

EBV-associated NK and T-cell lymphoid neoplasms

Hiroshi Kimura^a, Laurence de Leval^b, Qingqing Cai^c and Won Seog Kim^d

Purpose of review

Epstein-Barr virus (EBV)-associated neoplasms derived from natural killer (NK) or T cells comprise a group of clinically and biologically heterogenous disorders affecting children and adults, which are overall rare but more prevalent in Asia and South America. This review focuses on neoplasms presenting in the adulthood, addressing recent genomic discoveries as well as therapeutic developments in these highly aggressive disorders.

Recent findings

Distinct molecular subtypes of extranodal NK/T-cell lymphomas (ENKTCLs) have been described, with differences in cell of origin, EBV pattern, genomic alterations, clinical characteristics, response to asparaginase-based therapies and to more recent approaches targeting molecular aberrations of the lymphoma. For the last two decades, progress in the clinical management of ENKTCL was based on L-asapraginase containing combinations and the incoroperation of radiotherapy. A subset of cases with *PDL1-2* structural alterations may be more responsive to treatment with immune checkpoint inhibitors. Primary nodal EBV+ lymphomas derived from T or NK cells have distinctive features separating them from both peripheral T-cell lymphoma not otherwise specified and ENKTCL. Treatment algorithms correspond to those for advanced ENKTCL.

Summary

With better understanding of lymphomagenesis, genomic landscape and immunologic aspects of the diseases, future treatment options will include targeted therapies including immune checkpoint inhibitors and novel antibodies.

Keywords

Epstein-Barr virus, NK/T-cell lymphoma, pathogenesis, pathology, treatment

INTRODUCTION

Epstein-Barr virus (EBV)-positive lymphoproliferative disorders of NK or T cells are overall uncommon diseases, which are more prevalent in Asia and central and South America. Several entities are currently recognized, all characterized by distinctive clinical presentations affecting preferentially children or adults, selective lineage derivation, and variable natural histories and outcome (Table 1, Fig. 1) [1,2]. In this review, we will focus on the three entities manifesting in the adulthood, and summarize the recent advances in the understanding of EBV-associated lymphomagenesis, progress in the deciphering of molecular pathogenesis, therapeutic innovations and current clinical recommendations.

MECHANISMS OF EPSTEIN-BARR VIRUS-ASSOCIATED NK AND T-CELL LYMPHOMAGENESIS

EBV is an oncovirus that belongs to the gammaherpes subfamily. EBV is transmitted through saliva, and occasionally causes infectious mononucleosis in adolescents and young adults. Nearly, 90% of adults become infected with EBV, so EBV is a

ubiquitous virus. However, in a limited number of cases, EBV causes a variety of malignancies, including lymphomatoid and epithelial tumors.

EBV was originally isolated from Burkitt lymphoma in 1964 [3]. Since that discovery, the

^aDepartment of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan, ^bInstitute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Switzerland, ^cState Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China and ^dSungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea

Correspondence to Laurence de Leval, MD PhD Institute of Pathology, Lausanne University Hospital, 25 rue du Bugnon, CH- 1011 – Lausanne, Switzerland. Tel: +41 21 5563714; e-mail: Laurence.deLeval@chuv.ch

Curr Opin Oncol 2022, 34:422-431

DOI:10.1097/CCO.00000000000889

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

KEY POINTS

- Viral oncogenes, such as LMP1 and LMP2A, promote the proliferation or inhibit the apoptosis of EBV-infected NK and T cells
- Genomic instability caused by EBV infection induces somatic mutations in oncogenes and tumor suppressor genes, promoting the development of EBV-associated NK and T-cell lymphomas.
- Extranodal NK/T-cell lymphoma may be divided into three molecular subtypes defined on the basis of cell of origin, EBV gene expression, transcriptional signature, and responses to asparaginase-based regimens and targeted therapy ; and into four tumor immune microenvironment subgroups which may serve as a useful biomarker for immunotherapy
- Primary nodal EBV-associated lymphoma derived from T or NK cells has distinctive features which warrant the consideration of a distinctive disease entity

pathogenesis of Burkitt lymphoma has been extensively studied. EBV infects germinal center B cells via CD21. The viral glycoprotein gp350/220 binds to the complement receptor, CD21, whereas gH/gL/ gp42 binds to HLA class II molecules, both of which are expressed on the surface of B cells [4]. Viral oncogenes, such as latent membrane proteins (LMPs) and EBV-encoded nuclear antigens, promote the proliferation or inhibit the apoptosis of infected cells. Then, genetic mutations accumulate with the help of activation-induced cytidine deaminase (AIDs) or co-factors [3]. Finally, MYC is translocated and activated, and Burkitt lymphoma develops. Other than Burkitt lymphoma, EBV is associated with several types of B-cell malignancies, such as Hodgkin lymphoma, lymphomatoid granulomatosis, EBV-positive diffuse large B-cell lymphoma, not otherwise specified (DLBCL), and posttransplant lymphoproliferative disorders [4].

