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ON METAPOPULATION RESISTANCE TO DRIFT AND EXTINCTION

LAURENT LEHMANN
1

AND NICOLAS PERRIN
2

Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland

Abstract. The spatial configuration of metapopulations (numbers, sizes, and localization
of patches) affects their ability to resist demographic extinction and genetic drift, but
sometimes with opposite effects. Small and isolated patches, for instance, contribute
marginally to demography but may play a large role in genetics by maintaining a sizeable
amount of genetic variance among demes. In source–sink systems, similarly, connectivity may
be beneficial in terms of effective size, but detrimental in terms of survival, by lowering the
reproductive value of source populations. How to reconcile these opposite effects? Here we
propose an analytical framework that integrates fixation time (ability to resist genetic drift)
and extinction time (ability to resist demographic extinction) into a single index of resistance,
measuring the ability of a metapopulation to maintain its demo-genetic integrity. We then
illustrate with numerical examples how conflicting demands may be resolved.
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INTRODUCTION

Many natural populations are discontinuous, consist-

ing of series of local demes connected by a level of

dispersal that depends on geographic distance and

habitat conditions between them. This spatial structure

has strong consequences for the demography, genetics,

and evolution of populations, and important efforts

have been recently devoted to understand the function-

ing of such structured systems, known as metapopula-

tions (Hanski and Gaggiotti 2004).

These recent advances are most welcome, since human

impact on landscapes is presently driving habitat

fragmentation at an unprecedented scale. Many pop-

ulations once large and continuous are now reduced to

sets of discrete and poorly connected demes, undergoing

high local extinction risks. Fragmentation thus raises a

series of important issues for conservation biology.

Relevant short-term issues deal with the delineation of

the conditions for population survival in a fragmented

landscape, and of the sensitivity of such conditions to

characteristic features of both the landscape (habitat

quality, connectivity, etc) and the species under study

(mating system, fecundity, dispersal patterns, etc.).

Longer-term issues (evolutionary consequences of frag-

mentation) are obviously also of importance, including

the questions of local adaptation, evolution of dispersal

rate, or loss of adaptive potential. It is thus crucial that

the problem of fragmentation be considered in terms of

both demography and genetics. Fragmentation affects

both aspects, and in return both interact to affect

population viability prospects. Small and isolated

populations suffer from higher genetic drift, accumulate

deleterious mutations and loose their potential for

adaptation. These genetic effects combine with demo-

graphic stochasticity to drive populations into an

extinction vortex (Gilpin and Soulé 1986).

The viability prospects of a metapopulation depend in

part on landscape features, including mainly the size and

quality of patches, as well as their localization, which

determines connectivity. Thus, some landscape config-

urations are obviously better than others. Within a given

landscape, similarly, some habitat fragments (patches)

are better than others, in the sense that, owing to their

size and localization, they contribute more to the

survival prospects of the species or to the maintenance

of genetic diversity (Gaggiotti and Hanski 2004). A first

difficulty in this context is that of properly defining and

measuring the quality of a habitat or the value of a

patch. A second difficulty stems from the fact that the

‘‘value’’ measured is bound to depend on the currency

used (i.e., on the conceptual framework applied). The

optimal landscape structure, or the value of a given

patch, may differ depending on whether one is interested

in minimizing the effects of demographic or environ-

mental stochasticity, of inbreeding load, or of genetic

drift, to mention only a few possible objectives. Small

and isolated patches may have low value in terms of

metapopulation dynamics, because extinction risk is

high and colonization probability is low. But they might

prove important from a genetic point of view, by

maintaining a sizeable amount of genetic variance

among demes, or by playing a significant role in the

evolutionary fate of species (see, e.g., Wright’s shifting-

balance theory). It is thus important to adopt as far as
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possible a synthetic approach, and try to properly

weight the different threats and prospects.

In the present paper, we propose a metric for
evaluating metapopulation quality that combines its

ability to resist both demographic extinction (measured

by expected time to extinction) and genetic drift
(measured by expected time to fixation), and we develop

analytical tools aimed at evaluating how biological traits

(fecundity, dispersal rate, etc.) and environmental
parameters (patch size and localization, environmental

stochasticity) affects this measure of metapopulation

resistance. Our approach should provide operational
ways to answer questions of practical importance in

conservation biology, in particular concerning the

optimal structure of a landscape for threatened pop-
ulations.

OUTLINE OF THE MODEL

Symbols and notation used throughout the paper are

collected in Appendix B.

Characteristic time to extinction

Any finite population is bound to become eventually

extinct as a result of random fluctuations in fecundities
or mortalities, sudden catastrophes, outbreaks of

diseases, competitors, or predators, or any other

stochastic changes in the environment. Assuming a
population entails an expected extinction risk e per unit

time, the probability of not being extinct at time t is

given by the following recurrence equation:

ptþ1 ¼ ð1� eÞpt: ð1Þ

The population’s capacity to resist extinction can be
measured by its time to extinction Tex (MacArthur and

Wilson 1967, Richter-Dyn and Goel 1972, Gabriel and

Burger 1992, Lande 1993), obtained as the inverse of the
extinction probability per generation:

1

Tex

¼ pt � ptþ1

pt
¼ e: ð2Þ

If the population fluctuates among several states that

differ in extinction rate, then extinction time can be
calculated from the matrix P describing the transition

probabilities between the demographic states of the

population (e.g., MacArthur and Wilson 1967, Gabriel
and Bürger 1992; Appendix C):

ptþ1 ¼ Ppt ð3Þ

where pt is a vector collecting the probabilities of being

in the different states at time t. Conditional to non-
extinction, this vector converges toward the so-called

quasi-stationary distribution (Grimm and Wissel 2004),
provided by the right eigenvector associated to the

leading non-unit eigenvalue of P. This eigenvalue (kPo
)

measures the asymptotic probability of not becoming
extinct on the next time step, once the population has

reached the quasi-stationary distribution. From this

eigenvalue, the characteristic time to extinction, meas-
uring the life expectancy of a population drawn from the

quasi-stationary distribution, is calculated as follows

(Halley and Iwasa 1998, Ovaskainen and Hanski 2004

[Box 4.2]):
1

Tex

¼ 1� kPo
: ð4Þ

If kPo
¼ 1, the population survives indefinitely (the

characteristic time to extinction is infinite). The lower

kPo
, the faster extinction occurs.

