.84 MIC ₅₀ : >16 MIC ₉₀ : >16 Median: >16 Mode: >16	(n = 42) MIC ($\mu g/m$)) GM: 125.91 MIC ₅₀ : >64 MIC ₉₀ : >64 Median: >64 Mode: >64

#Nail samples only. [†]With modifications.⁸⁹ ⁵Higher concentrations not tested (i.e., MIC8, MIC > 8). ⁸Higher concentrations not tested (i.e., MIC8, MIC > 8). [¶]Respiratory specimens from cystic fibrosis patients. [‡]Modified reading time when the growth control was positive (most often after 48 h of incubation).

Data reported as it appears in the source papers MIC, minimum inhibitory concentration; EUCAST, European Committee on Antimicrobial Susceptibility Testing; SC, species complex; n, number; MEC, minimum effective concentration; CLSI, Clinical and Laboratory Standards Institute; spp., species; MIC₅₀, MIC required to inhibit the growth of 50% of isolates; MIC₉₀, MIC required to inhibit the growth of 90% of isolates; GM, geometric mean; MIC₁₀₀, 100% inhibitory concentration; %EA, % essential agreement (±2log₂ dilutions), IQR, interquartile range.

Lackner et al. reported an MIC₉₀ of ≥ 16 mg/l for isavuconazole, itraconazole, posaconazole, voriconazole, and amphotericin B, and ≥ 8 mg/l for anidulafungin, caspofungin, and micafungin (Tables 4 and 5).^{49,50} Wu et al. reported high median and mode MIC and MIC₉₀ vales of >64 µg/ml for terbinafine (Table 5).⁵⁰

Risk factors and preventability

Of those with Fusarium keratitis, 63%-92.9% were contact lens wearers (Table 6).35,36 While these studies did not include a control group to confirm the association, one study found that only 12% of the Dutch population wore contact lenses (Table 6).³⁶ The authors suggest the need for education on the proper use of contact lenses and adherence to recommended cleaning guidelines as preventative measures (Supplementary Table 3).³⁶ Risk factors for invasive fusariosis include allogeneic HSCT, cytomegalovirus reactivation, and the presence of skin lesion positive for Fusarium spp. at baseline (Table 6).³⁰ A prospective study also observed that prophylaxis with broad-spectrum anti-mould azoles (voriconazole or posaconazole) in hematologic patients with Fusarium-positive skin lesions at baseline resulted in significantly lower mortality compared with those who received fluconazole or no prophylaxis (0/6 [0%]) vs. 4/5 [80%]; P = .01) (Supplementary Table 3).²⁹ Non-neutropenic patients with invasive fusariosis are more likely than neutropenic patients to have an underlying condition such as chronic cardiac or pulmonary disease.¹

Risk factors for invasive scedosporiosis include active malignancy (36% with S. apiospermum) or SOT (40% with S. boydii) (Table 6).^{31,32} Slavin et al. reported higher rates of scedosporiosis in patients who had undergone SOT compared with non-recipients (12/23 [52%] vs. 12/39 [30%]; P = .039)(Table 6), although about half of the scedosporiosis cases were caused by S. prolificans (now classified as L. prolificans).³¹ In a pediatric case series, malignancy (adjusted hazard ratio [aHR] 8.33, 95% confidence interval [CI] 1.35-51.40), allogeneic HSCT (aHR 20.31, 95% CI 2.07-199.13), and severe infection (aHR 6.12, 95% CI 1.52-24.66) were associated with an increased risk of mortality in those who had IFD due to Scedosporium spp. or L. prolificans (Table 6).²⁷ In a study of lung transplant recipients, prior exposure to an antifungal agent was reported as a risk factor for Scedosporium spp. or *L. prolificans* isolation (Table 6).² The analysis of risk factors for L. prolificans was limited, with only one study reporting that invasive infection was more common in immunocompromised patients (39/56 [69.6%]), especially those with malignancy and more specifically those with acute leukemia (Table 6).²⁸ There were no data reported on what measures should be used to prevent scedosporiosis/lomentosporiosis.

Annual incidence

No global annual incidence rates for *Fusarium* spp., *Sce-dosporium* spp., and *L. prolificans* were reported. The data utilized in this review relate to the annual incidence at a population level and were derived from four studies only (Supplementary Table 4).^{36,51–53} For *Fusarium* keratitis, a mean annual incidence of 0.45 (range 0–1.5)/million was reported in The Netherlands for the time frame of 2010 to 2016 (Supplementary Table 4).³⁶ The incidence of hospital admissions with *Scedosporium* infection was derived from two studies (Supplementary Table 4).^{51–53} Invasive scedosporiosis occurred at a rate of 0.10 per 10 000 hospital admissions

over a 20-year period at a tertiary hospital in Spain,⁵¹ but higher rates were reported more recently from an intensive care unit (ICU) in France (0.3 episodes per 1000 ICU admissions) (Supplementary Table 4).⁵³ In a Western Australian cohort of lung transplant recipients, the overall incidence of IFD was 2.1 per 100 person-years, with *S. apiospermum* SC (3/13 IFD) the second most common cause of IFD after *Aspergillus* spp. (Supplementary Table 4).⁵² We did not find any data on the yearly incidence of *L. prolificans*.