In contrast, the pathogenesis of EBV-associated NK and T-cell lymphoma is not fully understood. For example, how EBV infects NK and T cells has not been clarified, given that NK and T cells do not express the CD21 receptor molecule. EBV infects epithelial cells using integrins and Ephrin-A2 as receptors [5]. Although these proteins are abundant on epithelial surfaces, their roles in EBV infection of lymphoid cells, including NK and T cells, are limited. Okuno *et al.* reported that the same somatic driver mutations are recognized in EBV-infected T and NK cells in some patients with chronic active EBV infection who carry both EBV+ T and NK cells [6[•]]. The results indicate that different cell lineages

share identical driver mutations, suggesting a common ancestry. EBV may infect common lymphoid progenitor cells that express CD21. These cells differentiate into NK and T cells in some patients with chronic active EBV infection. It is also reported that intragenic EBV deletions are frequently detected in chronic active EBV infection, extranodal NK/T cell lymphoma (ENKTCL), and EBV-positive DLBCL patients [6[•]]. Peng reported that similar deletions are frequently seen in ENKTCL patients in China [7]. Thus, intragenic EBV deletions are common in certain types of EBV-associated lymphomas and could be associated with lymphomagenesis [8,9].

There are several possible reasons why EBV-associated NK and T-cell lymphoma is more prevalent in East Asia and Central and South America. First, environmental factors, such as chemical solvents and exposure to pesticides, are potential carcinogens in patients with ENKTCL [3]. Second, genetic factors, such as human leukocyte antigen (HLA) alleles, may contribute to lymphomagenesis. For example, HLA-A1, which is common in Caucasian but not Chinese populations, is a risk factor for the development of EBV-positive Hodgkin lymphoma. In contrast, HLA-A02:07 is associated with nasopharyngeal carcinoma, which is common in East Asia. Third, EBV strains that are prevalent in specific areas may differentially increase the risk of certain tumor types. Although many EBV variants (including single nucleotide polymorphisms) have been reported to enhance tumorigenicity, there are no definitive causative genes [10]. All of these factors may interact in a complex manner to trigger the development of EBV-positive tumors.

After EBV infects NK and T cells, the infected cells proliferate with the help of viral oncoproteins. LMP1, which mimics CD40, constitutively activates the AKT, STAT, JNK, MAPK, and NF-к B pathways and thereby suppresses apoptosis, enhances cell cycling, and modulates the immune system [3]. LMP2A, which mimics the B-cell receptor, triggers sustained activation of AKT, Syk, β-catenin, and protein kinase C, and thus promotes cell proliferation and suppresses differentiation [3]. Both LMP1 and LMP2A are expressed in EBV-infected NK and T cells. Other EBV genes have pivotal roles in lymphomagenesis. BHRF1 is a homolog of BCL-2 that promotes cell proliferation [11]. Interestingly, particular EBV genes, such as BNRF1, BGLF5, and BALF3, increase genomic instability in cells; BALF3 has terminase activities [12**,13,14]. Furthermore, an EBV infection can activate AIDs. LMP1 triggers genomic instability through increased expression of AIDs, which promotes somatic hypermutations and class switch recombination [3]. Such genomic instability caused by EBV infection induces somatic

Entity	Age group	Cell derivation	Characteristics	Outcome
Systemic EBV-positive T-cell lymphoma of childhood	Children East Asia and Latin America, rare in Europe	T cells	Fatal infectious mononucleosis / fulminant hematophagocytic syndrome, marked lymphoid EBV+ infiltration in several affected organs	Rapid fatal, fulminant course with hemato lymphoid histiocytosis and multiorgan failure
Chronic active EBV disease (T and NK-cell phenotype)	Children East Asia, less commonly Latin America	T cells or NK cells	Disease with mononucleosis-like symptoms during more than 3 months, fever, hematophagocytic syndrome, hepatitis, high titers of EBV in blood, organ infiltration by EBV+ small cells	Indolent lymphoproliferative disorders, worse for T-cells derived cases. However, some cases may evolve to ENKTCL or ANKCL
Hydroa vacciniforme lymphoproliferative disorder	Children and adolescents Classic form: more common in whites Systemic form: more common in Asians and Latin Americans	T cells more often than NK cells	Classic form: photoreactive cutaneous vesicular disorders Systemic form: general symptoms, fever, lymphadenopathy, frequent liver involvement	Classic form: self-limited Systemic type: may progress to T or NK lymphoma or develop hemophagocytic syndrome
Severe mosquito bite allergy	Children East Asia and Mexico	NK cells	Cutaneous form of chronic active EBV infection: exaggerated allergic reaction to mosquito bites	May progress to ENKTCL or ANKCL.
Extranodal NK/T-cell lymphoma, nasal type (ENKTCL)	Adults More common in East Asia, Central & South America. Less common in Europe	NK cells more than T cells	Angiocentric and angiodestructive lymphoma, cytotoxic, with necrosis; variable cytomorphology; usual presentation in the nasal area or other extranodal sites	Aggressive disease, variable outcome, worse for nonnasal cases
Primary EBV-positive nodal T-cell or NK-cell lymphoma	Adults and elderly, immunosuppression and HIV Very rare	T cells more than NK cells	Nodal involvement, usually disseminated, associated immunodeficiency in some patients, monomorphic or pleomorphic	Poor outcome, worse than ENKTCL
Aggressive NK-cell leukemia (ANKCL) ^a	Adults Asia, central and South America Very rare	NK cells	Acute presentation with fever, systemic symptoms, hepatosplenomegaly, intravascular disseminated coagulation or hematophagocytic syndrome; systemic proliferation of EBV+ NK cells in blood bone marrow and other organs	Usually fulminant, or subacute in a subset of cases

Table 1. Synoptic summary of EBV-associated	lymphoproliferative disorders	derived from NK	or T cells	[2]
---	-------------------------------	-----------------	------------	-----

^asome cases EBV-negative. ANKCL: aggressive NK-cell leukemia; ENKTCL: extranodal NK/T-cell lymphoma.

mutations in oncogenes and tumor suppressor genes, resulting in the development of EBV-associated NK and T-cell lymphomas.