This approach is readily extendable to metapopula-

tions by canonical analysis of the matrix describing the

transition probabilities between the possible states of the

metapopulation. However, because such analysis is

complex, metapopulation dynamics has often been

studied under deterministic settings, following the

influential inroads of Levins (1969) (e.g., Lande 1987,

Hanski and Ovaskainen 2000, 2003). In such settings,

metapopulations can avoid deterministic extinction and

survive indefinitely, provided connectivity exceeds a

threshold set by local extinction rates and landscape

features. Analysis in realistic spatial settings (Hanski and

Ovaskainen 2000, 2003, Ovaskainen and Hanski 2001,

2004) shows that the size and localization of local patches

affect their individual contribution to metapopulation

survival. Under source-sink dynamics, however, con-

nectivity might become less advantageous, since sinks

behave as ecological traps (Gundersen et al. 2001).

Effective size and characteristic time to fixation

In absence of mutation, any finite population

ultimately becomes genetically homogeneous as a result

of genetic drift (i.e., random sampling in the contribu-

tion of individuals to the gene pool). Assuming a deme

of constant size N and ideal settings (including non-

overlapping generations and Poisson distribution of

fecundities), two genes stem from the same parental gene

with probability 1/N (1/2N for diploid monoecious

organisms). Thus, the expected variance (measured at

any generation t as the probability ht that two randomly

sampled alleles differ) disappears at a geometric rate:

htþ1 ¼ 1� 1

N

� �
ht: ð5Þ

If settings differ from ideal (e.g., dioecious individu-

als, population subdivision, age classes), then Eq. 5

allows defining the effective size (Ne) of the population,

obtained as the inverse of the proportion of variance lost

per generation:

1

Ne
¼ ht � htþ1

ht
: ð6Þ

Since the right-hand side of Eq. 6 represents a rate,

effective size actually measures a time, which can be

thought of either as a coalescence time (expected number

of passed generations before the two gene lineages

coalesce in a common ancestor) or a fixation time.

Indeed, as developed in Appendix C, the rate of

maintenance of genetic diversity in an ideal population

(1 � 1/N in Eq. 5) is in fact equivalent to the leading
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non-unit eigenvalue (kG) of the matrix describing the

transitions between all the genetic states of the

population (i.e., sets of allele frequencies). Effective size

can therefore be interpreted as a characteristic time to

fixation, i.e., the expected number of generations until

genetic variance is entirely lost, given that the initial

state of the population (in terms of allele frequencies) is

drawn from its quasi-stationary distribution.

Importantly, the eigenvalue kG can be directly

evaluated from the dynamics of pairs of genes, because

asymptotic changes of the genetic states of the pop-

ulation are equivalently given by asymptotic changes of

probabilities of identity between pairs of genes (Ewens

1979, Whitlock and Barton 1997, Rousset 2004). Let the

matrix G describe the per generation changes in the

probabilities that pairs of genes differ:

htþ1 ¼ Ght ð7Þ

where ht is a vector collecting the probabilities that two

genes sampled in various locations (e.g., different

patches or age classes) differ at time t. The leading

eigenvalue of G allows calculating the eigenvalue

effective size (Hill 1972, Ewens 1979, Rousset 2004):

1

Ne

¼ 1� kG ð8Þ

which establishes the asymptotic rate of convergence to

fixation. If kG ¼ 1, variance is kept indefinitely (the

characteristic time to fixation is infinite). The lower kG,
the more rapidly variance is lost. Note that effective size

is defined conditional to non-extinction (the focal

population displays effective size Ne as long as the

patch is occupied).

Population structure has the potential to impact

effective size. Under finite-island model assumptions

(nd demes of equal and constant size and productivity,

connected by homogeneous dispersal), population

structure is expected to boost effective size by maintain-

ing a substantial amount of variance among demes, out

of reach of drift (Wright 1931). At the limit (no

dispersal, no local extinction), effective size tends to

infinity.

However, island-model assumptions are often unten-

able. Real demes fluctuate, owing to demographic and

environmental stochasticity, they differ in size, produc-

tivity, and localization, which affects their extinction

and recolonization rates. Several extensions of Wright’s

pioneering work have been proposed to account for the

disequilibrium dynamics of metapopulations (e.g.,

Whitlock and Barton 1997, Nunney 1999, Pannel and

Charlesworth 1999, Iizuka 2001, Rousset 2003; see

review in Wang and Caballero 1999). Whitlock and

Barton (1997) in particular provided an extensive

analysis of the effects of population structure on Ewens’

eigenvalue effective size. Their approach allows disen-

tangling the effects due to within-deme variance in

individual reproductive success, from those due to

among-demes variance in contribution to migrant pool

and metapopulation dynamics. It turns out that

population structure decreases Ne as soon as the

among-demes variance in reproductive output exceeds

the value expected from a Poisson distribution with

parameter constant among demes. Thus, when patches

are allowed to vary in productivity and contribution to

the migrant pool (source–sink dynamics or extinction–

recolonization events), population structure has the

potential to drastically lower fixation time.