Prevalence, global distribution, and trends

The prevalence of Fusarium keratitis ranged from 30.4% to 47% (Supplementary Table 5).^{33,39}Fusarium accounted for 12.7%-19.8% and 17.8% of onychomycosis cases in Brazil and India, respectively (Supplementary Table 5).^{26,38} In hematologic patients in Brazil, the prevalence of fusariosis was (14/239) 5.8% (Supplementary Table 5).²⁹ In the Netherlands, Fusarium keratitis increased from 3 to 5 cases per year between 2010 and 2011 to 20-25 cases per year between 2015 and 2016.³⁶ At a single center in Brazil, the proportion of onychomycosis due to Fusarium spp. was 17.7% in 2011 and then decreased to 12.7% in 2012 before increasing to 19.8% in 2013 (Supplementary Table 5).³⁸ Pérez-Nadales et al. reported an increasing trend in invasive fusariosis from 0.08 cases/100 000 admissions between 2000 and 2009 to 0.22 cases/100000 admissions between 2010 and 2015 (Supplementary Table 5).¹

Invasive scedosporiosis accounted for 3.26% of all IFD in a Spanish study (Supplementary Table 5).⁵¹ In France, 8% of all non-*Candida* and non-*Aspergillus* IFD in ICU patients were due to *S. apiospermum*.⁵³ A prevalence of 15.2% was detected among non-*Aspergillus* IFD in 15 hospitals in Australia.³¹ Two studies, both single center, assessed trends of invasive scedosporiosis (Supplementary Table 5).^{2,51} In a 1250bed tertiary hospital in Spain, cases of invasive scedosporiosis/lomentosporiosis remained stable between 2011 (n = 0) and 2017 (n = 1).⁵¹ At an Australian tertiary referral center *Scedosporium* spp. and *L. prolificans* was first reported in lung transplant patients in 2014 with 1–9 cases reported each year thereafter (Supplementary Table 5).²

The prevalence of *L. prolificans* infections ranged from 1.25% to 9.7%^{2,46,54,55} with rates higher $(3.1\% - 9.7\%)^{46,54,55}$ in adults and/or children with CF than in lung transplant recipients $(1.25\%)^2$ (Supplementary Table 5).

Discussion

Fungal infections pose an increasing threat and an ongoing challenge to human health. Humans continue to co-exist with and have exposure to fungi in shared environments through inhalation, ingestion, and cutaneous contact. Among those most vulnerable to IFD are the immunocompromised. The ability to prevent and treat IFD is a pivotal requirement for forwarding the fields of cancer therapy, immunotherapy, and transplantation, as well as complex surgical procedures. Adequate surveillance infrastructure to monitor fungal infection patterns and distribution on national, regional, and global scales is lacking; thus, clinical decisions and assessments of trends are often made based on small studies restricted to a particular population or locality.

The paucity of data available for inclusion in this systematic review of *Fusarium* spp., *Scedosporium* spp., and *L. prolificans* proved a major limitation. Only 336, 163, and 152 cases

Table 6. Risk factors for Fu	<i>usarium</i> specie	ss, <i>Scedosporium</i> sp	ecies and Lomentospor	a prolificans.				
Author	Year	Study design	Study period	Country	Level of care	Population description (N)	Fungal pathogen (N)	Risk factors
F <i>usarium</i> species dos Santos et al. ³⁶	2020	RCS	2005–2016	NL	Z	Patients with <i>Fusarium</i> keratitis (89)	 89# Fusarium solani SC: (32) Fusarium oxysporum SC: (22) Fusarium fujikuroi SC: (15) Fusarium dimerum SC: (7) Fusarium incarnatum-Fusarium equiseti SC: 	Contact lens: Overall: 92.9% Especially soft contact lenses: (73% of cohort) C/w non-contact lens wearers: OR 19.8 (95% CI: 9.39–41.87).
Oechsler et al. ³⁵	2013	RCS SCS	May 2005-June 2007	USA	Tertiary	Patients with <i>Fusarium</i> keratitis (52)	Ambrosia Fusarium complex: (1) 58	Contact lens use: Patients with <i>Fusarium</i> solani keratitis and contact lens use: 24/38 (63%) Patients with non-solani <i>Fusarium</i> keratitis and contact lens use:
Perez-Nadales et al. ¹	2021	RCS MC	2000–2015	Spain	Tertiary	Patients with invasive fusariosis	58	9/12 (75%) Prognostic factor*: Persistent neutropenia (90-day mortality): HR 7.08 (95% CI 1 91-26.17; P ~ 01)
Varon et al. ³⁰	2014	PCS	2008–2009	Brazil	Tertiary	Patients with hematological malignancy, hematological diseases, HSCT or on immunosuppression (61)	Invasive fusariosis: 6/61 (9.8%)	Invasive fusariosis ⁵ : (6) Allogeneic HCT: (7) ($P = .02$) CMV reactivation: ($P = .002$) Presence of skin lesion positive for <i>Fusarium</i> spp. at baseline: ($P = .04$)

eq
2
Ē
5
ŭ
<u>ن</u>
٩
a
5

Table 6. Continued								
Author	Year	Study design	Study period	Country	Level of care	Population description (N)	Fungal pathogen (N)	Risk factors
<i>Scedosporium</i> species Bronnimann et al. ³²	2021	RCS MC	2005-2017	France	Tertiary	Patients with proven/probable invasive scedosporiosis or lomentosporiosis (90)	9	Disseminated disease: AML AML vs. other HM: 86% vs. 50% Mortality: Neutropenia: OR 9.97 (95% CI 1.33–54.35); P = .008 Disseminated disease: DR 7.00 (95% CI 1.33–36.94); P = .022 Lack of antifungal prescription after diagnosis: OR 0.02 (95% CI
Seidel et al. ²⁷	2020	RCS MC	1990-2019	21 Countries: Europe $(n = 26)$, North America (n = 8), South America (n = 4), Asia (n = 5), Occania (n = 12)	NS	Patients ≤18 years with proven/probable invasive scedosporiosis or lomentosporiosis [#] (55)	Invasive <i>Scedosporium</i> spp. disease: 33	0.00–0.20); <i>P</i> = .008 Mortality^: Treatment for malignancy: aHR 8.33 (95% CI 1.35–51.40) Allogeneic HSCT: aHR 20.31 (95% CI 2.07–199.13) Severe infection: aHR 6.12 (95% CI
Slavin et al. ³¹	2015	RCS MC	2004–2012	Australia	Tertiary	Patients with proven/probable non-Aspergillus mould disease	Invasive <i>Scedosporium</i> spp. disease: 25	1.52–24.66) SOT: .c/w non-SOT 12/23 (52.2%) vs. 12/39 (30.2%);
Vazirani et al. ²	2021	RCS SCS	1995–2019	Australia	Tertiary	(162) Lung transplant recipients (962)	Cultured Scedosporium spp. or Lomentospora prolificans: 30 Invasive Scedosporium spp. disease: 7 Colonization with Scedosporium spp.: 5	r = .0.97 Prior antifungal prophylaxis/therapy: 19/30 (63%)

