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Summary
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Software and Numerical Tools for Paleoclimate Analysis

by Philipp S. SOMMER

Data-model comparisons of Holocene (11,700 years ago to present) climate provide
an ideal basis for evaluating climate model performance outside the range of mod-
ern climate variability. The Holocene is recent enough so that boundary conditions
of the underlying physics and forcing are well known, while paleoenvironmental
archives are abundant and dated with enough precision to comprehensively recon-
struct climate. To date, efforts to reconstruct the spatial patterns of Holocene climate
change have been mainly focused on the mid-Holocene (about 6’000 years ago), but
significant discrepancies have already been identified in data-model comparisons.

These data-model discrepancies can be investigated using instrumental datasets
covering continental or hemispheric scales which allow us to reconstruct large-scale
climatic features, such as atmospheric dynamics or latitudinal temperature gradi-
ents. The generation of these datasets for times prior to the 19th century however
faces considerable challenge because there are very few direct measurements of cli-
matic variables. We rely on climate proxies as indirect measurements of the paleo
climate. The most abundant one is fossil pollen data, i.e. pollen that are produced
by vegetation and can be preserved over thousands of years in terrestrial (or coastal)
archives (e.g. lake sediments). This proxy is available from all non-glaciated con-
tinents over the world in many different climate regimes, and the primary data is
becoming increasingly accessible through large publicly available and community-
driven relational databases. Our ability to use this proxy for continental-scale cli-
mate reconstructions, however, depends on our ability to analyze, explore and find
patterns in these rich and heterogeneous databases. In particular, this requires a
proper understanding of the uncertainties that are related to the indirect measure-
ment of climate.

In the first part of this thesis, I present three new software tools that tackle
the challenge to make this large amount of data accessible, and to build and de-
velop a continental-scale pollen database. These tools cover a wide range of pos-
sible applications to leverage our work with site-based proxy data to a continental
scale. The first tool I present is a web framework that is built around a map-based
interactive database viewer, developed primarily for the Eurasian Modern Pollen
Database, EMPD. This new tool makes the database accessible to other researchers
and to the general public, and it allows a continuous and stable development of the
community-driven database. In addition to the EMPD, I present an extension of this
viewer that makes a large northern-hemispheric fossil pollen database accessible
and allows its visual exploration.

The second tool tackles the challenge to fill the gaps in certain geographic areas
in the pollen database. straditize is a digitization software for stratigraphic diagrams,
and pollen diagrams in particular. It can be used to generate new data for the pollen
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database from publications of the pre-digital era, i.e. from publications where the
primary pollen data is not accessible anymore but through the visualization in form
of a pollen diagram in a peer-reviewed publication.

Finally, I present the generic python visualization framework psyplot, that bridges
the gap between visualization, computation and publication in the day-to-day work
of scientists, and that has been used in multiple parts of the thesis. This flexible
software can be integrated and enhanced by a variety of applications and already
contains multiple convenient visualization methods useful for climate science, par-
ticularly the visualization of geo-referenced data and it handles data that is too large
to fit into memory or lives on different structured or unstructured grids.

The second part of my thesis contains two new statistical methods to estimate
large-scale paleo climatic environments based on modern day relationships. The
first one, pyleogrid, uses a large pollen database and turns it into a gridded climate
reconstruction that can cover continental, hemispheric or even global scales. This
software focuses a lot on the integration of the intrinsic uncertainties in the proxy
data. The outcome of this gridding procedure allows a comparison of computational
climate models with an independent observational database that comes with reliable
estimates of uncertainty.

The last chapter of this thesis applies a converse strategy and uses modern statis-
tical relations within climate variables to inform a computational model. The global
weather generator (GWGEN) has been parameterized with thousands of global weather
stations and provides a statistical tool that downscales monthly to daily climatology
on a global scale. This tool can be embedded in a global paleo vegetation model
where it efficiently simulates the necessary daily meteorology.
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Software and Numerical Tools for Paleoclimate Analysis

by Philipp S. SOMMER

Les comparaisons données-modèles du climat de l’Holocène (d’il y a 11 700 ans à
aujourd’hui) fournissent une base idéale pour évaluer la performance des modèles
climatiques en dehors de la plage moderne de variabilité climatique. L’Holocène est
assez récent pour que les conditions aux limites et les différents forçages soient bien
connus, tandis que les archives paléoenvironnementales sont abondantes et datées
avec suffisamment de précision pour reconstruire complètement le climat. Jusqu’à
présent, les efforts pour reconstruire les changements climatiques de l’Holocène spa-
tialement se sont principalement concentrés sur l’Holocène moyen (il y a environ 6
000 ans), mais des divergences significatives ont déjà été identifiées lors des com-
paraisons données-modèles.

Ces écarts entre les modèles et les données peuvent être étudiés à l’aide de collec-
tion de données d’observation couvrant des échelles continentales ou hémisphériques
qui nous permettent de reconstruire des caractéristiques climatiques à grande échelle,
comme la dynamique atmosphérique ou les gradients de température latitudin-
aux. La génération de ces ensembles de données pour des périodes antérieures au
XIXe siècle est cependant confrontée à un défi considérable, car il existe très peu de
mesures directes de ces variables climatiques. Nous nous appuyons sur des mesures
indirectes du paléoclimat à l’aide d’indicateurs climatiques. Le plus abondant est le
pollen fossile, c’est-à-dire le pollen produit par la végétation et qui peut être conservé
pendant des milliers d’années dans des archives terrestres ou côtières (e.g. les sédi-
ments lacustres). Ce « proxy » est disponible sur tous les continents non couverts par
les glaces à travers de nombreux régimes climatiques différents à travers le monde,
et les données primaires sont de plus en plus accessibles par le biais de grandes bases
de données relationnelles accessibles au public et gérées par la communauté. Notre
capacité à utiliser ce proxy pour les reconstructions climatiques à l’échelle continen-
tale, cependant, dépend de notre capacité d’analyser, d’explorer et de trouver des
modèles dans ces bases de données riches et hétérogènes. En particulier, cela exige
une bonne compréhension des incertitudes liées à la mesure indirecte du climat.

Dans la première partie de cette thèse, je présente trois nouveaux outils logiciels
qui relèvent le défi de rendre accessible cette grande quantité de données et de con-
struire et développer une base de données de pollen à l’échelle continentale. Ces
outils couvrent un large éventail d’applications possibles pour tirer parti de notre
travail avec des données proxy basées sur des sites à l’échelle continentale.

Le premier outil que je présente est une application Web qui s’articule autour
d’un visualiseur de base de données interactif basé sur des cartes, développé princi-
palement pour la base de données eurasienne moderne sur le pollen (EMPD, Eurasian
Modern Pollen Database). Ce nouvel outil rend la base de données accessible à
d’autres chercheurs et au grand public, et il permet un développement continu et
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stable. En plus des données de l’EMPD, je présente une extension de ce visualiseur
qui rend accessible une vaste base de données sur les pollens fossiles de l’hémisphère
Nord et permet son exploration visuelle.

Le deuxième outil s’attaque au défi de combler les lacunes dans certaines zones
géographiques de la base de données de pollen. straditize est un logiciel de numéri-
sation pour les diagrammes stratigraphiques, et les diagrammes de pollen en partic-
ulier. Il peut être utilisé pour générer de nouvelles données pour la base de données
sur le pollen à partir de publications de l’ère pré-numérique, c’est-à-dire de publica-
tions dont les données primaires sur le pollen ne sont plus accessibles, mais dont la
visualisation sous forme de diagramme de pollen est possible dans une publication.

Enfin, je présente le package python de visualisation générique psyplot, qui
comble l’écart entre la visualisation, le calcul et la publication dans le travail quo-
tidien des scientifiques, et qui a été utilisé dans plusieurs parties de la thèse. Ce
logiciel flexible peut être intégré et amélioré par une variété d’applications et con-
tient déjà de multiples méthodes de visualisation pratiques utiles pour la climatolo-
gie, en particulier la visualisation de données géoréférencées et il traite des données
qui sont trop grandes pour tenir en mémoire ou qui vivent sur différentes grilles,
structurées ou non.

La deuxième partie de ma thèse contient deux nouvelles méthodes statistiques
pour estimer les environnements paléoclimatiques à grande échelle basées sur les
relations modernes. La première, pyleogrid, utilise une grande base de données de
pollen et la transforme en une reconstruction climatique maillée qui peut couvrir des
échelles continentales, hémisphériques ou même globales. Ce logiciel se concentre
sur l’intégration des incertitudes intrinsèques des données proxy. Le résultat de cette
méthode de maillage permet de comparer des modèles climatiques computationnels
avec une base de données d’observation indépendante qui fournit des estimations
fiables de l’incertitude.

Le dernier chapitre de cette thèse applique une stratégie inverse et utilise les
relations statistiques des variables climatiques modernes pour informer un mod-
èle. Le générateur météorologique global (GWGEN, global weather generator) a
été paramétré avec des données provenant de milliers de stations météorologiques
mondiales et fournit un outil qui permet de passer de l’échelle mensuelle à l’échelle
quotidienne (« downscaling ») pour le monde entier. Cet outil peut être intégré dans
un modèle global de paléovégétation où il simule efficacement la météorologie quo-
tidienne nécessaire.
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Chapter 1

Introduction

1.1 Motivation

Our understanding of the climate system is based on computational models that
operate on large spatial scales and simulate a complex system of closely related en-
vironmental parameters. The evaluation of these models poses a considerable chal-
lenge because we need data on continental scale to reconstruct large-scale climatic
features, such as atmospheric dynamics or latitudinal temperature gradients. This
instrumental data, however, is limited to not even the past two centuries and over-
laps highly with the comfort zone of the models, i.e. the period where they have both
been developed and tested.

A comparison of models with paleo-environmental proxy records, i.e. records
from past climates prior to the systematic measurement of meteorology and clima-
tology, provides therefore the only possibility to evaluate the predictive skill of our
models for climates that are very different from today. The Holocene, ranging from
11’700 years ago to present, provides an ideal basis for it because (1) it is recent
enough so that boundary conditions and forcings are well known, and (2) pale-
oenvironmental archives are abundant and dated with enough precision to compre-
hensively reconstruct climate. Each of these archives represent the regional climate
condition in the surrounding environment and, when grouped together into large
databases; they allow an informed estimate of the climate state over a large period
of time and vast geographic areas.

A direct comparison of climate model output and proxies is however still chal-
lenging because even the climate proxy record, as an indirect measurement of cli-
mate, relies on an inverse modelling approach with associated uncertainties that are
not always easy to quantify.

Key challenges for large-scale data-model comparisons on past climates are there-
fore (1) to gather enough climate proxy information from a spatially large area and
a variety of climates, and (2) to provide reliable estimates of the uncertainties asso-
ciated to the indirect measurements.

These challenges will be addressed in this thesis via the development of new
software tools that cover flexible data analysis (chapters 2 and 4), a tool for data
gathering (chapter 3), as well as new predictive methods for large-scale paleoenvi-
ronmental modelling (chapters 5 and 6).

All these tools are open-source with a strong emphasis on a proper software de-
velopment that includes documentation and reproducibility.

In the following section 1.2, I will describe the paleo-climate of the current epoch
and why this is of interest for future climate predictions. In the subsequent section
1.3, I introduce the influence of software development in this paleo-climatic research,
and some of the common open-source software development contents. I conclude
this chapter by providing an overview on the contents of this thesis in section 1.3.2.
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1.2 Learning from the past — Why we study paleo-climates

Mankind is facing large infrastructural challenges during this century, such as the
loss of biodiversity, an exponentially growing world population and an acceleration
of growth and globalization of markets (e.g. Ceballos et al., 2015; United Nations,
2019; World Bank, 2002). They all interact with a global climate change that may
lead to a new environment none of us ever experienced (Collins et al., 2013). Any
future global planning has to account highly diverse responses that range from re-
gional to continental scales (Christensen et al., 2013). As such the complex climate
system will enter a state that is significantly different from everything we had since
the beginning of the satellite era, i.e. the beginning of global meteorological data
acquisition, and even different from what has been experienced within the last 2’000
years (Neukom et al., 2019a,b).

Our knowledge about this new climate is therefore mainly based on computa-
tional Earth System Models (ESMs). They face the challenge of simulating a new
climate based on our present knowledge of the interactions between the different
compartments Ocean, Land and Atmosphere. The validation of it becomes concep-
tually difficult because of the aforementioned transition into a warmer world during
the next century. We are entering a new state and it is questionable how well our
models perform (Hargreaves et al., 2013; Mauri et al., 2014).

To evaluate the predictive skill, we rely on our knowledge of paleo-climates, i.e.
climates before the systematic measurement of temperature, precipitation, etc.. They
provide the only opportunity for a large-scale evaluation of ESMs under conditions
very different than today. Paleo-climatic research has therefore been an integral part
for climate sciences since the 80s (COHMAP Members, 1988; Joussaume and Taylor,
1995), particularly in the Paleoclimate Modelling Intercomparison Project (PMIP)
(Braconnot et al., 2012, 2007a,b; Jungclaus et al., 2017; Kageyama et al., 2016; Otto-
Bliesner et al., 2017).

The Holocene interglacial period (11’700 years ago to present) (Walker et al.,
2009) is particularly important because it is sufficiently close in time to provide
paleo-climate archives and the forcings and boundary conditions are well known
(Wanner et al., 2008). With the end of the Younger Dryas around 11’700 years ago, the
Earth experienced a climate warming due to changes in orbital precession and obliq-
uity of the Earth, as well as the disappearing residual ice sheets of the Last Glacial
Maximum (LGM) (Berger and Loutre, 1991; Peltier, 2004). This results in a multitude
of large-scale effects in the atmospheric circulation, such as an increasing amplitude
and frequency of the El Niño–Southern Oscillation (ENSO) (Donders et al., 2008),
stronger westerly circulation in winter indicating a more positive AO/NAO over
mid-latitudes and the arctic (Funder et al., 2011; Mauri et al., 2014) and changes
in the polar amplification and a weakening of the latitudinal temperature gradient
(Davis and Brewer, 2009).

Hence, this epoch is of particular interest because the continental setup is com-
parable to nowadays while still having a climate that is significantly different from
present day.

1.2.1 Pollen as a climate proxy

Before 1850, there is almost no instrumental measurement of temperature. Instead
we rely on archives such as lake sediments, glaciers, peat bogs, or speleothems that
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preserve climate proxies. The latter is a set of variables that are influenced by cli-
mate conditions and therefore allow an indirect measurement of climate(-related)
parameters at ancient times, e.g. temperature, precipitation or sea-level.

The most abundant climate proxy, that I will also focus on in the next chapters,
are pollen assemblages. It is the geographically most spread paleo-climate proxy
(Birks and Birks, 1980) and has a long history in quantitative paleo-climatologic re-
constructions (e.g. Bradley, 1985; Iversen, 1944; Nichols, 1967, 1969).

The chemically stable polymer sporopollenin allows the pollen grain to be pre-
served over very long periods of time, in various terrestrial archives such as lakes,
wetlands or ocean sediments (Fægri et al., 1989; Havinga, 1967). Pollen are produced
by seed-bearing plants (spermatophytes, Wodehouse, 1935) and as such have a high
spatial continuity and prevalence (Chevalier et al., in prep). Their compositions are
strongly influenced by the surrounding climate, although other factors, such as soil
compositions or inter-species competition also play an important role. This depen-
dency allows to reconstruct the driving factor, i.e. climate parameters such as winter
and summer temperature, or precipitation from the observed pollen data (Brewer
et al., 2007; Chevalier et al., in prep; Juggins, 2013; Juggins and Birks, 2012).

This high abundance of pollen led to multiple regional efforts to combine and
homogenize fossil pollen data. This makes pollen particularly useful for large-scale
data-model intercomparisons. The earliest examples are the European Pollen Data-
base (EPD) and North American Pollen Database (NAPD) that both started around
1990 and developed a similar structure in order to be compatible (Fyfe et al., 2009;
Grimm, 2008) . This let to the development of other regional pollen databases, such
as the Latin American Pollen Database (LAPD) (Flantua et al., 2015; Marchant et al.,
2002) in 1994 or the African Pollen Database (APD) (Vincens et al., 2007) in 1996,
and others (see Grimm, 2008). These attempts finally let to the development of the
Neotoma database (Williams et al., 2018), a global multiproxy database that incor-
porates many of the regional pollen databases.

The use of pollen for paleo-climate reconstruction has a long academic tradi-
tion in geology (Bradley, 1985) and provides the source of large-scale paleo-climatic
reconstructions in number of different studies (Davis et al., 2003; Fischer and Jung-
claus, 2011; Marsicek et al., 2018; Mauri et al., 2015, and more). Such a reconstruction,
however, has multiple uncertainties that are often difficult to quantify and to con-
sider (see chapter 5). Key challenges for a data-model comparison are dating uncer-
tainties, influences of seasonality on the proxy (e.g. whether it represents summer,
winter or annual temperature) and quality and temporal resolutions of the record.
Another challenge is the proper handling of uncertainties related to the inverse mod-
elling approach (e.g. Guiot and Vernal, 2011; Telford and Birks, 2005, 2009), and the
spatial coverage of the proxy (see chapter 3).

1.3 Software for Paleoclimatology

The usage of software is crucial for the quantitative reconstruction of Earth’s Cli-
mate. Paleoclimate research is facing an information overload problem and requires
innovative methods in the realm of visual analytics, i.e. the interplay between au-
tomated analysis techniques and interactive visualization (Keim et al., 2008; Nocke,
2014). As such, a visual representation of the paleoclimate reconstruction has been
essential for both, proxies (Bradley, 1985; Grimm, 1988; Nichols, 1967) and models
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(Böttinger and Röber, 2019; Nocke, 2014; Nocke et al., 2008; Phillips, 1956; Rauten-
haus et al., 2018), although the visualization methods significantly differ due to the
differences in data size and data heterogeneity.

The second important aspect for software and paleoclimate is the distribution of
data to make it accessible to other researchers, the community and policy makers,
which is commonly established through online accessible data archives and recently
also through map-based web interfaces (Bolliet et al., 2016; Williams et al., 2018).

The following sections provide an overview on the different techniques used
by palynologists to visualize and distribute their data and concludes with an intro-
duction into Open-Source Software Development, which forms the basis of all the
software solutions that are presented later in this thesis.

1.3.1 Sofware for Proxy Data Analysis, Visualization and Distribution

Due to the nature of stratigraphic data, proxies, especially pollen assemblages, are
often treated as a collection of multiple time-series (one-dimensional arrays). The
size of one dataset is generally small (in the range of kB) and can be treated as plain
text files. Traditionally, numerical and statistical analysis are separated from the
visualization.

In palynology, standard analytical tools are Microsoft Excel1 and the R software
for statistical computing (R Core Team, 2019). The latter also involves multiple pack-
ages for paleoclimatic reconstruction, such as rioja (Juggins, 2017) and analogue
(Simpson, 2007; Simpson and Oksanen, 2019), and bayesian methods exists in a va-
riety of programming languages (e.g. Haslett et al., 2006; Holmström et al., 2015;
Nolan et al., 2019; Parnell et al., 2014; Tipton, 2019). Alternatively, desktop appli-
cations exist, such as Polygon2 by Nakagawa et al., 2002 or the CREST software
presented by Chevalier et al., 2014 and Chevalier, 2019.

It is a long-standing tradition to visualize stratigraphic data, and especially pollen
data, in form of a stratigraphic (pollen) diagram (Bradley, 1985; Grimm, 1988). Espe-
cially during the 20th century, when it was not yet common to distribute data along-
side a peer-reviewed publication, pollen diagrams have been the only possibility to
publish the entire dataset (see also chapter 3). The generation of these diagrams is
usually based on desktop applications such as C2 (Juggins, 2007) or Tilia3 (Grimm,
1988, 1991). A more recent implementation into the psyplot framework (Sommer,
2017, chapter 4) is also provided with the psy-strat plugin4 (Sommer, 2019).

Raw pollen data is at present made available through web archives, such as PAN-
GAEA5 or the National Climatic Data Center (NCDC) by the National Oceanic and
Atmospheric Administration (NOAA)6. Collections of data, such as regional pollen
databases or project specific collections (e.g. Davis et al., 2013; Whitmore et al., 2005)
are usually published in one of the above-mentioned archives or associated with a
publication. A different approach has been taken by Bolliet et al., 2016 who devel-
oped a small web application as an interface into the data collection, the ClimateProx-
iesFinder (Brockmann, 2016, chapter 2).

Outstanding compared to the previous data interfaces is the new infrastructure
for the Neotoma database (Williams et al., 2018). It consists of the map-based web

1https://products.office.com/en/excel
2http://polsystems.rits-paleo.com
3https://www.tiliait.com/
4https://psy-strat.readthedocs.io
5https://pangaea.de/
6https://www.ncdc.noaa.gov/data-access/paleoclimatology-data

https://products.office.com/en/excel
http://polsystems.rits-paleo.com
https://www.tiliait.com/
https://psy-strat.readthedocs.io
https://pangaea.de/
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data
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interface, the Neotoma Explorer7, a RESTful api8 that allows an interaction with
other web services, the neotoma R package (Goring et al., 2015) and an interface into
the Tilia software for stratigraphic and map-based visualizations (Williams et al.,
2018). This rich functionality is, however, bound to the structure of Neotoma and as
such, different from the Javascript-based approach developed in chapter 2 because
it cannot easily be transferred to other projects.

1.3.2 Methods and Workflows in Open-Source Software Development

The importance and necessity of software for visualization and data analysis led to
the development of the software packages I present in this thesis. Most of them are
written in the programming language Python (Perez et al., 2011), on the one hand
due to my personal preference, but mainly due to the recent developments in out-
of-core computing with the establishment of xarray and dask (Dask Development
Team, 2016; Hoyer and Hamman, 2017; Rocklin, 2015). Another important reason,
especially for psyplot (chapter 4) and straditize (chapter 3) was the availability of
a highly flexible and stable package for graphical user interfaces, PyQt 9, and the
comparably simple possibility to implement an in-process python console into the
PyQ5 application10 that allows to handle the software functionalities both, from the
command line and from the GUI.

The tools that I present in the following chapter are all available as open-source
software packages. But modern Free and Open-Source Software (FOSS) develop-
ment is not only about making the source code available, but rather about providing
a sustainable and maintainable package that allows continuous and transparent de-
velopment under the aspect of rapidly evolving environment. In the following sec-
tions, I will introduce the most important FOSS development concepts (e.g. Shaw,
2018; Stodden and Miguez, 2014) and the necessary vocabulary. These concepts are
used by many of the well-established software packages, such as matplotlib (Hunter,
2007), numpy (Oliphant, 2006), and scipy (Jones et al., 2001).

Version Control

Version control systems record changes to a file and enables the user to roll-back to
previous versions of it. The usage of a such a system is inevitable for sustainable
FOSS packages. It enables contributions by other FOSS developers and the usage
through external packages.

The packages I present in the following chapters are hosted on Github11, a freely
available web platform for hosting projects that are managed with git (Chacon et al.,
2019).

Version control with git has a specific terminology (see also chapter 2). Central
aspects are repositories (project folders), commits (change of the project files), issues
(bug reports), branches and forks (copies of the (main) project), and pull requests (con-
tributions to a project). The following list explains this vocabulary in a bit more
detail because the terminology is used in several parts of this thesis, particular in
chapter 2 and 4. A more complete list is provided in Github, Inc., 2019.

7https://apps.neotomadb.org/Explorer
8https://api.neotomadb.org
9http://pyqt.sourceforge.net/Docs/PyQt5/installation.html

10https://qtconsole.readthedocs.org
11The packages are available at https://github.com/Chilipp. Other potential platforms for ver-

sion control are sourceforge (https://sourceforge.net) and Bitbucket (https://bitbucket.org)

https://apps.neotomadb.org/Explorer
https://api.neotomadb.org
http://pyqt.sourceforge.net/Docs/PyQt5/installation.html
https://qtconsole.readthedocs.org
https://github.com/Chilipp
https://sourceforge.net
https://bitbucket.org
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Repositories are the most basic elements of git and Github. It can be compared to
a folder that contains all the necessary files associated with a project (e.g. the
source code and documentation of a software package). It also contains all the
different versions (revisions) of the project files.

Commits or revisions track the changes in the repository. Each commit is a change
to a specific file (or a set of files) that is associated with a unique ID and a
message of the author that describes the changes.

Issues are suggested improvements, bug reports or any other question to the repos-
itory. Every issue has an associated discussion page for the communication
between repository owners and the users.

Branches are parallel versions of a repository. Often one incorporates new devel-
opments into a separate branch that does not affect the main version of the
repository (the master branch) and merge the two versions when the new de-
velopments are fully implemented.

Forks are copies of repositories. When someone wants to contribute to a software
package (repository) that does not belong to him, he can fork (copy) it, imple-
ment the changes, and then create a pull request to contribute to the official
version. Different from a branch, that is a (modified) copy of another branch,
forks are copies of the entire repository, i.e. all existing branches.

Pull request are the proposed changes to a repository. One can create a fork of the
repository from someone else, implement changes in this fork and then create
a pull request to merge it into the original repository. Every pull request has an
associated discussion page that allows the repository owner to moderate and
discuss the suggested changes.

Webhooks are general methods for web development. Github can trigger a hook to
inform a different web service (such as a Continuous Integration (CI) service,
see next section)) that a repository has changed or that someone contributed in
a discussion. In chapter 2 we use Github webhooks for an automated admin-
istration of a repository.

Automated Tests, Test Coverage and Continuous Integration

The most important aspect for FOSS development, especially considering the rapid
evolution of this area, is the existence of automated tests. One distinguishes unit
tests (tests designed to cover one specific routine) and integration tests (tests of one
or more routines within the framework) (Shaw, 2018). The boundary between the
two tests is rather vague and the decision about what is used highly depends on
the structure of the software that is supposed to be tested. For complex frameworks
(such as psyplot or straditize), integration tests are needed to ensure the operability
within the framework. Other more simple software packages, (such as docrep or
model-organization (Sommer, 2018a,b)) go well with unit tests only.

Another good standard for such a test suite is to use an automated test discov-
ery tool (e.g. the Python unittest package (Python Software Foundation, 2019) or
pytest (Krekel et al., 2004)) that also reports the test coverage (i.e. the fraction of the
code that is tested by the test suite). These functionalities are then implemented on
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a CI service, such as Travis CI12, Appveyor13 or CircleCi14 that are integrated into
the Github repository (section 1.3.2). Every commit to the Github repository, or any
new pull requests then triggers the tests. This transparently allows to ensure the
operability of the software, and the test coverage report ensures that the newly im-
plemented functionality is properly tested. A software development concept that is
entirely built on this idea is the test-driven development. Within this framework,
new features are implemented by starting with the test that should be fulfilled by
the new feature and then improving the software until this test pass (Beck, 2002).

Automated Documentation

Documentation is the key aspect of a sustainable software and much of the geo-
scientific code has a lack of proper documentation (based on personal experience).
For the software in this thesis, four different levels of the documentation play an
important role:

The Application programming interface (API) documentation is meant to
document the major parts of the software code that is subject to be used by
external scripts or packages. It is usually implemented in the code and docu-
ments the essential subroutines and methods of the software.

The graphical user interface (GUI) documentation provides help for the most high-
level functionality for the software. The GUI is a user interface into the soft-
ware through graphical elements (such as buttons, checkboxes, etc.). Unlike
the API documentation, it should not require knowledge about programming.

The contributing and/or developers guide is targeting other software developers
that might want to contribute to the software package. This document states
how other software developers should contribute to the software and intro-
duces the central structural aspects and frameworks of the software.

The manual (or also commonly referred to as the documentation) is the document
that contains all necessary information for the software, such as installation
instructions, tutorials, examples, etc.. It often includes some (or multiple) of
the above parts.

The documentations for the software in this thesis have been automatically gen-
erated with Sphinx, a Python tool to generate documentations in various different
formats (such as HTML, PDF, etc.) (Hasecke, 2019; Perez et al., 2011). It is also imple-
mented as a webhook into the Github repository (see section 1.3.2) to automatically
generate an up-to-date documentation of the software for each commit to the Github
repository. This provides an additional automated test for the software, and espe-
cially its high-level-interface, in addition to the automated test suite described in the
previous section. Most of the manuals for the software packages in this thesis are
hosted and build online with the free services offered by readthedocs.org.

Distribution through package managers and virtual environments

FOSS software is meant to be extensible and to build upon other FOSS packages.
This requires an accurate and transparent handling of its dependencies and require-
ments which is usually provided through the so-called packaging of the software

12https://travis-ci.org/
13https://appveyor.com
14https://circleci.com/

https://readthedocs.org/
https://travis-ci.org/
https://appveyor.com
https://circleci.com/
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(e.g. Torborg, 2016). There exists a variety of package managers and the choice most
often depends on the framework of the software.

The software in this thesis is mainly distributed via two systems. The first one
is python’s own package manager pip which is based on the packages uploaded to
pypi.org. The second one, which got increasing importance during the recent past, is
the open-source Anaconda Distribution15. Both work on multiple operating systems
(Windows, Linux and Mac OS), but the Anaconda Distribution contains also non-
python packages (e.g. written in C or C++) that multiple Python packages rely on;
and it contains a rich suite of R packages.

One step further, compared to package managers, are the distribution of virtual
environments. These systems do not only provide the software, but also a full op-
erating system and the installed dependencies. A popular platform (used also for
the Eurasian Modern Pollen Database (EMPD) database) is provided through so-
called Docker containers16. Compared to package managers, this system has the
advantage of simplifying the installation procedure for the user because he only has
to download the corresponding docker image. The docker image itself then runs
independent of the local file system in a separate isolated mode.

1.4 Challenges tackled in this thesis

In part I of this thesis I present several new software tools that tackle the data anal-
ysis, data gathering and data distribution aspects described in the previous section
1.3.

Chapter 2 in this first part describes new tools for the data analysis and distri-
bution of pollen data on a large continental scale. In this chapter I present the new
infrastructural tools I developed for the sustainable management of the community-
driven Eurasian Modern Pollen Database (EMPD). These tools consist of a flexible
and lightweight map-based web interface into the data, the EMPD-viewer, and a
webserver for an automated administration of the database. Within this chapter, I
also present another use case for the map-viewer that is adapted to a large northern-
hemispheric database of fossil and modern pollen records.

The second chapter in this part, chapter 3, describes the new straditize software
that addresses the problem of gathering proxy data that has been collected dur-
ing the pre-digital area. This software is a semi-automated digitization package for
stratigraphic diagrams, and particularly pollen diagrams that we use to fill gaps in
our database in data-poor regions.

I conclude the first part with the presentation of the generic visualization frame-
work psyplot in chapter 4. It is a suite of python packages that are designed for an
interactive visual analysis of data, both from a GUI and the command line. This soft-
ware is the base infrastructure for many of the tools described in the other chapters.
It has a very general scope is not limited to paleoclimate analysis.

In the second part I present two new models that leverage site-based observa-
tions (or paleo climate reconstruction) onto a continental, or even global scale. The
first model in chapter 5 presents the very recent pyleogrid package that extends the
methodology of (Mauri et al., 2015). The ensemble method I present in this study
provides a spatio-temporal gridding of side-based proxy-climate estimates under

15https://www.anaconda.com
16https://www.docker.com

https://pypi.org/
https://www.anaconda.com
https://www.docker.com
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the consideration of both, their dating and reconstruction uncertainties. The out-
come of this model can be conveniently used for data-model intercomparisons be-
cause it contains reliable estimates of the methodological uncertainties.

Finally, I describe the weather generator GWGEN in chapter 6, a statistical model
that uses modern relationships in observational meteorological data to inform large-
scale paleo vegetation models with temporally downscaled temperature, precipita-
tion, cloud cover and wind speed records. This weather generator has been parame-
terized with more than 50 million daily weather observation to be applicable on the
entire globe.