Combining extinction and fixation time

The concepts of extinction time and fixation time are

both highly relevant for conservation biology, which

aims at developing tools to limit simultaneously

extinction risks and genetic drift. However, as already

noted, genetics and demography may conflict over

important issues. Small and isolated patches, for

instance, may have positive effect on fixation time, but

be of low demographic value. In the case of source–sink

systems, similarly, connectivity might be detrimental in

terms of demography, but beneficial in terms of genetics.

How to properly weight the demographic and genetic

benefits of connectivity? As outlined below, the concepts

of extinction time and fixation time can be put in a

common framework, which allows investigating their

joint effect on the ability of a system to maintain its

integrity.

Under ideal settings, the two equations, Eq. 1 and Eq.

5 can be combined into a single recurrence equation:

dtþ1 ¼ ð1� eÞ 1� 1

N

� �
dt ð9Þ

where dt [ ptht is an index of diversity measuring the

genetic variance expected at time t conditional to non-

extinction, weighted by the probability of non-extinction.

Under more complex demography, demo-genetic

transition probabilities can be collected into a matrix

T (see Appendix A), which drives the dynamic of demo-

genetic states:

dtþ1 ¼ Tdt: ð10Þ

The leading eigenvalue (kT) of T provides a global

index of resistance to genetic drift and extinction. If kT¼
1, then the population will keep indefinitely its integrity

(measured as survival probability times genetic var-

iance). The lower kT, the quicker integrity is lost. As

shown in Appendix A, this demo-genetic eigenvalue

turns out to be the simple product of the demographic

and genetic eigenvalues:

kT ¼ kPo
kG ð11Þ

which thus combine in a simple way. The rate of loss of

diversity is given by the complement to unity of kT,

1

T
¼ 1� kT ð12Þ

and can be expressed in terms of extinction- and fixation

rates as follows:
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1

T
¼ 1

Tex

þ 1� 1

Tex

� �
1

Ne

: ð13Þ

Eq. 13 receives the intuitive interpretation that, once

in the quasi-stationary distribution, a population can

loose diversity either by becoming extinct (at rate 1/

Tex), or, if not extinct (1 – 1/Tex), by fixing alleles (at

rate 1/Ne). This rate of fixation (1/Ne) can be

intuitively understood as an average rate over the

possible states of the population, weighted by their

probabilities of occurrence (derived from the quasi-

stationary distribution). Note that Ne is necessarily

defined conditional to non-extinction, and that Eq. 11

provides a way to infer it that will prove useful when

the dynamics of genes depends on complex demo-

graphic processes.

Our Appendix A provides a mathematical formal-

ization of the above results for a structured metapopu-

lation made of nd demes of variable sizes undergoing

local extinctions and recolonizations. Here we propose

numerical examples that will help grasping the practical

relevance of our approach, before discussing the

concepts and results presented here.

NUMERICAL EXAMPLES

The examples below are not aimed at investigating

realistic situations, but at illustrating our approach: the

conceptual relationships among eigenvalues and their

interpretation will be better understood under simple

situations. Accordingly, we first address a situation with

a single deme, which can reside in two non-extinct states,

so that corresponding matrices P and T have dimension

2 3 2 only. We then consider a system of three demes

simplified to a stochastic patch occupancy model

(SPOM), where each deme can take either of the two

possible values: empty or occupied at a patch-specific

density value Ni. Hence, the size of vector p reduces to

2nd (i.e., 8 in our case), and that of vector d to n2
dð2n � 1Þ

(i.e., 63 in our case). These examples were implemented

in Mathematica 5.1 (Wolfram Research, Champaign,

Illinois, USA), and the worksheets are available in the

Supplement.

One deme, three states

As a first illustration, we assume a single deme that

can reach three demographic states (Fig. 1); it can be at

high density (Nh), at low density (Nl), or extinct (N¼ 0).

The non-empty states become extinct with probabilities

eh and el, respectively (including both environmental and

demographic extinction), and, conditional to non-

extinction, stay in the same state with probabilities b
and a, respectively. The dynamics of the transient states

is thus governed by the transition matrix

Po [
að1� elÞ ð1� bÞð1� ehÞ

ð1� aÞð1� elÞ bð1� ehÞ

� �
ð14Þ

and the demo-genetic matrix becomes the following:

T [

a ð1� elÞ
�

1� 1

Nl

�
ð1� bÞð1� ehÞ

�
1� 1

Nh

�

ð1� aÞð1� elÞ
�

1� 1

Nl

�
bð1� ehÞ

�
1� 1

Nh

�
2
6664

3
7775:

ð15Þ

The leading eigenvalues of Po and T measure the
ability of the focal population to resist demographic and

demo-genetic drift, respectively. Effective size can be

calculated from these values using Eqs. 8 and 11. For the
purpose of illustration, eigenvalues can be analytically

derived from Eqs. 14 and 15 as

kPo
¼ 1

2
x þ ½x2 þ 4ð1� a� bÞð1� elÞð1� ehÞ�

1
2

n o
ð16Þ

where x ¼ a(1� e1)þ b(1 � eh), and

kT ¼
1

2NhNl

yþ ½ y2 þ 4ð1� a� bÞð1� ehÞ
�

3ð1� elÞNhðNh � 1ÞNlðNl � 1Þ�
1
2g ð17Þ

where y¼ a(1� el)Nh(N1� 1)þ b(1� eh)N1(Nh� 1); kG

(and hence effective size) is readily obtained as the ratio

of these two quantities.