Author	Year	Study design	Study period	Country	Level of care	Population description (N)	Fungal pathogen (N)	Risk factors
<i>Lomentospora prolificans</i> Bronnimann et al. ³²	2021	RCS MC	2005–2017	France	Tertiary	Patients with proven/probable invasive scedosporiosis or lomentosporiosis (90)	76	Mortality (3 month): Lomentospora prolificans OR 6.06 (95% CI 0.91-40.25); p - 067
Seidel et al. ²⁸	2019	RCS MC	January 2000-August 2017	Multiple	Mixed	Patients with proven/probable invasive seedosporiosis or lomentosporiosis [#] (273)	Lomentospora prolificans (56)	Immunocompromised: 39/56 (69.6%) Malignancy: 28/56 (50%) Leukemia: 19/56 (33.9%)
N, number; RCS, retrospectiv States of America; aHR, adju	re cohort stud sted hazard r	ly; MC, multicenter; atio; PCS, prospectiv	NL, Netherlands; NS, n e cohort study; HSCT, l	ot stated; SC, species nematopoietic stem c	s complex; c/w, comp cell transplantation; C	ared with; OR, odds ratio; CI, omegalovirus; spp., sp	confidence interval; SCS, singl secies; AML, acute myeloid leu	le-center study; USA, Unite ukemia; HM, hematologica

malignancy; SOT, solid organ transplant. #A total of 89 isolates were included in the study; 78 were identified by molecular methods, and only these were tested for antifungal susceptibility. *Multivariate analysis. ^SUnivariate analysis. [©] Based on isolates already characterized at National Reference Center for Invasvie Mycoses and Antifungals (NRCMA). ^{Ones} not differentiate between *Seedosporium* and *Lomentospora prolificans* IFD.

were included for each species, respectively. For Scedosporium spp. and L. prolificans, only retrospective studies were available. This has limited the conclusions we can draw for many of the review criteria. For all three pathogen groups, true global incidence and trends are poorly understood. Although annual incidence is likely low, there are concerning indicators. Cases of invasive fusariosis appear to be increasing, and Scedosporium spp. and L. prolificans infections have only been detected in an Australian cohort of lung transplant recipients since 2014, but more data are required.^{36,51} Of note, most of the included studies only examined one or two of the criteria, and the greatest number of criteria examined by any one study was six.³⁶ This systematic review provides greater insights into the knowledge gaps than any individual paper has to date. Our findings provide the impetus for the global mycology community to perform systematic surveillance studies to fill the knowledge gaps. This will then allow mycologists to develop evidence-based interventions for improved patient outcomes.

Key to early detection and the implementation of preventative measures is the availability of robust surveillance systems that can detect changes in disease patterns, distribution, and antifungal drug susceptibility. All three fungi included in this review are environmental fungi and opportunistic pathogens; thus, the incidence of IFD is likely determined by both environmental and host factors.^{30–32} Climate change appears to be a determinant of geographical range and environmental abundance, as has been reported for other fungi.^{56,57} The impact of the widespread use of broad-spectrum antifungal agents on the environmental distribution of Fusarium, Scedosporium, and L. prolificans is not well described but is of concern given the worldwide increase in azole-resistant fungi associated with the ongoing widespread use of agricultural fungicides.⁵⁸ On a clinical level, the common use of broad-spectrum antifungal prophylaxis in patients with certain hematologic malignancies or post-transplantation, raises the concern of breakthrough IFD due to more resistant pathogens, such as those examined in this review. There is ongoing scientific debate regarding the validity of these concerns, with some studies reporting a shift in the frequency and etiology of breakthrough IFD in highrisk patients on broad-spectrum antifungal prophylaxis,^{52,59} and others documenting no change.^{60,61} It is important to note that these reports are restricted to a few geographical regions, and the risk of breakthrough IFD with a rarer fungal species may be a bigger concern in regions with a greater environmental abundance. Host susceptibility to IFD is also evolving. Immunotherapeutic agents, including immune checkpoint inhibitors (ICI) and chimeric antigen receptor T cells (CAR-T), are increasingly being used to directly target cancer cells by enhancing T-cell-mediated killing. The incidence of IFD in patients receiving ICI and CAR-T cell therapy is not well defined. Reports of IFD due to Fusarium spp., Scedosporium spp., and L. prolificans emerging during treatment with ICI and CAR-T cell therapy are sparse.^{62–65} However, the risk of IFD certainly increases when immunosuppressants, such as high-dose corticosteroids, are used to treat immunotherapy-related adverse events and cytokine release syndrome.^{66,67} Without ongoing reporting and monitoring, the adverse impact of these environmental and host/treatment-related factors on the incidence of IFD may go undetected, squandering the opportunity to develop effective prevention strategies.

For those with IFD, mortality was as high as 42.9%-66.7%,^{5,29,30} for fusariosis, 42.4%-46.9%,^{31,32} for sce-

dosporiosis, and 50.0%-71.4%,^{28,68} for lomentosporiosis. Despite the widespread environmental distribution of these pathogens and presumed high degree of human exposure, cases of invasive disease and mortality were largely restricted to immunocompromised patients, highlighting the critical role of deficient host innate and/or adaptive immune responses in disease pathophysiology. Analyses of risk factors for death were limited. For Fusarium, 90-day mortality was highest for those with neutropenia,¹ which confirms the previous observation that 90-day survival is reduced to as low as 4% in those with persistent neutropenia and 0% in those who were receiving concurrent systemic corticosteroids.⁶⁹ Fungal factors that contribute to invasion and, consequently, mortality include the ability of Scedosporium and L. prolificans to undergo adventitial sporulation in host tissue to promote fungal dissemination.^{70–72} Disseminated scedosporiosis is a risk factor for mortality (odds ratio [OR] 7.00; 95% CI 1.33-36.94; $P = .022).^{32}$