PATHOLOGY, MOLECULAR/GENETIC FEATURES, AND SUBGROUPS

Extranodal NK/T-cell lymphoma, nasal type (ENKTCL) is an EBV-positive lymphoma derived from NK cells more often than cytotoxic T cells [15] with a high prevalence in Asian and Latin American populations. Genome-wide association studies have identified three susceptibility loci (HLA-DPB1, HLA-

DRB1 and *IL18RAP*) associated with increased risk of developing ENKTCL [16,17[•]].

The genomic landscape of ENKTCL is complex. In addition to numerous copy number variations, notably very frequent del (6)(q21-q25) including candidate tumor suppressor genes [18], large scale sequencing studies of several Asian cohorts and one Latin American cohort have highlighted frequent activating mutations of the JAK-STAT pathway (most frequently *STAT3*, less commonly *JAK3* or *STAT5B*), recurrent mutations in epigenetic modifiers (*KMT2C*, *KMT2D*, *TET2*), and recurrent mutations in *DDX3X* (an RNA helicase gene), *BCOR*

FIGURE 1. Histology of extranodal NK T-cell lymphoma (a-c), primary nodal EBV+ T/NK-cell lymphoma (d-f) and aggressive NK-cell leukemia (g-i). (a-c): ENKTCL involving the intestine, showing a pleomorphic large cell neoplasm (a), positive for CD56 (b) and EBV (in situ hybridization)(c); (d-f): primary nodal EBV+ T/NK-cell lymphoma: diffuse proliferation of large cells featuring an immunoblastic to centroblastic morphology (d); strong expression of granzyme B is seen throughout the tumor (e); in-situ hybridization with EBER probes shows positivity in most nuclei (f); (g-i): bone marrow involvement in a case of aggressive NK-cell leukemia: H&E stain shows hypercellular bone marrow and scattered hypochromalic cells with irregular and sometimes elongated nuclei (g); the atypical cells are well highlighted by an immunostain against CD3 (h) and are positive for EBER by in-situ hybridization (i). Original magnifications, x200 to x400.

(encoding a co-repressor of *BCL6*), and *TP53* [19,20]. The relative prevalence of these mutations varies according to studies, with a higher frequency of *STAT3* mutations in Latin American cases, and differences reported according to the NK versus T-cell lineage [12^{•••},20]. Mutations in *DDX3X TP53* and *KMT2D* have been reported to correlate with a worse prognosis [12^{•••},21].

One study has addressed the utility of circulating cell-free DNA (cfDNA) genotyping in high-risk ENKTCL patients and found that at baseline plasma cfDNA had a sensitivity of 72% in detecting mutations also found in tumor biopsies, and allowed the detection of additional mutations; moreover longitudinal analyses under treatment of high-risk patients suggests that plasma cfDNA could represent a noninvasive approach to monitor treatment response and predict survival [22].

A large multiomics study of ENKTCL biopsies defined three prominent molecular subtypes. The TSIM subtype mostly derived from NK cells, had mainly alterations in tumor suppressor (*TP53* and del6q21) and immune modulators (*JAK/STAT* mutations/amplifications (17q21.2) and *PDL1-2* amplifications (9p24.1) The MYC-related (MB) subtype was enriched in *MGA* mutations and LOH at the *BRDT* locus, associated with MYC expression and tumor dissemination, had the worst outcome. The histone epigenetic altered (HEA) subtype characterized by aberrant histone acetylation, correlated with T-cell

lineage, was enriched in mutations in *EP300*, *ARID1A*, *HDAC9*, and had the best outcome [12^{•••}].

Frequent PD-L1 expression is reported in ENKTCL tumors, with different studies having produced heterogeneous results regarding the frequency of PD-L1 positivity and its prognostic significance (favorable, unfavorable or with no effect on overall survival) [23]. Blood cell analyses seem to be more consistent in findings of higher concentrations of serum soluble PD-L1 (sPDL-1) being associated with adverse clinicopathological factors and poor treatment response or outcome [24,25]. Structural variants disrupting the 3' UTR region of *PD-L1* and focal gains or amplifications of the gene locus have been described in 20-23% of the cases [26], result in high PD-L1 expression by immunohistochemistry and were found to predict sensitivity to immune checkpoint inhibitors (ICI) [27] which has emerged as a promising therapeutic strategy in ENKTCL patients [28,29]. Specifically, in one study where whole genome sequencing was performed on 19 tumors from relapsed/refractory ENLTCL patients who were treated by pembrolizumab, the four tumors harboring PD-L1 structural variants (21%) were from patients who responded to the treatment (4/9), while none of the nonresponders (0/10) had a *PD-L1* alteration [27].