Genetics and demography are intimately intertwined

in the demo-genetic matrix T, because effective size
depends on quasi-stationary distribution, itself a func-

tion of state-specific extinction rates. The two can only

be disentangled when extinction risk is made independ-

ent of the state of the population. For instance,
assuming el ¼ eh ¼ e and a þ b ¼ 1 (so that population

fluctuations are uncorrelated; Iizuka 2001), then Eq. 16

simplifies to

kPo
¼ 1� e ð18Þ

and Eq. 17 to

kT ¼ ð1� eÞ 1� a
Nh

� 1� a
Nl

� �
: ð19Þ

Hence, kG is readily extracted as follows:

FIG. 1. The focal population can take three states: high
density (Nh), low density (Nl), or extinct (0). When at low
density, the population goes extinct with probability el and,
conditional to non-extinction, remains at low density with
probability a. When at high density, it goes extinct with
probability eh and, conditional to non-extinction, remains at
high density with probability b.
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kG ¼
kT

kPo

¼ 1� a
Nh

� 1� a
Nl

: ð20Þ

As expected (Karlin 1968, Iizuka 2001), the effective

size correspond to the harmonic mean of population size

over time, since a and 1 – a represent the proportion of

time spent in state h and l respectively, conditional to

non-extinction (i.e., the quasi-stationary distribution).

In absence of extinction (el¼ eh¼ 0), kPo
reaches unity

(i.e., extinction time is infinite), so that kT¼kG (Fig. 2a).

Effective size is affected by transition rates between

states, in accordance with the proportion of time spent

at low versus high density (here fixed to Nl¼ 5 and Nh¼
20). The effect of extinction is illustrated in Fig. 2b,

where a is fixed to 0.5, and b varies from 0 to 1. If

extinction affects only the small state (eh is here fixed to

0 and el to 0.5), then both demographic and genetic

prospects improve as b increases, from Tex ’ 2.78 and

Ne ’ 6.67 when b¼0 (the population then has then a 2/3

chance of being in the small and extinction-prone state)

to kPo
¼ 1 (i.e., Tex is infinite) and Ne ¼ 20 when b ¼ 1

(the population is then always in the large and

extinction-proof state).

By contrast, demographic and genetic prospects show

opposite responses to changes in the extinction risk of the

low-density state (Fig. 2c). As el increases, the population

becomes increasingly prone to extinction, but also more

likely to reside in the high-density state (conditional to

non-extinction), so that effective size increases. This

potential conflict is dominated by demography: the

overall prospects of the population are maximized by

limiting the extinction rate of the low-density state, even

though effective size is thereby decreased.

Three demes, two states each

As a second situation, we consider the case of three

demes that may differ in size, connectivity, and extinction

risk (Fig. 3). Under SPOM simplifications, a non-extinct

deme takes only one possible value (which may be

thought of as the harmonic mean of its size over time).

State transitions are obtained as the product over demes

of the relevant transition probabilities, given state n:

Prf ðn0jnÞ ¼
Ynd

i¼1

Prfið0jnÞ
1�o 0

i ½1� Prfið0jnÞ�
o 0

i ð21Þ

where o 0
i is the indicator function, equal to 1 if patch i is

occupied in the descendant generation (when the

metapopulation is in state n0), and 0 otherwise. The

probability that deme i gets extinct at time t þ 1, given

state n at time t, is obtained by

Prfið0jnÞ ¼ ei þ ð1� eiÞe�qi½n� ð22Þ

where qi[n] ¼
Pnd

j¼1bNjmijoj sums up the expected

contributions of all demes to the focal deme i, b is the

per capita fecundity, assumed here constant and

identical among patches, and mij the forward dispersal

rate from deme j to deme i. In our numerical analysis, all

mii were set to 1 – m, and all mij to m/2 (under more

FIG. 2. Demographic (kPo
), genetic (kG), and demo-genetic

(kT) eigenvalues for an isolated deme with two transient states.
Parameter values are fixed to Nl¼ 5, Nh¼ 20, and a¼ 0.5. (a) In
the absence of extinction (el¼eh¼0), kPo

reaches unity, so that kT

¼ kG (solid line), and kG increases with b (probability to stay in
the high-density state). (b) If extinction occurs only at lowdensity
(eh¼0, el¼0.5), then both kG (dotted line) and kPo

(dashed line)
increase with b. (c) Note that kG (dotted line) and kPo

(dashed
line) respond in oppositeways to an increase in the extinction risk
at low density (el). Parameters b and eh are fixed at 0.5.
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realistic settings, dispersal rates would be made depen-

dent on the distance between pairs of patches). The

parameter ei represents environmental extinction risk,

and e�qi½n� demographic extinction risk (probability of

sampling zero from a Poisson distribution with para-

meter qi[n]).

The effects of demographic stochasticity are illus-
trated in Fig. 4a–c, where environmental extinction risks
are set to 0, fecundity to 1.1, and all three demes have
the same size N when non-extinct. In absence of
dispersal, Ne and Tex converge to similar values, because
all populations behave independently (both demo-
graphic extinction and coalescence scale as 1/N). For
the lowest population sizes (N¼ 1, Fig. 4a) these values
are close to 3 (though exact numbers are bound to
depend on fecundity), so that the global resistance of the
metapopulation is quite weak (kT , 0.5). Demographic
stochasticity decreases rapidly as demes increase in size,
and so does the overall risk for the metapopulation (Fig.
4b and 4c with N¼2 and 5, respectively). As can be seen,
global extinction risk becomes negligible with three
populations of five individuals each, so that the loss of
genetic variance becomes the predominant concern.