Interpretation of antifungal susceptibility data was limited by the relatively small number of isolates studied, particularly for Scedosporium spp. and L. prolificans, and the few Fusarium spp. that were included. For Fusarium, the MIC values of voriconazole and posaconazole were generally lower^{36,37,43} than those of amphotericin B, 35-37, 39-41, 43 and no isolate appeared susceptible to isavuconazole or itraconazole (>16 mg/l).^{5,39,41-43} Fusarium solani SC showed reduced susceptibility to voriconazole compared with non-solani Fusar*ium* spp. (median MIC 16 vs. 4 mg/l; P < .001).³⁵ The median MIC values for echinocandins, flucytosine, natamycin, and terbinafine were as high as 16 to \geq 32 mg/l.^{26,35,37–39} However, this was based on limited data, and there was great variability between studies. The voriconazole MIC₉₀ values for *Sce*-dosporium were lowest at 0.5-2 mg/l.^{32,45,46} The MIC₉₀ values of isavuconazole and itraconazole as well as amphotericin B were high for *S. apiospermum* and *S. boydii* ($[2 \text{ to } \ge 16 \text{ mg/l}]$ and 8-16 mg/l, respectively),^{32,45,46} whereas the MIC values for posaconazole and the echinocandins were variable.^{32,45,46} Although antifungal resistance rates for L. prolificans could not be determined due to a lack of established clinical breakpoints, currently available antifungal drugs have limited in vitro activity, with reported MIC₉₀ values of >16 mg/l for azoles and amphotericin B and $MEC_{90} \ge 8 \text{ mg/l}$ for echinocandins.^{28,46,49,50} The relationship between antifungal MIC values and clinical/mycological outcomes of treatment was not able to be defined for Scedosporium spp. and L. prolificans. The higher mortality rates seen with IFD due to F. solani SC may be due in part to the higher MIC values seen, particularly with voriconazole and amphotericin B;5,35 however, further data are required. All three species of fungi harbor incompletely understood intrinsic resistance mechanisms, including mutations in the *fks*1 gene, which encodes the catalytic subunit of the β -1,3-glucan synthase, the target of echinocandins, and CYP15, leading to reduced affinity of azoles for their target and/or over-expression of efflux pumps.73-75 Combination antifungal therapy is recommended for L. prolificans. This is based on in vitro synergy susceptibility data, where combinations, such as voriconazole combined with amphotericin B or an echinocandin or terbinafine combined with itraconazole or voriconazole, appear to have activity and potential for efficacy.⁷⁶⁻⁷⁸ Of note, none of the studies in this systematic review reported on antifungal synergy. This is likely related to the pre-specified eligibility criteria. Newer antifungal agents in development have in vitro activity against these fungi.79-83

Olorofim has *in vitro* activity against *Scedosporium* spp. and *L. prolificans*, and fosmanogepix against *Fusarium* spp. and *Scedosporium* spp. Although these agents are being used in certain clinical situations, robust clinical efficacy data are pending with studies ongoing (e.g., NCT03583164 and NCT95421858). In clinical practice, surgical debridement, where possible, is a key component of the management of infections due to *Fusarium* spp., *Scedosporium* spp., and *L. prolificans*. However, data on this and other adjunctive therapeutics, such as modulation of immunosuppression, were not available in the studies included in this systematic review.⁸⁴

Given the challenges associated with treating infections due to Fusarium spp., Scedosporium spp., and L. prolificans and the high mortality related to invasive disease with these fungi, prevention is crucial. The use of mould-active azole (voriconazole or posaconazole) prophylaxis in hematologic patients with a positive baseline culture for Fusarium was associated with a reduction in mortality compared with those who received fluconazole or no prophylaxis (0/6 [0%] vs. 4/5 [80%]; P = .01) in a small, single-center study from Brazil.²⁹ However, this finding needs to be further explored in a larger, multicenter trial. There are no data to support antifungal prophylaxis to prevent scedosporiosis and lomentosporiosis. Given the susceptibility profiles of these fungi, most available antifungal agents are unlikely to be effective anyway. Reduction in nosocomial exposure to Fusarium spp., Scedosporium spp., and L. prolificans via use of high-efficiency particulate absorbing filtration, positive pressure ventilation, regular surface cleaning, and regular testing of water may prevent exposure and, thus, invasive disease in high-risk patients. However, the impact of these interventions remains unquantified. Prevention of localized disease is likely simpler for Fusar*ium* keratitis, where there is an apparent association with contact lens wearing, and thus education regarding appropriate contact lens use and cleaning is a logical target for prevention.36

This systematic review has other limitations besides the scarcity of available data. This includes the study time frame (2011–2021). As a result, not all relevant and important studies would have been captured, which may have affected the findings. The exclusion of conference abstracts and studies that were not in English may have also biased the findings. Publication bias may have played a role in this systematic review. Furthermore, it confined itself to invasive disease and keratitis (*Fusarium*); thus, the epidemiology, burden, and outcomes of other infections due to *Fusarium* spp., *Scedosporium* spp., and *L. prolificans* remain to be determined.

Conclusion

Fusarium spp., *Scedosporium* spp., and *L. prolificans* are fungal pathogens that pose a significant threat to human health, particularly that of immunocompromised patients in whom mortality from invasive disease is high. Both national and global surveillance are needed to understand the annual incidence, global distribution, and trends. Larger, multi-center studies analyzing risk factors and reporting on specific outcomes are required to better assess mortality rates, complications, and sequelae. Treatment with currently available antifungal agents is challenging due to the intrinsic resistance of these pathogens. Further antifungal susceptibility studies should be performed. These should first examine a much larger number of isolates from each subspecies. Subsequent studies should examine new antifungal agents and perform synergy testing. In addition, we should determine if there are any changes over time in MIC/MEC values. Crucially, susceptibility results need to be correlated with clinical outcomes in order to develop clinical breakpoints. Global efforts are required to achieve this. Ideally, treatment strategies should be based on clinical trial evidence; however, given the relative rarity of IFD due to *Fusarium* spp., *Scedosporium* spp., and *L. prolificans*, obtaining these data will also require the combined efforts of mycologists globally.