This thesis finishes with the conclusions in chapter 7 where I summarize the
new tools from this thesis and provide an outlook for the further development of
the methods. Three of them are already published in peer-reviewed journals by
the time that this thesis has been submitted. These software packages are psyplot
(Sommer, 2017), GWGEN (Sommer and Kaplan, 2017) and straditize (Sommer et al.,
2019). In appendix A I provide a list of all the peer-reviewed publications I have
been involved as main or co-author during my thesis and that have been accepted
by the time that this thesis has been submitted.

References

Beck, Kent (Dec. 1, 2002). Test Driven Development. By Example. Addison Wesley.
192 pp. ISBN: 978-0-321-14653-3. URL: https://www.ebook.de/de/product/
3253611/kent_beck_test_driven_development_by_example.html.

Berger, A. and M. F. Loutre (1991). “Insolation values for the climate of the last 10
million years”. In: Quat. Sci. Rev. 10.4, pp. 297–317. ISSN: 02773791. DOI: 10.1016/
0277-3791(91)90033-q.

Birks, Harry John Betteley and Hilary H Birks (1980). Quaternary palaeoecology. Ed-
ward Arnold London.

Bolliet, Timothé, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Va-
lérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth
Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and
Claire Waelbroeck (Aug. 2016). “Water and carbon stable isotope records from
natural archives: a new database and interactive online platform for data brows-
ing, visualizing and downloading”. In: Climate of the Past 12.8, pp. 1693–1719.
DOI: 10.5194/cp-12-1693-2016.

Böttinger, Michael and Niklas Röber (2019). “Visualization in Climate Modelling”.
In: International Climate Protection. Ed. by Michael Palocz-Andresen, Dòra Szalay,
Andràs Gosztom, Làszlò Sìpos, and Tìmea Taligàs. Cham: Springer International
Publishing, pp. 313–321. ISBN: 978-3-030-03816-8. DOI: 10.1007/978- 3- 030-
03816-8_39. URL: https://doi.org/10.1007/978-3-030-03816-8_39.

Braconnot, P., Sandy P Harrison, Masa Kageyama, Patrick J Bartlein, Valerie Masson-
Delmotte, Ayako Abe-Ouchi, Bette Otto-Bliesner, and Yan Zhao (2012). “Evalua-
tion of climate models using palaeoclimatic data”. In: Nature Climate Change 2.6,
p. 417. DOI: 10.1038/nclimate1456. URL: https://www.nature.com/articles/
nclimate1456.

Braconnot, P., B. Otto-Bliesner, S. Harrison, S. Joussaume, J.-Y. Peterchmitt, A. Abe-
Ouchi, M. Crucifix, E. Driesschaert, Th. Fichefet, C. D. Hewitt, M. Kageyama, A.
Kitoh, M.-F. Loutre, O. Marti, U. Merkel, G. Ramstein, P. Valdes, L. Weber, Y. Yu,
and Y. Zhao (June 2007a). “Results of PMIP2 coupled simulations of the Mid-
Holocene and Last Glacial Maximum – Part 2: feedbacks with emphasis on the

https://www.ebook.de/de/product/3253611/kent_beck_test_driven_development_by_example.html
https://www.ebook.de/de/product/3253611/kent_beck_test_driven_development_by_example.html
https://doi.org/10.1016/0277-3791(91)90033-q
https://doi.org/10.1016/0277-3791(91)90033-q
https://doi.org/10.5194/cp-12-1693-2016
https://doi.org/10.1007/978-3-030-03816-8_39
https://doi.org/10.1007/978-3-030-03816-8_39
https://doi.org/10.1007/978-3-030-03816-8_39
https://doi.org/10.1038/nclimate1456
https://www.nature.com/articles/nclimate1456
https://www.nature.com/articles/nclimate1456


10 Chapter 1. Introduction

location of the ITCZ and mid- and high latitudes heat budget”. In: Climate of the
Past 3.2, pp. 279–296. DOI: 10.5194/cp-3-279-2007. URL: https://www.clim-
past.net/3/279/2007/.

Braconnot, P., Otto-Bliesner, S. P. Harrison, S. Joussaume, J.-Y. Peterchmitt, A. Abe-
Ouchi, M. Crucifix, E. Driesschaert, Th. Fichefet, C. D. Hewitt, M. Kageyama, A.
Kitoh, A. Laîné, M.-F. Loutre, O. Marti, U. Merkel, G. Ramstein, P. Valdes, S. L.
Weber, Y. Yu, and Y. Zhao (June 2007b). “Results of PMIP2 coupled simulations
of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-
scale features”. In: Climate of the Past 3.2, pp. 261–277. DOI: 10.5194/cp-3-261-
2007. URL: https://www.clim-past.net/3/261/2007/.

Bradley, Raymond S (1985). Quaternary paleoclimatology : methods of paleoclimatic re-
construction. eng. Boston ; London [etc.]: Allen and Unwin. ISBN: 0045510679.

Brewer, S., Joel Guiot, and Doris Barboni (2007). “Pollen data as climate proxies”. In:
Encyclopedia of Quaternary Science. Elsevier, pp. 2497–2508. URL: https://hal.
archives-ouvertes.fr/hal-00995404.

Brockmann, Patrick (2016). ClimateProxiesFinder: dc.js + leaflet application to discover
climate proxies. Last accessed: 2019-08-30. URL: https://github.com/PBrockmann
/ClimateProxiesFinder (visited on 10/06/2016).

Ceballos, Gerardo, Paul R. Ehrlich, Anthony D. Barnosky, Andrès Garcìa, Robert M.
Pringle, and Todd M. Palmer (June 2015). “Accelerated modern human–induced
species losses: Entering the sixth mass extinction”. In: Science Advances 1.5. DOI:
10.1126/sciadv.1400253. eprint: https://advances.sciencemag.org/content
/1/5/e1400253.full.pdf. URL: https://advances.sciencemag.org/content/
1/5/e1400253.

Chacon, Scott, Ben Straub, and Pro Git Contributors (2019). Pro Git. 2nd ed. Last
accessed: 2019-08-31. URL: https://github.com/progit/progit2 (visited on
08/31/2019).

Chevalier, M., R. Cheddadi, and B. M. Chase (Nov. 2014). “CREST (Climate RE-
construction SofTware): a probability density function (PDF)-based quantitative
climate reconstruction method”. In: Climate of the Past 10.6, pp. 2081–2098. DOI:
10.5194/cp-10-2081-2014.

Chevalier, M., B.A.S. Davis, K. Gajewski, H. Seppä, O. Heiri, J. Guiot, J. Marcisek,
B.M. Chase, N. Kühl, J. Tipton, A. Dawson, L. Holmström, K. Izumi, T. Lacourse,
W. Finsinger, R.J. Telford, L.N. Phelps, S.Y. Maezumi, V. Carter, M. Zanon, A.
Mauri, F. Vallè, A. de Vernal, S. Goring, M. Chaput, P. S. Sommer, D. Kuprianov,
and C. Nolan (in prep). “A review of statistical methods to quantify past climates
from fossil pollen data”. In:

Chevalier, Manuel (Apr. 2019). “Enabling possibilities to quantify past climate from
fossil assemblages at a global scale”. In: Global and Planetary Change 175, pp. 27–
35. DOI: 10.1016/j.gloplacha.2019.01.016.

Christensen, J.H., K. Krishna Kumar, E. Aldrian, S.-I. An, I.F.A. Cavalcanti, M. de
Castro, W. Dong, P. Goswami, A. Hall, J.K. Kanyanga, A. Kitoh, J. Kossin, N.-
C. Lau, J. Renwick, D.B. Stephenson, S.-P. Xie, and T. Zhou (2013). “Climate
Phenomena and their Relevance for Future Regional Climate Change”. In: Cli-
mate Change 2013: The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Ed.
by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A.
Nauels, Y. Xia, V. Bex, P.M. Midgley, T.F. Stocker, D. Qin, G.-K. Plattner, M. Tig-
nor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley, T.F. Stocker,
D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V.
Bex, P.M. Midgley, T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J.

https://doi.org/10.5194/cp-3-279-2007
https://www.clim-past.net/3/279/2007/
https://www.clim-past.net/3/279/2007/
https://doi.org/10.5194/cp-3-261-2007
https://doi.org/10.5194/cp-3-261-2007
https://www.clim-past.net/3/261/2007/
https://hal.archives-ouvertes.fr/hal-00995404
https://hal.archives-ouvertes.fr/hal-00995404
https://github.com/PBrockmann/ClimateProxiesFinder
https://github.com/PBrockmann/ClimateProxiesFinder
https://doi.org/10.1126/sciadv.1400253
https://advances.sciencemag.org/content/1/5/e1400253.full.pdf
https://advances.sciencemag.org/content/1/5/e1400253.full.pdf
https://advances.sciencemag.org/content/1/5/e1400253
https://advances.sciencemag.org/content/1/5/e1400253
https://github.com/progit/progit2
https://doi.org/10.5194/cp-10-2081-2014
https://doi.org/10.1016/j.gloplacha.2019.01.016


References 11

Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Cambridge, United King-
dom and New York, NY, USA: Cambridge University Press. Chap. 14, pp. 1217–
1308. ISBN: ISBN 978-1-107-66182-0. DOI: 10.1017/CBO9781107415324.028. URL:
www.climatechange2013.org.

COHMAP Members (1988). “Climatic Changes of the Last 18,000 Years: Observa-
tions and Model Simulations”. In: Science 241.4869, pp. 1043–1052. ISSN: 00368075,
10959203. URL: http://www.jstor.org/stable/1702404.

Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X.
Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver,
and M. Wehner (2013). “Long-term Climate Change: Projections, Commitments
and Irreversibility”. In: Climate Change 2013: The Physical Science Basis. Contri-
bution of Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change. Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor,
S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Cambridge,
United Kingdom and New York, NY, USA: Cambridge University Press. Chap. 12,
pp. 1029–1136. ISBN: ISBN 978-1-107-66182-0. DOI: 10.1017/CBO9781107415324.
024. URL: www.climatechange2013.org.

Dask Development Team (2016). Dask: Library for dynamic task scheduling. URL: https
://dask.org.

Davis, B. A. S., S. Brewer, A. C. Stevenson, and J. Guiot (2003). “The temperature of
Europe during the Holocene reconstructed from pollen data”. In: Quat. Sci. Rev.
22.15-17, pp. 1701–1716. ISSN: 02773791. DOI: 10.1016/s0277-3791(03)00173-2.

Davis, B. A. S., M. Zanon, P. Collins, A. Mauri, J. Bakker, D. Barboni, A. Barthelmes,
C. Beaudouin, A. E. Bjune, E. Bozilova, R. H. W. Bradshaw, B. A. Brayshay, S.
Brewer, E. Brugiapaglia, J. Bunting, S. E. Connor, J. L. de Beaulieu, K. Edwards,
A. Ejarque, P. Fall, A. Florenzano, R. Fyfe, D. Galop, M. Giardini, T. Giesecke, M. J.
Grant, J. Guiot, S. Jahns, V. Jankovska, S. Juggins, M. Kahrmann, M. Karpinska-
Kolaczek, P. Kolaczek, N. Kuhl, P. Kunes, E. G. Lapteva, S. A. G. Leroy, M. Ley-
det, J. Guiot, S. Jahns, V. Jankovska, S. Juggins, M. Kahrmann, M. Karpinska-
Kolaczek, P. Kolaczek, N. Kuehl, P. Kunes, E. G. Lapteva, S. A. G. Leroy, M. Ley-
det, J. A. L. Saez, A. Masi, I. Matthias, F. Mazier, V. Meltsov, A. M. Mercuri, Y.
Miras, F. J. G. Mitchell, J. L. Morris, F. Naughton, A. B. Nielsen, E. Novenko, B.
Odgaard, E. Ortu, M. V. Overballe-Petersen, H. S. Pardoe, S. M. Peglar, I. A. Pi-
dek, L. Sadori, H. Seppa, E. Severova, H. Shaw, J. Swieta-Musznicka, M. Theuer-
kauf, S. Tonkov, S. Veski, W. O. van der Knaap, J. F. N. van Leeuwen, J. Wood-
bridge, M. Zimny, and J. O. Kaplan (2013). “The European Modern Pollen Data-
base (EMPD) project”. In: Vegetation History and Archaeobotany 22.6, pp. 521–530.
ISSN: 0939-6314. DOI: 10 . 1007 / s00334 - 012 - 0388 - 5. URL: http : / / link .
springer.com/article/10.1007%2Fs00334-012-0388-5.

Davis, Basil A. S. and Simon Brewer (Feb. 2009). “Orbital forcing and role of the
latitudinal insolation/temperature gradient”. In: Climate Dynamics 32.2, pp. 143–
165. ISSN: 1432-0894. DOI: 10.1007/s00382-008-0480-9. URL: https://doi.
org/10.1007/s00382-008-0480-9.

Donders, Timme H., Friederike Wagner-Cremer, and Henk Visscher (Mar. 2008).
“Integration of proxy data and model scenarios for the mid-Holocene onset of
modern ENSO variability”. In: Quaternary Science Reviews 27.5-6, pp. 571–579.
ISSN: 0277-3791. DOI: 10.1016/j.quascirev.2007.11.010. URL: http://www.
sciencedirect.com/science/article/pii/S0277379107003186.

Fægri, K., P. E. Kaland, and K. Krzywinski (1989). Textbook of pollen analysis. Ed. 4.
Chichester, UK: John Wiley & Sons Ltd.

https://doi.org/10.1017/CBO9781107415324.028
www.climatechange2013.org
http://www.jstor.org/stable/1702404
https://doi.org/10.1017/CBO9781107415324.024
https://doi.org/10.1017/CBO9781107415324.024
www.climatechange2013.org
https://dask.org
https://dask.org
https://doi.org/10.1016/s0277-3791(03)00173-2
https://doi.org/10.1007/s00334-012-0388-5
http://link.springer.com/article/10.1007%2Fs00334-012-0388-5
http://link.springer.com/article/10.1007%2Fs00334-012-0388-5
https://doi.org/10.1007/s00382-008-0480-9
https://doi.org/10.1007/s00382-008-0480-9
https://doi.org/10.1007/s00382-008-0480-9
https://doi.org/10.1016/j.quascirev.2007.11.010
http://www.sciencedirect.com/science/article/pii/S0277379107003186
http://www.sciencedirect.com/science/article/pii/S0277379107003186


12 Chapter 1. Introduction

Fischer, N. and J. H. Jungclaus (Nov. 2011). “Evolution of the seasonal temperature
cycle in a transient Holocene simulation: orbital forcing and sea-ice”. In: Climate
of the Past 7.4, pp. 1139–1148. DOI: 10.5194/cp- 7- 1139- 2011. URL: https:
//www.clim-past.net/7/1139/2011/.

Flantua, Suzette G.A., Henry Hooghiemstra, Eric C. Grimm, Hermann Behling, Mark
B. Bush, Catalina González-Arango, William D. Gosling, Marie-Pierre Ledru,
Socorro Lozano-Garcìa, Antonio Maldonado, Aldo R. Prieto, Valentì Rull, and
John H. Van Boxel (Dec. 2015). “Updated site compilation of the Latin American
Pollen Database”. In: Review of Palaeobotany and Palynology 223, pp. 104–115. DOI:
10.1016/j.revpalbo.2015.09.008.

Funder, Svend, Hugues Goosse, Hans Jepsen, Eigil Kaas, Kurt H. Kjær, Niels J. Kors-
gaard, Nicolaj K. Larsen, Hans Linderson, Astrid Lyså, Per Möller, Jesper Olsen,
and Eske Willerslev (Aug. 2011). “A 10,000-Year Record of Arctic Ocean Sea-Ice
Variability–View from the Beach”. In: Science 333.6043, pp. 747–750. ISSN: 0036-
8075. DOI: 10.1126/science.1202760. eprint: https://science.sciencemag.
org/content/333/6043/747.full.pdf. URL: https://science.sciencemag.
org/content/333/6043/747.

Fyfe, Ralph M., Jacques-Louis de Beaulieu, Heather Binney, Richard H. W. Bradshaw,
Simon Brewer, Anne Le Flao, Walter Finsinger, Marie-Josè Gaillard, Thomas Gie-
secke, Graciela Gil-Romera, Eric C. Grimm, Brian Huntley, Petr Kunes, Norbert
Kühl, Michelle Leydet, Andrè F. Lotter, Pavel E. Tarasov, and Spassimir Ton-kov
(Mar. 2009). “The European Pollen Database: past efforts and current activities”.
In: Vegetation History and Archaeobotany 18.5, pp. 417–424. DOI: 10.1007/s00334-
009-0215-9.

Github, Inc. (2019). “GitHub glossary”. In: Last accessed: 2019-08-31. URL: https:
//help.github.com/en/articles/github-glossary (visited on 08/31/2019).

Goring, Simon, Andria Dawson, Gavin L Simpson, Karthik Ram, Russell W Graham,
Eric C Grimm, and Jack W. Williams (2015). “neotoma: A Programmatic Interface
to the Neotoma Paleoecological Database”. In: Open Quaternary 1.1, p. 2. URL:
http://doi.org/10.5334/oq.ab.

Grimm, Eric C. (1988). “Data analysis and display”. In: Vegetation history. Ed. by B.
Huntley, T. Webb, B. Huntley, and T. Webb. Dordrecht: Springer Netherlands,
pp. 43–76. ISBN: 978-94-009-3081-0. DOI: 10.1007/978-94-009-3081-0_3. URL:
https://doi.org/10.1007/978-94-009-3081-0_3.

— (1991). “Tilia and Tiliagraph”. In: Illinois State Museum, Springfield 101.
— (2008). “Neotoma: an ecosystem database for the Pliocene, Pleistocene, and Holo-

cene”. In: Illinois State Museum Scientific Papers E Series 1. URL: https://www.
neotomadb.org/uploads/NeotomaManual.pdf.

Guiot, Joel and Anne de Vernal (Oct. 2011). “QSR Correspondence “Is spatial au-
tocorrelation introducing biases in the apparent accuracy of palaeoclimatic re-
constructions?” Reply to Telford and Birks”. In: Quaternary Science Reviews 30.21,
pp. 3214–3216. ISSN: 0277-3791. DOI: 10.1016/j.quascirev.2011.07.023. URL:
http://www.sciencedirect.com/science/article/pii/S0277379111002344.

Hargreaves, J. C., J. D. Annan, R. Ohgaito, A. Paul, and A. Abe-Ouchi (2013). “Skill
and reliability of climate model ensembles at the Last Glacial Maximum and mid-
Holocene”. In: Clim. Past 9.2, pp. 811–823. ISSN: 1814-9332. DOI: 10.5194/cp-9-
811-2013.

Hasecke, Jan Ulrich (2019). Software-Dokumentation mit Sphinx: Zweite überarbeitete
Auflage (Sphinx 2.0) (German Edition). Independently published. ISBN: 1793008779.
URL: https://www.amazon.com/Software-Dokumentation-mit-Sphinx-%C3%
BCberarbeitete-Auflage/dp/1793008779?SubscriptionId=AKIAIOBINVZYXZQZ

https://doi.org/10.5194/cp-7-1139-2011
https://www.clim-past.net/7/1139/2011/
https://www.clim-past.net/7/1139/2011/
https://doi.org/10.1016/j.revpalbo.2015.09.008
https://doi.org/10.1126/science.1202760
https://science.sciencemag.org/content/333/6043/747.full.pdf
https://science.sciencemag.org/content/333/6043/747.full.pdf
https://science.sciencemag.org/content/333/6043/747
https://science.sciencemag.org/content/333/6043/747
https://doi.org/10.1007/s00334-009-0215-9
https://doi.org/10.1007/s00334-009-0215-9
https://help.github.com/en/articles/github-glossary
https://help.github.com/en/articles/github-glossary
http://doi.org/10.5334/oq.ab
https://doi.org/10.1007/978-94-009-3081-0_3
https://doi.org/10.1007/978-94-009-3081-0_3
https://www.neotomadb.org/uploads/NeotomaManual.pdf
https://www.neotomadb.org/uploads/NeotomaManual.pdf
https://doi.org/10.1016/j.quascirev.2011.07.023
http://www.sciencedirect.com/science/article/pii/S0277379111002344
https://doi.org/10.5194/cp-9-811-2013
https://doi.org/10.5194/cp-9-811-2013
https://www.amazon.com/Software-Dokumentation-mit-Sphinx-%C3%BCberarbeitete-Auflage/dp/1793008779?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%5C&tag=chimbori05-20%5C&linkCode=xm2%5C&camp=2025%5C&creative=165953%5C&creativeASIN=1793008779
https://www.amazon.com/Software-Dokumentation-mit-Sphinx-%C3%BCberarbeitete-Auflage/dp/1793008779?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%5C&tag=chimbori05-20%5C&linkCode=xm2%5C&camp=2025%5C&creative=165953%5C&creativeASIN=1793008779
https://www.amazon.com/Software-Dokumentation-mit-Sphinx-%C3%BCberarbeitete-Auflage/dp/1793008779?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%5C&tag=chimbori05-20%5C&linkCode=xm2%5C&camp=2025%5C&creative=165953%5C&creativeASIN=1793008779
https://www.amazon.com/Software-Dokumentation-mit-Sphinx-%C3%BCberarbeitete-Auflage/dp/1793008779?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%5C&tag=chimbori05-20%5C&linkCode=xm2%5C&camp=2025%5C&creative=165953%5C&creativeASIN=1793008779


References 13

2U3A%5C&tag=chimbori05-20%5C&linkCode=xm2%5C&camp=2025%5C&creative=
165953%5C&creativeASIN=1793008779.

Haslett, J., M. Whiley, S. Bhattacharya, M. Salter-Townshend, Simon P. Wilson, J. R. M.
Allen, B. Huntley, and F. J. G. Mitchell (July 2006). “Bayesian palaeoclimate re-
construction”. In: Journal of the Royal Statistical Society: Series A (Statistics in So-
ciety) 169.3, pp. 395–438. DOI: 10.1111/j.1467- 985x.2006.00429.x. eprint:
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-985X.
2006.00429.x. URL: https://rss.onlinelibrary.wiley.com/doi/abs/10.
1111/j.1467-985X.2006.00429.x.

Havinga, A.J. (June 1967). “Palynology and pollen preservation”. In: Review of Palaeob-
otany and Palynology 2.1-4, pp. 81–98. DOI: 10.1016/0034-6667(67)90138-8.

Holmström, Lasse, Liisa Ilvonen, Heikki Seppä, and Siim Veski (Sept. 2015). “A
Bayesian spatiotemporal model for reconstructing climate from multiple pollen
records”. In: Ann. Appl. Stat. 9.3, pp. 1194–1225. DOI: 10.1214/15-AOAS832. URL:
https://doi.org/10.1214/15-AOAS832.

Hoyer, S. and J. Hamman (2017). “xarray: N-D labeled arrays and datasets in Python”.
In: Journal of Open Research Software 5.1. DOI: 10.5334/jors.148. URL: http:
//doi.org/10.5334/jors.148.

Hunter, J. D. (May 2007). “Matplotlib: A 2D Graphics Environment”. In: Computing in
Science Engineering 9.3, pp. 90–95. ISSN: 1521-9615. DOI: 10.1109/MCSE.2007.55.

Iversen, Johs (Sept. 1944). “Viscum, Hedera and Ilex as Climate Indicators”. In: Ge-
ologiska Föreningen i Stockholm Förhandlingar 66.3, pp. 463–483. DOI: 10 . 1080 /
11035894409445689. eprint: https://doi.org/10.1080/11035894409445689.
URL: https://doi.org/10.1080/11035894409445689.

Jones, Eric, Travis Oliphant, Pearu Peterson, et al. (2001). SciPy: Open source scientific
tools for Python. [Online; accessed 2017-02-18]. URL: http://www.scipy.org/.

Joussaume, S and KE Taylor (1995). “Status of the paleoclimate modeling intercom-
parison project (PMIP)”. In: World Meteorological Organization-Publications-WMO
TD, pp. 425–430.

Juggins, Steve (2007). “C2: Software for ecological and palaeoecological data analysis
and visualisation (user guide version 1.5)”. In: Newcastle upon Tyne: Newcastle
University 77. URL: https://www.staff.ncl.ac.uk/stephen.juggins/software
/C2Home.htm.

— (Mar. 2013). “Quantitative reconstructions in palaeolimnology: new paradigm or
sick science?” In: Quaternary Science Reviews 64, pp. 20–32. ISSN: 0277-3791. DOI:
10.1016/j.quascirev.2012.12.014. URL: http://www.sciencedirect.com/
science/article/pii/S0277379112005422.

— (2017). rioja: Analysis of Quaternary Science Data. R package version 0.9-21. URL:
http://www.staff.ncl.ac.uk/stephen.juggins/.

Juggins, Steve and H. John B. Birks (2012). “Quantitative Environmental Recon-
structions from Biological Data”. In: Tracking Environmental Change Using Lake
Sediments: Data Handling and Numerical Techniques. Ed. by H. John B. Birks, An-
dré F. Lotter, Steve Juggins, and John P. Smol. Dordrecht: Springer Netherlands,
pp. 431–494. ISBN: 978-94-007-2745-8. DOI: 10.1007/978-94-007-2745-8_14.
URL: https://doi.org/10.1007/978-94-007-2745-8_14.

Jungclaus, J. H., E. Bard, M. Baroni, P. Braconnot, J. Cao, L. P. Chini, T. Egorova, M.
Evans, J. F. Gonzàlez-Rouco, H. Goosse, G. C. Hurtt, F. Joos, J. O. Kaplan, M.
Khodri, K. Klein Goldewijk, N. Krivova, A. N. LeGrande, S. J. Lorenz, J. Luter-
bacher, W. Man, A. C. Maycock, M. Meinshausen, A. Moberg, R. Muscheler, C.
Nehrbass-Ahles, B. I. Otto-Bliesner, S. J. Phipps, J. Pongratz, E. Rozanov, G. A.

https://www.amazon.com/Software-Dokumentation-mit-Sphinx-%C3%BCberarbeitete-Auflage/dp/1793008779?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%5C&tag=chimbori05-20%5C&linkCode=xm2%5C&camp=2025%5C&creative=165953%5C&creativeASIN=1793008779
https://www.amazon.com/Software-Dokumentation-mit-Sphinx-%C3%BCberarbeitete-Auflage/dp/1793008779?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%5C&tag=chimbori05-20%5C&linkCode=xm2%5C&camp=2025%5C&creative=165953%5C&creativeASIN=1793008779
https://www.amazon.com/Software-Dokumentation-mit-Sphinx-%C3%BCberarbeitete-Auflage/dp/1793008779?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%5C&tag=chimbori05-20%5C&linkCode=xm2%5C&camp=2025%5C&creative=165953%5C&creativeASIN=1793008779
https://www.amazon.com/Software-Dokumentation-mit-Sphinx-%C3%BCberarbeitete-Auflage/dp/1793008779?SubscriptionId=AKIAIOBINVZYXZQZ2U3A%5C&tag=chimbori05-20%5C&linkCode=xm2%5C&camp=2025%5C&creative=165953%5C&creativeASIN=1793008779
https://doi.org/10.1111/j.1467-985x.2006.00429.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-985X.2006.00429.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-985X.2006.00429.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-985X.2006.00429.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-985X.2006.00429.x
https://doi.org/10.1016/0034-6667(67)90138-8
https://doi.org/10.1214/15-AOAS832
https://doi.org/10.1214/15-AOAS832
https://doi.org/10.5334/jors.148
http://doi.org/10.5334/jors.148
http://doi.org/10.5334/jors.148
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1080/11035894409445689
https://doi.org/10.1080/11035894409445689
https://doi.org/10.1080/11035894409445689
https://doi.org/10.1080/11035894409445689
http://www.scipy.org/
https://www.staff.ncl.ac.uk/stephen.juggins/software/C2Home.htm
https://www.staff.ncl.ac.uk/stephen.juggins/software/C2Home.htm
https://doi.org/10.1016/j.quascirev.2012.12.014
http://www.sciencedirect.com/science/article/pii/S0277379112005422
http://www.sciencedirect.com/science/article/pii/S0277379112005422
http://www.staff.ncl.ac.uk/stephen.juggins/
https://doi.org/10.1007/978-94-007-2745-8_14
https://doi.org/10.1007/978-94-007-2745-8_14


14 Chapter 1. Introduction

Schmidt, H. Schmidt, W. Schmutz, A. Schurer, A. I. Shapiro, M. Sigl, J. E. Smer-
don, S. K. Solanki, C. Timmreck, M. Toohey, I. G. Usoskin, S. Wagner, C.-J. Wu,
K. L. Yeo, D. Zanchettin, Q. Zhang, and E. Zorita (2017). “The PMIP4 contribution
to CMIP6 – Part 3: The last millennium, scientific objective, and experimental de-
sign for the PMIP4 past1000 simulations”. In: Geosci. Model Dev. 10.11, pp. 4005–
4033. DOI: 10.5194/gmd-10-4005-2017. URL: https://www.geosci-model-
dev.net/10/4005/2017/.

Kageyama, M., P. Braconnot, S. P. Harrison, A. M. Haywood, J. Jungclaus, B. L. Otto-
Bliesner, J.-Y. Peterschmitt, A. Abe-Ouchi, S. Albani, P. J. Bartlein, C. Brierley,
M. Crucifix, A. Dolan, L. Fernandez-Donado, H. Fischer, P. O. Hopcroft, R. F.
Ivanovic, F. Lambert, D. J. Lunt, N. M. Mahowald, W. R. Peltier, S. J. Phipps,
D. M. Roche, G. A. Schmidt, L. Tarasov, P. J. Valdes, Q. Zhang, and T. Zhou (2016).
“PMIP4-CMIP6: the contribution of the Paleoclimate Modelling Intercomparison
Project to CMIP6”. In: Geosci. Model Dev. Discuss. 2016, pp. 1–46. DOI: 10.5194/
gmd-2016-106. URL: https://www.geosci-model-dev.net/11/1033/2018/gmd-
11-1033-2018.html.

Keim, Daniel, Gennady Andrienko, Jean-Daniel Fekete, Carsten Görg, Jörn Kohlham-
mer, and Guy Melançon (2008). “Visual Analytics: Definition, Process, and Chal-
lenges”. In: Information Visualization: Human-Centered Issues and Perspectives. Ed.
by Andreas Kerren, John T. Stasko, Jean-Daniel Fekete, Chris North, Andreas
Kerren, John T. Stasko, Jean-Daniel Fekete, and Chris North. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 154–175. ISBN: 978-3-540-70956-5. DOI: 10.1007/
978-3-540-70956-5_7. URL: https://doi.org/10.1007/978-3-540-70956-5_7.

Krekel, Holger, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna
Laugher, and Florian Bruhin (2004). pytest 5.1. URL: https://github.com/pytes
t-dev/pytest.

Marchant, Robert, Lucia Almeida, Hermann Behling, Juan Carlos Berrio, Mark Bush,
Antoine Cleef, Joost Duivenvoorden, Maarten Kappelle, Paulo De Oliveira, Ary
Teixeira de Oliveira-Filho, Socorro Lozano-Garìia, Henry Hooghiemstra, Marie-
Pierre Ledru, Beatriz Ludlow-Wiechers, Vera Markgraf, Virginia Mancini, Marta
Paez, Aldo Prieto, Olando Rangel, and Maria Lea Salgado-Labouriau (Aug. 2002).
“Distribution and ecology of parent taxa of pollen lodged within the Latin Amer-
ican Pollen Database”. In: Review of Palaeobotany and Palynology 121.1, pp. 1–75.
DOI: 10.1016/s0034-6667(02)00082-9.

Marsicek, Jeremiah, Bryan N. Shuman, Patrick J. Bartlein, Sarah L. Shafer, and Simon
Brewer (Feb. 2018). “Reconciling divergent trends and millennial variations in
Holocene temperatures”. In: Nature 554.7690, pp. 92–96. DOI: 10.1038/nature
25464.