In a recent study, Cho *et al.* analyzed the tumor immune microenvironment of ENKTCL by mRNA profiling and immunohistochemistry. They identified distinct subgroups: (i) immune-tolerance, characterized by high Treg counts, frequent early stage disease and nasal localization; (ii) immune evasion (A and B) showing high cytotoxic T-cell counts, high PD-L1 expression and low T-reg counts; and (iii) immune silenced, characterized by immune exhaustion, linked to advanced stage disease and poor prognosis. Interestingly, analysis of the small subset of patients who were treated with pembrolizumab in that study, indicates that immune silenced tumors were non responders (0/%) while 4/6 patients from the other subgroups responded to therapy, suggesting that these microenvironment subgroups may represent biomarkers of response for immunotherapy [30[•]].

Primary EBV+ nodal T/NK cell lymphoma classified as a variant of peripheral T-cell lymphoma (PTCL), NOS in the 2017 WHO classification [31], is segregated as a provisional separate entity in the 2022 International Consensus Classification [2]. This rare disease involves lymph nodes while lacking nasal involvement and tends to occur in elderly adults, in association with HIV infection or immunodeficient conditions [32–34]. Pathological features distinct from ENKTCL include a monomorphic large cell morphology, less frequent necrosis, negativity for CD56, positivity for CD8, and more frequent derivation from T cells than from NK cells [34,35]. Few cases have been investigated by high-throughput sequencing; recurrent mutations have been found in *TET2*, *DNMT3A*, *STAT3*, *PIK3CD* and *DDX3X* [35,36^{••}]. A recent publication focused on the genomic findings in 77 cases, found that primary EBV+ nodal T/NK cell lymphoma is characterized by poor outcome, low genomic instability, upregulation of immune pathways (checkpoint protein PD-L1) that promote immune evasion, and downregulation of EBV miR-NAs [36^{••}].

Aggressive NK-cell leukemia (ANKCL) is a very rare and usally highly aggressive disseminated malignancy derived from NK cells, most often (but not always) associated with EBV infection. While earlier studies disclosed a pattern of chromosomal imbalances distinct from that of ENKTCL, recent NGS studies have shown overlapping characteristics in the mutational landscape of ANKCL and ENKTCL. The most frequently mutated genes include *TET2* (25–30%), *CREBBP* (15–20%) *TP53* (30–35%), *STAT3* (20%) or other genes of the JAK/STAT pathway [37,38[•],39,40]. One study suggested that lack of *TP53* mutation might identify patients following a subacute rather than fulminant clinical course [37].

STANDARD THERAPY AND NEW DEVELOPMENTS

For patients with early-stage disease

More than 70% patients with ENKTCL are earlystage at their first diagnosis, with radiotherapy playing a crucial role in successful therapy of such patients [41]. However, a considerable proportion of patients treated with radiotherapy alone are refractory or eventually relapse [41]. Combined modality therapy (CMT) including chemotherapy and radiotherapy improves outcome and is recommended for stage I/II disease [42,43].

Li *et al.* established a prognostic model consisting of age, performance status, stage, primary tumor invasion, lactate dehydrogenase, and found radiotherapy alone is a proper strategy for patients of the low-risk group [41,44]. More recently, a prognostic index of natural killer lymphoma (PINK) based on age, stage, nonnasal-type disease, distant lymph node involvement, and PINK with detectable Epstein-Barr virus DNA in blood (PINK-E) were developed to improve risk-adapted therapy [45]. Impressively, a comprehensive molecular nomogram model comprised of seven-single nucleotide polymorphism-based classifier and clinicopathological prognostic factors was constructed to help individualized treatment based on the risk scores for localized ENKTCL and complement the current prognostic systems [46].

With the introduction of nonanthracyclinebased therapeutic strategies, the prognosis of patients with ENKTCL has significantly improved [47^{••}]. However, the optimal CMT strategy remains controversial due to the lack of large-scale, randomized controlled trials (RCT) comparing the three frequently used CMT protocols [sequential chemoradiotherapy, concurrent chemoradiotherapy (CCRT), and sandwich chemoradiotherapy.

Common CCRT protocols, such as radiotherapy, concurrently with DeVIC (dexamethasone, etoposide, ifosfamide, and carboplatin) [48] or ESHAP (etoposide, steroid, high-dose Ara-C, and platinum) followed by ESHAP alone [49] or pegaspargase [50], CCRT followed by VIPD (etoposide, ifosfamide, cisplatin, and dexamethasone) [51] or VIDL (etoposide, ifosfamide, dexamethasone, and L-asparaginase) [52] demonstrated therapeutic efficacy. Unfortunately, many patients develop long-term adverse events associated with CCRT, especially on oral and nasal mucosa, which can substantially reduce patients' quality of life [53] (Table 2). Sandwich chemoradiotherapy was similarly effective in early-stage ENKTCL compared to sequential chemoradiotherapy, but with higher incidence of grade 3 or 4 hematological AEs [54]. Chemotherapy regimens included in sandwich chemoradiotherapy are LVP (L-asparaginase, vincristine, and prednisone) [55] and MESA (methotrexate, etoposide, dexamethasone, and pegaspargase) [56].