Acknowledgements

We thank Dr. Haileyesus Getahun (Director, Global Coordination and Partnership Department, WHO) for assistance with the direction of the overall project.

Author contributions

Tina Marinelli (Conceptualization, Data curation, Formal analysis, Writing - original draft, Writing - review & editing), Hannah Yejin Kim (Conceptualization, Data curation, Formal analysis, Methodology, Supervision, Writing - original draft, Writing - review & editing), Catriona L. Halliday (Conceptualization, Formal analysis, Writing - review & editing), Katherine Garnham (Formal analysis, Writing - review & editing), Olivia Bupha-Intr (Data curation, Formal analysis, Writing - review & editing), Aiken Dao (Data curation, Formal analysis, Writing – review & editing), Arthur J. Morris (Data curation, Writing - review & editing), Ana Alastruey-Izquierdo (Conceptualization, Formal analysis, Writing - review & editing), Arnaldo Colombo (Conceptualization, Formal analysis, Writing - review & editing), Volker Rickerts (Formal analysis, Writing – review & editing), John Perfect (Conceptualization, Formal analysis, Writing - review & editing), David W. Denning (Formal analysis, Writing - review & editing), Marcio Nucci (Formal analysis, Writing - review & editing), Raph L. Hamers (Formal analysis, Writing - review & editing), Alessandro Cassini (Formal analysis, Writing - review & editing), Rita Oladele (Conceptualization, Formal analysis, Writing - review & editing), Tania C. Sorrell (Conceptualization, Formal analysis, Writing - review & editing), Pilar Ramon-Pardo (Formal analysis, Writing - review & editing), Terence Fusire (Formal analysis, Writing - review & editing), Tom M. Chiller (Conceptualization, Formal analysis, Writing - review & editing), Retno Wahyuningsih (Conceptualization, Formal analysis, Writing - review & editing), Agustina Forastiero (Formal analysis, Writing - review & editing), Adi Al-Nuseirat (Formal analysis, Writing - review & editing), Peter Beyer (Conceptualization, Formal analysis, Writing - review & editing), Valeria Gigante (Formal analysis, Project administration, Writing - review & editing), Justin Beardsley (Conceptualization, Formal analysis, Funding acquisition, Methodology, Writing - review & editing), Hatim Sati (Conceptualization, Formal analysis, Methodology, Writing - review & editing), Jan-Willem Alffenaar (Conceptualization, Formal analysis, Funding acquisition, Methodology, Supervision, Writing - review & editing), and C. Orla Morrissey (Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Supervision, Writing - original draft, Writing – review & editing).

Supplementary material

Supplementary material is available at *Medical Mycology* online.

Funding

The work was supported by the Ministries of Education and Science, Governments of Austria and Germany and by the Global Antibiotic Research and Development Partnership.

Conflict of interest

This manuscript has been prepared in a personal capacity by the authors and reflects their views. The views expressed must not be attributed to the WHO, its Secretariat or its member states.

Dr. David Denning and his family hold Founder shares in F2G Ltd., a University of Manchester spin-out antifungal discovery company. All the other authors have no conflicts of interest to declare.

References

- 1. Pérez-Nadales E, Alastruey-Izquierdo A, Linares-Sicilia MJ, et al. Invasive fusariosis in nonneutropenic patients, Spain, 2000–2015. *Emerg Infect Dis.* 2021, 27: 26–35.
- Vazirani J, Westall GP, Snell GI, Morrissey CO. Scedosporium apiospermum and Lomentospora prolificans in lung transplant patients—a single center experience over 24 years. Transpl Infect Dis. 2021; 23: e13546.
- 3. Anaissie EJ, Kuchar RT, Rex JH, et al. Fusariosis associated with pathogenic *Fusarium* species colonization of a hospital water system: a new paradigm for the epidemiology of opportunistic mold infections. *Clin Infect Dis.* 2001; 33: 1871–1878.
- 4. Guarro J. Fusariosis, a complex infection caused by a high diversity of fungal species refractory to treatment. *Eur J Clin Microbiol Infect Dis.* 2013; 32: 1491–1500.
- Tortorano AM, Prigitano A, Esposto MC, et al. European confederation of medical mycology (ECMM) epidemiological survey on invasive infections due to *Fusarium* species in Europe. *Eur J Clin Microbiol Infect Dis.* 2014; 33: 1623–1630.
- Salah H, Al-Hatmi AM, Theelen B, et al. Phylogenetic diversity of human pathogenic *Fusarium* and emergence of uncommon virulent species. J Infect. 2015; 71: 658–666.
- 7. Nucci M, Anaissie E. *Fusarium* infections in immunocompromised patients. *Clin Microbiol Rev.* 2007; 20: 695–704.
- Nucci M, Marr KA, Queiroz-Telles F, et al. *Fusarium* infection in hematopoietic stem cell transplant recipients. *Clin Infect Dis*. 2004; 38: 1237–1242.
- 9. Ramirez-Garcia A, Pellon A, Rementeria A, et al. *Scedosporium* and *Lomentospora*: an updated overview of underrated opportunists. *Med Mycol.* 2018; 56: 102–125.
- Harun A, Gilgado F, Chen SC, Meyer W. Abundance of *Pseu-dallescheria/Scedosporium* species in the Australian urban environment suggests a possible source for scedosporiosis including the colonization of airways in cystic fibrosis. *Med Mycol.* 2010; 48: S70–S76.
- Kaltseis J, Rainer J, De Hoog GS. Ecology of *Pseudallescheria* and *Scedosporium* species in human-dominated and natural environments and their distribution in clinical samples. *Med Mycol*. 2009; 47: 398–405.
- Heath CH, Slavin MA, Sorrell TC, et al. Population-based surveillance for scedosporiosis in Australia: epidemiology, disease manifestations and emergence of *Scedosporium aurantiacum* infection. *Clin Microbiol Infect*. 2009; 15: 689–693.