Mauri, A., B. A. S. Davis, P. M. Collins, and J. O. Kaplan (2014). “The influence of
atmospheric circulation on the mid-Holocene climate of Europe: a data-model
comparison”. In: Clim. Past 10.5, pp. 1925–1938. ISSN: 1814-9324. DOI: 10.5194/
cp-10-1925-2014. URL: http://www.clim-past.net/10/1925/2014/cp-10-
1925-2014.pdf.

— (2015). “The climate of Europe during the Holocene: a gridded pollen-based re-
construction and its multi-proxy evaluation”. In: Quat. Sci. Rev. 112, pp. 109–
127. ISSN: 0277-3791. DOI: 10.1016/j.quascirev.2015.01.013. URL: http:
//www.sciencedirect.com/science/article/pii/S0277379115000372.

Nakagawa, Takeshi, Pavel E. Tarasov, Kotoba Nishida, Katsuya Gotanda, and Yoshi-
nori Yasuda (Oct. 2002). “Quantitative pollen-based climate reconstruction in
central Japan: application to surface and Late Quaternary spectra”. In: Quaternary
Science Reviews 21.18-19, pp. 2099–2113. DOI: 10.1016/s0277-3791(02)00014-8.

https://doi.org/10.5194/gmd-10-4005-2017
https://www.geosci-model-dev.net/10/4005/2017/
https://www.geosci-model-dev.net/10/4005/2017/
https://doi.org/10.5194/gmd-2016-106
https://doi.org/10.5194/gmd-2016-106
https://www.geosci-model-dev.net/11/1033/2018/gmd-11-1033-2018.html
https://www.geosci-model-dev.net/11/1033/2018/gmd-11-1033-2018.html
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1007/978-3-540-70956-5_7
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://doi.org/10.1016/s0034-6667(02)00082-9
https://doi.org/10.1038/nature25464
https://doi.org/10.1038/nature25464
https://doi.org/10.5194/cp-10-1925-2014
https://doi.org/10.5194/cp-10-1925-2014
http://www.clim-past.net/10/1925/2014/cp-10-1925-2014.pdf
http://www.clim-past.net/10/1925/2014/cp-10-1925-2014.pdf
https://doi.org/10.1016/j.quascirev.2015.01.013
http://www.sciencedirect.com/science/article/pii/S0277379115000372
http://www.sciencedirect.com/science/article/pii/S0277379115000372
https://doi.org/10.1016/s0277-3791(02)00014-8


References 15

Neukom, Raphael, Luis A. Barboza, Michael P. Erb, Feng Shi, Julien Emile-Geay,
Michael N. Evans, Jörg Franke, Darrell S. Kaufman, Lucie Lücke, Kira Rehfeld,
Andrew Schurer, Feng Zhu, Stefan Brönnimann, Gregory J. Hakim, Benjamin J.
Henley, Fredrik Charpentier Ljungqvist, Nicholas McKay, Veronika Valler, Lu-
cien von Gunten, and P. A. G. E. S. 2k Consortium (2019a). “Consistent multi-
decadal variability in global temperature reconstructions and simulations over
the Common Era”. In: Nature Geoscience 12.8, pp. 643–649. ISSN: 1752-0908. URL:
https://doi.org/10.1038/s41561-019-0400-0.

Neukom, Raphael, Nathan Steiger, Juan Josè Gòmez-Navarro, Jianghao Wang, and
Johannes P. Werner (July 2019b). “No evidence for globally coherent warm and
cold periods over the preindustrial Common Era”. In: Nature 571.7766, pp. 550–
554. DOI: 10.1038/s41586-019-1401-2.

Nichols, Harvey (1967). “The Post-glacial history of vegetation and climate at En-
nadai Lake, Keewatin, and Lynn Lake, Manitoba (Canada)”. In: E&G – Quater-
nary Science Journal 18.1. DOI: 10.23689/fidgeo-1124.

— (1969). “The Late Quaternary History of Vegetation and Climate at Porcupine
Mountain and Clearwater Bog, Manitoba”. In: Arctic and Alpine Research 1.3, p. 155.
ISSN: 00040851. DOI: 10.2307/1550287. URL: http://www.jstor.org/stable/
1550287.

Nocke, Thomas (2014). “Images for Data Analysis: The Role of Visualization in Cli-
mate Research Processes”. In: IMAGE POLITICS OF CLIMATE CHANGE: VISU-
ALIZATIONS, IMAGINATIONS, DOCUMENTATIONS. Ed. by Schneider, B and
Nocke, T. Vol. 55. Image-Series, 55–77. ISBN: 978-3-8394-2610-4; 978-3-8376-2610-
0.

Nocke, Thomas, Till Sterzel, Michael Böttinger, Markus Wrobel, et al. (2008). “Visual-
ization of climate and climate change data: An overview”. In: Digital earth summit
on geoinformatics, pp. 226–232.

Nolan, Connor, John Tipton, Robert K Booth, Mevin B Hooten, and Stephen T Jack-
son (May 2019). “Comparing and improving methods for reconstructing peat-
land water-table depth from testate amoebae”. In: The Holocene 29.8, pp. 1350–
1361. DOI: 10.1177/0959683619846969.

Oliphant, Travis E (2006). A guide to NumPy. Vol. 1. Trelgol Publishing USA. URL:
http://www.numpy.org/.

Otto-Bliesner, B. L., P. Braconnot, S. P. Harrison, D. J. Lunt, A. Abe-Ouchi, S. Albani,
P. J. Bartlein, E. Capron, A. E. Carlson, A. Dutton, H. Fischer, H. Goelzer, A.
Govin, A. Haywood, F. Joos, A. N. LeGrande, W. H. Lipscomb, G. Lohmann, N.
Mahowald, C. Nehrbass-Ahles, F. S. R. Pausata, J.-Y. Peterschmitt, S. J. Phipps,
H. Renssen, and Q. Zhang (2017). “The PMIP4 contribution to CMIP6 – Part 2:
Two interglacials, scientific objective and experimental design for Holocene and
Last Interglacial simulations”. In: Geosci. Model Dev. 10.11, pp. 3979–4003. DOI:
10.5194/gmd-10-3979-2017. URL: https://www.geosci-model-dev.net/10/
3979/2017/.

Parnell, Andrew C., James Sweeney, Thinh K. Doan, Michael Salter-Townshend,
Judy R. M. Allen, Brian Huntley, and John Haslett (July 2014). “Bayesian infer-
ence for palaeoclimate with time uncertainty and stochastic volatility”. In: Jour-
nal of the Royal Statistical Society: Series C (Applied Statistics) 64.1, pp. 115–138. DOI:
10.1111/rssc.12065. eprint: https://rss.onlinelibrary.wiley.com/doi/
pdf/10.1111/rssc.12065. URL: https://rss.onlinelibrary.wiley.com/doi/
abs/10.1111/rssc.12065.

Peltier, W. R. (2004). “Global glacial isostasy and the surface of the Ice-Age earth:
The ICE-5G (VM2) model and GRACE”. In: Annu. Rev. Earth Planet. Sci. 32.1,

https://doi.org/10.1038/s41561-019-0400-0
https://doi.org/10.1038/s41586-019-1401-2
https://doi.org/10.23689/fidgeo-1124
https://doi.org/10.2307/1550287
http://www.jstor.org/stable/1550287
http://www.jstor.org/stable/1550287
https://doi.org/10.1177/0959683619846969
http://www.numpy.org/
https://doi.org/10.5194/gmd-10-3979-2017
https://www.geosci-model-dev.net/10/3979/2017/
https://www.geosci-model-dev.net/10/3979/2017/
https://doi.org/10.1111/rssc.12065
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssc.12065
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssc.12065
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssc.12065
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssc.12065


16 Chapter 1. Introduction

pp. 111–149. ISSN: 0084-6597 1545-4495. DOI: 10 . 1146 / annurev . earth . 32 .
082503.144359.

Perez, Fernando, Brian E. Granger, and John D. Hunter (Mar. 2011). “Python: An
Ecosystem for Scientific Computing”. In: Computing in Science & Engineering 13.2,
pp. 13–21. DOI: 10.1109/mcse.2010.119.

Phillips, Norman A. (1956). “The general circulation of the atmosphere: a numer-
ical experiment”. In: Quarterly Journal of the Royal Meteorological Society 82.352,
pp. 123–164.

Python Software Foundation (2019). unittest – Unit testing framework. URL: https:
//docs.python.org/3.7/library/unittest.html (visited on 09/02/2019).

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. Vienna, Austria. URL: https://www.R-project
.org/.

Rautenhaus, Marc, Michael Böttinger, Stephan Siemen, Robert Hoffman, Robert M.
Kirby, Mahsa Mirzargar, Niklas Rober, and Rudiger Westermann (Dec. 2018).
“Visualization in Meteorology—A Survey of Techniques and Tools for Data Anal-
ysis Tasks”. In: IEEE Transactions on Visualization and Computer Graphics 24.12,
pp. 3268–3296. DOI: 10.1109/tvcg.2017.2779501.

Rocklin, Matthew (2015). “Dask: Parallel Computation with Blocked algorithms and
Task Scheduling”. In: Proceedings of the 14th Python in Science Conference. Ed. by
Kathryn Huff and James Bergstra, pp. 130–136.

Shaw, Anthony (2018). Getting Started With Testing in Python. Last accessed: 2019-09-
02. URL: https://realpython.com/python-testing/ (visited on 10/22/2018).

Simpson, G. L. (2007). “Analogue Methods in Palaeoecology: Using the analogue
Package”. In: Journal of Statistical Software 22.2, pp. 1–29.

Simpson, G. L. and J. Oksanen (2019). analogue: Analogue and weighted averaging meth-
ods for palaeoecology. R package version 0.17-3. URL: https://cran.r-project.
org/package=analogue.

Sommer, Philipp S. (Aug. 2017). “The psyplot interactive visualization framework”.
In: The Journal of Open Source Software 2.16. DOI: 10.21105/joss.00363. URL:
https://doi.org/10.21105/joss.00363.

— (2018a). docrep: A Python Module for intelligent reuse of docstrings. Last accessed:
2018-02-03. URL: https://github.com/Chilipp/docrep (visited on 02/03/2018).

— (2018b). model-organization: Organize your computational models transparently. Last
accessed: 2018-02-03. URL: https://github.com/Chilipp/model-organization
(visited on 02/03/2018).

— (Aug. 2019). psy-strat v0.1.0: A Python package for creating stratigraphic diagrams.
DOI: 10.5281/zenodo.3381753. URL: https://doi.org/10.5281/zenodo.
3381753.

Sommer, Philipp S. and Jed O. Kaplan (Oct. 2017). “A globally calibrated scheme
for generating daily meteorology from monthly statistics: Global-WGEN (GW-
GEN) v1.0”. In: Geosci. Model Dev. 10.10, pp. 3771–3791. DOI: 10.5194/gmd-10-
3771-2017.

Sommer, Philipp S., Dilan Rech, Manuel Chevalier, and Basil A. S. Davis (Feb. 2019).
“straditize: Digitizing stratigraphic diagrams”. In: Journal of Open Source Software
4.34, p. 1216. DOI: 10.21105/joss.01216. URL: https://doi.org/10.21105/
joss.01216.

Stodden, Victoria and Sheila Miguez (July 2014). “Best Practices for Computational
Science: Software Infrastructure and Environments for Reproducible and Exten-
sible Research”. In: Journal of Open Research Software 2.1. DOI: 10.5334/jors.ay.

https://doi.org/10.1146/annurev.earth.32.082503.144359
https://doi.org/10.1146/annurev.earth.32.082503.144359
https://doi.org/10.1109/mcse.2010.119
https://docs.python.org/3.7/library/unittest.html
https://docs.python.org/3.7/library/unittest.html
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1109/tvcg.2017.2779501
https://realpython.com/python-testing/
https://cran.r-project.org/package=analogue
https://cran.r-project.org/package=analogue
https://doi.org/10.21105/joss.00363
https://doi.org/10.21105/joss.00363
https://github.com/Chilipp/docrep
https://github.com/Chilipp/model-organization
https://doi.org/10.5281/zenodo.3381753
https://doi.org/10.5281/zenodo.3381753
https://doi.org/10.5281/zenodo.3381753
https://doi.org/10.5194/gmd-10-3771-2017
https://doi.org/10.5194/gmd-10-3771-2017
https://doi.org/10.21105/joss.01216
https://doi.org/10.21105/joss.01216
https://doi.org/10.21105/joss.01216
https://doi.org/10.5334/jors.ay


References 17

Telford, R.J. and H.J.B. Birks (Nov. 2005). “The secret assumption of transfer func-
tions: problems with spatial autocorrelation in evaluating model performance”.
In: Quaternary Science Reviews 24.20, pp. 2173–2179. ISSN: 0277-3791. DOI: 10 .
1016/j.quascirev.2005.05.001. URL: http://www.sciencedirect.com/
science/article/pii/S027737910500168X.

— (June 2009). “Evaluation of transfer functions in spatially structured environ-
ments”. In: Quaternary Science Reviews 28.13, pp. 1309–1316. ISSN: 0277-3791. DOI:
10.1016/j.quascirev.2008.12.020. URL: http://www.sciencedirect.com/
science/article/pii/S0277379108003806.

Tipton, John (2019). BayesComposition: Fit forward and inverse prediction Bayesian func-
tional models for compositional data. R package version 1.0. URL: https://github.
com/jtipton25/BayesComposition.

Torborg, Scott (2016). python-packaging: Tutorial on how to structure Python packages.
Revision 35daf993. URL: https://python-packaging.readthedocs.io (visited
on 09/02/2019).

United Nations (2019). World Population Prospects 2019: Highlights. Department of
Economic and Social Affairs, Population Division.

Vincens, Annie, Anne-Marie Lézine, Guillaume Buchet, Dorothée Lewden, and An-
nick Le Thomas (2007). “African pollen database inventory of tree and shrub
pollen types”. In: Rev. Palaeobot. Palynol. 145.1-2, pp. 135–141. ISSN: 00346667. DOI:
10.1016/j.revpalbo.2006.09.004.

Walker, Mike, Sigfus Johnsen, Sune Olander Rasmussen, Trevor Popp, Jørgen-Peder
Steffensen, Phil Gibbard, Wim Hoek, John Lowe, John Andrews, Svante Björck,
Les C. Cwynar, Konrad Hughen, Peter Kershaw, Bernd Kromer, Thomas Litt,
David J. Lowe, Takeshi Nakagawa, Rewi Newnham, and Jakob Schwander (2009).
“Formal definition and dating of the GSSP (Global Stratotype Section and Point)
for the base of the Holocene using the Greenland NGRIP ice core, and selected
auxiliary records”. In: J. Quat. Sci. 24.1, pp. 3–17. ISSN: 02678179 10991417. DOI:
10.1002/jqs.1227.

Wanner, Heinz, Jürg Beer, Jonathan Bütikofer, Thomas J. Crowley, Ulrich Cubasch,
Jacqueline Flückiger, Hugues Goosse, Martin Grosjean, Fortunat Joos, Jed O. Ka-
plan, Marcel Küttel, Simon A. Müller, I. Colin Prentice, Olga Solomina, Thomas F.
Stocker, Pavel Tarasov, Mayke Wagner, and Martin Widmann (Oct. 2008). “Mid-
to Late Holocene climate change: an overview”. In: Quaternary Science Reviews
27.19-20, pp. 1791–1828. ISSN: 0277-3791. DOI: 10.1016/j.quascirev.2008.
06 . 013. URL: http : / / www . sciencedirect . com / science / article / pii / S
0277379108001479.

Whitmore, J., K. Gajewski, M. Sawada, J.W. Williams, B. Shuman, P.J. Bartlein, T.
Minckley, A.E. Viau, T. Webb, S. Shafer, P. Anderson, and L. Brubaker (Sept.
2005). “Modern pollen data from North America and Greenland for multi-scale
paleoenvironmental applications”. In: Quaternary Science Reviews 24.16-17. DOI:
10.1016/j.quascirev.2005.03.005.

Williams, John W., Eric C. Grimm, Jessica L. Blois, Donald F. Charles, Edward B.
Davis, Simon J. Goring, Russell W. Graham, Alison J. Smith, Michael Ander-
son, Joaquin Arroyo-Cabrales, Allan C. Ashworth, Julio L. Betancourt, Brian W.
Bills, Robert K. Booth, Philip I. Buckland, B. Brandon Curry, Thomas Giesecke,
Stephen T. Jackson, Claudio Latorre, Jonathan Nichols, Timshel Purdum, Robert
E. Roth, Michael Stryker, and Hikaru Takahara (Jan. 2018). “The Neotoma Pa-
leoecology Database, a multiproxy, international, community-curated data re-
source”. In: Quaternary Research 89.1, pp. 156–177. DOI: 10.1017/qua.2017.105.

https://doi.org/10.1016/j.quascirev.2005.05.001
https://doi.org/10.1016/j.quascirev.2005.05.001
http://www.sciencedirect.com/science/article/pii/S027737910500168X
http://www.sciencedirect.com/science/article/pii/S027737910500168X
https://doi.org/10.1016/j.quascirev.2008.12.020
http://www.sciencedirect.com/science/article/pii/S0277379108003806
http://www.sciencedirect.com/science/article/pii/S0277379108003806
https://github.com/jtipton25/BayesComposition
https://github.com/jtipton25/BayesComposition
https://python-packaging.readthedocs.io
https://doi.org/10.1016/j.revpalbo.2006.09.004
https://doi.org/10.1002/jqs.1227
https://doi.org/10.1016/j.quascirev.2008.06.013
https://doi.org/10.1016/j.quascirev.2008.06.013
http://www.sciencedirect.com/science/article/pii/S0277379108001479
http://www.sciencedirect.com/science/article/pii/S0277379108001479
https://doi.org/10.1016/j.quascirev.2005.03.005
https://doi.org/10.1017/qua.2017.105


18 Chapter 1. Introduction

Wodehouse, Roger Philip (1935). Pollen grains: Their structure, identification and signif-
icance in science and medicine. McGraw-Hill Book Co.

World Bank (2002). Globalization, growth, and poverty : building an inclusive world econ-
omy. The World Bank. URL: http://documents.worldbank.org/curated/en/
954071468778196576/Globalization- growth- and- poverty- building- an-
inclusive-world-economy.

http://documents.worldbank.org/curated/en/954071468778196576/Globalization-growth-and-poverty-building-an-inclusive-world-economy
http://documents.worldbank.org/curated/en/954071468778196576/Globalization-growth-and-poverty-building-an-inclusive-world-economy
http://documents.worldbank.org/curated/en/954071468778196576/Globalization-growth-and-poverty-building-an-inclusive-world-economy


19

Part I

New Software Tools for
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Chapter 2

The EMPD and POLNET
web-interfaces

2.1 Summary

The Eurasian (née European) Modern Pollen Database (EMPD) was established in
2013 as a public database of quality controlled and standardized modern pollen
surface sample data to compliment the European Pollen Database (EPD) for fos-
sil pollen (Davis et al., 2013). The first version of the EMPD (referenced herein as
the EMPD1) contained almost 5000 samples, submitted by over 40 individuals and
research groups from all over Europe. Over the last 6 years more data has contin-
ued to be submitted, and more efforts have been made to incorporate more data
held in open data repositories such as PANGAEA, and as supplementary informa-
tion in published studies. This data is now released as the Eurasian Modern Pollen
Database, version 2 (Davis et al., in prep) with an increase of 80 percent to 8663
samples (see figure 2.1).

The EMPD remains the only public and open access database of modern pollen
samples covering the Eurasian continent and is entirely driven by the community
of its data contributors. This effort of creating an open and accessible database led
to the development of new open source data management tools that we present in
this chapter. The EMPD2 is now hosted on the version control platform Github,
with a dedicated web viewer at EMPD2.github.io and an automated administra-
tion app, the EMPD-admin (see table 2.1 for a list of the web resources). The new
web-viewer provides an intuitive interface into the database and displays the essen-
tial meta information for every sample, as well as the pollen and climate data in a
comprehensive bar plot. The integration with the EMPD-admin provides a simpli-
fied and transparent administration of multiple contributions from different sources

EMPD1 EMPD2

FIGURE 2.1: Modern calibration samples in the Eurasian Modern Pollen Database
(EMPD).

https://EMPD2.github.io
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TABLE 2.1: EMPD Web resources

Description Online Access
EMPD2 Github Organization github.com/EMPD2

EMPD-Viewer
Map-based web
interface to the
EMPD database

github.com/EMPD2/EMPD-Viewer
empd2.github.io

EMPD-Data
Version controlled
data repository of
the EMPD

github.com/EMPD2/EMPD-data

EMPD-Admin
Automated
administration web
app for the EMPD

github.com/EMPD2/EMPD-admin
empd-admin.herokuapp.com

EMPD2.github.io/EMPD-admin

and people to the database. All web components are hosted without any additional
costs. The integration for the EMPD, that we present here, is only one example of
a regional database. This framework can be extended to make other community-
based (regional) pollen databases accessible, for instance the Latin American Pollen
Database (LAPD) (Flantua et al., 2015) or African Pollen Database (APD) (Vincens
et al., 2007). Especially the light-weight EMPD-viewer web interface can be ported
to other database (as shown in section 2.3) to make heterogeneous data accessible to
the broad public.

2.2 The EMPD web framework

The EMPD web framework is built on very common open source software devel-
opment tools that have been adopted for a transparent data management, in fa-
vor of open science. The EMPD is now hosted on the web platform Github at
github.com/EMPD2. This web platform, free of charge, hosts the source code for
many popular open source software packages but can also be used to host a diverse,
but small database (in terms of megabytes), such as the EMPD. Github builts upon
the version control system git that transparently manages changes to documents by
providing a full history of their revisions. The web platform is intrinsically designed
for community-based projects that focus on collaboration and contains many fea-
tures for a transparent communication between users, maintainers and contributors
of a project. Besides others, the platform provides repository (i.e. project) specific
discussion pages, so-called issues, where users can provide feedback, report bugs,
or discuss any other aspect of the project. These issues are often linked to so-called
pull requests, where each pull request is a proposal for a change in the source files
of the project. This is then discussed between project maintainer and contributor in
a dedicated discussion/review page.

Another common feature for Github repositories are integrations with so-called
Continuous Integration (CI) services, e.g. for automated testing and/or packaging
the software. These services run predefined scripts (for example test scripts) every
time someone contributes to the repository, or creates a pull request.

The following sections describe how these software development tools are im-
plemented in the three components of the EMPD web framework, the EMPD-viewer
(section 2.2.1), the EMPD data repository (section 2.2.2) and the EMPD-admin (sec-
tion 2.2.3).

https://github.com/EMPD2
https://github.com/EMPD2/EMPD-viewer
https://empd2.github.io/
https://github.com/EMPD2/EMPD-data
https://github.com/EMPD2/EMPD-admin
https://empd-admin.herokuapp.com/
https://EMPD2.github.io/EMPD-admin
https://github.com/EMPD2
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2.2.1 The EMPD viewer

FIGURE 2.2: Screenshot of the EMPD viewer

The main public interface into the EMPD is an interactive web viewer accessi-
ble from EMPD2.github.io. This JavaScript-based application (see figure 2.2 for a
screenshot) provides an intuitive interface into the database without requiring any
particular computer expertise. It enables the user to view the data on a map and to
select and download subsets of the database. The webpage involves no server-side
processing and such it can be hosted for free using the service provided by Github
Pages (pages.github.com). This provides a stable access to the database, indepen-
dent of funding availabilities.

The Web Interface

The EMPD-Viewer has been initially based on the climate proxies finder (Bolliet et
al., 2016; Brockmann, 2016) which can still be seen in it the layout and design of its
graphical interface (i.e. its front-end). The code base, however, has been changed
entirely, updated to the latest available versions of the underlying JavaScript de-
pendencies and extended with multiple additional tools, shown in table 2.2. The
central element of the viewer is a map to show the sample locations. It also allows
to intuitive access to the essential meta data of every sample through the popup of
the corresponding marker on the map. The detailed meta data can also be seen in

https://EMPD2.github.io
https://pages.github.com/
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the meta data table, together with all the other samples. Another key element of
the viewer are the meta data filters, that subset the data using efficient and intu-
itive filtering tools. This allows to search the database, or to select specific countries,
climatic regimes, sample types, samples of a specific data contributor/analyst, and
more.

Additional information on the sample is revealed through a bar diagram of the
associated pollen data, which is dynamically created when the user clicks on the
sample. The viewer also displays monthly, seasonal and annual precipitation and
temperature values at the side, based on the WorldClim dataset, version 2 (Fick and
Hijmans, 2017).

Finally, the viewer contains elements that allow scientists to contribute to the
database, even without dedicated knowledge about the Github framework. The
meta data editor allows to edit a sample and then submit it via the data submission
form. The request is handled by the EMPD-admin webapp (see section 2.2.3) that
pushes the data to the corresponding pull request on Github that is then reviewed
by the core database maintainers. Another implemented element is an issue report
form that allows the user to highlight erroneous sample information which is then,
again through the EMPD-admin, submitted as a Github issue to the data repository.

The web app is fully integrated into the Github framework of the EMPD and
loads the displayed data from the online repository. As such, it also provides a
further quality control check and allows the data contributors/maintainers to review
and edit new contributions before they are merged into the database.

Implementation details

The viewer itself is very light-weight and can be flexibly adapted to other database
systems (see for example section 2.3). As the climate proxies finder (Bolliet et al.,
2016; Brockmann, 2016), the EMPD-viewers main viewing/filtering functionality it
is built upon the dc (Zhu and the dc.js Developers, 2019), crossfilter (Square, Inc. and
crossfilter contributors, 2019) and leaflet (Agafonkin and leaflet contributors, 2019)
open source JavaScript libraries. We ported the app to the npm package manager
(npmjs.com) which enables a better and more secure monitoring of the app depen-
dencies. This package manager is also used for an automated testing of the viewer
on a Continuous Integration (CI) service, prior to deployment on the official web
page. Due to time constrains, the viewer is not yet fully adapted to mobile devices.

2.2.2 The EMPD2 data repository

The raw data of the EMPD2 is accessible as plain text files in the EMPD-data Github
repository (see table 2.1). The software development framework of Github (see in-
troductory part of section 2.2) is adopted such that issues in the data repository can
highlight errors in the database, or provide room for the discussion of potential new
efforts that should be considered within the community-database. Pull requests into
the repository are new data contributions that can be reviewed by the maintainers
before being merged into the official database.

This method allows a fully transparent traceback of changes made to the EMPD
through version control. The online access to the raw data files through Github also
allows the EMPD viewer to interface with different versions of the database (see
previous section).

The EMPD-data repository additionally uses the CI services from Travis CI (travis-
ci.org) for automated tests of the meta data in each sample.

https://www.npmjs.com/
https://travis-ci.org/
https://travis-ci.org/
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TABLE 2.2: Tools in the EMPD viewer

Map interface

Meta data table

Pollen Data

Climate Data
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TABLE 2.2: Tools in the EMPD viewer (continued)

Meta data filter

Meta Data Editor

Issue submission form
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2.2.3 The EMPD-admin

In addition to the standard CI services, we developed the EMPD-admin webapp.
Inspired by the web management tools of the conda-forge community1, this tool
provides an automated handling of data contributions from within Github Pull Re-
quests. It behaves like a standard CI service and runs tests on the data contribution,
every time changes have been made to the pull request.

But the main purpose of the EMPD-admin is to provide a web tool for an auto-
mated administration of the database, which is helpful for a community-project with
changing maintainers. Hence, the EMPD-admin web app acts like a bot that reacts
on comments from within a pull request (i.e. a data contribution). Maintainers and
contributors can use this functionality and directly contact the bot, for instance, to
subset the data, run specific tests on subsets of the data, or automatically fix certain
meta data issues, such as wrong countries or missing elevation.

The bot is also integrated in the EMPD-viewer (see previous section 2.2.1). Bug
reports or edited data are processed by the EMPD-admin and put online as an issue
in the github repository, or it updates the corresponding data contribution.

As such, the administration of the database can be done entirely remotely, with-
out having to install dedicated software on a local computer.

Implementation details

The EMPD-admin webapp is hosted for free at Heroku (https://www.heroku.com)
at empd-admin.herokuapp.com with a software package documentation hosted at
EMPD2.github.io/EMPD-admin. This, again, allows stability independent on the
availability of funding. The package can, also be installed locally and used from the
command-line, independent of Github and Heroku, which is sometimes helpful for
very large data contributions..

The Python library is based on the tornado web framework2, as well as pandas
(McKinney, 2010), a tabular data analysis library for Python, and sqlalchemy (Bayer,
2012), a Python SQL toolkit.

2.2.4 Distribution of the tools

The EMPD is hosted within the EMPD2 Github organization (github.com/EMPD2)
in the EMPD-data repository. The source files of the viewer are accessible in the
EMPD-viewer, and for the EMPD-admin in the EMPD-admin repository (see also
table 2.1).

The EMPD-data and the EMPD-admin are additionally both available as so-
called Docker container image at https://hub.docker.com/u/empd2. These contain-
ers are lightweight, standalone, executable packages of software that include every-
thing needed to run an application: code, runtime, system tools, system libraries and
settings. As such, they extend standard software packaging systems by providing an
entire operating system that contains the target application. This makes it especially
useful for web applications (such as the EMPD-admin) that can, as such, operate in
a well-defined and portable environment.

The EMPD-admin can, however, also be installed through the standard python
package manager pip.

1conda-forge.org
2www.tornadoweb.org

https://empd-admin.herokuapp.com/
https://EMPD2.github.io/EMPD-admin
https://github.com/EMPD2
https://github.com/EMPD2/EMPD-data
https://github.com/EMPD2/EMPD-viewer
https://github.com/EMPD2/EMPD-admin
https://hub.docker.com/u/empd2
https://conda-forge.org
https://www.tornadoweb.org/en/stable/
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Fossil Pollen Sites Modern Calibration Sites

FIGURE 2.3: Maps of (left) fossil and (right) modern pollen sites in the POLNET
database.

2.3 The POLNET viewer

The adaptability of the EMPD-viewer gave the motivation for an application with
the POLNET database. This database, currently in development status, is a north-
ern hemispheric, extra-tropical collection of modern and fossil pollen assemblages
(Davis and Kaplan, 2017; Sommer et al., 2019). The purpose of this database is to
generate the source for large-scale climate reconstruction during the Holocene (past
12’000 years) that can be used for model-data comparisons. It contains about 3’300
fossil pollen sites and about 13’200 modern surface samples (see figure 2.3) and is
at present the largest existing collection of fossil and modern pollen samples. The
database will soon be made publicly available through a dedicated web interface, the
POLNET viewer. We present it here as a sample application of the EMPD-viewer to
demonstrate how this web interface can be extended and applied to other datasets,
in order to make them more accessible.

Like its core application, the EMPD-viewer, the POLNET-viewer is a map-based
interface with implemented meta data filters. As it is a data exploration and dis-
tribution tool only, we did not include the functionalities to edit the meta data or
to submit issues. Instead we implemented new features to visualize the essential
aspects of this database: fossil pollen data and climate reconstructions.

The fossil pollen data is loaded upon request from the dedicated Github reposi-
tory. It is afterwards visualized in form of a stratigraphic pollen diagram, with the
age of the samples on the vertical y-axis, and the pollen taxa organized as vertically
aligned diagram columns (see figure 2.4).

Climate reconstructions are displayed in two different manners: The site-based
reconstructions are visualized as line plots in a separate diagram, together with their
associated uncertainties. The gridded temperature reconstruction, i.e. the final prod-
uct of the database (see also chapter 5) is visualized as an overlay on the map of the
web application. This results in a combined visualizations of site-based and gridded
reconstructions (see figure 2.5) which enables an intuitive regional analysis of the
reconstruction method.
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FIGURE 2.4: Screenshot of an automatically generated pollen diagram in the POL-
NET database viewer. The left dropdown menu above the pollen diagram allows
to select the different naming schemes (here consolidated names that were used
for the pollen-climate reconstruction). The right dropdown menu selects either
the entire data or specific samples that are then displayed as a bar diagram (see

the pollen data in table 2.2).