Demography and genetics show contrasted responses
to dispersal in the situations illustrated here (Fig. 4a–c).
Tex increases with dispersal owing to rescue effects (once
extinct, a population might be recolonized), so that the
population survival is maximized by panmixis (corre-
sponding to m¼2/3 for nd¼3). But, as expected (Wright
1931), Ne is maximized by philopatry, owing to the
maintenance of interdemic genetic variance. With local
demes of size N¼ 5 (Fig. 4c), stochastic demography is
too low to induce significant extinction risks. Effective
size thus tends to infinite at zero dispersal (the among-
deme component of genetic variance is kept indefinitely

out of reach of drift), but rapidly declines to 15 (sum of
the three census sizes) as dispersal increases and the
system becomes panmictic. This potential conflict is
dominated by genetics in that case, because kG , kPo

.
Hence, in absence of environmental extinction risk,
population integrity is best maintained by preventing
connectivity.

Dispersal, however, becomes globally favorable as
soon as environmental stochasticity is introduced (Fig.
4d): owing to higher local extinction risks, philopatry is
then unable to maintain a significant amount of
interdemic genetic variance. Dispersal, by contrast,
increases through rescue effects the probability that
several demes are occupied simultaneously (and hence
both Ne and Tex).

Potential conflicts may emerge when populations
differ in size and/or extinction rates. In Fig. 4e, we
assume three demes of identical sizes (N¼ 5) but among
which only one is safe from environmental extinction (e1
¼ e2¼ 0.5, e3¼ 0.0). In absence of dispersal, the two first
populations go rapidly extinct, so that Ne ¼ 5
(corresponding to the size of the remaining deme). Tex

is maximal, however, though not infinite because the
safe deme still incurs a slight extinction risk from
demographic stochasticity. Increasing dispersal has a
negative impact on demography (because offspring
emigration from the safe deme increases its risk of
demographic extinction) but a positive impact on
effective size (because rescue effects increase the
probability that several demes are simultaneously
occupied). It is thus worth noting that dispersal
increases the effective size of metapopulations under
the kind of source–sink dynamics modeled here (con-
trasting with the negative effect documented under
stable settings; Fig. 4a–c). As genetics is of greater
concern under our parameter values (global extinction is
anyway unlikely), this conflict is dominated by genetics,
and the dispersal value that best maintains population
integrity is close to panmixis (Fig. 4e, arrow).

Let us finally assume that the three demes differ in
their susceptibilities to demographic and environmental
extinctions (Fig. 4f). Deme 1 is protected against both
risks (e1 ¼ 0, N1 ¼ 5), deme 2 incurs a large risk of
environmental extinction (e2¼0.5, N2¼5), and deme 3 a
large risk from demographic stochasticity (e3 ¼ 0, N3 ¼
2). Global extinction risk is then weak, and increases
slightly with connectivity (through increased risks of
demographic extinction of the environmentally safe
patches). Potential problems stem thus mostly from
the low effective size, which displays a non-monotonous
response to dispersal. Two local maxima emerge, one
corresponding to complete philopatry, and the other to
complete dispersal. Ne increases with connectivity over
most of its range for the aforementioned reason (low
dispersal limits rescue effects and thus lowers metapo-
pulation size). At very low dispersal value, however,
effective size is boosted because, though patch 2 goes
rapidly extinct from environmental causes, the system
maintains some among-deme variance thanks to its two

FIG. 3. Model metapopulation made of three demes of sizes
N1, N2, and N3 that can be either occupied or empty (stochastic
patch occupancy model [SPOM]). The rate of philopatry is
1� m, and dispersers reach either of the two other populations
randomly.
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environmentally safe demes. Note, however, that this

variance is not kept indefinitely, since these demes (and

particularly deme 3) incur a significant risk of extinction

from demographic stochasticity). Under our parameter

values, the global optimum corresponds to complete

philopatry (thus reconciling demands from demography

and genetics), but this optimum might suddenly shift

toward nearly complete connectivity under very slight

changes in parameter values.

DISCUSSION

Large efforts have been recently devoted to investigate

the demographic and genetic consequences of popula-

tion structure (Hanski and Gaggiotti 2004). In partic-

FIG. 4. Demographic (kPo
), genetic (kG), and demo-genetic (kT) eigenvalues for a metapopulation (three demes of varying sizes

and extinction rates) as functions of dispersal rate (m). Arrows indicate the dispersal rate maximizing the overall demo-genetic
resistance. (a–c) In the absence of environmental stochasticity, demographic and genetic eigenvalues respond differently to
connectivity (m): kPo

(and hence extinction time) increases, but kG (and hence fixation time) decreases with increasing dispersal.
Both values increase with the size of local demes, from (a) Ni ¼ 1 to (b) Ni ¼ 2 to (c) Ni ¼ 5. (d) Both kPo

and kG increase with
connectivity when the risk of environmental extinction is significant. Ni values are fixed to 5, and ei values to 0.1. (e–f) . Complex
patterns emerge when demes differ in demographic and environmental risks of extinction. Dispersal may then have opposite effects
on extinction and fixation time (e: N1¼N2¼N3¼ 5, e1¼ e2¼ 0.5, e3¼ 0) or display multiple optima (f: N1¼N2¼ 5, N3¼ 2, e1¼ 0.5,
e2 ¼ e3¼ 0).