- 13. Rougeron A, Schuliar G, Leto J, et al. Human-impacted areas of France are environmental reservoirs of the *Pseudallescheria boydii/Scedosporium apiospermum* species complex. *Environ Microbiol.* 2015; 17: 1039–1048.
- Revankar SG, Sutton DA. Melanized fungi in human disease. Clin Microbiol Rev. 2010; 23: 884–928.
- Tintelnot K, Just-Nübling G, Horré R, et al. A review of German Scedosporium prolificans cases from 1993 to 2007. Med Mycol. 2009; 47: 351–358.
- 16. Husain S, Muñoz P, Forrest G, et al. Infections due to Scedosporium apiospermum and Scedosporium prolificans in transplant recipients: clinical characteristics and impact of antifungal agent therapy on outcome. Clin Infect Dis. 2005; 40: 89–99.
- 17. Caira M, Girmenia C, Valentini CG, et al. Scedosporiosis in patients with acute leukemia: a retrospective multicenter report. *Haematologica*. 2008; 93: 104–110.
- Guarro J, Kantarcioglu AS, Horré R, et al. Scedosporium apiospermum: changing clinical spectrum of a therapy-refractory opportunist. Med Mycol. 2006; 44: 295–327.
- Blyth CC, Middleton PG, Harun A, Sorrell TC, Meyer W, Chen SC. Clinical associations and prevalence of *Scedosporium* spp. in Australian cystic fibrosis patients: identification of novel risk factors? *Med Mycol.* 2010; 48: S37–S44.
- Kantarcioglu AS, de Hoog GS, Guarro J. Clinical characteristics and epidemiology of pulmonary pseudallescheriasis. *Rev Iberoam Micol.* 2012; 29: 1–13.
- Parums DV. Editorial: the World Health Organization (WHO) fungal priority pathogens list in response to emerging fungal pathogens during the COVID-19 pandemic. *Med Sci Monit*. 2022; 28: e939088.
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021; 372: n71.
- Federhen S. The NCBI taxonomy database. Nucleic Acids Res. 2012; 40: D136–143.
- Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ*. 2019; 366: 14898.
- 25. Kim SY, Park JE, Lee YJ, et al. Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. J Clin Epidemiol. 2013; 66: 408–414.
- Gupta C, Jongman M, Das S, et al. Genotyping and in vitro antifungal susceptibility testing of *Fusarium* isolates from onychomycosis in India. *Mycopathologia*. 2016; 181: 497–504.
- 27. Seidel D, Hassler A, Salmanton-García J, et al. Invasive Scedosporium spp. and Lomentospora prolificans infections in pediatric patients: analysis of 55 cases from FungiScope® and the literature. Int J Infect Dis. 2020; 92: 114–122.
- Seidel D, Meißner A, Lackner M, et al. Prognostic factors in 264 adults with invasive *Scedosporium* spp. and *Lomentospora prolificans* infection reported in the literature and FungiScope(®). *Crit Rev Microbiol.* 2019; 45: 1–21.
- 29. Varon AG, Nouér SA, Barreiros G, Trope BM, Akiti T, Nucci M. Antimold prophylaxis may reduce the risk of invasive fusariosis in hematologic patients with superficial skin lesions with positive culture for *Fusarium*. *Antimicrob Agents Chemother*. 2016; 60: 7290–7294.
- Varon AG, Nouer SA, Barreiros G, et al. Superficial skin lesions positive for *Fusarium* are associated with subsequent development of invasive fusariosis. *J Infect.* 2014; 68: 85–89.
- Slavin M, van Hal S, Sorrell TC, et al. Invasive infections due to filamentous fungi other than Aspergillus: epidemiology and determinants of mortality. *Clin Microbiol Infect*. 2015; 21: 490.e1–10.
- Bronnimann D, Garcia-Hermoso D, Dromer F, Lanternier F. Scedosporiosis/Lomentosporiosis observational study (SOS): clinical significance of Scedosporium species identification. Med Mycol. 2021; 59: 486–497.
- 33. Prajna NV, Krishnan T, Rajaraman R, et al. Adjunctive oral voriconazole treatment of *Fusarium* keratitis: a secondary analy-

sis from the mycotic ulcer treatment trial II. JAMA Ophthalmol. 2017; 135: 520–525.