Sequential chemotherapy combined with radiotherapy showed similar clinical outcome compared with CCRT [57]. A large retrospective multicenter study analyzing sequential P-GEMOX (pegaspargase, gemcitabine and oxaliplatin) and radiotherapy for localized ENTKL, reported a complete response rate and objective response rate (ORR) of 83% and 96% with 3-year progression-free survival and overall survival of 75% and 85%, respectively, which was similar with historical cohorts; however, the incidences of severe hematological toxicities and radiation-induced mucositis were lower than reported for CCRT. Furthermore, a sequential modified SMILE (dexamethasone, methotrexate, ifosfamide, L-asparaginase, and etoposide) and radiotherapy [58], radiotherapy followed by GDP [59], P-GEMOX/GELOX (L-asparaginase plus gemcitabine and oxaliplatin) followed by radiotherapy [60], sequential DICEL (dexamethasone, ifosfamide, cisplatin, etoposide, and L-asparaginase) and radiotherapy [61], sequential DDGP (pegaspargase, gemcitabine, cisplatin and dexamethasone) and radiotherapy [62] were alternative therapeutic protocols. Efficacy and adverse events related to the regimens were listed in Table 2.

In summary, radiotherapy in combination with chemotherapy is essential for successful treatment of newly diagnosed localized ENKTCL. Risk-adapted treatments based on prognostic models contribute to optimize individual therapy.

For patients with advanced and relapsed or refractory (r/r) disease

Chemotherapy is generally regarded as the optimal salvage treatment for advanced and r/r ENKTCL. The main chemotherapy regimens include SMILE [63,64], P-GEMOX [65,66], and AspaMetDex (Lasparaginase, methotrexate, and dexamethasone) [67] with subsequent radiotherapy of residual lesions being an option. The SMILE regimen has shown remarkable clinical efficacy in advanced and r/r ENKTCL, but the hematological toxicity is relatively significant, and the nonhematological toxicity, such as renal function damage, can be significant [63,64,68]. Experienced physicians surveying all supportive treatment are needed to minimize the potential side-effects of this regimen. The P-GEMOX regimen demonstrated considerable efficacy comparable to that of the AspaMetDex regimen, with less toxicity and thus seems more convenient for clinical application [65].

High PD-L1 expression on tumor cells is an independent risk factor for poor prognosis in patients with ENKTCL [69,70]. Anti-PD-1 antibodies exhibit unique efficacy in r/r ENKTCL, and results of several small sample size studies show that pembrolizumab and nivolumab can result in satisfactory ORRs of 57%~100% [28,29,71-73]. In a phase 2 clinical trial, sintilimab monotherapy demonstrated an ORR of 68%, and a 2-year OS rate of 79% in r/r ENKTCL [72]. The efficacy of PD-1 antibody combined with P-GEMOX regimen in advanced ENKTCL is promising, with an ORR of 89%, and the side effects are all manageable [74]. The SCENT study reported that the ORR of sintilimab combined with the histone deacetylase inhibitor (HDACi) chidamide was 58% in r/r ENKTCL, and the complete response rate reached 44%, indicating that it can be used as a new therapeutic option for r/r patients [75].

Avelumab, an anti-PD ligand 1 (PD-L1) antibody, had a CR rate of 24%, and an ORR of 38% in r/r ENKTCL [76]. Another PD-L1 antibody, CS1001, also showed promising efficacy in r/r ENKTCL with an ORR of 43% [77], suggesting that further exploration of the therapeutic value of PD-L1 antibody combination therapy is required.

Several retrospective studies have also indicated that autologous or allogeneic hematopoietic stem

Table 2. Etticacy	and grac	ale 3 or more	e adverse ev	ents associa	ted with tre	eatment									
Treatment	stage	CR/ORR	PFS	leukopenia n	eutropenia	Z	anemia	thrombocytopenia	anorexia	mucositis	stomatitis	nausea or vomiting	liver injury	Infection	ren al njury
RT-DeVIC[48]	1/1	82%/89%	5y 61%	RR	R	17%	Я	R	2%	NR	38%	1%	ЛК	5%	۲
CCRT+ESHAP[49]	11/1	92%/100%	2y 90%	NR	92%	%69	77%	%69	NR	46%	NR	8%	%0	8%	8%
CCRT-pegaspargase[50]	1/1	100%/ 100%	2y 93%	13%	R	R	3%	%0	%0	%0	R	%0	%0	R	Ж
CCRT +VIPD[51]	1/1	80%/83%	3y 85%	0%+47%	R	%09 90%	0%+ 27%	0%+23%	%0+%0	NR	%0+%0	3%+7%	Z	%/+%0	ЯЯ
CCRT+VIDL[52]	1/1	87%/NR	5y 73%	0%+86%	R	0%+ 18%	0%+ 11%	0%+14%	%0+%0	NR	17%+ 21%	0%+11%	0%+11%	R	Ж
LVP+RT+LVP[55]	/	81%/88%	2y 81%	8%	R	NR	%0	%0	NR	23%	R	%0	%0	R	R
P-GEMOX/GELOX+RT [60]	1/1	NR/93%	5y 56%	NR	25%	NR	13%	19%	NR	NR	R	%9	%0	R	Ж
P-GEMOX+RT[87]	1/1	83%//96%	3y 75%	NR	25%	NR	4%	15%	NR	13%	NR	3%	5%	R	R
RT+GDP[59]	11/1	89%/95%	3y 77%	37%	34%	NR	5%	12%	NR	25%	NR	2%	%0	%0	%0
DICEL+RT[61]	/	81%/100%	5y 89%	76%	NR	27%	%6	3%	12%	%9	NR	12%	%0	NR	R
DDGP+RT[62]	11/1	73%/83%	5y 83%	20%	NR	NR	20%	27%	NR	NR	NR	17%	3%	NR	%0
SMILE[63]	IV, r∕r	45%/79%	ly 53%	100%	100%	NR	50%	64%	24%	13%	Z	18%	32% (AST elevation); 32% (ALT elevation);11% (hyperbilitubinemia)	61%ª	5%
SMILE[64]	1/11/1V, r/ r	, 66%/81%	4y DFS64%	NR	67%	R	R	42%	NR	NR	NR	NR	%2	R	1%
P-GEMOX[66]	All, r/r	59%/85%	median 61 mo	NR	28%	NR	7%	29%	NR	NR	NR	%0	7%	NR	R
AspaMetDex[67]	r/r	61%/78%	median 12.2mo	NR	42%	11%	21%	5%	NR	NR	NR	NR	16%	11%	%0
ALT, alanine transaminas survival; r/r, relapsed or ^a two patients died.	ə; AST, asp refractory;	artate transami y, year(s).	inase; CR, com	olete response;	DFS, disease	-free survi	val; FN, f	ebrile neutropenia;	mo, month	s; NR, not	reported; O	NRR, objectiv	e response rate; PFS, pro	gression-fr	e