FIGURE 2.5: Exemplary screenshot how the climate reconstruction is visualized
in the POLNET viewer. The map at the top figure shows the gridded temperature
reconstruction (here 6k BP after Mauri et al., 2015). The lower plot shows the single
site-based reconstruction (here Tigalmamine (Cheddadi et al., 1998)) for different

reconstruction methods.
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Chapter 3

Straditize

A digitization software for pollen diagrams

Straditize is published in the Journal of Open Source Software:

Sommer, Philipp S., Dilan Rech, Manuel Chevalier, and Basil A. S. Davis
(Feb. 2019). “straditize: Digitizing stratigraphic diagrams”. In: Journal
of Open Source Software 4.34, p. 1216. DOI: 10.21105/joss.01216. URL:
https://doi.org/10.21105/joss.01216.

Abstract. The conversion of printed diagrams or figures into numerical data has be-
come extremely important in ensuring that scientific work, especially from the pre
or early digital age, is not lost to science. One of the most common figures used
in the paleo-sciences is the stratigraphic diagram, where the results of the analysis
of samples are plotted against a common y-axis, usually representing age or depth.
Currently this type of diagram is laborious and error prone to digitize using current
software designed for simple x/y graphs. Here we present a new open source soft-
ware written in python that is specifically designed to quickly and accurately digi-
tize stratigraphic diagrams based on a user controlled semi-automatic process. The
software is optimized for use with pollen diagrams, but will work well with many
other types of similar diagram. The software is fully documented and includes inte-
grated help and tutorials.

3.1 Introduction

As with almost all areas of science, the digital capture, storage, manipulation and
sharing of data has almost completely transformed the way that paleo-science is
now undertaken compared to just 20-30 years ago. This digital transformation has
created entirely new types of datasets, analysis, collaborations and visualizations,
but it has also created a profound divide between the science that is available in
digitized form, and that which is only available in analogue or paper form. This is a
particular problem for science that was undertaken and published before this digital
revolution, or where the original digital version of a dataset is unavailable, perhaps
through retirement or other personnel changes, accidental damage to data storage
devices, incompatible or out of date hardware storage or data file formats.

This data however may still be available as a published or printed diagram,
which can be turned into numerical data by digitization, either manually or often
using graph digitizing software such as Graphclick, Engage Digitizer, Plot Digitizer,
g3data, Digitizelt and WebPlotDigitizer (Rohatgi, 2019). While this approach may be
optimal for simple graphs with a single x and y axis, it can rapidly become extremely

https://doi.org/10.21105/joss.01216
https://doi.org/10.21105/joss.01216
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time-consuming and error prone for stratigraphic diagrams with a shared y-axis and
multiple x-axis. In a stratigraphic diagram the y-axis commonly takes the form of a
depth or age scale (or both) reflecting sampling down a sediment core or open sedi-
ment section, which is then accompanied by a series of x-axis that plot the results of
the analysis on each of these samples. Each sample may have been analyzed for a
variety biotic or abiotic paleo-environmental indicators, and plotted on a variety of
x-axis scales.

Here we present an open-source software straditize (Sommer et al., 2019) that
has been specifically developed for digitizing stratigraphic diagrams. The software
assumes that the figure follows the standard format associated with stratigraphic
figures with a depth or age scale on the y-axis, and then a series of columns that
represent the results of the analysis on common samples at specific depths or ages.
The design is optimized for pollen diagrams (figure 3.1), but can be used without
modification with any similar diagram design irrespective of the type of data being
presented. The software first interprets the structure of the stratigraphic diagram
and then reconstructs the data associated with each sample. This is done using a
semi-automated process whereby many aspects of the software are automated but
still editable by the user. The software allows the user to make continual visual
checks on the digitization process, and provides the functionality to export the en-
tire project in a data format that is independent of the platform and software1. The
software is open-source and written in the programming language python (Perez et
al., 2011) which makes it very flexible and easy to adapt. It is also equipped with an
extensively documented graphical user interface, interactive visualizations and tu-
torials that allow the user to discover and to use the semi-automated methodologies.
Additionally, straditize comes with an extensive test suite for a sustainable workflow
with automated checks that also ensure the basic functionality of the various features
in the software.

3.2 Methods: Treatment of stratigraphic diagram features

In this section we describe the common features of a stratigraphic pollen diagram
and their handling within straditize. The emphasis is on pollen diagrams A pollen
diagram highlighting the features in a stratigraphic diagram is provided in figure
3.1.

3.2.1 Structure of a stratigraphic diagram

3.2.1.1 Stratigraphic columns

A stratigraphic diagram consists of multiple sub diagrams, each visualizing one or
more different variables, for example the percentages of different pollen taxa, the
concentration of different chemical elements, or the various percentages of different
grain sizes. These sub diagrams share one common axis which is usually the age
or depth of the core (see fig. 3.1a). The diagram is then divided into multiple sub
diagrams which we refer to as the columns of the stratigraphic diagram (fig. 3.1b).
Each column visualizes the data of one variable, such as a pollen taxon, or multi-
ple variables where these are plotted within the same column (same x-axis), such
as winter and summer precipitation shown in the left most column of figure 3.1.
The current version of straditize requires that the columns do not overlap and that

1straditize projects are exported as NetCDF file (Rew et al., 1989) that allows a platform and pro-
gramming language independent access and sharing of the data
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a) b) c) d) e)

f)

h)

g)

i)

j) k) l) m)

FIGURE 3.1: Common features in a pollen diagram. The center of the image is
a pollen diagram with the data part being highlighted in red, the surrounding
subfigures show some of it’s special aspects. Subfigures a) – e) show common
features in the diagram structure, subfigures f) – i) the different plotting styles and

j) – m) some of the special features.
Each variable shares the same vertical axis a), is plotted as one column (sub dia-
gram) marked by a separate vertical line b) and has a rotated title with the name
of the variable c). The variables are grouped together d) and potentially have dif-
fering units on the horizontal axis e). Common plotting styles are line diagrams
f), bar diagrams g), stacked diagrams h), or most commonly for pollen, as filled
area diagram i). They may also be enhanced through exaggerations j), the visu-
alization of taxon occurences k), horizontal lines as subdivisions of the core and
vertical lines as y-axes for the columns l) and with hatches on the area plots for

visual distinction m).
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multiple variables plotted in the same column do not overlap either. The software
can process multiple variables in a column so long as these are stacked or additive,
and therefore they never overlap. An example in a pollen diagram could be where
multiple species of, for instance Betula, are plotted as a stacked diagram in a single
column so that the sum of the species also shows the total Betula.

At the top of each column it is usual to find the name of the variable plotted in
the column. This may be shown at a variety of angles, but usually either vertically,
or at an angle or rotated to make it easier to read and fit within the diagram (fig.
3.1c). This label can be automatically read by straditize and the name assigned to
the respective column data, although care should be taken as the label is sometimes
offset from the column it represents.

Variables are also often grouped together and the group labelled, for instance
in pollen diagrams into trees & shrubs, and herbs (fig. 3.1d). For pollen data these
groups usually share the same x-axis units/scaling (as in fig. 3.1b). In straditize the
units/scaling can be set and applied to a whole group of columns/variables, or set
and assigned for each individual column/variable (see fig. 3.1e).

3.2.1.2 Diagram types

A number of different diagram types are shown in figure 3.1 that are commonly
used in pollen diagrams, as well as other stratigraphic diagrams. These can all be
identified and read by straditize. One of the most commonly found diagrams in
pollen diagrams are line diagrams (fig. 3.1f), or line diagrams where the area under-
neath of the line is filled to make an area diagram (fig. 3.1h). Data is also often com-
monly presented as bar diagrams that make it clearer where the individual samples
are located (fig. 3.1g). Both bar and line/area diagrams may also be stacked, where
(as we have already mentioned) columns may contain multiple variables stacked
one upon the other (fig. 3.1i). These various diagram types require different dig-
itization strategies, which we discuss in the digitization section below (see section
3.2.2).

3.2.1.3 Informative features

Other more specialized features can also be found in pollen diagrams that provide
additional information for the reader, but are more difficult to interpret for the soft-
ware. For instance the taxa or variables in a pollen diagram are usually all plotted on
the same scale even if they are in different columns, so that direct visual comparison
can be made between them. However, whilst this works well for large percentage
values, it can often be difficult to see changes in low percentage values, which may
still be ecologically important. To help the reader see these changes in low percent-
ages, pollen diagrams often include a vertical exaggeration. This means that the
percentages for a pollen taxa in a column will be plotted with two lines, one show-
ing the percentage value shown on the scale, and the other showing the percentage
value multiplied or exaggerated by a certain factor (usually 5 or 10) (fig. 3.1j). A
different approach to the same problem is to mark the low percentages with a sym-
bol or marker. For instance, a common method is to mark all samples with less than
0.5% or 1.0% with a “+” symbol (fig. 3.1k).

Other features that are often added to pollen diagrams and other stratigraphic
diagrams are vertical and horizontal lines. Vertical lines often denote the start of a
column, representing the baseline of the y-axes. These are often a continuous or dis-
continuous dashed line, and when it is quite a thick line it can be difficult to define
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its position relative to the x-axis. Horizontal lines usually run across columns and
are often used to denote different sections of the diagram. For instance, in pollen
diagrams they are often used to denote zones or sections of the diagram that have
a similar ecological assemblage. These horizontal lines do not usually provide use-
ful numerical data and their intersection with column lines can make reading the
column lines more difficult for the software. Another difficulty are hatch patterns
which are especially common in old monochrome diagrams that predate the use of
shading (fig. 3.1m).

3.2.2 Digitization procedure

Straditize digitizes the multiple columns or curves within a diagram in a single but
editable action. This is different from other digitization software that usually re-
quires the user to digitize each curve individually. This makes the digitization of a
diagram with many columns much faster, and at the same time it enables the soft-
ware to use all of the information in all of the different columns to help infer knowl-
edge common to all columns, such as sample depths and percentage values (see
section 3.2.2.6). This all-in-one digitization strategy however requires that straditize
is able to understand and capture the structure of the diagram without encounter-
ing too many interpretation problems. Hence, instead of selecting the features that
should be digitized, straditize first requires the user to remove all of the features that
should not be digitized.

In summary, the digitization procedure for a stratigraphic diagram using stradi-
tize follows the following steps:

1. Define the data part of the diagram

2. Identify the columns representing the different variables

3. Clean-up the diagram by removing any unnecessary informative features (see
section 3.2.2.3)

4. Decide how to handling exaggerations and rare occurrences

5. Digitize the diagram

6. Identify the samples

7. Translate the data into the correct x- and y-units

8. Read in the variable names

All of these steps are semi-automated and the results can (and should) be checked
and edited by the user. Each step is fully reversible and the digitization process can
be interrupted, saved and reopened at any time. In the following subsections we
describe the algorithms of the different steps.

(1) Defining the data part of the diagram

The data part (see the red rectangle in fig. 3.1), displays the data of the diagram.
Defining this part properly in the diagram image helps straditize to identify the part
of the diagram from which data is to be extracted. Ideally it should not contain
any labels for the horizontal or vertical axes, or any column headers or titles. If
this cannot be avoided, these parts will have to be removed afterwards (see section
3.2.2.3).
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Straditize uses a simple procedure to automatically detect the data part of the
diagram. It looks for the two outer most pixel rows/columns that cover a certain
fraction of the entire image (by default 70%). This algorithm works if the data part
of the diagram is enclosed by a rectangle, as is shown in figure 3.1. If there is no
rectangle enclosing the data then the user has to define the rectangle.

The data part is then transformed into a binary (black-and-white) version of the
diagram image, and all of the informative features need to be removed. In the end,
only data pixels, i.e. meaningful pixels that represent the numerical data behind the
diagram, should be left (see the following section 3.2.2.3 and figure 3.2).

(2) Separating the columns

The next important aspect of the diagram structure that needs to be defined are the
start of each of the columns (see section 3.2.1.1). This information is particularly
important because a small error in each column can quickly sum up when digitizing
a diagram with multiple columns. For instance, an error of one pixel in defining the
start of every column in a pollen diagram that is about 1400 pixels wide and has 27
taxa is equivalent to an error of about 0.5 percent per taxon. In total this can easily
introduce a summed error of up to 12% per sample. Straditize uses several criteria to
detect the various columns. The start of each column is detected using the following
procedure. Let D(i) be the number of data pixels in a pixel column i (see black areas
in 3.2. Then we assume a column start at pixel column i if

1. the previous pixel column i− 1 did not contain any data (D(i− 1) = 0)

2. the amount of data points doubled compared to i− 1 (D(i) ≥ 2 · D(i− 1))

3. the amount of data points steadily increases within the next few columns to a
value twice as large as the previous column (D(i + n) ≥ 2 ·D(i− 1) with n > 0
and D(i + j) ≥ D(i) for all 0 < j ≥ n)

Additionally, the start of each potential column has to contain a user defined
number of data pixels, which is by default ten percent of the height of the area con-
taining the data within the diagram (the red rectangle in figure 3.1).

(3) Cleaning up the diagram

In order for the automated digitization algorithms to work effectively, straditize has
to know which pixels contain data (i.e. is part of a line, or a bar), and which pixels are
purely informative (such as y-axes or horizontal lines, see fig. 3.1l). It is necessary
for the user to remove informative features from the data part of the diagram to get
a clean version that will not confuse the algorithm. Figure 3.2 shows what this looks
like for the sample diagram in figure 3.1. Straditize has multiple tools to facilitate
the removing of informative features, documented in the software and manual, but
their applicability depends on the diagram that is subject to digitization.

The most important step of cleaning the diagram is the recognition of the vertical
axes (y- axes) that are usually at the start of every column. This is important because
it defines the start of the x-axis, and therefore the value assigned to each of the data
points, but also because in some cases the line can obscure part of the data itself.
For instance, it is possible that the lowest values on the x-axis (see section 3.2.2.4)
are obscured by the vertical line marking the y-axis, making accurate digitization
difficult.
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FIGURE 3.2: Cleaned binary image of the data part of figure 3.1. Informative fea-
tures (Y-axes and horizontal lines) have been removed. Exaggerations and occur-
rences are still in the binary image and are considered separately in section 3.2.2.4.

Straditize therefore has an automatic algorithm to detect vertical axes that tries
to minimize the removing of real data pixels. This detection is described by the
following algorithm:

Let C(i) be the most frequent color in the pixels of a pixel column i, and D(i) the
amount of data pixels in this column. A pixel column that is covered by data with
more than a user-defined threshold (by default 30 percent of the data part height,
see section 3.2.2.1) is considered as part of a y-axis if

• it is either the first pixel column in the subdiagram with data (i.e. D(j) = 0 for
j < i and j being larger or equal than the column start of the diagram),

• or the dominant color of the pixel column is the same as for the previous pixel
column (i.e. C(i) = C(i− 1)) and the number of data points is approximately
the same (i.e. D(i) ≈ D(i− 1)).

This procedure results in one vertical line per column and works independent
of whether it is a dotted, dashed or solid line. However, the line width is critical
and may vary a lot. If a diagram column contains a filled line (fig. 3.1h) that
merges with the vertical line defining the y-axis, then the algorithm could potentially
overestimate the width of the y-axis line. Therefore, we use the median of all of
the estimated lines from the various columns as the width of the y-axis line, and
reduce the width of each of the lines to this amount. The algorithm then looks for
informative features or other features that appear to be part of the data columns
but are not part of the data behind the image. These include small features such as
axis tick marks for example, and lighter pixels (i.e. close to white) that are usually a
result from the rasterization of the diagram image. straditize then moves the start of
the column because it assumes that the starting point for the x-axis (for pollen taxa
it would be the 0% line) is in the middle of the vertical line marking the y-axis.

(4) Handling low taxon values

One particular feature often associated with pollen diagrams is the use of vertical ex-
aggeration to help visualize changes in low percentages. Ordinarily, low percentages
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Pinu
s

Column 
start

Digitized value

FIGURE 3.3: Illustration of the basic digitization strategy of straditize. For each
diagram column in the binary image (fig. 3.2), we use the pixel that is located
furthest to the right on the curve and take the distance to the column start as the
digitized value. This is then transformed from the pixel scale into the data units

based on the user input.

could be viewed better by changing the x-axis scale for the taxa with low percent-
ages, but with pollen data it is also important to be able to make a visual comparison
across all of the taxa listed, including those with high pollen percentages. Therefore,
a common scale for all taxa is important. The exaggeration (fig. 3.1j) usually takes
the form of a second line outside of the first, usually representing x5 or x10 exagger-
ation of the scale presented on the x-axis. This line could be expected to have greater
precision than the first for any given pixel resolution, but problems emerge when
the value of the exaggerated value exceeds the width of the scale on the x-axis, so
that the line marking the exaggerated values is truncated at high values above a cer-
tain threshold. Another common way to help the reader identify low percentages in
pollen diagrams is to use a marker (often a “+” symbol, fig. 3.1k) for values below
a certain threshold. This can be particularly useful for very low counts where the
author wants the reader to be aware that pollen of a certain taxa was found, even
if the pollen counted was very low. This is often used for instance with “impor-
tant” taxa such as Cereals that can indicate human agricultural activity, and taxa like
Larix (Larch) that have notoriously low pollen productivity and where <1.0% in a
pollen diagram may actually represent 20% of Larix trees in the surrounding land-
scape. For the purpose of digitization, the straditize user can either remove these
exaggerations, or use some of the functions available in straditize to consider both
the non-exaggerated and the exaggerated information in the diagram. In the case
of the use of symbols to represent values below a threshold, it needs to be decided
what value the symbol will represent once it is digitized and turned into numerical
data. In any case, exaggerations and occurences are automatically removed from the
image before the diagram is digitized (see next step 3.2.2.5).

(5) Digitizing the diagram

After removing the informative features (see section 3.2.2.3) and exaggerations (see
section 3.2.2.4), straditize can automatically digitize the various columns on a pixel
basis. In general straditize treats every column of the diagram separately and uses
different algorithms for the various plotting types:

Area and line diagrams such as those shown in the fig. 3.1f and fig. 3.1h are
digitized based on the pixel located furthest to the right on the curve in any
particular column (illustrated in figure 3.3).

Bar diagrams as in figure 3.1g are also digitized based on the the pixel located fur-
thest to the right on the bar in any particular column. Additionally, straditize
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distinguishes between two adjacent bars by using a user defined threshold (by
default two pixels). Additionally, it identifies bars that are significantly wider
than the others (which would indicate two or more overlapping bars) and then
the user can split them manually.

Stacked diagrams as in figure 3.1i have to be digitized manually. The user has to
manually distinguish the different areas using the selection tools in straditize.

These procedures each result in one value per pixel row in each variable column
in the data part. The next step is then to extract only the rows that are necessary to
regenerate the diagram, that is, the pixel rows that correspond to the samples.

(6) Finding the samples

A key function of straditize is its ability to identify sample levels in the data, so that
measurements of x-axis values in each column for each variable are assigned to the
appropriate y-axis sample depth or age across all columns and variables. The search
and assignment of sample levels can be done either automatically or manually, and
if done automatically, this can also be later edited following manual checking.

The algorithm is thereby split into two steps:

1. For each column: Identify the intervals that contain exactly one sample (the
rough locations, i.e. certain consecutive pixel rows in every column where we
know that there is a sample, but we do not know where exactly)

2. Align the overlapping intervals between the columns to estimate the exact lo-
cation

The implementation of step 1 necessarily differs between bar and area/stacked
or line diagrams. With bar diagrams straditize uses the bars identified in the previ-
ous digitization step (section 3.2.2.5) to define these rough sample locations, while
for the other diagram types the algorithm looks for local extrema in the graph line,
i.e. intervals that are lower or higher than the surrounding areas. This implies that
each sample is associated with a local minimum or maximum in at least one of the
diagram columns. This holds well for pollen diagrams that usually sum up to 100%
across all of the columns or variables in the diagram, but it is however not generally
true for all stratigraphic diagrams.

Step 2 then aligns these rough intervals and uses the overlapping information
from the different columns to estimate the exact location of the sample. This is
described by the following procedure, where we focus on a simple case of only
two diagram columns. Assume that the two columns i and j have a sample in
the corresponding overlapping intervals Ii and Ij (i.e. Ii = {ri,1, ri,2, . . .}, and Ij ={

rj,1, rj,2, . . .
}

with Ii ∩ Ij 6= ∅). To find the exact location, straditize distinguishes the
following cases:

If one of the intervals contains only one pixel row (i.e. |Ii| = 1 or
∣∣Ij
∣∣ = 1), stradi-

tize sets the sample at exactly this location

If each of the intervals contains multiple rows, straditize uses the mean of all the
row indices in each of the intervals (i.e. y = Ii ∪ Ij). This then weighs overlap-
ping areas in the intervals above non-overlapping areas.
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FIGURE 3.4: Pollen diagram for Hoya del Castillo after Davis and Stevenson, 2007.
Left, the original diagram, right, the digitized version obtained (and plotted) using

straditize.
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FIGURE 3.5: A plot of the residuals based on a comparison between the digitized
Hoya del Castillo pollen diagram, and the original reference data that was used
to generate the diagram (see fig. 3.4). The y-axis shows the residuals (digitized
data percentage minus original reference data percentage) and the x-axis shows
the original reference data percentage for Hoya del Castillo. Each dot represents a
single pollen sample. The dotted line denotes the one-to-one line where digitiza-

tion result and reference are the same.

Finally, samples that are close to each other (by default, closer than 5 pixel rows)
are merged together. This is necessary because it may happen that, due to the quality
of the diagram image, two rough locations do not exactly overlap although they
belong to the same sample.

3.3 Discussion

As an example of the application of straditize, we digitized the Holocene pollen dia-
gram for Hoya del Castillo (Spain) a site in Los Monegros, NE Spain, published by
Davis and Stevenson, 2007 (see figure 3.4). The diagram was generated using the
popular pollen diagram plotting software package Tilia2 (Grimm, 1988, 1991) and
exported as an image with a resolution of 450 dots per inch (dpi). We then followed
the strategy described in section 3.2.2 to digitize the diagram. First, we selected the

2https://www.tiliait.com/

https://www.tiliait.com/
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data part, then the columns and cleaned the image by removing the y-axes and hor-
izontal lines. Then we digitized the diagram and used the straditize sample finding
algorithm to extract the sample locations.

Comparing the digitized data with the original data, we find that straditize was
able to successfully identify all 34 samples in the diagram. The root mean square
error (RMSE) for the depth of each sample digitized from the y-axis and normal-
ized by the range of the vertical axes, is very low and corresponds to an error of
0.2%. Additionally straditize gives a good measure of the individual taxon percent-
age with the RMSE being only 0.5%. Nevertheless, straditize shows a tendency to
overestimate the real percentage. About 43% of the samples have percentages that
are higher than the orginal percentages, whereas only about 10% have lower per-
centages (fig. 3.5), the remainder are exact (and most of the time zero percentage).
This is probably due to a systematic bias in the positioning of the exact column start,
i.e. 0 start point of the x-axis relative to y-axis baseline, and is something that could
be systematically corrected. Overall this error is in the range of less than one percent
per sample/taxon.

Irrespective of the performance of the software, other factors will also influence
the accuracy of the digitization process. The quality and type of diagram image is
very important, especially if the diagram is not of a high pixel resolution, or has
poorly aligned and marked axis, or has many closely located samples. But also the
skill and experience of the user will have some impact, especially if they are also
unfamiliar with the type of data being analyzed and the way that it is commonly
presented in a diagram. To help the user evaluate how accurate the digitization
process has been, straditize also allows the user to plot the digitized data in a way
that allows a direct visual comparison with the source diagram (fig. 3.4) using the
stratigraphic visualization features of psy-strat (Sommer, 2019).

Keeping in mind these many caveats, we generally estimate that straditize will
allow an experienced user to reliably obtain a numerical estimate through diagram
digitization in the order of 1% of the original data for each sample/variable. In the
case of pollen diagrams, this uncertainty should be viewed from the perspective of
the inherent uncertainty associated with the counting of each pollen sample. Any
pollen count is an estimate of the pollen sample that is displayed on a pollen slide.
Although pollen samples are usually displayed as percentages, the reason for this
is that the size of the pollen count varies from sample to sample, and percentages
allow different samples to be directly compared on a common scale. Each count is a
sample of the total pollen assemblage on a slide, and therefore each count represents
an estimate of the composition of the total pollen assemblage represented on the
slide. The more of that pollen assemblage that is counted, the closer that estimate
will be to the actual pollen assemblage. This mean that each pollen sample plotted
on a pollen diagram has an inherent uncertainty that is related to the total number of
pollen grains counted. The bigger the count, the lower the uncertainty. Typical 0.95
confidence intervals for individual taxa based on a typical pollen count of around
300-500 pollen grains are easily in the order of 2-5% (Maher, 1972).

3.4 Conclusions

In this paper we present a new open-source software that is capable of greatly reduc-
ing the time required to accurately digitize stratigraphic diagrams. These diagrams
are characterized by a series of horizontally or vertically aligned diagrams that plot
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various variables representing the results of the analysis of a series of common sam-
ples that are aligned on the same y-axis representing age or depth. The software is
currently optimized for use with pollen diagrams, but should work well with any
similar type of data plotted in a similar style. The x-axis values can be percentages
or absolute values of any kind, and the y-axis could also represent distance down
a river of any other linear scale. The program is freely available, well documented
with integrated help and training, is written in python, and is also open for adapta-
tion for other uses.
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Chapter 4

Psyplot

A flexible framework for interactive data analysis

4.1 Summary

From

Sommer, Philipp S. (Aug. 2017e). “The psyplot interactive visualization
framework”. In: The Journal of Open Source Software 2.16. DOI: 10 .
21105 / joss . 00363. URL: https : / / doi . org / 10 . 21105 / joss .
00363.

psyplot (Sommer, 2017e) is a cross-platform open source python project that mainly
combines the plotting utilities of matplotlib (Hunter, 2007) and the data manage-
ment of the xarray (Hoyer and Hamman, 2017) package and integrates them into a
software that can be used via command-line and via a graphical user interface (GUI).

The main purpose is to have a framework that allows a fast, attractive, flexible,
easily applicable, easily reproducible and especially an interactive visualization of
data.

The ultimate goal is to help scientists in their daily work by providing a flexible
visualization tool that can be enhanced by their own visualization scripts.

The framework is extended by multiple plugins: psy-simple (Sommer, 2017c) for
simple visualization tasks, psy-maps (Sommer, 2017a) for georeferenced data visu-
alization and psy-reg (Sommer, 2017b) for the visualization of fits. It is furthermore
extended by the optional graphical user interface psyplot-gui (Sommer, 2017d).

4.2 Introduction

The mathematical and statistical processing of climate data is closely related to its
visualization and analysis. But in traditional visual analytics literature, these two
aspects are commonly treated in separate manners. Keim et al., 2008 for instance,
(following Wijk, 2005) distinguish two steps of visual analytics, the initial data pro-
cessing with statistical or mathematical techniques, and a sense-making loop of visu-
alization, exploration and the gain of new knowledge. Böttinger and Röber, 2019
distinguish the filtering step (data processing), and mapping/rendering step that de-
scribes the visualization. Also in the literature there is a clear division between the
climate visualization (or visual analytic) papers and the standard statistical or cli-
mate literature that describes new methods for data processing. Visualization re-
search focuses mainly on advanced visualization tools such as ParaView (Ayachit,

https://doi.org/10.21105/joss.00363
https://doi.org/10.21105/joss.00363
https://doi.org/10.21105/joss.00363
https://doi.org/10.21105/joss.00363
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2015), VAPOR (Clyne et al., 2007) or Avizo1 (e.g. Böttinger and Röber, 2019; Nocke
et al., 2015; Rautenhaus et al., 2018; Wong et al., 2014) whereas statistical or climate
literature commonly uses R (R Core Team, 2019), Python (Oliphant, 2006; Perez et al.,
2011), Climate Data Operators (CDOs) (Schulzweida, 2019) or other command-line
tools.

This separation, however, devalues the interplay between the new knowledge
from the visualization step, that commonly raises the need for more statistical and
mathematical processing of the initial data. This calls for integrated and flexible
tools that tackle both steps: the data processing and the visualization, a require-
ment that is currently not fulfilled by the visualization tools described above. An
example software that integrates data processing and data visualization is provided
with the Earth System Model Evaluation Tool (ESMValTool) (Eyring et al., 2016).
This framework provides common diagnostics for Earth System Models (ESMs) to
enable model intercomparisons. The tool, however, has limited interactivity and a
slow learning curve for the implementation of new diagnostics.

This lack leads to large efforts of climate scientists to develop scripts for the data
processing and visualization. They usually do not follow a systematic framework
and as such need to be adapted every time a new project starts which also make
them difficult to share with other researchers. The new psyplot framework wants
to generalize this data processing and visualization by providing a framework that
is highly flexible, interoperates with standard computational data processing tools
and enables flexible visualizations and adaptations. The software is written in the
programming language Python (Perez et al., 2011) and builds upon the visualization
package matplotlib (Hunter, 2007) and the N-dimensional array processing package
xarray (Hoyer and Hamman, 2017), that closely interoperates with the numeric pack-
ages numpy and scipy (Jones et al., 2001; Oliphant, 2006) and the parallel computing
library dask (Dask Development Team, 2016). Due to the flexibility of Python, it can
be used from the command-line, a graphical user interface (GUI) (section 4.3.3) or
jupyter notebooks2 (Kluyver et al., 2016). As such, it supports out-of-core computa-
tion (i.e. the processing of data too large to fit into memory), a rich set of visualiza-
tion methods from matplotlib, and can be extended to other visualization packages,
such as the 3D-visualization framework VTK (Sommer, 2019b).

The next section 4.3 provide an overview of the framework with its data model,
plugins and GUI. Sections 4.4 and 4.5 finally discuss further usage and extensions
to the software. For more information, usage and implementation examples I also
refer to the online documentation https://psyplot.readthedocs.io.

4.3 The psyplot framework

The psyplot framework consists of three parts: The core structure that is built upon
xarray and provides the general infrastructure (section 4.3.1), the plugins that use the
plotting functionalities of matplotlib (section 4.3.2), and the GUI (section 4.3.3).

4.3.1 Data model

Psyplot and xarray

psyplot acts as a high-level interface into the packages xarray and matplotlib. The
first one is a recent package for N-dimensional labeled arrays that adopts Unidata’s

1https://www.fei.com/software/avizo3d/
2https://jupyter.org/

https://psyplot.readthedocs.io
https://www.fei.com/ software/avizo3d/
https://jupyter.org/
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self-describing Common Data Model on which the network Common Data Form
(netCDF) is built (Brown et al., 1993; Hoyer and Hamman, 2017; Rew and Davis,
1990). The package integrates with standard python from the python environment,
such as the computing and analysis packages numpy (Oliphant, 2006), scipy (Jones
et al., 2001; Oliphant, 2007), pandas (McKinney, 2010) and statsmodels (Seabold and
Perktold, 2010), but also offers intuitive interfaces for other packages, such as a pack-
age for empirical orthogonal functions (EOFs, Dawson, 2016), CDOs (Müller, 2019),
fourier transforms (Uchida et al., 2019) and many more3. This large potential for
extension distinguishes psyplot from other high-level visualization software, such
as ParaView or Vapor, as such python packages can be implemented as a so-called
formatoption (without hyphen, see below) or used in a pre-processing step.

Psyplot core structure

The core structure of psyplot consists of five base classes that interact with each
other, the visualization objects Plotter and its Formatoptions, the data objects DataAr-
ray, an InteractiveList of them, and a collection of all of them, the psyplot Project. It is
schematically visualized in figure 4.1.