- 34. Prajna VN, Lalitha PS, Mascarenhas J, et al. Natamycin and voriconazole in *Fusarium* and *Aspergillus* keratitis: subgroup analysis of a randomised controlled trial. *Br J Ophthalmol*. 2012; 96: 1440–1441.
- Oechsler RA, Feilmeier MR, Miller D, Shi W, Hofling-Lima AL, Alfonso EC. *Fusarium* keratitis: genotyping, in vitro susceptibility and clinical outcomes. *Cornea*. 2013; 32: 667–673.
- Oliveira Dos Santos C, Kolwijck E, van Rooij J, et al. Epidemiology and clinical management of *Fusarium* keratitis in the Netherlands, 2005–2016. Front Cell Infect Microbiol. 2020; 10: 133.
- 37. Oliveira Dos Santos C, Kolwijck E, van der Lee HA, et al. In vitro activity of chlorhexidine compared with seven antifungal agents against 98 *Fusarium* isolates recovered from fungal keratitis patients. *Antimicrob Agents Chemother*. 2019; 63: e02669–18.
- Galletti J, Negri M, Grassi FL, Kioshima-Cotica ÉS, Svidzinski TI. *Fusarium* spp. is able to grow and invade healthy human nails as a single source of nutrients. *Eur J Clin Microbiol Infect Dis*. 2015; 34: 1767–1772.
- Hassan AS, Al-Hatmi AM, Shobana CS, et al. Antifungal susceptibility and phylogeny of opportunistic members of the genus *Fusarium* causing human keratomycosis in South India. *Med Mycol.* 2016; 54: 287–294.
- 40. He Y, Zhou L, Gao C, Han L, Xu Y. Rifampin enhances the activity of amphotericin B against *Fusarium solani* species complex and *Aspergillus flavus* species complex isolates from keratitis patients. *Antimicrob Agents Chemother*. 2017; 61: e02069–16.
- 41. Manikandan P, Abdel-Hadi A, Randhir Babu Singh Y, et al. Fungal keratitis: epidemiology, rapid detection, and antifungal susceptibilities of *Fusarium* and *Aspergillus* isolates from corneal scrapings. *Biomed Res Int.* 2019; 2019: 6395840.
- Broutin A, Bigot J, Senghor Y, Moreno-Sabater A, Guitard J, Hennequin C. *In vitro* susceptibility of *Fusarium* to Isavuconazole. *Antimicrob Agents Chemother*. 2020; 64: e01621–19
- **43**. Espinel-Ingroff A, Colombo AL, Cordoba S, et al. International evaluation of MIC distributions and epidemiological cutoff value (ECV) definitions for fusarium species identified by molecular methods for the CLSI broth microdilution method. *Antimicrob Agents Chemother*. 2016; 60: 1079–1084.
- 44. Triest D, Stubbe D, De Cremer K, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of molds of the *Fusarium* genus. *J Clin Microbiol*. 2015; 53: 465–476.
- 45. Lackner M, de Hoog GS, Verweij PE, et al. Species-specific antifungal susceptibility patterns of *Scedosporium* and *Pseudallescheria* species. *Antimicrob Agents Chemother*. 2012; 56: 2635–2642.
- 46. Sedlacek L, Graf B, Schwarz C, et al. Prevalence of *Scedosporium* species and *Lomentospora prolificans* in patients with cystic fibrosis in a multicenter trial by use of a selective medium. *J Cyst Fibros*. 2015; 14: 237–241.
- 47. Castanheira M, Duncanson FP, Diekema DJ, Guarro J, Jones RN, Pfaller MA. Activities of E1210 and comparator agents tested by CLSI and EUCAST broth microdilution methods against *Fusarium* and *Scedosporium* species identified using molecular methods. *Antimicrob Agents Chemother*. 2012; 56: 352–357.
- Lackner M, Hagen F, Meis JF, et al. Susceptibility and diversity in the therapy-refractory genus *Scedosporium*. *Antimicrob Agents Chemother*. 2014; 58: 5877–5885.
- 49. Lackner M, Rezusta A, Villuendas MC, Palacian MP, Meis JF, Klaassen CH. Infection and colonisation due to *Scedosporium* in Northern Spain. An *in vitro* antifungal susceptibility and molecular epidemiology study of 60 isolates. *Mycoses*. 2011; 54: 12–21.
- Wu Y, Grossman N, Totten M, et al. Antifungal susceptibility profiles and drug resistance mechanisms of clinical *Lomentospora prolificans* isolates. *Antimicrob Agents Chemother*. 2020; 64: e00318– 20.
- Álvarez-Uría A, Guinea JV, Escribano P, et al. Invasive Scedosporium and Lomentosora infections in the era of antifungal prophy-

laxis: a 20-year experience from a single centre in Spain. *Mycoses*. 2020; 63: 1195–1202.

- Chang A, Musk M, Lavender M, et al. Epidemiology of invasive fungal infections in lung transplant recipients in Western Australia. *Transpl Infect Dis.* 2019; 21: e13085.
- Larcher R, Platon L, Amalric M, et al. Emerging invasive fungal infections in critically ill patients: incidence, outcomes and prognosis factors, a case-control study. *J Fungi*. 2021; 7: 330.
- Schwarz C, Brandt C, Melichar V, et al. Combined antifungal therapy is superior to monotherapy in pulmonary scedosporiosis in cystic fibrosis. J Cyst Fibros. 2019; 18: 227–232.
- 55. Schwarz C, Brandt C, Antweiler E, et al. Prospective multicenter German study on pulmonary colonization with *Scedosporium/Lomentospora* species in cystic fibrosis: epidemiology and new association factors. *PLoS One.* 2017; 12: e0171485.
- Nnadi NE, Carter DA. Climate change and the emergence of fungal pathogens. *PLoS Pathog*. 2021; 17: e1009503.
- 57. de Crecy E, Jaronski S, Lyons B, Lyons TJ, Keyhani NO. Directed evolution of a filamentous fungus for thermotolerance. *BMC Biotechnol.* 2009; 9: 74.
- 58. Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. *Science*. 2018; 360: 739–742.
- Lerolle N, Raffoux E, Socie G, et al. Breakthrough invasive fungal disease in patients receiving posaconazole primary prophylaxis: a 4-year study. *Clin Microbiol Infect*. 2014; 20: O952–O959.
- 60. Biehl LM, Vehreschild JJ, Liss B, et al. A cohort study on breakthrough invasive fungal infections in high-risk patients receiving antifungal prophylaxis. *J Antimicrob Chemother*. 2016; 71: 2634– 2641.
- 61. Winston DJ, Bartoni K, Territo MC, Schiller GJ. Efficacy, safety, and breakthrough infections associated with standard long-term posaconazole antifungal prophylaxis in allogeneic stem cell transplantation recipients. *Biol Blood Marrow Transplant*. 2011; 17: 507–515.
- Bernardes M, Hohl TM. Fungal infections associated with the use of novel immunotherapeutic agents. *Curr Clin Microbiol Rep.* 2020; 7: 142–149.
- 63. Li X, Lau SK, Woo PC. Fungal infection risks associated with the use of cytokine antagonists and immune checkpoint inhibitors. *Exp Biol Med.* 2020; 245: 1104–1114.
- Logue JM, Zucchetti E, Bachmeier CA, et al. Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma. *Haematologica*. 2021; 106: 978–986.
- 65. Ngai JC, Lam R, Ko FW, To KW, Hui DS. Pulmonary *Scedosporium* infection as a complication of infliximab therapy for ankylosing spondylitis. *Thorax*. 2009; 64: 184.
- 66. Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. *Nat Rev Clin Oncol.* 2018; 15: 47–62.
- 67. Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018; 36: 1714– 1768.
- 68. Jenks JD, Seidel D, Cornely OA, et al. Voriconazole plus terbinafine combination antifungal therapy for invasive *Lomentospora prolificans* infections: analysis of 41 patients from the FungiScope® registry 2008–2019. *Clin Microbiol Infect*. 2020; 26: 784.e1–784.e5.
- 69. Nucci M, Anaissie EJ, Queiroz-Telles F, et al. Outcome predictors of 84 patients with hematologic malignancies and *Fusarium* infection. *Cancer*. 2003; 98: 315–319.
- Taj-Aldeen SJ. Reduced multidrug susceptibility profile is a common feature of opportunistic *Fusarium* species: *Fusarium* multidrug resistant pattern. *J Fungi*. 2017; 3: 18.
- Ortoneda M, Pastor FJ, Mayayo E, Guarro J. Comparison of the virulence of *Scedosporium prolificans* strains from different origins in a murine model. *J Med Microbiol.* 2002; 51: 924–928.