Lymphoma

Target	Targeted agent	No. of patients	ORR	CR	Reference
PD-1	Pembrolizumab	7	100%	29%	[28]
PD-1	Pembrolizumab	7	57%	29%	[29]
PD-1	Sintilimab	34	75%	21%	[72]
PD-1	Sintilimab+ P-GEMOX	9	89%	78%	[74]
PD-1	Sintilimab+ chidamide	36	58%	44%	[75]
PD-L1	Avelumab	21	38%	24%	[76]
PD-L1	C\$1001	32	43%	33%	[77]
CD38	Daratumumab	32	25%	0%	[82]
CD30	Brentuximab vedotin	7	29%	14%	[84]
CD30	Brentuximab vedotin	1	NR	CR	[83]
CD25	Basiliximab	1	NR	PR	[88]
HDACi	Chidamide	19	50%	31%	[89]
Proteasome inhibitor	$Bortezomib{+}GIFOX^{a}$	7	43%	14%	[90]
Exportin 1 (XPO1)	Selinexor	7	57%	29%	[75]
EBV-CTLs	-	11	50% ^b	13%	[86]
JAK/STAT inhibitor	Tofacitinib and chidamide	Data not yet published	Data not yet published	Data not yet published	NCT03598959
Pi3k inhibitor	-	_	Preclinical	Preclinical	-

 Table 3. Targeted agents in clinical trials and case reports for the treatment of ENKTCL

^aThree of the seven patients were early-stage ENKTCL.

^bIn six patients with predefined evaluable disease.

cell transplantation (HSCT) after high-dose chemotherapy could prolong the survival of ENKTCL patients [78–80].} However, the exact value of autologous HSCT remains controversial due to the small sample size and lack of convincing randomized controlled trial data.

With a better understanding of the molecular genetics and immune pathogenesis of ENKTCL, promising immunotherapies, and targeted therapies such as anti-CD38 antibody [81,82], anti-CD30 antibody [83,84], and antigen-specific EBV-cytotoxic T lymphocyte (CTLs) therapy have attracted great attention [85,86] (Table 3), potentially changing the landscape of treatment for ENKTCL. Although some of these approaches have yielded satisfactory results, more evidence from larger populations is required to validate its survival benefit and elucidate long-term toxicity before clinical application.

CONCLUSION

For the last 2 decades, the progress in the clinical management of ENKTCL patients was based on L-asapraginase-containing combinations and the incorporation of radiation therapy into treatment algorithms. With increasing knowledge on lymphomagenesis, including genomic landscape, and immunologic aspects of the disease, future developments will comprise more targeted approaches, including immune checkpoint inhibitors and novel antibodies.

Acknowledgements

None.

Financial support and sponsorship *None.*

Conflicts of interest

There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest
- Swerdlow SC, E; Harris, NL; Jaffe, ES; Pileri, SA; Stein, H; Thiele, J; Arber, DA; Harsserjian, RP; Le Beau, MM; Orazi, A; Siebert, R. WHO classification of tumours of haematopoietic and lymphoid tissues. In: Bosman FJ, ES; Lakhani, SR; Ohgaki, H, editor. Lyon: International Agency for Research on Cancer (IARC); 2017.
- Campo E, Jaffe ES, Cook JR, et al. The International Consensus Classification of Mature Lymphoid Neoplasms: A Report from the Clinical Advisory Committee. Blood 2022; blood.2022015851. doi: 10.1182/blood.2022015851. Online ahead of print.
- Kimura H. EBV in T-/NK-cell tumorigenesis. Adv Exp Med Biol 2018; 1045:459-475.
- Cohen JI. Epstein-Barr virus infection. N Engl J Med 2000; 343:481– 492.
- Zhang H, Li Y, Wang HB, et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-Barr virus entry. Nat Microbiol 2018; 3:1–8.
- 6. Okuno Y, Murata T, Sato Y, et al. Defective Epstein-Barr virus in chronic

 active infection and haematological malignancy. Nat Microbiol 2019; 4:404-413.