LAURENT LEHMANN AND NICOLAS PERRIN1850 Ecology, Vol. 87, No. 7



ular, the effects of disequilibrium demography (demo-

graphic and environmental stochasticity, extinction–

colonization or source–sink dynamics, etc.) on the

effective size of metapopulations have received extensive

treatments (e.g., Whitlock and Barton 1997, Pannell and

Charlesworth 1999, Wang and Caballero 1999, Iizuka

2001, Laporte and Charlesworth 2002, Rousset 2003,

2004). As underlined by the present analysis, genetics

and demography are indeed intimately intertwined, since

eigenvalue effective size depends on quasi-stationary

distribution, itself a function of state-specific and patch-

specific extinction rates, demographic transition, and

dispersal patterns.

Our results relate to previous treatments on several

aspects. In line with Karlin (1968) and Iizuka (2001) we

find that, when population size varies temporally, the

harmonic mean of census size does correctly measure

effective size, provided fluctuations are not correlated.

Our own formulation actually differs slightly from

Karlin (1968) and Iizuka (2001) in that we incorporate

the possibility that the focal population becomes extinct.

If the several states present different extinction rates,

then the quasi-stationary distribution will be affected,

and so will in turn be effective size. From our results,

enhancing extinction rate might either increase or

decrease effective size, depending on whether extinction

affects low-density or high-density states, respectively.

Note that an increase in effective size with extinction

rate (Fig. 2c) presents no paradox, since this quantity is

defined conditional to non-extinction.

In the case of several connected populations, we also

find, in line with previous treatments (e.g., Whitlock and

Barton 1997), that the consequences of structure depend

on the among-deme variance in reproductive output. In

particular, structure increases effective size as long as

stochasticity remains only demographic (Fig. 4a–c), but

decreases it as soon as environmental extinctions induce

a large variance in demic reproductive outputs (Fig. 4d–

e). In the examples chosen, the negative effect of

environmental extinction on effective size is further

boosted by the autocorrelation in patch-specific extinc-

tion rates. As a result, dispersal might have positive or

negative impacts on effective size, depending on the

source of stochasticity. Interestingly, non-monotonous

relations with multiple local maxima may also arise,

depending on specific patterns of demographic vs.

environmental risk (Fig. 4f).

But the main interest and originality of the present

approach lies in integrating demographic and genetic

aspects into a unified analytical framework, which

allows delineating how these aspects combine or oppose

each other. Indeed, as our numerical examples clearly

show, demography and genetics may impose conflicting

demands on optimal landscape designs. Depending on

demographic and environmental stochasticity, for in-

stance, connectivity may increase or decrease genetic

resistance (fixation time), and increase or decrease

demographic resistance (extinction time). Furthermore,

both indices may respond in similar or in opposite ways.

Our approach allows exploring analytically these con-

flicts, and the synthetic index of demo-genetic resistance

offers a common currency that permits weighting

demands and solving conflicts in a natural way. Indeed,

because the two eigenvalues associated to demographic

and genetic matrices combine in a multiplicative way (kT
¼ kPo

kG), the sensitivity of kT to a change in kG is

proportional to the value of kPo
, and vice versa. Hence,

kT responds more to the lowest of the two components

(the one presenting the highest risk).

Genetics will take the leading role as soon as

extinction risk is light relative to the risk of loosing

genetic diversity. Management options are thus bound

to differ from those based on demography only. While

large and well-connected demes are of crucial impor-

tance when it comes to avoid extinction and maximize

metapopulation capacity (Hanski and Ovaskainen 2000,

2003), small and isolated patches are likely to gain

importance if genetic aspects are considered (provided

global extinction risk is limited), because they poten-

tially constitute reservoirs of interdemic genetic variance

preserved for some time from the action of drift (e.g.,

Margan et al. 1998).

Our approach assumes that genetic variance is

beneficial per se, but of course does not address directly

the important question of the viability benefits of having

a large effective size. Though this is still a controversial

and speculative issue, the overall benefits of having a

large effective size is supported by empirical data (see,

e.g., the meta-analysis of Reed and Frankham [2003])

together with several lines of arguments. First, the

ability to maintain diversity in general (i.e., over the

whole genome) should increase a population’s ability to

respond adaptively to environmental changes (e.g.,

Nunney 1999), which might become a crucial issue with

the raise of global changes. Effective size might hence

represent a surrogate for adaptiveness. Secondly, a large

effective size should efficiently counteract drift load.

Indeed, small populations tend to accumulate mildly

deleterious mutations, resulting in a progressive loss of

fitness, which may eventually result in mutational

meltdowns (Lynch and Gabriel 1990, Lynch et al.

1995). It turns out that the effect of population structure

on drift load depends on whether structure increases or

decreases effective size (Whitlock 2004).

By contrast, structure should consistently favor such

accumulation at a local scale (‘‘local drift load’’). Were

the within-deme component of genetic variance more

important for fitness than the among-deme, then

effective size would not be the best target, since it does

not distinguish among these components. Management

should, in such a case, aim at maximizing the observed

(rather than expected) heterozygosity, which might be

obtained by favoring connectivity in order to fully

benefit from heterosis. Further formalization would

obviously be required to integrate these alternative

genetic aspects to the present approach. However,
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analysis tends to show that both within-deme and total-

metapopulation genetic diversity are similarly affected

by important aspects of metapopulation dynamics

(Pannell and Charlesworth 1999). It also turns out that

all forms of genetic load are affected by the total amount

of variance (together with its apportionment), since the

effects of population structure on load can generally be

described as functions of Ne and FST (Whitlock 2004).

Hence, effective size is anyway bound to contribute

directly to any indicator of metapopulation quality.