- Pinto MR, de Sá AC, Limongi CL, Rozental S, Santos AL, Barreto-Bergter E. Involvement of peptidorhamnomannan in the interaction of *Pseudallescheria boydii* and HEp2 cells. *Microbes Infect*. 2004;6: 1259–1267.
- 73. Johnson ME, Katiyar SK, Edlind TD. New Fks hot spot for acquired echinocandin resistance in *Saccharomyces cerevisiae* and its contribution to intrinsic resistance of *Scedosporium* species. *Antimicrob Agents Chemother*. 2011; 55: 3774–3781.
- 74. Albarrag AM, Anderson MJ, Howard SJ, et al. Interrogation of related clinical pan-azole-resistant *Aspergillus fumigatus* strains: G138C, Y431C, and G434C single nucleotide polymorphisms in *cyp51A*, upregulation of *cyp51A*, and integration and activation of transposon *Atf1* in the *cyp51A* promoter. *Antimicrob Agents Chemother*. 2011; 55: 5113–5121.
- 75. Zhao B, He D, Wang L. Advances in *Fusarium* drug resistance research. J Glob Antimicrob Resist. 2021; 24: 215–219.
- 76. Cuenca-Estrella M, Alastruey-Izquierdo A, Alcazar-Fuoli L, et al. In vitro activities of 35 double combinations of antifungal agents against Scedosporium apiospermum and Scedosporium prolificans. Antimicrob Agents Chemother. 2008; 52: 1136–1139.
- 77. Meletiadis J, Mouton JW, Meis JF, Verweij PE. In vitro drug interaction modeling of combinations of azoles with terbinafine against clinical *Scedosporium prolificans* isolates. *Antimicrob Agents Chemother*. 2003; 47: 106–117.
- 78. Meletiadis J, Mouton JW, Rodriguez-Tudela JL, Meis JF, Verweij PE. In vitro interaction of terbinafine with itraconazole against clinical isolates of *Scedosporium prolificans*. *Antimicrob Agents Chemother*. 2000; 44: 470–472.
- 79. Singh A, Singh P, Meis JF, Chowdhary A. *In vitro* activity of the novel antifungal olorofim against dermatophytes and opportunistic moulds including *Penicillium* and *Talaromyces* species. *J Antimicrob Chemother*. 2021; 76: 1229–1233.
- Kirchhoff L, Dittmer S, Buer J, Rath PM, Steinmann J. In vitro activity of olorofim (F901318) against fungi of the genus, Scedosporium and Rasamsonia as well as against Lomentospora prolificans, Exophiala dermatitidis and azole-resistant Aspergillus fumigatus. Int J Antimicrob Agents. 2020; 56: 106105.

- Astvad KMT, Jørgensen KM, Hare RK, Datcu R, Arendrup MC. Olorofim susceptibility testing of 1,423 Danish mold isolates obtained in 2018–2019 confirms uniform and broad-spectrum activity. *Antimicrob Agents Chemother*. 2020; 65: e01527–20.
- 82. Badali H, Patterson HP, Sanders CJ, et al. Manogepix, the active moiety of the investigational agent fosmanogepix, demonstrates *in vitro* activity against members of the *Fusarium oxysporum* and *Fusarium solani* species complexes. *Antimicrob Agents Chemother*. 2021; 65: e02343–20.
- Rivero-Menendez O, Cuenca-Estrella M, Alastruey-Izquierdo A. In vitro activity of APX001A against rare moulds using EUCAST and CLSI methodologies. J Antimicrob Chemother. 2019; 74: 1295– 1299.
- Tortorano AM, Richardson M, Roilides E, et al. ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: *Fusarium* spp., *Scedosporium* spp. and others. *Clin Microbiol Infect*. 2014; 20: 27–46.
- Al-Hatmi AM, van Diepeningen AD, Curfs-Breuker I, de Hoog GS, Meis JF. Specific antifungal susceptibility profiles of opportunists in the *Fusarium fujikuroi* complex. *J Antimicrob Chemother*. 2015; 70: 1068–1071.
- 86. Guevara-Suarez M, Cano-Lira JF, de García MC, et al. Genotyping of *Fusarium* isolates from onychomycoses in Colombia: detection of two new species within the *Fusarium solani* species complex and in vitro antifungal susceptibility testing. *Mycopathologia*. 2016; 181: 165–174.
- 87. Homa M, Shobana CS, Singh YR, et al. *Fusarium* keratitis in South India: causative agents, their antifungal susceptibilities and a rapid identification method for the *Fusarium solani* species complex. *Mycoses*. 2013; 56: 501–511.
- Prajna N, Mascarenhas J, Krishnan T, et al. Comparison of natamycin and voriconazole for the treatment of fungal keratitis. *Arch Ophthalmol.* 2010; 128: 672–678.
- Guégan S, Garcia-Hermoso D, Sitbon K et al., .Ten-year experience of cutaneous and/or subcutaneous infections due to coelomycetes in France. *Open Forum Infect Dis.* 2016; 3: ofw106.

Received: September 20, 2023. Revised: November 1, 2023. Accepted: December 7, 2023

© The Author(s) 2023. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact <email>journals.permissions@oup.com