Comprehensive genomic study for chronic active EBV infection which shows that intragenic EBV deletions are frequently seen not only in chronic active EBV infection but also in ENKTCL and EBV-positive DLBCL.

- Peng RJ, Han BW, Cai QO, et al. Genomic and transcriptomic landscapes of Epstein-Barr virus in extranodal natural killer T-cell lymphoma. Leukemia 2018; 33:1451–1462.
- Munz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat Rev Microbiol 2019; 17:691–700.
- Kimura H, Okuno Y, Sato Y, *et al.* Deletion of Viral microRNAs in the Oncogenesis of Epstein-Barr Virus-Associated Lymphoma. Front Microbiol 2021; 12:667968.
- Kanda T, Yajima M, Ikuta K. Epstein-Barr virus strain variation and cancer. Cancer Sci 2019; 110:1132–1139.
- Gewurz BE LR, Cohen JI. Epstein-Barr virus. In: Howley, PM., K.D., Damania, B.A., Cohen, J.I., editor. Fields VIROLOGY. 2: Wolters Kluwer; 2022. Vol. 2 p. 324–388.
- 12. Xiong J, Cui BW, Wang N, et al. Genomic and Transcriptomic
 Characterization of Natural Killer T Cell Lymphoma. Cancer Cell 2020; 37:403-419.

Large multiomics study on ENKTCL biopsy samples deciphering three prominent subtypes, which differ significantly in cell of origin, EBV gene expression, transcriptional signatures, and responses to asparaginase-based regimens and targeted therapy

- Wu CC, Liu MT, Chang YT, et al. Epstein-Barr virus DNase (BGLF5) induces genomic instability in human epithelial cells. Nucleic Acids Res 2010; 38:1932–1949.
- Chiu SH, Wu CC, Fang CY, et al. Epstein-Barr virus BALF3 mediates genomic instability and progressive malignancy in nasopharyngeal carcinoma. Oncotarget 2014; 5:8583–8601.
- Hong M, Lee T, Young Kang S, et al. Nasal-type NK/T-cell lymphomas are more frequently T rather than NK lineage based on T-cell receptor gene, RNA, and protein studies: lineage does not predict clinical behavior. Mod Pathol 2016; 29:430–443.
- Li Z, Xia Y, Feng LN, et al. Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study. Lancet Oncol 2016; 17:1240-1247.
- 17. Lin GW, Xu C, Chen K, *et al.* Genetic risk of extranodal natural killer T-cell
 lymphoma: a genome-wide association study in multiple populations. Lancet Oncol 2020; 21:306–316.

Large genome-wide association study of NKTCL in multiple populations from east Asia showing the importance of inflammation and immune regulation through the IL18-IL18RAP axis and antigen presentation involving HLA-DRB1, in the development of ENKTCL

- Huang Y, de Reynies A, de Leval L, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood 2010; 115:1226–1237.
- Song TL, Nairismagi ML, Laurensia Y, et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood 2018; 132:1146-1158.
- Montes-Mojarro IA, Chen BJ, Ramirez-Ibarguen AF, et al. Mutational profile and EBV strains of extranodal NK/T-cell lymphoma, nasal type in Latin America. Mod Pathol 2020; 33:781-791.
- Gao Y, Li Y, Ma G, et al. KMT2D and TP53 mutation status improve the prognostic value of the International Prognostic Index (IPI) stratification in ENKTCL patients. Neoplasma 2020; 67:636–643.
- Qi F, Cao Z, Chen B, et al. Liquid biopsy in extranodal NK/T-cell lymphoma: a prospective analysis of cell-free DNA genotyping and monitoring. Blood Adv 2021; 5:2505–2514.
- Chan JY, Lim JQ, Ong CK. Towards next generation biomarkers in natural killer/T-cell lymphoma. Life (Basel) 2021; 11:838.
- Feng Y, Jing C, Yu X, et al. Predicting treatment response of patients with extranodal natural killer/T-cell lymphoma based on levels of PD-L1 mRNA and soluble PD-L1. Hematol Oncol 2020; 38:467–477.
- Li JW, Wei P, Guo Y, et al. Clinical significance of circulating exosomal PD-L1 and soluble PD-L1 in extranodal NK/T-cell lymphoma, nasal-type. Am J Cancer Res 2020; 10:4498–4512.
- Kataoka K, Miyoshi H, Sakata S, et al. Frequent structural variations involving programmed death ligands in Epstein-Barr virus-associated lymphomas. Leukemia 2019; 33:1687–1699.
- Lim JQ, Huang D, Tang T, *et al.* Whole-genome sequencing identifies responders to Pembrolizumab in relapse/refractory natural-killer/T cell lymphoma. Leukemia 2020; 34:3413–3419.
- Kwong YL, Chan TSY, Tan D, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood 2017; 129:2437–2442.
- Li X, Cheng Y, Zhang M, et al. Activity of pembrolizumab in relapsed/refractory NK/T-cell lymphoma. J Hematol Oncol 2018; 11:15.
- 30. Cho J, Kim SJ, Park WY, *et al.* Immune subtyping of extranodal NK/T-cell
 lymphoma: a new biomarker and an immune shift during disease progression. Mod Pathol 2020; 33:603–615.