We think our approach might prove useful for

conservation biology, in addressing questions related

to the optimal design of protected habitat patches

(SLOSS-type debates), as practitioners begin to realize

that the maintenance of genetic diversity in natural

populations should also constitute an important goal for

conservation (e.g., Garner et al. 2005). Our approach

may, in theory, address any realistic situation and

incorporate any detailed feature of the landscape and

species under scrutiny, provided relevant information

(e.g., density-dependent patterns of fecundity and

survival, dispersal kernels, etc.) is available to calibrate

the model. Actually, the limitations are mostly of

practical nature, and set by the huge sizes of the

matrices involved. Implementation at a large scale

(landscape) will thus require very large computer power,

or procedures to simplify and reduce in some way the

sizes of transition matrices.

It is also worth noting that our approach might

readily be extended to metacommunity issues (Loreau et

al. 2003). The neutral theory of the niche (Hubbell 2001)

considers the dynamics of competing species within

communities, in complete analogy with the neutral

theory of evolution, which considers the dynamics of

competing alleles within populations. Biodiversity will

be best maintained by maximizing, not only the

extinction time of local communities, but also their

fixation time (i.e., minimizing the rate of loss of

constituting species). When designing optimal meta-

community structures, trade-off and conflicts between

these goals are bound to emerge, that the approach

delineated here might help solving.
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APPENDIX A: ANALYTICAL DEVELOPMENTS

We consider a landscape described by the sizes and
localizations of a series of nd local patches affected by

demographic events and linked by juvenile dispersal.
Probabilities of non-identity of pairs of genes are
measured here among adults after dispersal, but similar

developments might be made for pre-dispersal measure-
ments. Our model is similar to Rousset (2004) except that
we include the possibility of metapopulation extinction.

Fixation time

Let us first assume that the nd demes comprise stable

numbers of individuals N1, N2, N3, etc. Genetic diversity
is described by the vector ht (dimension n2

d) of pairwise

heterozygosities (hik is the probability that two alleles
randomly sampled from demes i and k are different).
The dynamics of diversity depends on both dispersal

patterns and coalescence events. The nd 3 nd backward
dispersal matrix F¼ jfij j describes the probabilities that
an adult sampled in i originates from j:

F ¼
f11 f12 � � �
f21 f2 � � �
� � � � � � � � �

0
@

1
A: ðA:1Þ

As the lines of F sum to 1, its leading eigenvalue

equals unity, and the corresponding left eigenvector
measures patch reproductive values vi. The probabilities
that two adults, sampled in i and j, stem for k and l

respectively, are obtained from the tensor product of the
matrix F by itself (A ¼ F � F):

A ¼
f11 f11 f11 f12 � � �
f11 f21 f11 f22 � � �
� � � � � � � � �

0
@

1
A: ðA:2Þ

The rows of matrix A, which describes the backward
movement of pairs of genes, sum up to 1, so that its

leading eigenvalue also equals unity. The corresponding
left eigenvector measures pairwise products of patch
reproductive values vivj. The matrix of genetic transi-

tions G ¼ jgij,klj is then obtained by multiplying each
entry of A by the corresponding probability of non-

coalescence (probability that the two individuals con-

sidered are not born to the same parent), equal to 1 –

1/Nk if the two individuals originate from the same deme

(k ¼ l ), and 1 otherwise:

G ¼

f11 f11

�
1� 1

N1

�
f11 f12 � � �

f11 f21

�
1� 1

N1

�
f11 f22 � � �

� � � � � � � � �

2
666664

3
777775
: ðA:3Þ

The vector of genetic diversity ht, whose dynamics is

described by Eq. 7, converges toward a quasi-stationary

distribution (g) given by the right eigenvector associated

to the leading eigenvalue kG of G, and satisfying the

relation

Gg ¼ kGg: ðA:4Þ

The effective size of the metapopulation is obtained

from Eq. 8 and can be decomposed as follows (Rousset

2004):

1

Ne

¼
X

i

v2
i

Ni

hii

h
ðA:5Þ

where h measures the probability of non-identity of two

genes randomly sampled in the population. This

expression makes explicit that the asymptotic rate of

coalescence depends on three distinct factors. First,

differences in productivity between patches are taken

into account by the probabilities v2
i that two randomly-

sampled lineages originate from the same deme i.

Second, the sizes of local patches determine the intra-

patch rate of coalescence (1/Ni). Finally, population

subdivision is taken into account by the terms hii/h

measuring the ratio of within-deme to total genetic

variance.

Under our assumption of stability, Ne increases with

structure (i.e., deviation from panmixia owing to low

dispersal rate among demes; hii , h). Since coalescent

events occur only within demes, a large amount of

genetic variance (the interdemic component) is retrieved
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from the action of drift. Demographic variability and
local extinctions will of course counteract this effect.

Extinction time

Let us now assume that demography is affected by

stochasticity (be it intrinsic or environmental), and
consider the ensuing metapopulation dynamics. Each
deme i can reach any state between 0 and carrying

capacity Ki, so that describing the full system requires a
vector p of dimension

Qnd

i¼1 (Ki þ 1) listing the
probabilities Pr[n] of being in demographic state n:

p [ Prð0 0 � � �ÞPrð1 0 � � �ÞPrð� � � � � � � � �ÞPrðK1 K2 � � �Þf g:

This vector changes with time as ptþ1 ¼ Ppt (Eq. 3),
where P¼ jPrf [n0jn]j is the matrix of forward transition
probabilities (probability that a metapopulation in state
n changes to state n0 the next time step). Deleting the

first line and first column of P, we obtain the matrix Po

containing only the transition probabilities for the
transient states of the Markov chain (e.g., Halley and

Iwasa 1998, Ovaskainen and Hanski 2004 [Box 4.2];
Appendix C). These transient states converge toward a
quasi-stationary distribution (u) given by the right

eigenvector associated to the leading eigenvalue kPo
of

Po, and satisfying the relation

Pou ¼ kPo
u: ðA:6Þ

The rate of convergence to extinction 1 � kPo

determines the characteristic time to extinction Tex

according to Eq. 4, and can be decomposed as

1

Tex

¼
X

n

Prf ð0jnÞuðnÞ: ðA:7Þ

The asymptotic rate of extinction is thus the
probability that a metapopulation in state n becomes

extinct in the next time step, averaged over the quasi-
stationary distribution (Halley and Iwasa 1998).