The most high-level Application programming interface (API) object is the psy-
plot project that consists of multiple data objects that are (or are not) visualized. The
main purpose is a parallel handling of multiple plots/arrays that may also interact
with each other (e.g. through the sharing of formatoptions). It mainly spreads update
commands to its contained objects, but also serves as a filter for the data objects.
Furthermore, one project may be split up into sub projects which then only control a
specific part of the main project, e.g. for a specific formatting of only a small part of
the data.

The next level is the DataArray from the xarray package (or more explicitly, its
accessor, the InteractiveArray3), that holds the data of one (or more) variables (e.g.
temperature) and its corresponding coordinates (e.g. time, latitude, longitude, etc.).
It may be one or multidimensional depending on the chosen visualization method.
psyplot offers several methods to provide the coordinates for the plotting of different
grids to make the visualization easier. The software can interpret CF Conventions4

and UGRID conventions for unstructured grids (Jagers et al., 2018).
Multiple of these arrays can also be grouped together into an InteractiveList that

shall be visualized by the same plot method (e.g. multiple lines or a scalar field with
overlying vector field).

The visualization part in the framework is managed by the Plotter class, a collec-
tion of multiple Formatoptions. Each plotter subclass is designed to visualize the data
in a specific manner (e.g. via line plots, violin plots, or map plots) and is completely
defined through it’s formatoptions.

Formatoptions are the core of the psyplot structure. The standard functionality
of a formatoption is to control the visual appearance of one aspect of the plot (e.g.
through the colormap, figure title, etc.). It is, however, completely unlimited and can
also do data manipulations or calculations. The psy-reg plugin for example (see sec-
tion 4.3.2) implements a formatoption that performs a regression through the data

3 several packages related to xarray are listed in the docs at http://xarray.pydata.org/en/
stable/related-projects.html and psyplots integration (accessors) in particular is shown at https:
//psyplot.readthedocs.io/en/latest/accessors.html.

4http://cfconventions.org

http://xarray.pydata.org/en/stable/related-projects.html
http://xarray.pydata.org/en/stable/related-projects.html
https://psyplot.readthedocs.io/en/latest/accessors.html
https://psyplot.readthedocs.io/en/latest/accessors.html
http://cfconventions.org
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FIGURE 4.1: The psyplot core framework. A (sub) project consists of n-
dimensional data arrays or a list of these that are each visualized by a plotter. Each
plotter consists of a set of formatoptions that control the appearance of the plot or

performs data manipulation.
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that is then visualized. As mentioned earlier, each plotter is set up through its for-
matoptions where each formatoption has a unique formatoption key inside the plot-
ter. This formatoption key (e.g. title or cmap) is what is used for updating the plot,
manipulating the data, etc.. Formatoptions might also interact with other formatop-
tions inside the plotter or from other plotters. This concept of formatoptions allows
to use the same formatoption with all different kinds of plotters and the interaction
of multiple plots with each other. Common plot features, such as the figure title,
colormap, etc., therefore do not have to be implemented explicitly for every plotter
but can be used from existing implementations. This framework also allows a very
easy integration and development of own formatoptions with a low or high level of
complexity.

4.3.2 Psyplot plugins

The psyplot package provides the core of the data management described in the
previous section 4.3.1. The real visualization is implemented in external plugins.
The advantage of this approach is an increased flexibility of the entire framework
(collaborations can evolve through dedicated plugins) and of managing the various
dependencies of the packages. As such, the dependencies of psyplot are rather week
(only xarray is needed), but the dependencies of the plugins can be more extensive
(e.g. for geo-referencing or advanced statistics).

Each plugin defines new Plotters and Formatoptions that are specific to the pur-
pose of the visualization/analysis task. The plotters can also be implemented as a
plot method (see supplements 4.B to 4.E) and accessed through the psyplot core API
(see supplements 4.A for an example).

The current lists of plugins include psy-simple for rather simple and standard
visualization tasks, psy-maps for geo-referenced plots, psy-reg for statistical analysis
visualization, and psy-strat for stratigraphic diagrams.

psy-simple: The psyplot plugin for simple visualizations

Much of the functionality that is used by other plugins is developed in the psy-
simple plugin. This package targets simple visualizations and currently includes
plot methods for one-dimensional data: line plots, bar plots and violin plots; for
two-dimensional data: scalar plots, vector plots and combined scalar and vector
plots; and plots that do not require complex data manipulation: a density plot and
a plot of the weighted geographic mean. A full list of examples is provided in the
supplementary material, section 4.B.

This package also implements most of the functionality to handle unstructured
grids in 2D visualizations and defines most of the commonly used formatoptions.
The latter include text manipulation (such as plot title, figure title, x- and y-axis
labels, etc.), data masking, x- and y-axis tick labeling and positioning, as well as
color coding for 2D plots (colormap, colormap sections, etc.).

psy-maps: The psyplot plugin for visualizations on a map

psy-maps builds on top of the psy-simple plugin and extends its functionality for
visualizations on a map using the functionalities of the cartopy package (Met Of-
fice, 2010 - 2015) (see supplements 4.C for examples). It simplifies as such the au-
tomated generation of maps for climate model data through the flexibility of the
psyplot framework.
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psy-maps currently implements additional formatoptions for choosing the projec-
tion of the map, selecting the geographic region, drawing the contintens or shaded
reliefs of land and ocean, and more. One feature that distinguishes psy-maps from
other visualization software, even from pure cartopy, is the ability to visualize un-
structured geo-referenced grids on the map. For this purpose, triangles are projected
in a pre-processing step to the target projection, prior to the visualization with mat-
plotlib. This drastically increases the performance and makes it possible to visualize
even very large data sets. As such, psy-maps visualizes a global scalar field on a
hexagonal grid of roughly 4.4 million grid cells (≈ 13 km resolution) in roughly 3.5
minutes. The interactive usage of such a large dataset is however limited by the
functionalities of matplotlib to handle such an immense amount of data.

psy-reg: The psyplot plugin for visualizing and calculating regression plots

psy-reg performs regression analysis on 1D variables using the methods of the stats-
models (Seabold and Perktold, 2010) and scipy (Jones et al., 2001; Oliphant, 2007)
packages, and visualizes the results with the functionalities of the psy-simple plugin.
As such, it implements formatoptions for univariate regressions, confidence intervals
via bootstrapping, and combined plots of the data density and the fitted model (see
also supplements 4.D). The necessity for this package arose from the need to visu-
alize a regression model, compare it (visually) with the original data and to use it
afterwards. Other python packages either focus only on the generation of the re-
gressions (such as statsmodels or scipy), or on their visualization (such as seaborn
(Waskom et al., 2018)). The psyplot plugin makes it possible to generate the visual-
ization and to access the underlying regression model parameters and uncertainties.

psy-reg has been heavily used for the parameterization of the weather generator
in chapter 6 which also gave the initial motivation for the package.

psy-strat: A psyplot plugin for stratigraphic plots

psy-strat (Sommer, 2019a) is the latest plugin for psyplot that has been developed
for stratigraphic diagram visualization. It is particularly designed for the straditize
software (Sommer et al., 2019, chapter 3) and was motivated by the need for an
automated creation of pollen diagrams. One example of such a diagram is provided
in the supplementary material, section 4.E.

As the psy-reg and psy-maps plugins, psy-strat uses the functionalities of the
psy-simple plugin for a visualization of multiple variables in separate diagrams that
share one common vertical axis (usually age or depth)5. Additionally, besides the
integration that is common for every psyplot plugin (see next section 4.3.3), psy-
strat contains additional functionalities for the psyplot GUI. This implementation
allows the user to select and reorder the variables (pollen taxa) that are shown in the
stratigraphic diagram.

4.3.3 The psyplot Graphical User Interface

Psyplots objective of providing a platform for flexible and convenient data analysis
is further approached with the psyplot-gui package. This extension to the framwork
provides a GUI for simplified access to the plotting features in psyplot.

A strong focus of this interface is, again, the flexibility. psyplot-gui is based on
the cross-platform PyQt5 library6, a very flexible and frequently used package for

5See psy-strat.readthedocs.io for an example of psy-strat.
6PyQt5 can be accessed via https://riverbankcomputing.com/software/pyqt/intro.

https://psy-strat.readthedocs.io
https://riverbankcomputing.com/software/pyqt/intro
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FiguresProject content Help explorer

Formatoptions

Console

FIGURE 4.2: Screenshot of the psyplot GUI. The left part shows the content of the
psyplot project, the upper center the plots, and the right part contains the help
explorer. Below the plots, there is also the IPython console for the usage from the

command line and a widget to update the formatoptions of the current project.

FIGURE 4.3: Plot creation dialog to generate new figures from an xarray dataset.
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graphical user interfaces. This enables other software to develop additional features
for the package (see psy-strat in the previous section 4.3.2, for instance, or stradi-
tize in chapter 3) and to flexibly change the layout of the application. The GUI is
complemented with an interactive console to provide a fully integrated python en-
vironment for data analysis.

The next paragraphs provide an overview on the various widgets, that are also
displayed in figure 4.2 and 4.3.

Console

The central aspects to guarantee flexibility of the application is an in-process IPython
console, based on the qtconsole package7 that provides the possibility to communi-
cate with the psyplot package via the command line and to load any other module
or to run any other script or notebook, or even to run commands in different pro-
gramming languages, such as R (R Core Team, 2019) or Julia (Bezanson et al., 2017).
The console is fully integrated both ways into the GUI. The documentation of every
python object in the terminal, for instance, can be viewed in the help explorer of
the GUI. And vice versa: a change of the current project through the project content
widgets, also changes the corresponding python variable in the shell.

Help explorer

As a complement to the console, the GUI contains a help explorer to provide im-
mediate and dynamic access to the documentation of python objects in the console,
rendered as an HTML webpage8. Furthermore, the help explorer is connected to
multiple other widgets of the GUI in order to provide a dynamically generated doc-
umentation. The documentation of available formatoptions in the psyplot project, for
instance, are rendered as HTML upon request, in order to make the various plot
methods more accessible. The same principle works for the plot methods that are
accessible in the plot creator.

Plot creator

The plot creator (figure 4.3) is the starting point of the GUI into the psyplot frame-
work (at least, if one does not use the console or a script to generate the plots). It
loads data from the disk or the in-process console, and essentially provides a wrap-
per around the psyplot plotting call (see suppl. section 4.A). It additionally displays
the documentation of the method and its associated formatoptions. This widget cre-
ates new plots, that are appended to the psyplot project and are accessible through
the console and the project content widgets.

Project content

The psyplot project is the most high-level API element in the psyplot framework
(see section 4.3.1) and is displayed in the project content widgets of the GUI. All
other elements, such as the formatoptions widget or the plot creator, are interfering
with the project, and it is accessible as a variable in the console. The project content
widget can be used to see the various items in the project, but it is also used to select

7https://github.com/jupyter/qtconsole
8The help explorer widget has been originally motivated by the Help widget of the Scientific PYthon

Development EnviRonment, Spyder (https://www.spyder-ide.org/) and uses the sphinx package
(Hasecke, 2019) to convert restructured Text into HTML.

https://github.com/jupyter/qtconsole
https://www.spyder-ide.org/
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the specific items for the so-called current sub-project. The latter is dynamically set
in the console through the sp variable and it is used by the formatoptions widget to
update the plotting parameters of the selected items.

Formatoptions

As mentioned in section 4.3.1, formatoptions are the core elements in psyplot that
control the figure aesthetics of the plots and/or perform data manipulations. The
generic formatoptions widget provides access to these parameters, in order to update
them for the selected items in the current project. The formatoption itself (i.e. the
python object) can in turn generate a widget that is implemented in the formatoptions
widget, to make the available options more accessible. The title formatoption, for
instance, generates a drop-down menu to select variable attributes (e.g. variable
name, variable units, etc.) which is then embedded in the formatoptions widget. The
modifications of the formatoptions via this widgets, updates the figures of the selected
items.

Figures and plots

The plots generated by the plotting methods are displayed in dedicated widgets
inside the GUI and can be dynamically adjusted using the formatoptions widget or
the console. The underlying library of the current implemented psyplot plugins,
matplotlib, implements multiple backends to display the data interactively, or to
export them as PDF, PNG, etc. The psyplot GUI has implemented a backend on top
of the PyQt5 backend of matplotlib, which embeds the figures in the GUI. psyplot
can, however, work with any backend of matplotlib and does not depend on the
specific implementation.

4.4 Conclusions

psyplot (Sommer, 2017e) is a new data visualization framework that integrates rich
computational and mathematical software into a flexible framework for visualiza-
tion. It differs from most of the visual analytic software such that it focuses on ex-
tensibility in order to flexibly tackle the different types of analysis questions that
arise in pioneering research. The design of the high-level API of the framework en-
ables a simple and standardized usage from the command-line, python scripts or
jupyter notebooks. A modular plugin framework enables a flexible development of
the framework that can potentially go into many different directions. The additional
enhancement with a flexible GUI makes it the only visualization framework that can
be handled from the conveniently command-line, and via point-click handling. It
also allows to build further desktop applications on top of the existing framework.

The plugins of psyplot currently provide visualization methods that range from
simple line plots, to density plots, regression analysis and geo-referenced visualiza-
tion in two dimensions. The software is currently entirely based on the visualization
methods of matplotlib (Hunter, 2007), the most established visualization package
in the scientific python community. However, the framework itself is agnostic to
the underlying visualization method and can, as such, leverage a variety of existing
analytical software.
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4.5 Outlook

The possibilities for further development of the psyplot framework are numerous,
due to its intrinsic generality. The core of the psyplot framework will, in the future,
be extended with a standardized algorithm for the generation of animations. Psyplot
projects already have the functionality of being saved to a file and reloaded, but
they will also be exportable as python scripts for a more flexible reusability and
adaptability. The update process within a psyplot project (currently every item in
the project is updated in parallel) also has potential for improvement by using a
single-threaded scheduler approach that better reflects if one formatoption depends
on the formatoptions of another plotter.

The GUI has especially high potential for further development, as it still lacks
widgets to quickly and intuitively modify the visual appearance of the plots. The
only possibility inside the GUI (besides the console) is to use the formatoptions widget
whose main focus however is on flexibility, rather than usability and has, as such,
limited possibilities for adaptation to specific use cases.

Another focus will be the development of new plot methods inside the psyplot
framework. The major aspect will be on the development of 3D visualization meth-
ods of geo-referenced data, using recently published software that builds on top of
the visualization toolkit VTK (Sullivan and Kaszynski, 2019; Sullivan and Trainor-
Guitton, 2019), see Sommer, 2019b. psyplot has the unique potential to generate 3D
visualizations conveniently from the command line, a distinguishing feature, com-
pared to other visualization software packages, such as ParaView or Vapor. Further
potential enhancements for visualizations can involve standard interactive visual
analytic tools, e.g. such that the interactive selection of features in one plot affects
the visualization in another plot (so-called brushing and linking).
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Supplementary material

4.A Example call of a plot method

# example call for generating a map
import psyplot.project as psy

maps = psy.plot.mapplot(
’psy-maps-demo.nc’, # input file name, can also be data in memory
name=’t2m’, # variable to plot (can also be multiples
### formatoptions
# colorbar label uses meta attributes of netCDF variable
clabel=’%(long_name)s [%(units)s]’,
# select colormap
cmap=’RdBu_r’,
# focus on a specific lonlatbox given by [lonmin, lonmax, latmin, latmax]
lonlatbox=[’Europe’, ’Europe’, 0, ’Europe’])

maps.show()

30°W15°W 0° 15°E 30°E 45°E 60°E

10°N
20°N
30°N
40°N
50°N
60°N
70°N
80°N

245 258 271 284 297 310
Temperature [K]

# Update the plot, e.g. change projection, plot global

maps.update(projection=’robin’, lonlatbox=None)

235 250 265 280 295 310
Temperature [K]
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4.B psy-simple plot methods

Plot method lineplot barplot violinplot
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4.C psy-maps plot methods

Plot method mapplot
Grid type rectilinear unstructured

Example

Plot method mapvector combined

Example

4.D psy-reg plot methods

Plot method linreg

Example 0 20 40 60 80 100
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Plot method densityreg
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4.E psy-strat plot methods
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Chapter 5

pyleogrid

A Probabilistic Approach for Gridding Paleo Climate Data

5.1 Introduction

Paleo-climate reconstructions are most often undertaken on a site by site basis to
provide a record of climate change at a specific place through time. The integra-
tion of data obtained from multiple sites however provides the basis for investigat-
ing spatially explicit reconstructions of climate through time. This spatio-temporal
perspective can provide powerful insights into the climate system that are not eas-
ily discernible from the typical 1-dimensional approach associated with single site
records. Spatially explicit data allows us to see how spatial patterns in climate vari-
ables change through time, providing a way of identifying the underlying causes of
climate change. It also allows us to match the spatial scale of Earth-system models,
which are based on grid-boxes that often reflect climatic changes at a very different
spatial resolution than that experienced at the scale of a single site.

Here, we describe a computationally efficient methodology for integrating mul-
tiple paleo-climate records from different sites into a single spatio-temporal record
that simultaneously takes into account the associated uncertainties. This method
also involves projecting the data onto a uniform spatial grid and regular time-step.
This approach is different from the conventional approach to gridding, often called
pseudo-gridding, in which records that fall within a grid box are simply combined in
some way to represent the grid box value (e.g. Bartlein et al., 2010; Marcott et al.,
2013; Marsicek et al., 2018; Waelbroeck et al., 2009). Similarly, samples from the
records within a grid box are also combined or binned into time-windows to create
a regular time-step. Our method instead does not aggregate the reconstruction spa-
tially or temporally but rather interpolates the data to a user-defined 3-dimensional
spatial grid and regular time-step. This approach has been used in previous stud-
ies (Davis et al., 2003; Mauri et al., 2014, 2015), but here we integrate chronological
and reconstruction uncertainties into the gridding process, allowing us to propagate
these uncertainties through time and space onto our grid network.

Gridding has many advantages over other simple mapping approaches, includ-
ing pseudo-gridding. It allows us to calculate more accurately area-averages and en-
ergy balances, as well as to make direct comparisons with Earth system models at
a comparable grid box size and regular time-step. Gridding also allows a changing
paleo-climate site/sample network through time to be stabilized, making it easier
to compare one time period with another. We are also able to create a more com-
plete record of climate in time and space, using the entire sampling network to infer
climate in places and at times where we may not have a site/sample.
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Fossil sites: 1351 Modern calibration sites: 6923

FIGURE 5.1: Site locations of the (left) fossil and (right) modern pollen database.

Our new method applies a probability approach to data integration, whereby
the full uncertainty of each sample is considered in the gridding process, rather than
just the sample mean used in previous methods (Mauri et al., 2015). From this, we
can calculate the uncertainties associated with the temporal and spatial distances
between our reconstruction samples/sites and the points on the grid network. We do
this through an ensemble bootstrapping approach in which we repeatedly grid the
data, each time using a different set of samples that are randomly selected to reflect
the reconstruction and chronological uncertainties of the site network. In this study,
we use pollen-data, which provides the most accessible and spatially distributed
paleo-climate data available for the late-Quaternary period.

The strength of this new method is that it treats all of the paleo-climate sam-
ples and sites as a single integrated paleo-climate record from which it is possible to
extract a single regionally coherent climatic reconstruction, complete with uncertain-
ties. Pollen-based reconstructions often have high sample to sample uncertainties,
and the vegetation at individual sites can be influenced by non-climatic factors such
as soils, disease, fire, migration lag and human impact. Our method allows us to
fully utilize the large quantity of pollen-data that is available, to extract the regional
background climate signal from what may be locally quite noisy data. It also has
a significant advantage over other methods that integrate records using Bayesian
approaches (e.g. Holmström et al., 2015), in that it is much more computationally ef-
ficient, making it possible to undertake analysis at continental scales with hundreds
and thousands of sites and samples.

5.2 Data

The ensemble based gridding method is adapted to paleo-climates. In this study,
we describe the method using a large set of western Eurasian fossil pollen assem-
blages that have been transformed to summer (June, July and August) (JJA) tem-
peratures. We focus on pollen data because it is the spatially most widely available
proxy during the Holocene, but it is important to mention that the reconstruction
method is agnostic to the climate proxy, because it does not explicitly use the pollen
assemblages but rather alters the standard climate reconstruction method under the
aspect of its methodological uncertainties. As such, the following sections describe
the fossil and modern pollen database for this use case (section 5.2.1) and the associ-
ated uncertainties of the temperature reconstruction method (section 5.2.3) and the
dating of the fossil pollen samples (section 5.2.4).
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5.2.1 Pollen database

The source data for this study is a subset of the latest development version of the
POLNET database, a northern hemispheric, extra-tropical collection of pollen assem-
blages (Davis and Kaplan, 2017; Sommer et al., 2019). The purpose of this database
is to generate the source for large-scale climate reconstruction during the Holocene
(past 12’000 years) that can be used for model-data comparisons. The subset that
we use in this study to describe and develop the gridding method contains fossil
and modern pollen assemblages of western Eurasia, a region that has already been
under investigation in the previous study by Mauri et al., 2015.

The fossil database contains raw pollen counts with in total about 1350 datasets
that consists of 80500 fossil samples. The majority of the fossil pollen data (left part
of figure 5.1) comes from the European Pollen Database (EPD) (Fyfe et al., 2009,
ca. 94%) and other publicly available databases. The presented dataset extends the
database used by Mauri et al., 2015 especially with a few sites towards the eastern
part of the map.

The modern calibration dataset (6900 sames, see right map in figure 5.1) is mainly
based on the version 2 of the Eurasian Modern Pollen Database (EMPD) (Davis et
al., 2013, ca. 87%, see also chapter 2) and core tops of EPD (10%) that were younger
than 250 years cal BP.

5.2.2 Sample site: Tigalmamine

We chose the pollen record of Tigalmamine in Morocco (32.9N, 5.34W, 1626m) to
evaluate our method. The site was first studied by Lamb and Kaars, 1995, and the
pollen data was downloaded from the European Pollen Database. The chronol-
ogy and choice of control points used here is that from Giesecke et al (Giesecke
et al., 2013). The site is well dated with 11 radiocarbon dates, and spans the en-
tire Holocene with 110 samples. The data has been used for a previously published
pollen reconstruction based on the modern analogue method (Cheddadi et al., 1998),
although this study used a calibration dataset that included modern pollen samples
from Morocco that have subsequently been found to have geolocation errors (Davis
et al., 2013). None of these problematic modern samples have been used in our anal-
ysis.

The site (red cross in figure 5.2) is located on the southern edge of our study re-
gion in an area with a montane Mediterranean vegetation and climate. The Mediter-
ranean has traditionally been considered to be a particularly challenging environ-
ment for pollen-based reconstructions because of the effects of long term human im-
pact, and the interplay of precipitation and temperature on vegetation distribution.
The fossil pollen record of Tigalmamine shows a mainly forested montane Mediter-
ranean assemblage throughout the Holocene, dominated by evergreen oak, but with
an important transition between the early Holocene and late Holocene marked by a
change from deciduous Oak to Cedrus (see the pollen diagram in Cheddadi et al.,
1998). The occurrence of Cedrus represents an interesting challenge for any pollen
climate transfer function, since this particular taxa is limited in its distribution (and
in our calibration dataset) to Morocco and the Lebanon region, while all of the other
taxa in the assemblage are widely distributed across the Mediterranean. The strong
presence of evergreen Oak also makes the site interesting, because although this taxa
is mainly associated with the Mediterranean region, its distribution extends all the
way up the west coast of France to Brittany.

Figure 5.2 illustrates these challenges for the particular site. The climate ana-
logues (see next section 5.2.3) span a large summer temperature regime of about 10
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FIGURE 5.2: Climate analogues of the Tigalmamine site (red cross). Every circle corresponds to one modern
analogue that was one of the fifties closest analogues in at least one sample within the Tigalmamine dataset.
The color-coding of each circle is based its corresponding country (see legend at the top). The marker size in
the top plot depends on the usage of the sample as modern analogue. The larger the marker, the more samples
in the Tigalmamine dataset use it as modern analogue. Tiny crosses in the map show the locations of the rest
of the modern calibration data. The lower plot shows the summer temperature for the analogue (y-axis) at
the age of the Tigalmamine sample (x-axis). The marker size in this plot corresponds to the chord distance
between modern and fossil pollen assemblage. I.e., the larger the dot, the closer (and more important) the
analogue. The dashed line shows the weighted average of all the climate analogues per sample. The age of
each Tigalmamine sample is shown with the vertical lines at the bottom of the plot. Red crosses in the lower

plot show the Tigalmamine core top sample that has been used as an analogue in 58 out of the 110 samples.



5.2. Data 69

degrees, from 15 to 25 °C. The upper temperature range is dominated by analogue
climates from Spain (orange) which in general shows the highest number analogue
matches. The early Holocene (12k to 8k BP) is dominated by modern samples from
Spain, with a wider and more uniform temperature regime, when compared to the
later periods. During the transition in the mid-Holocene (8k to 4k BP), analogues
from across the Mediterranean Sea play a more important role, in particular from
Greece, Italy and Turkey. The lower temperature regime is then dominated by Mo-
roccan samples (green) that are of particular importance during the late Holocene
(4k BP to present) due to the above mentioned presence of Cedrus.

The weighted average of the analogues (black dashed line in figure 5.2) is in
general about one to two degrees lower than the one in Cheddadi et al., 1998 (very
likely due to the above-mentioned erroneous calibration data they used). The trends
are however similar: Higher temperatures in early Holocene (the spanish analogues
dominate) with a drop around 6k BP (Moroccan climates). Our weighted average
however also shows a clear increase during the past 2000 years, again driven by
spanish analogues.

The climatic and geographic space that is covered by the analogues is further
discussed in section 5.3.2.

5.2.3 Site-based holocene temperature estimates

A standard approach for site-based climate reconstruction from fossil pollen assem-
blages is the modern analogue technique (MAT) (also called k-nearest neighbors).
This technique estimates the climate of the fossil sample as the (weighted) climate
average of the most similar modern samples (i.e. the closest modern analogues). It
has the major advantage that it requires little parameterization efforts and can be
applied over a large spatial area that covers many different climate regimes (Mauri
et al., 2015).

For this purpose, we follow the standard approach and assign JJA temperature
values for each modern calibration sample (figure 5.1), taken from the corresponding
grid cell in the WorldClim dataset, version 2 at 30 seconds (Fick and Hijmans, 2017).

Every pollen assemblage is then transformed from raw counts to percentages,
based on the total sum of terrestrial pollen counts per sample that we deem useful
for the reconstruction. This excludes low samples with low counts and taxa with
low occurrences. We use squared-chord distance from the R package rioja (Juggins,
2017) as a measure of similarity. For a given transformed fossil pollen assemblage
{ ft} and a modern pollen assemblage {mt}, where t = {1, . . . , N} denotes one of
the N individual taxa in the assemblages, this distance measure is defined as

d = ∑
t=1,...,N

(√
ft −
√

mt

)2

This distance is calculated between every modern and every fossil sample in the
entire database (section 5.2.1). The standard, non-probabilistic setup would now
compute the climate of the fossil sample as the mean climate of the k closest ana-
logues (e.g. k = 6), eventually weighted by their corresponding distance d. There
are many variations of this technique (see for example Birks et al., 2010, including
various measures of similarity, choices about k, the maximum allowed distance d
between modern and fossil assemblage, subsampling of the calibration dataset to
avoid spatial autocorrelation (Guiot and Vernal, 2011; Telford and Birks, 2005, 2009),
and by grouping pollen taxa into so-called plant-functional types (PFTs) (Davis et
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al., 2003; Mauri et al., 2015, e.g.). They all, however, have in common that the cate-
gorical, multi-modal distribution of the climate of the modern analogues is simpli-
fied into a unimodal distribution, represented by the mean of the analogue climates.
Therefore, in our ensemble approach, we do not take the mean but sample the cli-
mate of the analogues directly. This is further discussed in the methods section 5.3.2
and 5.4.1.

5.2.4 Age uncertainties

In addition to the methodological uncertainties of the climate reconstruction method
(previous section 5.2.3), we provide a framework to handle dating uncertainties.
During the gridding step (see next section 5.3.3), every sample is weighted by the
age difference to the target reconstruction age. The previous studies by Davis et
al., 2003 and Mauri et al., 2015 do not take this uncertainty, that can be as high as
multiple centuries, into account although they influence the gridded temperature
reconstruction.

The reason is a systematic problem of pollen samples that we overcome here
with the recent developments in the pollen community. In palynology, each sam-
ple in a sediment core is is dated using a so-called age-depth model, a function that
maps each depth of the sediment core to an age. This function is based on a few
chronological control points where the age has been determined instrumentally (for
lake sediments in the Northern Hemisphere, these are commonly radiocarbon (14C
dates) and interpolates/extrapolates to the depths of the sample locations. Various
methodologies exist to define these age-depth models, ranging from simple linear
interpolation methods (Bennett, 1994) to the more recently developed bayesian tech-
niques of the Bchron (Haslett and Parnell, 2008) and BACON (Blaauw and Christen,
2011) models.

The early approaches have been proven to provide unreliable uncertainty esti-
mates (Telford et al., 2004) and there has been no standardized way to report the
uncertainties, if they are reported at all. For this reason we (and previous studies)
cannot rely on the age uncertainties reported in the pollen database. An alterna-
tive approach is to recalculate the chronology for every dataset in the database (see
Goring, 2019, for instance), but this also requires parameterization for reliable un-
certainties and goes beyond the scope of this study.

Instead, we follow an approach that is based on two aspects: age uncertainties
are higher for older samples, and samples that are farther away from the radiocar-
bon dates (i.e. chronological control points). Additionally, samples behave differ-
ently if the sample is surrounded by two chronological points (i.e. the sampe age
is interpolated) or not (sample age is extrapolated). To quantify these relationship,
we perform a study based on all datasets (ca. 30’000 samples) from the Neotoma
paleoecology database (Williams et al., 2018) that have age-depth models estimated
with BACON, a model that has been proven to provide more reliable age uncertainty
estimates (Trachsel and Telford, 2016). For the sake of implementation (the age sam-
pling in section 5.3.1 assumes a normal distribution), we apply several assumptions
and approximations to the Neotoma samples, in particular:

1. We assume that every dataset with a BACON chronology in Neotoma keeps
the defaults and reports the limits of the 95% confidence interval (CI)

2. We keep only the maximal distance of the CI limits from the reported age (i.e.
we assume a symmetric distribution)
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3. We assume that the distribution is normal (i.e. the 95% CI corresponds to the
2σ interval, where σ2 denotes the scale parameter) and a division in half of
the maximal distance (see previous assumption) gives the standard deviation
σ (which is what we call the age uncertainty)

The resulting data is illustrated in figure 5.3. The grayscale density plots in the
background shows the high dispersal of the data and the number of samples de-
creases strongly with higher distance to the control point or older samples (red lines).
Nonetheless, the mean of the data (blue lines) reveals the increasing nature of both
relationships, as mentioned before.

Figure 5.3 also shows two models that have been fitted to the data. The first one
is a standard simple univariate linear model y = a + b · x (orange line). This model
simulates the increasing trend of both variables although it does not capture the non-
linear relationship between age and age-uncertainty. A reason for this non-linearity
arises from the time-dependency of the radiocarbon calibration curve and its associ-
ated errors. This non-linear behavior gives the motivation to use a constrained linear
Generalized Additive Model (GAM), a smooth semi-parametric model of the form

E[y|X] = β0 + f1(X1)

in the univariate case, or

E[y|X] = β0 + f1(X1) + f2(X2)

in the bivariate case. The feature functions f1 and f2 are based on penalized B splines
with a constraint for monotonic increasing, the expected value E[y|X] is based on a
normal distribution. The GAM model has been fitted with the pyGAM software
package (Servén et al., 2018). This model enables to better simulate the non-linear
features as can be seen with the green lines in figure 5.3.