Integrating demography and genetics

The heterozygosity h[n0]tþ1 expected at time t þ 1,
conditional to being in state n0, is obtained as the sum of
all transition probabilities over all possible states n at

time t:

h½n0�tþ1 ¼
X

n

Prb½njn0�G½n�h½n�t ðA:8Þ

(Karlin 1968, Chia and Pollak 1974), where Prb[njn0] is a
backward transition probability (probability that a

population in state n0 stems from a population in state

n). Assuming Poisson distributions of reproduction,

and, more generally, that life cycle events affect

individuals independently, then G is independent of n0

(Rousset 2004). Noting that

Prb½njn0� ¼ Prf ½n0jn�
Pr½n�t

Pr½n0�tþ1

we can write

d½n0�tþ1 ¼
X

n

Prf ½n0jn�G½n�d½n�t ðA:9Þ

where

d½n�t ¼ Pr½n�th½n�t ðA:10Þ

represents the vector (dimension n2
d) of expected pairwise

heterozygosities (given state n) weighted by the prob-

ability of being in state n. There is one such vector for all

possible states n, which can all be collected into one

large vector d (of dimension n2
dð
Qnd

i¼1 (Kiþ 1)� 1)). This

vector changes with time as dtþ1¼Tdt (Eq. 10), where T

is the matrix of transition probabilities obtained by

multiplying the matrix G[n] with each relevant scalar

element Prf [n
0jn] of the matrix Po:

T ¼ jtijn 0;klnj ¼ jPrf ½n0jn�gij;kl½n�j: ðA:11Þ

The dynamics is dominated asymptotically by the first

eigenvalue (kT) of T, so that, once quasi-stationarity is

reached, each element of dt decreases geometrically at

rate kT. Since elements of pt also decrease asymptotically

at rate kPo
(Eq. 4), it follows from Eq. A.10 that

elements of ht must decrease at rate kG ¼ kT/kPo
, which

by definition (Eq. 8) provides the effective size. The

fixation rate of the metapopulation, conditional to non-

extinction, is thus given by

1

Ne

¼ 1� k G ¼ 1� k T

k Po

ðA:12Þ

and can be decomposed as follows (Rousset 2004):

1

Ne

¼
X

n

u½n�
X

i

j ii½n�
Ni

hii½n�
h

ðA:13Þ

where both the asymptotic diversity in deme i (hii [n]) and

the probability that two gene lineages descend from deme

i (jii [n]) are defined conditional on the metapopulation

residing in state n. The corresponding decomposition of

the asymptotic rate of loss of diversity (1/T) is thus

obtained by introducing Eqs. A.13 and A.7 into Eq. 13.
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APPENDIX B: SYMBOLS AND NOTATIONS

Pr[0]t Probability that the focal population is extinct at time t
pt [ 1 � Pr[0]t Probability that the focal population is occupied at time t
pt [ jPr[n]tj Vector of probabilities that the metapopulation is in state n at time t

P [ jPrf [n0jn]j Matrix of forward transition probabilities among states
Po Matrix of forward transition probabilities among transient states
kPo

Leading eigenvalue of Po (index of resistance to extinction)

u Right eigenvector associated to kPo
(quasi-stationary distribution of p)

e [
Pr½0�tþ1 � Pr½0�t

1� Pr½0�t
Extinction rate of the population

Tex [
1

e
Extinction time of the population

Ni Size of deme i
Ki Carrying capacity of deme i
Ne Effective size of the population (time to fixation)

nd Number of demes
b Per capita fecundity
mij Forward dispersal rate (probability that a juvenile born in j disperses to i )

qij [ bNjmij Contribution of patch j to patch i (numbers of individuals per generation)

qi ¼
Xnd

j

qij Number of individuals settling in patch i

fij [ qij/qi Backward dispersal rate (probability that an adult settled in i stems from j )
F [ j fijj Matrix of backward dispersal rates

vi Leading right eigenvector of F (patch reproductive value)
A [ F � F [ jfij fklj Matrix of backward dispersal rate for pairs of genes
ht Expected heterozygosity in the population
ht [ jhikjt Vector of pairwise demic heterozygosities

G [ jgij,klj Matrix of transition among pairwise demic heterozygosities
kG Leading eigenvalue of G (index of resistance to genetic drift)
g Right eigenvector associated to kG (quasi-stationary distribution of h)

dt [ ptht Index of demo-genetic diversity
dt [ jPr[n]h[n]jt Vector of probabilities of demo-genetic states
T [ jPrf [n0jn]gij,kl [n]j Matrix of forward transition among demo-genetic states

kT Leading eigenvalue of T (index of demo-genetic resistance)

APPENDIX C

Markov chains and absorption times for demography and genetics (Ecological Archives E087-108-A1).

SUPPLEMENT

Mathematica worksheets for calculating and plotting demo-genetic eigenvalues (Ecological Archives E087-108-S1).
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