These results approve the initial hypotheses and justify the choice of a bivari-
ate GAM for predicting age uncertainties based on the distance to the chronological
control point, and the age of the sample. The two models, together with a bivariate
simple linear regression model, and again for interpolated and extrapolated sam-
ples, are shown in the central column of figure 5.4. Both model classes (simple linear
and GAM) are able to reproduce the general shape of the observed data, although
the GAM better resolves the non-linear relationship between the three variables.

The final uncertainties, predicted for the data set presented in the previous sec-
tion 5.2.1, are shown in the supplementary figure 5.17.

5.3 Method

With the intrinsic methodological uncertainties of climate and dating in mind, we
present a new ensemble-based approach on gridding the reconstructions from the
individual sites. Each ensemble member is generated with randomized sample ages
and climate, derived from the corresponding uncertainty measures (see previous
sections 5.2.3 and 5.2.4), with additional constraints arising from the integrity of the
individual dataset (sediment core). We explain these in more details in sections 5.3.1
and 5.3.2. The final gridding step for each ensemble member is based on a modified
setup of Mauri et al., 2015, but can also be extended with other interpolation algo-
rithms, as described in section 5.3.3). We implemented the method as the python
package pyleogrid that efficiently scales to large datasets and ensemble sizes, and
shortly describe it in section 5.3.4.
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FIGURE 5.3: Univariate regression plots of (first and third) distance to chronological points,
and (second and fourth) age to the one sigma dating uncertainty of the sample. The upper
two plots contain only interpolated samples (i.e. samples that lie between two chronological
control points), the lower extrapolated samples. Blue lines show the mean age uncertainty
for the given distance (age). Orange and green lines show the linear and GAM fits of distance
(age) to age uncertainty, and red lines show the number of samples for a given distance (age).
The grayscale plot in the background shows a two-dimensional histogram (density plot) to
illustrate the underlying data of the fits. For the purpose of a better visualization, each
vertical bin of this histogram has been normalized to one. Means, counts and histogram are
all based on 100 year bins in distance (age). The fits are estimated based on the unbinned
data, the source data are all Neotoma datasets with BACON-based age-depth models. Note

the logarithmic scale of the right count axis on the first and third plot.



5.3. Method 73

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

Di
st

an
ce

 to
 C

hr
on

. P
oi

nt
[y

r c
al

 B
P]

Observed

0 2000 4000 6000 8000 10000

Interpolated Samples
GAM

0 2000 4000 6000 8000 10000

Linear

0 2000 4000 6000 8000 10000
Age [yr cal BP]

0

1000

2000

3000

4000

5000

Di
st

an
ce

 to
 C

hr
on

. P
oi

nt
[y

r c
al

 B
P]

Observed

0 2000 4000 6000 8000 10000
Age [yr cal BP]

Extrapolated Samples
GAM

0 2000 4000 6000 8000 10000
Age [yr cal BP]

Linear

0 200 400 600 800 1000 1200 1400 1600
Mean Age Uncertainty [yr]

FIGURE 5.4: Bivariate models of age uncertainty. Shown are the mean 1σ age un-
certainties of ca. 30’000 samples from the Neotoma database sites with BACON-
based age-depth models. Each sample has an age uncertainty that depends on
the age of the sample (x-axis) and the distance to the closest chronological con-
trol point (y-axis). For the purpose of visualization, we grouped the samples into
categories of 100 years in x- (age) and 100 years in y- (control point distance) direc-
tion, and calculated the average age uncertainty of the groups. These averages are
shown with the color coding in the plots, and the gray area represents the space
without any observation. The top row shows interpolated samples (i.e. samples
that lie between two chronological control points), the bottom row extrapolated
samples. Plots in the left column show the observed mean age uncertainties, cen-
tral and right columns show the means of the predicted age uncertainties from the

bivariate linear GAMs and bivariate linear regression models respectively.
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FIGURE 5.5: Histograms of age sampling methods for the site in section 5.2.2 with
an ensemble size of 10’000. Every sampled age has been centered at the reported
age of the corresponding sample and scaled by its age uncertainty. The black line
shows the unconstrained distribution (a standard normal with a standard devi-
ation of 1), the other histograms show the realized distributions for each of the
age sampling methods (section 5.3.1). Note that random sort and Gibbs histograms

highly overlap.

5.3.1 Constrained age sampling

Every dataset has an intrinsic monotonicity constraint that the sample deeper down
the core has an older age. An inversion of this constraint is very rare and is usu-
ally visible in the stratigraphy of the core, such that affected samples are ruled-out
before. As such, a classic unconstrained sampling of ages1 using a normal distri-
bution centered at reported sample age and a scale corresponding to the estimated
age uncertainty (section 5.2.4) violates this constraint. Samples are inverted in such
a case when their uncertainty intervals overlap and as such the individual ensemble
member would not maintain the integrity of the individual core. We illustrate an
example for such a core in section 5.4.1.

pyleogrid therefore implements different variants of this constraint with the Gibbs
sampling being the one that is finally used.

The intuitive approach

The most intuitive approach is to randomly draw a sample age and constrain the
age of the neighboring sample with it. This can be done in a forward manner, such
that every older sample has to be older than the previous younger sample, or in a
backward manner, i.e. the younger sample has to be younger than the neighboring
older sample. We will show in the paragraphs below that this method is biased, nev-
ertheless we mention it here because of the intuitivity of the approach and because
the reason for the failure is non-trivial.

As such, we demonstrate three different algorithms:

1We call it the unconstrained distribution for convenience, but keeping in mind that every sampled
age has to be older than -70 yr cal BP.
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forward Starting with an unconstrained age distribution for the youngest sample in
the core, every consecutive sample has to be older than the previous (i.e. the
method works forward in age, but backward in time

backward Starting with an unconstrained age distribution for the oldest sample in
the core, every consecutive sample has to be younger than the previous (i.e.
the method works backward in age, but forward in time)

random start Starting with an unconstrained age distribution of a random sample
in the core, we apply the backward algorithm for younger and forward algorithm
for younger samples.

As such, forward and backward algorithms always start with an unconstrained age
distribution of the youngest (oldest) sample for every ensemble member. Within the
random start algorithm, every sample gets the chance to start with an unconstrained
age distribution, because the starting point is random for every ensemble member.
The constrained age distributions for the consecutive samples are implemented as
truncated normal distributions.

The resulting age distributions from the three algorithms are shown in figure
5.5, together with another method, that is described later in this section. The fig-
ure shows the sampled age distributions by the various above-mentioned sampling
methods for the site described in section 5.2.2. To make these age distributions com-
parable, we transformed them to a standard normal distribution (visualized as the
unconstrained distribution in figure 5.5) prior to visualization, by subtracting the
reported age and dividing by the estimated age uncertainty of the corresponding
sample. It is obvious from this figure that all of the above-mentioned algorithms
produce an artificial bias to the age distribution. The forward approach pushes the
samples to the upper tail of the distribution, the backward approach pushes every-
thing to the lower tail. The random start method produces a bimodal distribution
with peaks at the upper and lower tail.

This is also shown with three exemplary samples from the site in the supplemen-
tary figure 5.18. The forward method works well for the young sample but pushes all
older samples to the upper tail of their distribution, The backward method does the
opposite and the random sort method creates a bimodal distribution for the sample
in the center of the core, and backward behaves like the forward (backward) algo-
rithm at the older (younger) part of the core.

We explain this initially unexpected results with the overlapping age uncertain-
ties in the core. The site that we describe here has 110 samples. As such, the probabil-
ity that one sample draws a random age at the lower or upper tail of the distribution
is very high. Now, most of the dating uncertainty intervals overlap and this forces
all the consecutive samples to the tail of their age distributions. Another problem,
that is not shown here, arises from the differing sizes of the age uncertainties which
highly depends on the distance to the chronological control point (see section 5.2.4).
This can also lead to unsatisfiable requirements, if one sample is close to a control
point (and as such has a lower age uncertainty) and the previous sample has been
pushed far outside of the 95% confidence interval.

The random sorting approach

These strong biases of the intuitive approach led to another method, that we also
show in red in figure 5.5 and supplementary figure 5.18, the random sort method.
This method consists of two steps: in the first step we draw random age for each



76 Chapter 5. pyleogrid: A Probabilistic Approach for Gridding Paleo Climate Data

4 2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

si
ty

Realized age distribution

unconstrained
constrained (gibbs)

FIGURE 5.6: Realized age distribution for the entire dataset (section 5.2.1) with
the random method (section 5.3.1). The individual sample distributions have been

centered and scaled as in figure 5.5.

sample based on its unconstrained distribution1. In the second step, we order these
random ages while maintaining the order of samples in each dataset. As such, we
assign an age to each sample that is not necessarily drawn from its own distribution,
but rather from the one of a neighboring sample. When samples overlap, this then
truncates the tails of realized distribution and effectively decreases the reported age
uncertainty, as can be seen in the figures 5.5, 5.18. This approach is mathematically
difficult to justify because it violates the common methodology that each sample
has a unique confidence interval that it needs to explore. Therefore the method
might introduce some hidden biases in the sampled distributions that are difficult
to quantify. Nevertheless, the algorithm is very fast and much closer to the desired
joint distribution, than the previous intuitive approach. But in order to avoid any
biases and to guarantee a mathematically correct result, we chose to implement a
Gibbs sampling algorithm to sample from the desired constrained distribution.

The Gibbs sampling approach

Algorithm 1 Accept/Reject algorithm. N (µ, σ) denotes the normal distribution with
location parameter µ and shape parameter σ.

1: Set i = 0
2: Set µ as vector of the reported ages in dataset
3: Set σ as vector of estimated age uncertainties
4: Set a (the target age vector) to be of length µ
5: while i < 1 or not is_monotonic(a) do
6: a = N (µ, σ2)
7: Set i = i + 1
8: end while

The biases of the above-mentioned algorithms led to the development of a Markov
chain Monte Carlo (MCMC) sampling algorithm. An accept/reject algorithm, which
draws a set of random ages for all unconstrained sample distributions in a core at



5.3. Method 77

once and accepts the draw if the monotonicity condition, is satisfied and rejects the
sample if the monotonicity condition was initially explored. For one realization of
the ages a in a given dataset, this is described with the pseudo-code in algorithm
1. This standard approach however did not find a monotonic solution within ten
million iterations for a high-resolution site such as it has been used in the previous
section.

Therefore we decided to implement a Gibbs sampler, an algorithm that is com-
monly used in Bayesian inference to obtain a sequence of samples from conditional
probability distributions, which generate samples from a multivariate joint distribu-
tion when this distribution is unknown and/or cannot be sampled directly. In our
case, this distribution if the distribution of all sample ages in one dataset, where each
sample age is conditioned by its younger and older neighbor. Let µ = (µ1, µ2, . . . µN)
be the reported ages of the N pollen samples in one individual dataset with esti-
mated age uncertainties σ = (σ1, σ2, . . . σN). The reported ages fulfill the mono-
tonicity constrain, i.e. µj ≤ µk for all j, k with 1 ≤ j ≤ k ≤ N. The objective
of our sampling approach is to generate M random realizations of µ, denoted by
X(m) =

(
X(m)

1 , X(m)
2 , . . . X(m)

N

)
with m = 1, . . . , M, that all fulfill the monotonicity

constrain. In other words, the realizations X(m) are constrained to fulfill

X(m)
j ≤ X(m)

k , for all j, k with 1 ≤ j ≤ k ≤ N and 1 ≤ m ≤ M. (5.1)

We set the intial value to the reported ages (X(1) = µ) where we know that the
constrain is fullfilled. For the following realizations X(m+1) with 1 < m ≤ M we
sample each component X(m)

j with 1 ≤ j ≤ N conditioned by its previous sample

X(m)
j−1 and, most importantly, conditioned by the next sample, but from the previous

realization, i.e. X(m−1)
j+1 . As such, we define the sampled age of X(m)

j with

Xm
j = N (X(m)

j−1; X(m−1)
j+1 ; µj, σ2

j ) (5.2)

where N (a; b; ·, ·) denotes a random variate of the truncated normal distribu-
tion with lower limit a and upper limit b. Although this algorithm always starts
with the youngest sample in the dataset for every realization, such as the forward
method, it does not push every sample to the lower tail of the distribution be-
cause every sampled age is conditioned by the age of the next pollen sample from
the previous realization. It is mathematically proven that the combined realiza-
tions

{
X(1), X(2), . . . X(M)

}
of this algorithm approximates the joint distribution of

the sample ages in the dataset under the given constraint, and that each marginal
distribution of a the age of a particular pollen sample 1 ≤ j ≤ N is approximated by{

X(1)
j , X(2)

j , . . . , X(M)
j

}
.

As it is common for a MCMC algorithm, each realization is correlated with nearby
realizations. The first samples are particularly correlated with the initial value µ and
it is therefore common practice to discard the first 1000 realizations, the so-called
burn-in period.

To avoid an autocorrelation between the successive realizations, we thin our set
of sampled ages and keep only every tenth realization until we have the desired
amount of M realizations. The value of 10 has been shown to be sufficient using an
autocorrelation analysis of the different samples in the Tigalmamine record.

As can be seen in figure 5.5 and 5.18, the outcomes are very close to the above
mentioned random sort approach. However, a look into the realized distribution of
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the last sample in figure 5.18 reveals a negative bias of the distribution sampled with
the random sort approach.

The realized (and standardized) distribution of the entire database presented in
section 5.2.1 is finally shown in figure 5.6. The comparison with the unconstrained
distribution in this figure highlights the need for a constrained sampling because the
latter significantly reduces the width of the distribution.

5.3.2 Temperature sampling
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FIGURE 5.7: Histograms of temperature sampling methods for the site in section
5.2.2 with an ensemble size of 10’000 for a climatic constraint of (left) 2 °C, and
(right) 5 °C. As in figure 5.5, every sampled temperature has been centered at the
weighted average of the corresponding modern analogues and scaled by the cor-
responding weighted standard deviation. The black line shows the unconstrained
distribution (a standard normal with a standard deviation of 1), the other his-
tograms show the realized distributions for random start and Gibbs temperature

sampling method (section 5.3.1).

As already mentioned in 5.2.3, our sampling approach does not use the temper-
ature and uncertainty reported for every single variable. Instead, it samples the un-
derlying distribution. As such, our method can be adapted to multiple site-specific
reconstruction methods, such as weighted averaging (WA), weighted-averaging par-
tial least squares (WAPLS) (Birks et al., 1990; Braak and Juggins, 1993) or other ap-
proaches (e.g. Birks et al., 2010; Brewer et al., 2007; Juggins, 2013). In this study, we
use a modern analogue technique (MAT) approach (see section 5.2.3) and sample
the discrete set of climate analogues for each sample. The probability to select an
analogue (i.e. its weight) is thereby determined by the chord distance between the
fossil and modern pollen assemblages. The closer the assemblages (relative to the
other potential analogues), the higher the weight.

This methodology is substantially different from the standard approach, such
that it takes the multimodality of the analogues into account, whereas the standard
approach (weighted average of the k closest analogues) estimates a unimodal distri-
bution. It additionally better represents the discrete nature of the analogue approach
whereas the standard method intrinsically assumes a continuity in the distribution.
In fact, only a small part of the available climate space is actually represented by
the modern analogues. The 5’500 modern analogues for Tigalmamine, for instance
(110 samples with 50 analogues each), are represented by only 240 distinct modern
pollen samples with only 131 distinct JJA temperatures and they eventually span a
large climate space (see figure 5.2).

The latter gives the motivation for a climatic constraint that ensures the integrity
of the individual dataset. It is, for instance, impossible that two samples from the
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FIGURE 5.8: Violin plots for sampled temperature distributions of some samples in
the Tigalmamine record with a climatic threshold of (top) 2 and (bottom) 5 °C. Blue
(left) distributions are realized with the random start method, ocher (right) areas
with Gibbs sampling. The crosses to the left of each violin shows the locations of
the climate analogues. Each cross is color coded by its chord distance relative to
the chord distance of the closest analogue (i.e. the closest analogue has always a

weight of 1).

same dataset but 200 years apart experience a temperature difference of five degrees
or more between each other. This is, however, a possible combination, considering
the underlying set of analogues (see figure 5.2 for instance). We therefore perform a
constrained sampling, as in section 5.3.1, and implement a fixed temperature thresh-
old T. Every sampled analogue in each dataset (i.e. every choice of the discrete
distribution for each pollen sample) is constraint to not differ by more than T degree
Celsius from its temporally neighboring samples. The exact choice of T is a critical
assumption and has a major impact on the realized temperature distribution for each
sample. We decided for a very conservative estimate of five degree Celsius, which is
only applied if the samples do not differ by more than 1000 years. These choices are
further discussed in section 5.4.

In the remainder of this section, we focus on the implementation of this con-
ditional sampling, because of its substantial impact on the realized distribution, as
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already shown for the sampled ages in section 5.3.1. We briefly discuss the same
approaches as in section 5.3.1 (without the random sort algorithm because we do not
enforce monotonicity here). The core of the method is the same for all approaches:
If a climate analogue differs by more than T degrees from the temperature of the
conditioning sample, its probability is set to zero. The choice about the conditioning
sample is dependent on sampling algorithm. Here, we discuss following methods:

forward The temperature of every older sample must not differ by more than T
from its younger sample

backward The temperature of every younger sample must not differ by more than
T from its older sample

random start Starting with a random sample in a data, we apply the forward method
to older and the backward method to younger samples

Gibbs The choice for each sample is constrained by the younger sample and the
older sample from the previous realization of the dataset.

We described these algorithms already in detail in section 5.3.1 and therefore
focus only on the comparison of results. The only difference is that now, without the
monotonicity constraint, forward and backward methods give the same result as the
random start method. Therefore we will only focus on the last two methods.

Figure 5.7 shows the realized distributions for the two methods. As in the cor-
responding figure for the age sampling (figure 5.5), we subtracted the weighted av-
erage of the climate analogues of the corresponding pollen sample by each of the
randomly sampled temperature values, and afterwards divided by the weighted
standard deviation, in order to make the drawn temperature values at the different
ages comparable. Both methods realize a bimodal distribution (a feature that is also
visible in the spread of the climate analogues in figure 5.2) and result in the similar
distributions when considering a climate constraint of 5 °C. This does not hold for
the stronger 2 °C constraint, where the Gibbs method gives more weight to sam-
ples below the weighted average. This is caused by the additional constraint of the
Gibbs sampling approach where each sample is constrained by the sample of the
previous realization. The algorithm always starts with the youngest sample which
has a higher probability in the Moroccan regime (green area, figure 5.2). Due to the
constraint of the sample in the previous realization, it then is more likely that we
stay in this regime. As such, the distribution tends to get more unimodal compared
to the other method, where each realization is entirely independent of the other.

This difference between the two methods and the two climatic constraints is fur-
ther illustrated in figure 5.8, which shows the violin plots for a selection of samples
in the Tigalmamine record, separated by method and climatic constraint. As already
shown with the standardized temperatures in figure 5.7, the two methods are ap-
proximately equal under the 5 °C constraint and significantly reduce the realized
temperature regime with a more multimodal distribution under the 2 °C constraint.
The Gibbs method tends to sharpen the distribution at the locations of the analogue
climates stronger than the random start method, which implies that the latter is again
prone to (potentially) large and unknown biases.

5.3.3 Gridding

The underlying gridding algorithm is the same as in Mauri et al., 2015, the thin plate
spline regression method (Tps) of the fields R-package (Nychka et al., 2017; R Core
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FIGURE 5.9: Maximum change of elevation during the Holocene per grid cell (blue
background), based on the data from the ICE-6G model. The dots show the ap-

plied (maximal) corrections to the samples in these locations.
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FIGURE 5.10: Locations of samples (red dots) that have been removed from the
input data because they are covered by ice (according to the ICE-6G model, blue

background).
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Team, 2019). This method interpolates the scalar variable (temperature) from the
irregularly spaced four dimensional sample data onto a two dimensional surface
(defined by latitude, longitude and elevation) in 3D space. The time component is
considered by giving a higher weight to samples that are temporally closer to the
target time of the interpolation.

The major difference compared to Mauri et al., 2015 is the ensemble approach,
which can also be interpreted as a bootstrapping approach. We apply the gridding
many times to different realizations of the input data. The major advantage of this
ensemble approach is the sophisticated distribution of temperatures per grid cell.
This allows a better estimate of the uncertainty of the gridded climate reconstruction,
compared to Mauri et al., 2015. But it should be noted that this ensemble approach
is structurally independent of the underlying regression algorithm. Hence, it can
potentially also be extended to other gridding methods.

Another difference between our study and Mauri et al., 2015 is the type of cli-
matic variable. Mauri et al., 2015 calculated interpolated anomalies, whereas we
interpolate the absolute climate climate variable as it is derived from the pollen-
climate reconstruction method. The advantage is that we can directly interpolate to
the elevation at a given timestep, whereas Mauri et al., 2015 applied an a posteriori
isostatic correction.

For the reconstruction presented in section 5.4, we use the data of the ICE-6G-C
model (Argus et al., 2014; Peltier et al., 2015), that is also used in the PMIP4 exper-
iments (Ivanovic et al., 2016; Kageyama et al., 2018; Otto-Bliesner et al., 2017). To
account for the change in elevation, pyleogrid also implements a method to correct
the elevation of the samples based on the elevation difference in the given input
raster for the different time steps. The results of this correction can be seen in figure
5.9. In addition to this elevation correction, we removed samples from the input data
where the ICE-6G model reports an ice coverage of more than 50% in the grid cell
(figure 5.10). Affected samples are all during the early Holocene in northern Europe.

5.3.4 Implementation

The ensemble method presented in this thesis is available as the python package
pyleogrid from github.com/Chilipp/pyleogrid . The documentation of the package
is available at pyleogrid.readthedocs.io. This module also contains the models for
predicting age uncertainties (section 5.2.4), that are based on the pyGAM software
(Servén et al., 2018). The github repository and the documentation contains the note-
books that are used to run the analysis of this study.

The sampling methods of pyleogrid that generate entirely independent realiza-
tions of the input data (forward, backward, random start and random sort meth-
ods) are built using the functionalities of the numerical numpy and scipy packages
(Jones et al., 2001; Oliphant, 2006) to efficiently generate thousands of constrained
realizations of the input data. The computationally more expensive Gibbs sampling
algorithms (section 5.3.1 and 5.3.2) were every realization is constrained by the previ-
ous realizations, is implemented in Cython (Behnel et al., 2011), an optimising static
compiler for Python, and uses the corresponding Cython Application programming
interfaces (APIs) of numpy and scipy.

As already mentioned in section 5.3.3, pyleogrid uses the Tps method of the fields
package (Nychka et al., 2017) and as such interfaces into an R environment for the
gridding.

https://github.com/Chilipp/pyleogrid
https://pyleogrid.readthedocs.io
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pyleogrid is designed to scale to large amounts of input data (e.g. for a global
reconstruction or hemispheric reconstruction) on a local computer or a large paral-
lelized cluster, using the xarray and dask packages for parallel computing and out-
of-core computation (Dask Development Team, 2016; Hoyer and Hamman, 2017).

5.4 Results

In this section we briefly present the results of the final temperature reconstruction,
both for the site-based reconstruction at Tigalmamine (section 5.4.1), and the western
Eurasian gridded temperature record for selected time slices (section 5.4.2). The
purpose of this section is present the results of the ensemble approach with a special
focus on the choices that have been made in the methods section, particularly the
number of analogues and the climatic constraint. We focus on the ensemble mean,
but it is important to keep in mind that our method approximates the joint spatio-
temporal distribution of the climate.

5.4.1 Site-based realized climate reconstruction: a use-case

The final reconstruction of the Tigalmamine site for an ensemble size of 10’000 real-
izations is displayed in figure 5.11. It shows a density plot of the realized tempera-
ture and age regime, as well as the weighted average of the standard approach. For
comparison we also show the mean of the marginal temperature distribution record
from our method (we call this the realized mean from now). The plot shows how our
method realizes the site within the ensemble. It shows the Moroccan regime during
the late Holocene (lower left dark green area between 0 and 4’000 years cal BP, see
also figure 5.2) and the Spanish regime during the early to mid Holocene (upper right
dark green area in figure 5.11). The figure also displays the differences between the
two temperature constraints. As already mentioned in section 5.3.2, the 2 °C con-
straint results in a more multimodal distribution, especially towards the end of the
record. The the realized mean is therefore significantly different from the weighted
average of the standard approach.

Figure 5.12 shows the same figure but for a varying number of analogues. The
trends of the three images behave the same and show all a decrease in tempera-
ture during the early holocene and a small plateau during the last millenium. Also
the temperature regimes conform with a the above-mentioned dominance of the
Moroccan regime in the late Holocene the Spanish regime during the early Holocene.
With a lower number of analogues, however, (top plot) the temperature changes in
the means are much smaller over a short period of time. The distribution for this
scenario (green 2D histgram in the plot) shows a strong multimodality with a few
temperature values that have a very high probability. The scenarios with higher
analogues (20 or 50) result in a much smoother mean because the underlying distri-
bution covers more of the available age-temperature space.

5.4.2 Gridded summer temperature

Determinstic vs. ensemble approach

The gridded reconstruction for the entire dataset is shown in figure 5.13 for 3k, 6k,
9k and 12k BP. The figure shows the temperature anomaly to the modern time (0k
BP), both for the ensemble method (10’000 realizations, 5 °C climate constraint) and
the deterministic case, i.e. without climate and temperature sampling. For the deter-
ministic case, we followed the approach by Mauri et al., 2015 and mask cells that are
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FIGURE 5.11: Realized summer temperature reconstruction of Tigalmamine from
the Gibbs sampling with a temperature constraint of (top) 2 °C and (bottom) 5
°C. The background shows a density plot of the sampled age-temperature pairs
within the ensemble of 10’000 realizations. The purple line is the mean of all sam-
pled temperatures within 100-year bins, i.e. it represents the mean of the marginal
temperature distribution at a given age. The blue curve is the weighted average
of the standard MAT approach (black dashed line in figure 5.2). The shaded areas

correspond to the standard deviations of the corresponding line.
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FIGURE 5.12: Realized summer temperature reconstruction of Tigalmamine from
the Gibbs sampling with 5 °C constraint for (top) 6 analogues, (middle) 20 ana-
logues and (bottom) the default 50 analogues. The weighted means (blue curves)
have been calculated using only the 6, 20 or 50 analogues. See figure 5.11 for a

description of the elements in the plot.
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FIGURE 5.13: Deterministic approach vs. ensemble mean (10’000 realizations) at 3k, 6k, 9k
and 12k BP (note the different color coding for 12k BP). Each map shows the anomaly with
respect to the gridded reconstruction at 0k BP. The deterministic approach (left column) is
the input data with temperatures as weighted averages of the 50 closest analogues and with-
out age sampling. The gridded reconstruction has been masked when more than 500km
away from the closest sample. The ensemble mean (right column) is overlayed by the cor-
responding ensemble standard deviation of the anomaly (suppl. figure 5.19). This overlay
is transparent for standard deviations smaller than 2.5 °C and afterwards gets more opaque
until it reaches 5 °C. Grid cells in the maps that were covered by more than 50 percent with

ice, according to the ICE-6G data, have been masked.
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FIGURE 5.14: Ensemble mean summer temperature anomaly at 9k BP (1’000 real-
izations) for different temperature constraints. The standard deviation is visual-

ized on top of the mean with an increasing opaqueness (same as in figure 5.13).

further away than 500km from any of the pollen sites. For the ensemble approach
on the other hand we used the ensemble standard deviation as a gray overlay that is
getting more opaque for higher standard deviations.

Both methods show similar patterns and span the same temperature range at
the onset of the Holocene. The temperature ranges in the other maps, however,
are different with the deterministic approach being more extreme in certain loca-
tions, particularly in Spain, eastern Russia and the western Mediterranean region.
The method predicts absolute temperature anomalies of more than four degrees,
whereas the anomalies of the ensemble approach commonly range between -2.5 and
2.5 °C are more coherent. The ensemble standard deviation of the anomaly (suppl.
figure 5.19) in Europe ranges between 0.5 and 1 °C for the mid- to late Holocene
timesteps at 6k and 3k BP, and between 1 and 2 °C at 12k and 9k BP. The standard
deviation is particularly high at the map boundaries of the 12k reconstruction, very
likely due to the smaller availability of fossil samples in this period.

Temperature sampling parameters

Figure 5.14 shows the influence of the choice for the climatic constraint (see section
5.3.2) on the gridded reconstruction for a selected timestep at 9k BP. The compari-
son of the 5 °C and the very relaxed 10 °C constraint shows only minor differences.
Stronger constraints (2 °C and 3 °C) result in a strengthening of the anomaly, par-
ticularly in Spain and towards the southern and south-eastern borders of the map.
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FIGURE 5.15: Ensemble mean summer temperature anomaly at 9k BP for numbers
of analogues. The standard deviation is visualized on top of the mean with an
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FIGURE 5.16: Relationship between distance to proxy sites and the ensemble stan-
dard deviation. Each line corresponds to a linear fit where the distance to the
closest site in the database for a given grid cell is regressed against the ensemble
standard deviation in this cell (figure 5.19). The different lines represent the differ-
ent time steps from figure 5.13, the value in brackets after each legend label shows

the coefficient of determination (R2) for the given regression fit.

These impacts are coherent with a reduced number of analogues, as shown in figure
5.15. Lower numbers of analogues, e.g. 6 or 10, result in a similar strengthening of
the anomaly in these geographic regions.

Uncertainties for spatial extrapolation

One important issue of gridding is the question about how far we can extrapolate
spatially outside of the geographic domain of our proxy database. Mauri et al., 2015
for instance chose a fixed threshold of 500km to the closest pollen site (also shown
in the deterministic plots of figure 5.13). Grid cells that are further away than this,
are masked.

The ensemble method we present here does not require such a formal definition
and should rather be interpreted with respect to the calculated uncertainties. Figure
5.16 shows a clear linear relationship between this distance and the ensemble uncer-
tainty. It also reveals the caveats of using fixed threshold because the relationship
between standard deviation and distance to the closest site is time dependent, likely
because of the smaller amount of available samples during the early Holocene.

5.5 Discussion

In this section, we will discuss the methodological uncertainties of the method that
are not necessarily easy to quantify. They arise from first, the underlying site-based
proxy-climate reconstruction method (in this case MAT), second the constrained cli-
mate sampling to approximate the joint distribution, and third, the gridding algo-
rithm (Tps).

The results from the side-based reconstruction in section 5.4.1, and the gridded
reconstruction in section 5.4.2, show that the first two aspects (site-based reconstruc-
tion method uncertainty and climate sampling) are closely linked, and potentially
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have a strong influence on the outcome. The effects of a reduced number of ana-
logues (figures 5.12 and 5.15), as well as a stronger climatic constraint (figures 5.11
and 5.14) resulted in more extreme temperature anomalies over the same geographic
regions. This result is coherent with the sampled temperatures presented in the
methods section (figure 5.8) where we show that a higher climatic constraint partic-
ularly strengthens the closer climate analogues and as such effectively reduces the
number of analogues that is used in the reconstruction. There is no clear and defini-
tive answer to the question how many analogues one should use and how strong the
climatic constraint should be. Based on the results however, we favor a less strong
climatic constraint of 5 °C and a high number of analogues (50). The philosophy
behind is to let the method choose which analogue it uses. If there are inconsisten-
cies within the set of modern analogues for a particular dataset, then this should be
reflected by the ensemble standard deviation, and can eventually be compensated
by the spatially neighboring samples in the gridding process.

These are all problems that arise from the underlying discrete distribution of
modern analogues. An alternativity would be to use a PDF based method (Cheva-
lier et al., 2014; Chevalier, 2019, for instance) that can potentially overcome these
weeknesses by providing a more continuous distribution for sampling the climate.

The third aspect of the uncertainty is related to the gridding algorithm itself
which can be added on top of the uncertainty of our ensemble method. For the Tps
method, this uncertainty can be estimated conveniently using the predictSE function
of the fields R-package that approximates the covariances of the prediction based on
a linear combination of the observed data under the assumption of fixed covariance
parameters (see Nychka et al., 2017 for details). A calculation of this standard error
for 20 ensemble members revealed that it is rather independent of the individual
realization. As such, we present the averaged standard error of these 20 members
in the supplementary figure 5.20. We can see that this uncertainty estimate is high
towards boundaries of the interpolation domain, but smaller than the ensemble stan-
dard deviations in between.

5.6 Conclusions

With pyleogrid we present a new methodological framework that transforms multi-
ple site-based proxy-climate reconstructions into a joint spatio-temporal probabilis-
tic climate reconstruction. Our method exploits the climatic and temporal space that
is spanned by the intrinsic uncertainties related to the proxy-climate reconstruction
method and the dating of the samples, in order to approximate the distribution of
potential climate states in the geographic area of interest. Our approach requires
little parameterization, is computationally efficient and can be scaled to large hemi-
spheric or even global areas. The generic ensemble approach we present is in princi-
ple agnostic to the underlying proxy-climate reconstruction method and to the grid-
ding method and can therefore be extended to a wide range of potential applications.

Compared to previous approaches of a large-scale gridded reconstruction, our
method therefore provides a more reliable uncertainty estimate based on our con-
strained sampling approaches, which is essential for the comparison with climate
model output.

The methodology comes with two side-products that are essential for the spatio-
temporal ensemble approach. The first one is a methodology to estimate dating
uncertainties based on a bivariate model of the age of the sample and its tempo-
ral distance to the closest chronological control point in the dataset. This model is
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based on all samples with BACON-based chronologies from the Neotoma database
under the assumption that they all report the age uncertainties as the 95th percent
confidence interval. This strong assumption can be relaxed for future improvements
of this method by using the very recent peer-reviewed dataset by Wang et al., 2019
which contains standardized chronologies for more than 500 datasets.

The other side-product, is a probabilistic variant of the site-based modern ana-
logue technique (MAT) that uses a Gibbs sampling algorithm for the ages and ana-
logue climates in order to approximate the joint distribution within a single dataset.
This sampling algorithm is constrained for the individual dataset through first, the
monotonicity of the sample ages, and second, a climatic threshold that must not be
overcome between too temporally neighboring samples. We compare this sampling
algorithm to computationally faster algorithms that involve a forward sampling (cli-
mate/age of a sample is constrained by its younger predecessor), its inversion, the
backward sampling, as well as a combined approach that uses forward and back-
ward sampling. For age sampling we also test an algorithm that starts with an un-
constrained sampling of the ages and then applies an a posteriori sorting in order
to maintain the correct distribution of samples in the core (sections 5.3.1 and 5.3.2).
All of these approaches, however reveal biases when compared to the computation-
ally more demanding, but statistically correct distribution of the Gibbs sampler. The
software package pyleogrid therefore implements a computationally efficient version
of this Gibbs sampling algorithm that efficiently scales from one single dataset to
tenth of thousands of realizations of more than a thousand individual datasets, as it
has been used in this study.

This sampling successfully reconstructs a probabilistic version of the individual
dataset and provides reliable uncertainty estimates. An evaluation of this realiza-
tion with respect to the number of modern analogues, and the climatic constraint of
the sampling algorithm reveals a close linkage of the two parameters. Further de-
velopments might therefore explore the usage of other proxy-climate reconstruction
methods that provide a more continuous distribution to sample from.
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Supplementary material

5.A Estimated age uncertainties

0 2000 4000 6000 8000 10000 12000 14000
Age [yr cal BP]

0

2000

4000

6000

8000

10000

12000

D
is

ta
nc

e 
to

 C
hr

on
. P

oi
nt

 [y
r c

al
 B

P
]

0

400

800

1200

1600

2000

M
ea

n 
1

 A
ge

 U
nc

er
ta

in
ty

FIGURE 5.17: Estimated age uncertainties for the Eurasian dataset from section
5.2.1 with the same formatting as in figure 5.4.

5.B Example of generated age distributions

unconstrained
forward

backward
random start
random sort

Gibbs

140 yr cal BP 5636 yr cal BP 11580 yr cal BP

0 250
Age [yr cal BP]

D
en

si
ty

4000 6000
Age [yr cal BP]

10000 12000 14000
Age [yr cal BP]

forward
backward

random start random sort Gibbs unconstrained

FIGURE 5.18: Example of three samples from the site in section 5.4.1 and their
realized distributions. Sampling algorithms are explained in section 5.3.1. Top
plots show the box plots of the realized distribution that are visualized with a

kernel density estimate in the lower row.
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5.C Maps of uncertainties
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FIGURE 5.19: Standard deviation of the ensemble mean summer temperature
anomaly (10’000 realizations) at 3k, 6k, 9k and 12k BP.
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FIGURE 5.20: Standard error of the gridding algorithm, predicted with the pre-
dictSE method of the fields package (Nychka et al., 2017) for the different times-
lices. The standard errors are an average of 20 ensemble members, although there

is only very little difference between the individual maps.
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Chapter 6

GWGEN v1.0

A globally calibrated scheme for generating daily meteorology
from monthly statistics

From

Sommer, Philipp S. and Jed O. Kaplan (Oct. 2017a). “A globally cali-
brated scheme for generating daily meteorology from monthly statis-
tics: Global-WGEN (GWGEN) v1.0”. In: Geosci. Model Dev. 10.10, pp. 3771–
3791. DOI: 10.5194/gmd-10-3771-2017.

Abstract. While a wide range of earth system processes occur at daily and even
sub-daily timescales, many global vegetation and other terrestrial dynamics mod-
els historically used monthly meteorological forcing, both to reduce computational
demand and because global datasets were lacking. Recently, dynamic land surface
modeling has moved towards resolving daily and subdaily processes, and global
datasets containg daily and sub-daily meteorology have become available. These
meteorological datasets, however, cover only the instrumental era of the last ca.
120 years at best, are subject to considerable uncertainty, and represent extremely
large data files with associated computational costs of data input/output and file
transfer. For periods before the recent past or into the future, global meteorological
forcing can be provided by climate model output, but the quality of these data at
high temporal resolution is low, particularly for daily precipitation frequency and
amount. Here we present GWGEN, a globally applicable statistical weather gen-
erator for the temporal downscaling of monthly climatology to daily meteorology.
Our weather generator is parameterized using a global meteorological database and
simulates daily values of five common variables: minimum and maximum temper-
ature, precipitation, cloud cover, and wind speed. GWGEN is lightweight, modular,
and requires a minimal set of monthly mean variables as input. The weather gener-
ator may be used in a range of applications, for example, in global vegetation, crop,
soil erosion, or hydrological models. While GWGEN does not currently perform
spatially autocorrelated multi-point downscaling of daily weather, this additional
functionality could be implemented in future versions.

6.1 Introduction

The development of the first global vegetation models in the 1970’s (e.g., Lieth,
1975) brought about the demand for meteorological forcing datasets with global
extent and relatively high spatial resolution, e.g., 1◦ × 1◦. While a global weather

https://doi.org/10.5194/gmd-10-3771-2017


102 Chapter 6. GWGEN: A global weather generator for daily meteorology

station-based monthly climate dataset was available at this time (Walter and Lieth,
1967), limitations in computers and storage allowed only the simplest treatment of
these data. The first global simulations of the net primary productivity of the terres-
trial biosphere (Lieth, 1975), thus used rasterized polygons of annual meteorologi-
cal variables that had been crudely interpolated from the station-based climatology.
A decade later saw the development of better computers and more sophisticated
global vegetation models (Prentice et al., 1992; Prentice, 1989) that recognized the
need for forcing at a sub-annual timestep and development of these models was
done in parallel with the first global, gridded high resolution (0.5◦) monthly clima-
tology (Leemans and Cramer, 1991). At the time, monthly meteorological data was
the only feasible global data that could be produced, in terms of the raw station
data available to feed the interpolation process, the processing time required to pro-
duce gridded maps, and the data storage and transfer capabilities of contemporary
computer systems and networks. Global gridded monthly climate data thus became
the standard for not only large-extent vegetation modeling (Haxeltine and Prentice,
1996; Haxeltine et al., 1996; Kaplan et al., 2003; Kucharik et al., 2000; Woodward et al.,
1995), but also for a wide range of studies on biodiversity and species distribution
(e.g., Elith et al., 2006), vegetation trace gas emissions (e.g., Guenther et al., 1995),
and even the geographic distribution of human diseases (e.g., Bhatt et al., 2013)

Over subsequent years, the global gridded monthly climate datasets were im-
proved (New et al., 1999, 2002), developed with very high spatial resolution (Hij-
mans et al., 2005), and expanded beyond mean climate to cover continuous time-
series over decades (Harris et al., 2014; Mitchell and Jones, 2005; New et al., 2000).
The latter was an essential requirement for forcing dynamic global vegetation mod-
els (DGVMs) (e.g., Sitch et al., 2003). However, despite increasing quality, spatial res-
olution, and temporal extent in these datasets, the basic time step remained monthly,
partly for legacy reasons — models had been developed in an earlier era subject to
computational limitations and therefore used a monthly timestep for efficiency even
if this was no longer strictly a constraint — and partly because of the challenge in
developing a global, high-resolution climate dataset with a daily or shorter timestep
still presented a major data management challenge.

On the other hand, there was increasing awareness that accurate simulation of
many earth surface processes required representation of processes at a shorter-than-
monthly timestep. Global simulation of surface hydrology (Gerten et al., 2004), crop
growth (Bondeau et al., 2007), or biogeophysical processes (Krinner et al., 2005)
needed sub-monthly forcing to produce reliable results. To address this need for bet-
ter forcing data, two main approaches were taken: either monthly climate data were
downscaled online using a stochastic weather generator (e.g., Pfeiffer et al., 2013), or
a sub-daily, high-resolution, gridded climate timeseries was generated directly by
merging high-temporal-resolution reanalysis data (e.g., NCEP, 6h, 2.5◦) with high-
spatial-resolution monthly climate data (e.g., CRU, 0.5◦). The latter process resulted
in the CRUNCEP dataset (Viovy and Ciais, 2016; Wei et al., 2014), which, while
global, is large even by modern standards (ca. 350 Gb), is not available at spatial
resolution greater than 0.5◦, and covers only the period 1901-2014.

Forcing data for global vegetation and other models with shorter than monthly
resolution at higher spatial resolutions than 0.5◦, or for any other period than the last
ca. 120 years, e.g., for the future or the more distant past, may therefore only be avail-
able through downscaling techniques. One approach to overcome the limitations of
currently available datasets could be to use GCM output directly, however, most
GCM output currently available does not have greater than 0.5◦ spatial resolution,
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with the current generation of GCMs typically approaching ca. 1◦ × 1◦. Further-
more, there is a general observation that daily meteorology produced by GCMs is
not realistic, particularly for precipitation (Dai, 2006; Stephens et al., 2010; Sun et al.,
2006). An alternative approach is, therefore, to perform temporal downscaling on
monthly meteorological data using a statistical weather generator.

Statistical weather generators were first developed primarily for crop and hydro-
logical modeling at the field to catchment scale (Richardson, 1981; Woolhiser and
Pegram, 1979; Woolhiser and Roldan, 1982). The weather generator was parameter-
ized using daily meteorological observations at one or more weather stations close
to the area of interest, although some attempts were made to generalize the param-
eterization over larger, sub-continental regions (e.g., Wilks, 1998, 1999b; Woolhiser
and Roldán, 1986). Locally parameterized weather generators have been applied to a
very wide range of studies (Wilks and Wilby, 1999; Wilks, 2010), and enhanced to in-
clude additional meteorological variables beyond the original precipitation, temper-
ature, and solar radiation (e.g., Parlange and Katz, 2000). Applications of a weather
generator at continental to global scales was still limited, however, because of the
need to perform local parameterization.

The need to simulate daily meteorology in regions of the world with short, unre-
liable, or unavailable daily meteorological timeseries brought about the realization
that certain features of weather generator parameterization might be generalized
across a range of climates (Geng et al., 1986; Geng and Auburn, 1987). This ulti-
mately led to the development of globally applicable weather generators (Friend,
1998), and their incorporation in DGVMs (Bondeau et al., 2007; Gerten et al., 2004;
Pfeiffer et al., 2013). The original global parameterization (Geng et al., 1986) of these
weather generators was, however, limited to seven weather stations, mostly in the
temperate latitudes. Friend, 1998 does not publish the parameters used in his global
weather generator, but we assume these were the same as the original Geng and
Auburn, 1987 and Geng et al., 1986 models. Given the availability of 1) large datasets
of daily meteorology, and 2) computers powerful enough to process these data, we
therefore decided that it would be valuable to revisit these parameterizations, per-
form a systematic and quantitative evaluation of the resulting downscaled meteorol-
ogy, and potentially improve our ability to perform monthly-to-daily downscaling
of common meteorological variables with a single, globally applicable parameteri-
zation.

In the following sections we describe Global-WGEN (GWGEN, Sommer and Ka-
plan, 2017a), a weather generator parameterized using more than 50 million daily
weather observations from all continents and latitudes. We demonstrate how up-
dated schemes for simulating precipitation occurrence and amount, and for bias
correcting wind speed, further improve the quality of the model simulations. We
perform an extensive model evaluation and parameter uncertainty analysis in order
to settle on a parameter set that provides the most accurate, globally applicable re-
sults. We comment on the limitations of the model and priorities for future research.
GWGEN is an open-source, stand-alone model that may be incorporated into any
number of models designed to work at global scale, including, e.g., vegetation, hy-
drology, climatology, and animal distribution models.

6.2 Model description

GWGEN requires the following six monthly summary values as input: 1) total monthly
precipitation, 2) the number of days in the month with measurable precipitation (i.e.,
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FIGURE 6.1: Schematic workflow of GWGEN. After smoothing the monthly input,
the Markov Chain is used to decide, whether it is a dry or a wet day. If it is a wet
day, we draw a random number from the Gamma-GP distribution. Furthermore,
the other means of the variables (T̄min/max, c̄, w̄) are adjusted and their daily values
are calculated using the estimated standard deviations and residuals. The wind
speed furthermore undergoes a square root transformation before applying the
cross correlation and in the end is corrected using the bias correction. A quality
check in the end restricts our model to be within a 5% range of the observed total

precipitation and to replicate the number of wet days from the input.
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wet days), 3-4) monthly mean daily minimum and maximum temperature, 5) mean
cloud fraction, and 6) wind speed. The model outputs are the same variables at daily
resolution. This section summarizes the basic workflow in the model which is also
shown schematically in Figure 6.1 and Algorithm 2.

The first approximation of the daily variables comes from smoothing the monthly
time series using a mean-preserving algorithm (Rymes and Myers, 2001).

For precipitation we then first use the Markov Chain approach (section 6.3.2) to
decide the wet/dry state of the day. If it is a wet day, we calculate the gamma pa-
rameters using the equations (6.7) and (6.8). The resulting distribution allows us to
draw a random number, the precipitation amount of the currently simulated day. If
we are above the threshold µ, we draw a second random number from the Gener-
alized Pareto (GP) distribution parameterized via equation (6.9) and the chosen GP
shape.

The next step modifies the means of temperature, wind speed and cloud fraction
depending on the wet/dry state of the day (lines 11 and 15 in algorithm 2). After
that, we use the cross-correlation approach described in Richardson, 1981 (lines 18
- 20 and Equation 6.3.2) and calculate the daily values of these variables. Finally
we use the quantile-based bias correction described in section 6.3.4 to correct the
simulated wind speed.

We restrict the weather generator to reproduce the exact number of wet days
(±1) as the input and to be within a 5% range of the total monthly precipitation
(with a maximum allowed deviation of 0.5 mm). If the program cannot produce
these results, the procedure described above is repeated (see line 4).

6.3 Model development

GWGEN is based on the WGEN weather generator (Richardson, 1981), using the
method of defining the model parameters based on monthly summaries described
by Geng et al., 1986 and Geng and Auburn, 1987. GWGEN diverges from the orig-
inal WGEN by using a hybrid-order Markov chain to simulate precipitation occur-
rence (Wilks, 1999a), and a hybrid Gamma-GP distribution (Furrer and Katz, 2008;
Neykov et al., 2014) to estimate precipitation amount. Temperature, cloud cover,
and wind speed are calculated following (Richardson, 1981), using cross correlation
and depending on the wet/dry-state of the day. We further add a quantile-based
bias correction for wind speed and minimum temperature, which improves the sim-
ulation results significantly.

In the following subsections, we first describe the global weather station database
used to develop and evaluate the model, then describe the underlying relationships
that we use to define GWGEN’s parameters.

6.3.1 Development of a global weather station database

To parameterize GWGEN, we assembled a global dataset of daily meteorological ob-
servations. Precipitation and minimum and maximum daily temperature come from
the daily Global Historical Climatology Network (GHCN-Daily) database (Menne
et al., 2012a,b). The GHCN-Daily consists of observations collected at ca. 100’000
weather stations on all continents and many oceanic islands. As the GHCN-Daily
stations are highly concentrated in some parts of the world, particularly in the con-
terminous United States, we selected stations for our study using a geographic anti-
aliasing filter to avoid an especially strong geographic bias in the generation of the
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Algorithm 2 Basic workflow of GWGEN

Require: monthly precipitation Pin [mm], cloud cover fraction cin, minimum (
Tmin,in [◦C]) and maximum ( Tmax,in [◦C]) temperature, wind speed win [m/s],
number of wet days nin

Output: daily Pi [mm/d], ci, Ti [
◦C], wi [m/s] and the wet/dry state si ∈ {0, 1}

1: for month m in input do
2: smooth the monthly data using Rymes and Myers, 2001
3: Set j = 0, χ = 0
4: while j ≡ 0 or

∣∣∑di∈m Pi − Pin
∣∣ > min (5% · Pin, 0.5mm) or |nsim − nin| > 1 do

5: for day di in m do
6: Calculate p11, p101, p001 after equations (6.1) - (6.3) using n {Precipitation

occurence after Wilks, 1999a}
7: Use the Markov chain to determine whether di is wet (si = 1) or dry

(si = 0)
8: if si = 1 then
9: Calculate θ, α and σ via eq. (6.7)-(6.9) {Precipitation amount after

Neykov et al., 2014}
10: Draw a random number Pi from the Gamma-GP distribution, eq. (6.6)
11: Set Tmin,i = Tmin,wet, Tmax,i = Tmax,wet, ci = cwet, wi = wwet from eq.

(6.10) and (6.12) and tables 6.1, 6.3
12: Set σTmin,i = σTmin,wet, σTmax,i = σTmax,wet, σw,i = σw,wet, σc,i = σc,wet from

eq. (6.11), (6.13) and (6.14) and tables 6.1, 6.2, 6.3
13: else
14: Set Pi = 0 mm/d
15: Set Tmin,i = Tmin,dry, Tmax,i = Tmax,dry, ci = cdry, wi = wdry from eq.

(6.10) and (6.12) and tables 6.1, 6.3
16: Set σTmin,i = σTmin,dry, σTmax,i = σTmax,dry, σw,i = σw,dry, σc,i = σc,dry from eq.

(6.11), (6.13) and (6.14) and tables 6.1, 6.2, 6.3
17: end if
18: Draw 4 normally distributed random numbers ε ∈ R4 {Cross correlation

after Richardson, 1981}
19: Set the residuals χi =

(
χTmin χTmax χc χw

)
= Aχi−1 + Bε ∈ R4 with A

and B from eq. (6.17)
20: Calculate daily variables via

Tmin,i = χTmin · σTmin,i + Tmin,i ci = χc · σc,i + ci

Tmax,i = χTmax · σTmax,i + Tmax,i wi =
(
χw ·
√

σw,i +
√

wi
)2

21: Apply bias correction w (eq. (6.23))
22: j = j + 1
23: end for
24: end while
25: end for
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9508 GHCN parameterization stations, 36M days

6978 EECRA parameterization stations

921 Evaluation stations

9508 GHCN parameterization stations, 36M days
6978 EECRA parameterization stations, 33M days

921 GHCN-EECRA Evaluation stations, 15M days

FIGURE 6.2: Weather stations used for parameterization and evaluation of the
weather generator. The uppermost panel shows the locations of the stations used
for parameterizing precipitation and temperature, the middle panel shows the sta-
tions for cloud fraction and wind speed, as well as for calculating the cross correla-
tions between temperature, cloud fraction, and wind speed. The lower plot shows
the location of the stations used to evaluate the model, which were excluded from

the parameterization stations.
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model parameters. Dividing the world up into a 0.5◦ grid, we selected the single sta-
tion with the longest record in each cell, if one was present. While the GHCN-Daily
units for precipitation have a nominal precision of 0.1 mm, several of the stations in
the United States reported precipitation in fractions of an inch, which were later con-
verted to mm. To ensure uniform precision across all of our calibration stations —
this was particularly important when generating the probability density functions
for precipitation amount — we selected only those GHCN-Daily stations where all
precipitation amounts between 0.1 and 1.0 mm d−1 were reported in the record. This
resulted in 9508 stations covering all continents, although the distribution is strongly
heterogenous, with the majority of the stations in North America, despite our geo-
graphic filter (Figure 6.2, top panel). For cloud cover, windspeed, and to calculate
cross-correlations between temperature, cloud cover, and windspeed, we used the
Extended Edited Cloud Report Archive (EECRA) database (Hahn and Warren, 1999).
The geographic distribution of the 6978 EECRA stations we selected is different than
the GHCN-Daily, with more stations in Europe (Figure 6.2, middle panel), but over-
all a relatively similar number of stations were used from both datasets. For the
observations from both GHCN-Daily and EECRA, we made one additional filter-
ing step, selecting only complete months, i.e., months with no days having missing
observations, for further processing. In total, our database of daily meteorological
observations used in the model parameterization contains ca. 69 million individual
records.

Finally, we reserved some weather station records for model evaluation that were
not used for model parameterization. These were individual stations, or two stations
separated by a maximum distance of 1 km, where all of the daily meteorological vari-
ables that GWGEN simulates (P, Tmin, Tmax, c, w) were recorded on the same dates
in the EECRA database. This merged selection from EECRA and GHCN resulted in
a set of 921 stations representing ca. 15 million daily records, with observations on
all continents, although the geographic distribution is once again highly heteroge-
nous, with a particularly high density of stations in Japan and Germany (Figure 6.2,
bottom panel).

6.3.2 Parameterization

Precipitation occurrence

Following Geng et al., 1986, we expect to find a good relationship between the frac-
tion of days in a month with measurable precipitation and the probability that any
given day will be wet. Following Wilks, 1999a we use a hybrid-order model that
retains first-order Markov dependence for wet spells but allows second-order de-
pendence for dry sequences; this hybrid-order scheme has been shown to be a good
compromise between performance and simplicity. To parameterize the precipitation
occurrence part of the model, we thus calculated transition probabilities for a wet
day being followed by a wet day (p11), for a wet day being followed by a dry day
being followed by a wet day (p101) and for two dry days being followed by a wet
day (p001). We perform this analysis on a station and month-wise basis, i.e., we first
extract each of the (complete) Januaries, Februaries, etc. for a given station, and then
merge all of the Januaries (Februaries, Marches, etc...) for this station into a single
series representing each month. Merging months over several years is particularly
important for stations that have relatively little precipitation in a given month; for
example, it could take several years of observations to observe a single (p101) event.
The final transition probabilities were then regressed against the fraction of days
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FIGURE 6.3: Transition probabilities vs. wet fraction. The red density plot in the
background shows the density of the observations, and the blue lines are the linear
regression line of the probability against the wet fraction. The fit for the p11 transi-
tion probability was forced to the point (1, 1), the others were forced to (0, 0). The
underlying data for the fits correspond to the means of the the multi-year series

for each month for each station.
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FIGURE 6.4: Mean precipitation - Gamma scale relationship. The blue line repre-
sents the best fit line of the mean precipitation on wet days to the estimated gamma
scale parameter of the corresponding distribution. Each data point corresponds to

one multi-year series of one month for one station.

in the month with precipitation, which show the characteristic linear relationship
described by Geng et al., 1986 (Figure 6.3).

Because the transition probabilities (p001) and (p101) must be zero by definition
when the fraction of wet days ( fwet) is zero, i.e., a completely dry month, we force
the linear regression between these quantities to pass through the origin. Likewise,
we require the regression line for (p11) to equal 1 when fwet is 1. One has to note,
however, that this method artificially increases the R2 coefficient for the fit because
we fix the intercept (see for example Gordon, 1981).

The analysis results in the the following relationships:

p11 = 0.2549 + 0.7451 · fwet (6.1)
p101 = 0.8463 · fwet (6.2)
p001 = 0.7240 · fwet. (6.3)

In the weather generator (see line 6 in algorithm 2) we determine if any given
day will have precipitation by calculating the appropriate probability density func-
tion selected from equations (6.1)-(6.3) on the basis of the precipitation state of the
previous day (or two). Comparing the calculated probability from the selected equa-
tion with a random number u ∈ [0, 1], a precipitation day is simulated if u is greater
than its corresponding probability.

Precipitation amount

Following the original WGEN (Richardson, 1981), GWGEN disaggregates precip-
itation amount using a statistical distribution. A number of different probability
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density functions have been used to estimate precipitation amount in weather gen-
erators including, e.g., single exponential or mixed exponential, one or two param-
eter gamma, or Weibull distribution (Wilks and Wilby, 1999). The strong relation-
ship between the gamma scale parameter and the mean precipitation on wet days
noted by Geng et al., 1986 makes generation of precipitation amounts with only
monthly input data feasible. It is based upon the fact that the expected value of a
gamma random variable equals the product of its two parameters. i.e E(Γ) = αθ.
The gamma distribution, however, shows poor performance in simulating high-
precipitation events consistent with observations. Furrer and Katz, 2008 and Neykov
et al., 2014 suggest that a hybrid probability density function, based on both gamma
and the generalized pareto (GP) distribution, has superior accuracy in simulating
extreme precipitation events when compared to gamma alone. Because of its supe-
rior accuracy and ease of implementation, we therefore adopt the hybrid gamma-GP
distribution for simulating precipitation amount in GWGEN.

The probability density function (pdf) of the gamma distribution is defined as

f (x) =

{
xα−1e−

x
θ

θαΓ(α) for x > 0

0 for x = 0
(6.4)

where α > 0 is the shape, and θ > 0 the scale parameter. The pdf of the generalized
pareto (GP) distribution is defined via

g(x) =

 1
σ

(
1 + ξ (x−µ)

σ

)− 1
ξ−1

for ξ 6= 0
1
σ e−

x−µ
σ for ξ = 0

(6.5)

with σ > 0 being the scale parameter and ξ ∈ R the shape parameter. µ is the
location parameter.

Following Furrer and Katz, 2008, we define the hybrid gamma-GP pdf as

h(x) =

{
f (x) for x ≤ µ

(1− F(µ)) g(x) for x > µ
, (6.6)

where F(µ) describes the cumulative gamma distribution function at the threshold
µ. In our weather generator however, we first draw a random number from the
gamma distribution and, if we are above the threshold, we draw another random
number from the GP distribution. Thus, the frequency of precipitation events larger
than µ is determined by the gamma distribution, but the actual amount of precipi-
tation simulated when above the threshold µ is determined by the GP distribution
(Furrer and Katz, 2008).

To determine the parameters of the hybrid distribution for precipitation, we
started with the simple strategy by Geng et al., 1986. As above when calculating
the Markov chain parameters, we created multi-year series for each of the param-
eterization stations for each month and extracted the days with precipitation. If a
series contained more than 100 entries, we fit a gamma distribution using maximum
likelihood to it in order to estimated the α and θ parameters.

Following Geng et al., 1986, we then fit a regression line of the gamma scale
parameter against the mean precipitation on wet days p̄d (see figure 6.4) and found
the relationship

θ = 1.262 p̄d. (6.7)
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FIGURE 6.5: Correlation of minimum temperature on wet and dry days to the
monthly mean. The y-axes show the mean minimum temperature on wet or dry
days respectively, the blue line corresponds to the best fit line. Parameters of the

fits are also shown in table 6.1.
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FIGURE 6.6: Correlation of maximum temperature on wet and dry days to the
monthly mean. The y-axes show the mean maximum temperature on wet or dry
days respectively, the blue line corresponds to the best fit line. Parameters of the

fits are also shown in table 6.1.

As proposed by Geng et al., 1986, we use this relationship in our model to estimate
the scale parameter of the distribution. Using this approach, the gamma shape pa-
rameter α is a constant, given via

α =
p̄d

θ
=

1
1.262

. (6.8)

The GP scale parameter σ on the other hand is calculated during the simulation
following Neykov et al., 2014 via

σ =
1− F(µ)

f (µ)
. (6.9)

The other parameters of the GP distribution are obtained through a sensitivity
analysis described in section 6.3.5.

Temperature

Following the standard WGEN methodology (Richardson, 1981) and Geng et al.,
1986, daily temperature is determined through 2 processes: First, the wet/dry state
of the day, and second the cross correlation (section 6.3.2).
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FIGURE 6.7: Correlation of standard deviation of the minimum and maximum
temperature on wet and dry days to the monthly mean. The y-axes show the
standard deviation, the x-axes the mean on wet or dry days respectively. The
bars have a width of 0.1◦C (the data accuracy) and indicate the mean standard
deviation for a given mean minimum temperature in one month. The lines are
fitted to these bars, where the green and red polynomials of order 5 are the use
all the data below or above 0◦C respectively and the blue and violet lines are a
linear extrapolation of the data below −40◦C (or −30◦C for Tmax) or above 25◦C
(or 35◦C) respectively. The red density plot in the background indicates the spread
of the data. The bars and the density plot are based on the single month for each
station (i.e. not the multi-year monthly series as for, e.g. mean temperature (figure

6.5 and 6.6)). Parameters of the fits are also shown in table 6.1.
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TABLE 6.1: Fit results of temperature correlation for wet and dry days for figures
6.5, 6.6, 6.10 and 6.11. The coefficients c0 to c3 correspond to the coefficients used

in equations (6.10) and (6.14).

plot variable R2 c0 c1 c2 c3

6.6 Tmax,dry 0.9969 0.0727 1.0211 0 0
6.6 Tmax,wet 0.9752 -0.5204 0.9459 0 0
6.5 Tmin,dry 0.9972 -0.5100 1.0188 0 0
6.5 Tmin,wet 0.9840 1.0411 0.9685 0 0
6.11 wsd,dry 0.4243 0 1.0860 -0.2407 0.0222
6.11 wsd,wet 0.5003 0 0.8184 -0.1263 0.0093
6.10 wdry 0.9930 0 0.9437 0 0
6.10 wwet 0.9723 0 1.0937 0 0

In the weather generator, we know from the Markov chain (section 6.3.2), whether
the current simulated day is a wet or dry day. Based upon the simple linear relation-
ships

x̄wet = c0,x,wet + c1,x,wet · x̄
x̄dry = c0,x,dry + c1,x,dry · x̄ (6.10)

we adjust the monthly mean x̄ of the variable x ∈ {Tmin, Tmax}.
To estimate the values of the parameters c0 and c1 in the above equations, we

follow the same procedure as for the parameters of the Markov chain (section 6.3.2).
We extracted the complete months for Tmin and Tmax from the GHCN-Daily dataset
and created a multi-year series for each month and station. We then regressed the
mean on wet and dry days separated against the overall mean of each month (Fig-
ures 6.5 and 6.6). Through this procedure, we estimate the parameters necessary for
equations (6.10) (see table 6.1).

To estimate residual noise, we also need an estimate of the standard deviation of
the variable (see Equation 6.3.2). Figure 6.7 shows the correlation between standard
deviation on wet and dry days and the corresponding mean. The means of the stan-
dard deviations (black bars in figure 6.7) indicate a strong but non-linear relation-
ship between the standard deviation and the corresponding mean. The correlation
changes particularly at 0◦ C. We therefore use two different polynomials of order
5 for the values below and above the freezing point. Furthermore, to account for
the sparse data below−40◦ C and above 25◦ C for minimum temperature (or−30◦ C
and 35◦ C for maximum temperature), we use an extrapolation for the extremes as
indicated by the blue and violet lines in figure 6.7. The formulae for the standard
deviations σ of minimum and maximum temperature are therefore a combination of
4 polynomials:
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TABLE 6.2: Fit results of the correlation of temperature standard deviation with the
corresponding mean on wet/dry days for figure 6.7. The underlying equations are

shown in equation (6.11).

R2 c0 c1 c2 c3 c4 c5
variable interval

Tmax,sd,dry (-∞, -30] 0.0125 7.3746 0.0154 0 0 0 0
(-30, 0.0] 0.6721 4.6170 -0.3387 -0.0188 -0.0003 0.000003 0.0000001
(0.0, 35] 0.9744 4.7455 -0.0761 0.0189 -0.0013 0.00003 -0.0000002
(35, ∞) 0.0390 3.2554 -0.0218 0 0 0 0

Tmax,sd,wet (-∞, -30] 0.0366 6.6720 0.0364 0 0 0 0
(-30, 0.0] 0.7362 3.8601 -0.2186 0.0039 0.0015 0.00006 0.0000007
(0.0, 35] 0.9508 3.7919 -0.0313 0.0161 -0.0012 0.00003 -0.0000002
(35, ∞) 0.2530 5.5529 -0.0973 0 0 0 0

Tmin,sd,dry (-∞, -40] 0.6006 10.8990 0.1271 0 0 0 0
(-40, 0.0] 0.9509 3.5676 -0.1154 0.0282 0.0020 0.00004 0.0000003
(0.0, 25] 0.9825 3.7941 0.0330 -0.0150 0.0019 -0.0001 0.000002
(25, ∞) 0.7784 -4.6194 0.2261 0 0 0 0

Tmin,sd,wet (-∞, -40] 0.1661 9.7272 0.1011 0 0 0 0
(-40, 0.0] 0.9285 3.0550 -0.2116 0.0137 0.0014 0.00004 0.0000003
(0.0, 25] 0.9633 3.2187 -0.0451 0.0209 -0.0026 0.00010 -0.000001
(25, ∞) 0.0089 0.5571 0.0244 0 0 0 0

σTmin,wet/dry =


p1(T̄min,wet/dry), for T̄min,wet/dry ≤ −40◦ C
p5(T̄min,wet/dry), for − 40◦ C < T̄min,wet/dry ≤ 0◦ C
p5(T̄min,wet/dry), for 0◦ C < T̄min,wet/dry ≤ 25◦ C
p1(T̄min,wet/dry), for 25◦ C < T̄min,wet/dry

σTmax,wet/dry =


p1(T̄max,wet/dry), for T̄max,wet/dry ≤ −30◦ C
p5(T̄max,wet/dry), for − 30◦ C < T̄max,wet/dry ≤ 0◦ C
p5(T̄max,wet/dry), for 0◦ C < T̄max,wet/dry ≤ 35◦ C
p1(T̄max,wet/dry), for 35◦ C < T̄max,wet/dry

. (6.11)

p1 in eq. (6.11) denotes a polynomial of order 1, p5 a polynomial of order 5. The
coefficients of the different polynomials are shown in table 6.2.

These coefficients are based on the means of the standard deviation (black bars
in figure 6.7). We chose this procedure to give the same weight to all temperatures.
Otherwise the fit would be dominated by the temperature values around the freez-
ing points.

Cloud fraction

Monthly mean cloud fraction is disaggregated, as for temperature, using the stan-
dard WGEN procedure of adding statistical noise to a wet- or dry-day mean and
accounting for cross-correlation among the different weather variables. For the pa-
rameterization of the cloud fraction equations, we used the EECRA dataset. The
original dataset contains eight measurements per day of the total cloud cover in
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FIGURE 6.8: Correlation of cloud fraction on wet and dry days to the monthly
mean.The y-axes show the mean cloud fraction on wet or dry days respectively,
the blue line corresponds to the best fit line. Parameters of the fits are also shown

in table 6.3.
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FIGURE 6.9: Correlation of standard deviation of the cloud fraction on wet and
dry days to the corresponding monthly mean. The y-axes show the standard de-
viation, the x-axes the mean on wet or dry days respectively. The blue line corre-

sponds to the best fit line. Parameters of the fits are also shown in table 6.3.
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TABLE 6.3: Fit results of cloud correlation for wet and dry days for figure 6.8

plot variable a std. err. of a R2

6.8 cdry 0.4302 0.0013 0.8745
6.8 cwet -0.7376 0.0006 0.3881
6.9 csd,dry 1.0448 0.0004 0.2803
6.9 csd,wet 0.9881 0.0006 0.0802

units of octas, i.e., values ranging from 0 (clear sky) to 8 (overcast). Hence, to calcu-
late the daily cloud fraction, those values were averaged and divided by 8 to produce
a daily mean.

To adjust the monthly mean depending on the wet/dry state of the day, we could
not use a simple linear relationship as we used for temperature because cloud frac-
tion is bounded by a lower limit 0 and an upper limit of 1. Furthermore, we observed
that cloud cover on wet days is usually greater or equal to the monthly mean cloud
cover, whereas the cloud cover on dry days is usually less or equal to the monthly
mean cloud cover. This results in a concave curve for the wet case and a convex
curve for dry days. We used a qualitative graphical analysis to develop "best guess"
equations that had the desired shape and propose the following formulae for the
regression linking cloud cover on wet or dry days to the overall mean:

c̄wet =
−ac,wet − 1

a2
c,wet · c̄− a2

c,wet − ac,wet
− 1

ac,wet

c̄dry =
−ac,dry − 1

a2
c,dry · c̄− a2

c,dry − ac,dry
− 1

ac,dry
(6.12)

with ac,wet < 0 and ac,dry > 0.
The standard deviation of cloud cover fraction becomes 0 when the mean monthly

cloud fraction reaches both the minimum or maximum limits of 0 and 1. Hence, for
csd,dry and csd,wet we have an concave parabola with the formula

σc,wet = a2
c,wet · c̄wet · (1− c̄wet)

σc,dry = a2
c,dry · c̄dry · (1− c̄dry) (6.13)

with ac,wet, ac,dry ≥ 0. Results of the fits can be seen in figure 6.8, 6.9 and the
parameters in table 6.3.

Wind speed

The parameterization of the mean wind speed is based upon the same linear equa-
tion (6.10) as temperature. For the standard deviation however, we use a third-order
polynomial given that is forced through the origin, given via

σw,wet(w̄wet) = c1,w,wet w̄wet + c2,w,wet w̄2
wet + c3,w,wet w̄3

wet

σw,dry(w̄dry) = c1,w,dry w̄dry + c2,w,dry w̄2
dry + c3,w,dry w̄3

dry. (6.14)



118 Chapter 6. GWGEN: A global weather generator for daily meteorology

0 1 2 3 4 5 6 7
on all days

0

2

4

6

8

m
ea

n 
w

in
d 

sp
ee

d 
[m

/s
]

on
 w

et
 d

ay
s

mean wind speed [m/s]

wwet = 0.0000 + 1.0937 w

0 1 2 3 4 5 6 7
on all days

0

1

2

3

4

5

6

7

on
 d

ry
 d

ay
s

wdry = 0.0000 + 0.9437 w

FIGURE 6.10: Correlation of wind speed on wet and dry days to the monthly
mean.The y-axes show the mean cloud fraction on wet or dry days respectively,
the blue line corresponds to the best fit line. Parameters of the fits are also shown

in table 6.1.
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sponds to the best fit line, a third order polynomial to the underlying red density
plot. The black bars have a width of 0.1 m s−1, the accuracy of the input data, and
indicate the mean standard deviations for the given interval range. Parameters of

the fits are also shown in table 6.1.
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This better resolves the complex behavior close to 0 m s−1 compared to a linear
fit. The plots are shown in the figures 6.10 and 6.11 and the parameters for the fits
are shown in table 6.1.

Cross correlation

Following Richardson, 1981 we use cross correlation to add additional residual noise
to the simulated meteorological variables, which provides more realism in the daily
weather result. This method, based on Matalas, 1967 preserves the serial and the
cross correlation between the simulated variables. It implies that the serial correla-
tion of each variable may be described by a first-order linear autoregressive model

Given the cross correlation matrix M0 ∈ R4×R4 and the lag-1 correlation matrix
M1 ∈ R4 ×R4, we calculate

A = M1M−1
0 BBT = M0 −M1M−1

0 MT
1 . (6.15)

The matrices A, B, M0 and M1 are calculated using the stations from the EECRA
database in figure 6.2. The results are

M0 =


1. 0.565 0.041 0.035

0.565 1. −0.089 −0.043
0.041 −0.089 1. 0.114
0.035 −0.043 0.114 1.



M1 =


0.933 0.55 0.016 0.03
0.557 0.417 −0.066 −0.043
0.004 −0.095 0.599 0.093
0.011 −0.063 0.061 0.672

 . (6.16)

leading to

A =


0.916 0.031 −0.018 0.001
0.485 0.135 −0.069 −0.047
0.004 −0.043 0.592 0.023
0.012 −0.043 −0.02 0.672

 B =


0.358 0. 0. 0.
0.112 0.809 0. 0.
0.142 −0.06 0.785 0.
0.077 −0.016 0.061 0.733

 .

(6.17)
The columns and rows in the two matrices correspond to min. and max. temper-

ature, cloud fraction and square root of wind speed, respectively.
In the weather generator, the variables Tmin, Tmax, c and w are then calculated us-

ing a combination of residual noise χi (where i denotes the current simulated day)
and the mean of the variables. χi is determined by the other variables and the pre-
vious day using A and B from above (Matalas, 1967; Richardson, 1981). Hence, χi is
given via

χi =
(
χTmin χTmax χc χw

)
= Aχi−1 + Bε ∈ R4. (6.18)

The daily values for the variables are then calculated via

Tmin,i = χTmin · σTmin,wet/dry + T̄min,wet/dry ci = χc · σc,wet/dry + c̄wet/dry (6.19)

Tmax,i = χTmax · σTmax,wet/dry + T̄max,wet/dry wi =
(

χw ·
√

σw,wet/dry +
√

w̄wet/dry

)2

(6.20)
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with σTmin,wet/dry, σTmax,wet/dry from eq. (6.11), σc,wet/dry from eq. (6.13), σw,wet/dry
from eq. (6.14), T̄min,wet/dry, T̄max,wet/dry, w̄wet/dry from eq. (6.10) and c̄wet/dry from
eq. (6.12).

Since this procedure always requires the residuals from the previous day, χi−1,
we initialize χ0 with 0, simulate the month and then simulate it again.

Note that, through the entire procedure, wind speed is subject to a square-root
transformation (also when calculating M0 and M1) to account for the fact that it is
not normally distributed.

6.3.3 Model Evaluation

To evaluate GWGEN, we started with the daily meteorology at the evaluation sta-
tions described above and calculated monthly summaries. We used this monthly
data to drive the model and simulate daily meteorology. The resulting daily series
now has the same length as the observed meteorology from the GHCN and EECRA
database. Because we cannot expect the weather generator to reproduce the weather
exactly as observed, for example the number of rainy days in a month may be the
same as observed but they may not occur in precisely the same order, our evaluation
is restricted to comparing the statistical properties of the input observed versus the
output simulated daily meteorology.

Figure 6.12 shows the comparison of simulated versus observed values for each
of the five meteorological variables handled by GWGEN. For temperature, wind,
and cloud fraction, the model does an excellent job of downscaling monthly input to
daily resolution1. The comparison between precipitation amounts looks good when
considering all of the data, however a closer look into the results (Fig. 6.13) shows
that while the higher precipitation percentiles are well captured using the hybrid
Gamma-GP distribution, the lower percentiles show somewhat worse results. This
observation of poor performance for very low values also holds true for wind speed
(not shown here). The lower values of the two variables, however, are very close
to the precision of the observation (0.1 mm for precipitation and 0.1 m s−1 for wind
speed). Very small precipitation amounts and low wind speeds are also less biophys-
ically and ecologically important compared to the higher percentiles. We therefore
consider the results of the evaluation largely acceptable.

In table 6.4 we also compare the simulated versus the observed frequencies. For
very light rain (<=1mm), light rain (1-10mm), heavy rain (10-20mm) and very heavy
rain (>20mm). As we can see, our model underestimates the occurrence of very light
rain events (28.6% instead of 36.4%) and overestimates the light rain events (58.3%
instead of 48.6%) but generally performs much better than GCMs (Dai, 2006; Sun
et al., 2006), especially when it comes to the heavy rain events.

6.3.4 Bias correction

After evaluating the results of GWGEN for wind speed for the different quantiles
(see previous subsection 6.3.3) we found a strong, systematic bias between the sim-
ulated and the observed values. This observation led us to adopt a further measure
to improve the quality of the model output by implementing a quantile-based bias
correction.

We use an empirical distribution correction approach (quantile-mapping) (Lafon
et al., 2012) to a posteriori correct the simulated data. In the quantile evaluation (pre-
vious subsection 6.3.3) we saw that the simulated wind speed is a linear function of

1Note that the plot for wind speed has been bias corrected using the approach in subsection 6.3.4.
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FIGURE 6.12: QQ-plots for all variables with all quantiles (1, 5, 10, 25, 50, 75, 90,
95 and 99) for µ = 5.0 mm mm, ξ = 1.5. The blue lines are linear regression from
simulation to observation. The red line shows the ideal fit (the identity line). Blue
shaded areas represent the 95% confidence interval. The plots compares the sim-
ulated quantile from the list above of one year of one station to the corresponding
observed quantile of the same year and station. The plot for wind speed under-

went used the bias correction from subsection 6.3.4.

TABLE 6.4: Simulated and observed precipitation frequencies for certain ranges.
The frequency is defined as the number of precipitation occurences in the specified

range, divided by the total number of precipitation occurences.

Simulated Observed
Precip. range [mm]

(0, 1] 0.285688 0.364014
(1, 10] 0.583330 0.486415
(10, 20] 0.074063 0.090178
(20, ∞] 0.056920 0.059392
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the observed wind speed, i.e. wsim = intercept + slope · wobs (best fit line in figure
6.12). Therefore, we use two steps here, one is for the difference between simulation
and observation (ideally 0), the other one is the fraction of observation and simula-
tion (ideally 1). The first one corresponds to the intercept with the y-axis in figure
6.12, the second one to the slope of the best fit line. The analysis is based on every
second percentile between 1 and 100 (i.e. 1, 3, 5, . . .) and mapped to its corresponding
random number u ∈ R from a normal distribution as it is used for the cross corre-
lation in the weather generator (section 6.3.2, x-axis in figure 6.14 and Richardson,
1981).

Regarding the intercept (fig. 6.14, left) we see that it strongly follows an expo-
nential function given through

fexp(u) = ea u+b, a, b, u ∈ R. (6.21)

The slope (fig. 6.14, right) on the other hand can be described by a simple third-order
polynomial given by

p3(u) = c0 + c1 u + c2 u2 + c3 u3, c0, c1, c2, c3, u ∈ R (6.22)

Hence, given the best fit lines in figure 6.14, the simulated wind speed is corrected
via

w′sim =
wsim − fexp(u)

p3(u)
(6.23)

with a = 1.1582, b = −1.3359, c0 = 0.9954, c1 = 0.8508, c2 = 0.0278, c3 = −0.0671.

6.3.5 Sensitivity analysis

The Generalized-Pareto part of the hybrid Gamma-GP distribution, which we used
to simulate precipitation amount, has two parameters: the GP shape, and the thresh-
old parameter. Unlike the gamma parameters, we were unable to relate these GP pa-
rameters to any of the monthly summary data we use as input to GWGEN. Hence,
we decided to set fixed values for these parameters, and determine them through a
sensitivity analysis.

To select the "best" values of the GP parameters, we compared simulated with
observed precipitation amounts, running GWGEN with a wide range of realistic pa-
rameter values. To quantitatively assess the model performance, we used two met-
rics: 1) direct comparison of the quantiles (see previous section), and 2) a Kolmogo-
rov-Smirnov (KS) test that evaluates whether two data samples come from signifi-
cantly different distributions. Our criteria were

1. The R2 correlation coefficient between simulated and observed quantiles

2. The fraction simulated precipitation
observed precipitation from the slopes in figure 6.13 and its deviation

from unity

3. the fraction of simulated (station specific) years that are significantly different
(KS test) from the observation

4. The mean of the above values

We tried two different approaches to select the gamma-GP crossover threshold:
first we tried a fixed crossover point, second we used a quantile-based crossover
point. For the latter, the model chooses to use the GP distribution if the quantile of
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the random number drawn from the gamma distribution is above a certain quan-
tile threshold. This introduces a flexible crossover point in our hybrid distribution
which, however, did not improve the results significantly. We therefore show here
only the results using the fixed crossover point.

The values of the crossover point for our sensitivity analysis were 2, 2.5, 3, 4 and
from 5 to 20 in steps of 2.5 and 20 to 100 in steps of 5. Furthermore we varied the GP
shape parameter from 0.1 to 3 in steps of 0.1 (810 experiments in total). The results
of this sensitivity analysis are shown in the supplementary material, figure 6.15.

In general we found that the three criteria 1, 2 and 3 could not be optimized all
together at the same time. The R2 is best for high thresholds and low GP shape
parameters, the slope is best for low to intermediate thresholds and a low GP shape
and the KS statistic is best for low threshold and intermediate GP shape parameters.

However, R2 did not vary that much (from 0.68 to 0.74) and from a visual evalua-
tion of the corresponding quantile plots we saw that the higher quantiles (>90) were
much better represented for a better KS result. Hence, we chose to follow the KS test
criteria, which is also the strictest of our evaluation methods but again compared the
different quantile plots to get good results for the higher quantiles. Finally, we chose
a threshold of 5 mm and a GP shape parameter of 1.5. For this setting, 81.7% of the
simulated years do not show a significant difference compared to the observation,
the mean R2 of the plots in figure 6.13 is 0.81 and the mean deviation of the slope
from unity is 0.10 and for the upper quantiles (90 to 100), 0.017.

Nevertheless, in total the results seem to be fairly independent of the two pa-
rameters since even the amount of years without significant differences vary from
73% to only 83%. It is however better than the gamma distribution alone which still
has 78.6% of station years not differing significantly but with a slope deviation from
unity for the upper quantiles of 0.16. Thus using the hybrid Gamma-GP distribution
improves the simulation of high-amount precipitation events by roughly factor 10
compared to a standard Gamma approach.

6.4 Limitations

As demonstrated above, GWGEN successfully downscales monthly to daily meteo-
rology with good correlation and low bias when compared to observations. How-
ever, there are a few limitations of the model as currently described that should
be noted. Importantly, this version of GWGEN neither downscales all conceivable
meteorological variables, nor does it provide a mechanism for generating daily me-
teorological timeseries across multiple points that are spatially autocorrelated. Con-
cerning the former point, while GWGEN simulates daily precipitation, temperature,
cloud cover, and windspeed, it does not currently handle other variables that might
be important in land surface modeling, such as humidity or wind direction. On the
latter point, the lack of explicit simulation of spatial autocorrelation may make GW-
GEN unsuitable for certain applications, e.g., regional high-resolution hydrological
modeling in small catchments (< ca. 2500 km2), where having the capability to sim-
ulate flood and other extremes is important. This is because the the weather genera-
tor could, e.g., simulate rainfall on different days in different parts of the catchment,
where in reality storm events would be highly autocorrelated in space and controlled
by mesoscale meteorological conditions.
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6.5 Discussion and Outlook

GWGEN successfully downscales monthly to daily meteorology, for any point on
the globe, in any climate, in any season, and in any time in recent earth history
and into the near future (e.g., next century). It extends the original Richardson-type
weather generators to simulate wind speed along with precipitation, temperature,
and cloud cover. The model requires only monthly values of the meteorological
variables to be downscaled, and does not rely on any other spatial information, e.g.,
whether or not the location is in the tropics.

In general, the results of our downscaled meteorology are excellent, with all sim-
ulated variables showing both very high correlation and limited bias when com-
pared to observations. We improved the simulation of daily precipitation amount
by replacing the Gamma distribution used in the original Richardson-type weather
generators with a hybrid Gamma-GP distribution, which results in the improved
simulation of heavy precipitation events. The GP distribution is based upon a glob-
ally fixed shape and location parameter, which may be an oversimplification, but is
still ten times more accurate than traditional methods that used Gamma alone. Our
extensive sensitivity analysis to determine the best coefficients for the shape and lo-
cation parameters of the GP distribution suggest that further improvements might
come through correlating the GP parameters to geographic region and/or season-
ality (Maraun et al., 2009; Rust et al., 2009) or by introducing a dynamical location
parameter (Frigessi et al., 2002). Finally, we introduced a step to correct for system-
atic bias in the downscaling of temperature and wind speed.

Despite the limitations noted above, GWGEN will be useful in a wide range of
applications, from global vegetation and crop modeling, to large-scale hydrologic
analyses, to understanding animal behavior, to forecasting of fire, insect outbreaks,
and other ecosystem disturbances. GWGEN may even be envisaged as a poten-
tial replacement for very large and cumbersome gridded datasets of high-temporal
resolution meteorology such as CRUNCEP (Viovy and Ciais, 2016), especially for
models that use meteorological forcing at a daily timestep. The weather generator
is particularly suited for the incorporation into models that run on a spatial grid, for
example, GWGEN can readily be incorporated into existing DGVMs such as LPJ-
LMfire (Pfeiffer et al., 2013) or LPJ-ML (Bondeau et al., 2007) that already rely on a
weather generator to provide daily meteorology for certain processes.

While GWGEN does not handle spatial autocorrelation, in most DGVMs there
is no lateral connection between gridcells, and therefore an explicit representation
of spatial autocorrelation in the driving daily meteorological data would have no
effect on the model output. We further note that if the monthly data used to drive
the model are spatially autocorrelated –– this would be the case when using gridded
climatology for example –– then the result of the weather generator will also pre-
serve this autocorrelation, at least when the model results are analyzed on monthly
or longer timescales.

The limitations present in this version of GWGEN could be addressed in future
versions. Methods for simultaneous multisite weather generation exist (Wilks, 1998,
1999b,c) and could be adapted to GWGEN. However, even simpler methods to ap-
proximate spatial autocorrelation could be possible. Running GWGEN with gridded
monthly meteorology — this is the primary application we foresee for the current
version of the model — means that the input variables are already highly corre-
lated in space, i.e., the monthly climate in one gridcell generally closely resembles
neighboring cells, outside of complex terrain containing sharp, monotonic climate
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gradients, e.g., rain shadows. Thus, one simple way of achieving a measure of spa-
tial autocorrelation in GWGEN would be to impose a spatial autocorrelation field
on the sequence of random numbers used to impose stochastic noise in the down-
scaling functions. If the random number sequence is similar between gridcells, then,
e.g., rain is likely to fall on the same day, given that the transition probabilities will
likely also be similar. Over moderate distances, e.g., <50’s of km, it might even
be sufficient to use the same random seed across all gridcells in a neighborhood.
This would have the effect of producing strongly autocorrelated daily meteorology
in space, with the only variations being imposed by the underlying input monthly
climatology.

Furthermore, it would be straightforward to include additional meteorological
variables in the model framework, handling, e.g., humidity in the same way that
temperatures, cloud cover, and wind speed are disaggregated. Other variables, such
as pressure and wind direction, might be more difficult using the basic GWGEN
structure because of the importance of autocorrelation, particularly at high spatial
resolution, and might benefit from a different approach towards weather genera-
tion. Finally, GWGEN only downscales meteorology from monthly to daily val-
ues; for models that require an even shorter timestep, e.g., 6-hourly, some extension
of the model functionality would be required. For certain variables, e.g., tempera-
tures, sub-daily downscaling could be easily implemented (Cesaraccio et al., 2001),
for other variables, such as precipitation, a large literature on downscaling methods
exists (e.g. Bennett et al., 2016), and global datasets of hourly meteorology for model
calibration are available (e.g., the Integrated Surface Database, Smith et al., 2011).

6.6 Conclusions

Compiling a global database of daily precipitation, temperature, cloud cover, and
wind speed measurements, we explored the relationship between daily meteorol-
ogy and monthly summaries first described in the context of weather downscaling
by Geng and Auburn, 1987. Our analysis of more than 50 million individual records
showed that daily-to-monthly relationships are relatively stable in space and time,
and constant across a very wide range of stations from all latitudes and climate
zones. With the resulting relationships, we parameterized a WGEN/SIMMETEO-
type weather generator, with the intention of creating a generic scheme that could
be applied anywhere over the earth’s land surface for the past, present, and (near)
future.

6.7 Code availability

GWGEN, is open source software, and the code, utility programs for parameteri-
zation, evaluation and manipulating the raw weather station data, and complete
documentation are available at (Sommer and Kaplan, 2017b). The original weather
station database can be made available upon request to the authors or downloaded
from Hahn and Warren, 1999 and Menne et al., 2012b. The weather generator mod-
ule is programmed in FORTRAN, the parameterization, evaluation and other sup-
plementary tools are written in Python mainly using the numerical python libraries
numpy and scipy (Jones et al., 2001), statsmodels (Seabold and Perktold, 2010), as
well as matplotlib (Hunter, 2007) and psyplot (Sommer, 2017) for the visualiza-
tion. Detailed installation instructions can be found in the user manual: https:
//arve-research.github.io/gwgen/.

https://arve-research.github.io/gwgen/
https://arve-research.github.io/gwgen/
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6.A Supplementary material

6.A.1 Sensitivity analysis

a b

c d

FIGURE 6.15: Results of the sensitivity analysis for the (a) correlation coefficient
R2, (b) deviation from a slope of unity, (c) the fraction of significant different sta-
tion years, (d) the mean of (a) - (c). For the plots in (a) and (b) we used the means
of the 25th, 50th, 75th, 90th, 95th and 99th percentiles. In general, 1 (dark green)
is best, 0 (white) is worst. The dark red fields indicate experiments that failed
because of a too low threshold and too high GP shape parameter. Note the loga-

rithmic scale on the y-axis.
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Chapter 7

Conclusions

Paleoclimatological large-scale reconstructions allow an independent evaluation of
global climate models skill to simulate climates outside the range of modern climate
variability. In the previous chapters of this thesis I described several new open-
source tools that can be used to leverage the single site-based proxy-climate recon-
struction onto continental, or even global scale, by using a combination of thousands
of different records.

For the Eurasian Modern Pollen Database (EMPD) (Davis et al., in prep) I devel-
oped a web-framework to communicate and manage the community-driven database
in a transparent and sustainable way (chapter 2). The framework consists of an inter-
active web-based interface into the data and an automated administration webapp.
The entire framework is based on the free webservices provided by the version con-
trol platform Github and as such allow to trace back every change to the database
and provides a variety of tools to manage new contributions and/or changes to the
database. This methodology assures stable and intuitive access to the database, in-
dependent of the available funding, and contributors or maintainers. One can think
of many further potential applications for this framework that can be applied to any
regional pollen (or in general, proxy) database. The EMPD is only one example,
other potential use cases are the Latin American Pollen Database (LAPD) (Flantua
et al., 2015), or the African Pollen Database (APD) (Vincens et al., 2007). The method
can also be applied to communicate a study-specific collection of proxy sites and
use already implemented analysis and visualization tools for the data, or add new
methods specific to the scope of the study. The future plans with this project there-
fore include a further generalization of the methods, particularly the visualization
methods of the EMPD- and POLNET-viewer (section 2.3), to make it widely appli-
cable. The integration with Github allows an easy way to share the source, and to
host the interactive interface on the same platform without any costs.

The next tool I presented is the stratigraphic digitization software straditize in
chapter 3 (Sommer et al., 2019). This package transforms stratigraphic diagrams,
i.e. diagrams where the analysis of samples are plotted against a common y-axis,
usually representing age or depth. The potential applications for this software are
numerous because of the existence of hundreds of pollen datasets (and more) that
are only available as pollen diagrams in the publications. This software provides
the unique possibility to make this data from the pre-digital era accessible in a rea-
sonable amount of time. Further extensions to this package will involve the support
of new diagram types (e.g. multiple lines in a single diagram column). A strong
focus will lie on the documentation of the software in order to make it easier and
accessible. This will involve video tutorials, more tutorials for the various diagrams
directly embedded into the software, and there are still some parts of the software
that are not yet sufficiently document.
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In chapter 4, I further described the interactive visualization framework psyplot
(Sommer, 2017), a cross-platform open source python project that combines plotting
and data management into a single framework that can be used conveniently via
command-line and a graphical user interface (GUI). The software differs from most
of the visual analytic software such that it focuses on extensibility and flexibility and
can therefore be used in a variety of research questions. It particularly provides the
basis for the straditize software (chapter 3) and for multiple of the analysis in the
chapters 5 and 6. psyplot currently provide visualization methods that range from
simple line plots, to density plots, regression analysis and geo-referenced visualiza-
tion in two dimensions. In the future, this will be enhanced with 3D visualization
methods to provide the first visualization tool in climate research that can be used
conveniently from the command line (Sommer, 2019).

In the second part of my thesis I described two new computational models that
leverage site-based information into models for large-scale prediction of paleo en-
vironments. The first one is the pyleogrid package, a new method for a spatio-
temporal gridded climate estimate from a database of proxy-climate reconstruction.
It is a probabilistic extension of the method by Mauri et al., 2015 and Davis et al.,
2003 that provides reliable uncertainties by incorporating the intrinsic dating and
proxy-climate reconstruction uncertainties of the individual sites, in order to gen-
erate a product that can conveniently be used for data-model intercomparison. In
addition, this framework contains two novel methods, (1) a model to predict dating
uncertainties based on the age of the pollen sample and the time-difference to the
closest chronological control point, and (2) a new probabilistic version of the mod-
ern analogue technique (MAT), based on constrained Gibbs sampling algorithms for
the age of the samples and the climate reconstructions. The ensemble method is very
scalable, both in terms of the size of the spatio-temporal domain, and the computa-
tional resources that are used for the prediction. This method will be used in the near
future to generate a climate reconstruction for the entire northern hemisphere that is
based on the POLNET database as described in Davis and Kaplan, 2017. Further de-
velopments will also concentrate on a revision of the age uncertainty estimate using
the recent database by Wang et al., 2019 which contains standardized chronologies
for more than 500 datasets.

Finally, the second model in chapter 6 describes the new global weather genera-
ture GWGEN (Sommer and Kaplan, 2017), a statistical model for a temporal down-
scaling of monthly to daily climatology. This model can be applied on the entire
globe whilst being parameterized based on a large dataset of weather stations with
more than 50 million records. The aim is to provide a tool that can be implemented
in a global vegetational model for paleo environments. These models require daily
meteorology as input which poses a considerable challenge considering the long
simulation period they have.

I additionally developed another model in collaboration, that is not related to
paleo and therefore not included in the main part of this thesis. This model, the In-
tegrated Urban Complexity Model (IUCM) (Cremades and Sommer, 2019), presents
a new method that simulates the transformation of urban areas while focusing on a
low energy consumption from urban mobility. I mention this model here because it
also incorporates the infrastructural methodologies that I developed for psyplot and
GWGEN. This additional use-case highlights one of the important aspects of open-
source software development, that is a flexible, extensible and sustainable modular
framework, where the packages related to a specific product can be used in multiple
other products. Other examples for it are the docrep and sphinx-nbexamples packages
(Sommer, 2018a,b) that I primarily developed for psyplot but are used in a variety
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of recently developed packages now (e.g. Abernathey et al., 2017; Banihirwe et al.,
2019; Uchida, 2018).
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