Classification of ENKTCL into four tumor immune microenvironment subgroups which may change during disease progression and may serve as a useful biomarker for immunotherapy.

 Swerdlow SH, Campo E, Pileri SA, *et al.* The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127:2375-2390.

- 32. Attygalle AD, Cabecadas J, Gaulard P, et al. Peripheral T-cell and NK-cell lymphomas and their mimics; taking a step forward - report on the lymphoma workshop of the XVIth meeting of the European Association for Haematopathology and the Society for Hematopathology. Histopathology 2014; 64:171–199.
- Kato S, Asano N, Miyata-Takata T, et al. T-cell receptor (TCR) phenotype of nodal Epstein-Barr virus (EBV)-positive cytotoxic T-cell lymphoma (CTL): a clinicopathologic study of 39 cases. Am J Surg Pathol 2015; 39:462–471.
- Kato S, Yamashita D, Nakamura S. Nodal EBV+ cytotoxic T-cell lymphoma: a literature review based on the 2017 WHO classification. J Clin Exp Hematop 2020; 60:30-36.
- 35. Nicolae A, Bouilly J, Lara D, et al. Nodal cytotoxic peripheral T-cell lymphoma occurs frequently in the clinical setting of immunodysregulation and is associated with recurrent epigenetic alterations. Mod Pathol 2022. doi: 10.1038/s41379-022-01022-w. Online ahead of print.
- Wai CMM, Chen S, Phyu T, et al. Immune pathway upregulation and lower
 genomic instability distinguish EBV-positive nodal T/NK-cell lymphoma from ENKTCL and PTCL-NOS. Haematologica 2022. doi: 10.3324/haematol.2021.280003. Online ahead of print.

This study highlights distinctive features of primary nodal EBV-positive T and NK cell lymphomas as compared to extranodal NK/T-cell lymphomas, supporting a separate disease entity

- Dufva O, Kankainen M, Kelkka T, et al. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nat Commun 2018; 9:1567.
- 88. El Hussein S, Medeiros LJ, Khoury JD. Aggressive NK cell leukemia: current
 state of the art. Cancers (Basel) 2020; 12:2900.

Review summarizing recent publications on the pathology, genomic, and clinical features of aggressive NK-cell leukemia.

- El Hussein S, Patel KP, Fang H, et al. Genomic and immunophenotypic landscape of aggressive NK-cell leukemia. Am J Surg Pathol 2020; 44:1235–1243.
- Huang L, Liu D, Wang N, *et al.* Integrated genomic analysis identifies deregulated JAK/STAT-MYC-biosynthesis axis in aggressive NK-cell leukemia. Cell Res 2018; 28:172–186.
- 41. Qi SN, Yang Y, Zhang YJ, et al. Risk-based, response-adapted therapy for early-stage extranodal nasal-type NK/T-cell lymphoma in the modern chemotherapy era: a China Lymphoma Collaborative Group study. Am J Hematol 2020; 95:1047–1056.
- Yamaguchi M, Suzuki R, Oguchi M. Advances in the treatment of extranodal NK/T-cell lymphoma, nasal type. Blood 2018; 131:2528-2540.
- Cai Q, Cai J, Fang Y, Young KH. Epstein-Barr virus-positive natural killer/T-cell lymphoma. Front Oncol 2019; 9:386.
- 44. Chen SY, Yang Y, Qi SN, et al. Validation of nomogram-revised risk index and comparison with other models for extranodal nasal-type NK/T-cell lymphoma in the modern chemotherapy era: indication for prognostication and clinical decision-making. Leukemia 2021; 35:130–142.
- 45. Kim SJ, Yoon DH, Jaccard A, et al. A prognostic index for natural killer cell lymphoma after nonanthracycline-based treatment: a multicentre, retrospective analysis. Lancet Oncol 2016; 17:389–400.
- 46. Tian XP, Ma SY, Young KH, et al. A composite single-nucleotide polymorphism prediction signature for extranodal natural killer/T-cell lymphoma. Blood 2021; 138:452–463.
- Fox CP, Civallero M, Ko YH, et al. Survival outcomes of patients with extranodal
 natural-killer T-cell lymphoma: a prospective cohort study from the international

T-cell Project. The Lancet Haematology 2020; 7:e284-e294. This study highlights current treatment landscape and treatment outcome from a multinational prospective cohort.

- Yamaguchi M, Suzuki R, Oguchi M, et al. Treatments and outcomes of patients with extranodal natural killer/T-cell lymphoma diagnosed between 2000 and 2013: a cooperative study in Japan. J Clin Oncol 2017; 35:32–39.
- 49. Michot JM, Mazeron R, Danu A, et al. Concurrent etoposide, steroid, highdose ara-C and platinum chemotherapy with radiation therapy in localised extranodal natural killer (NK)/T-cell lymphoma, nasal type. Eur J Cancer 2015; 51:2386-2395.
- 50. Wang H, Wang L, Li C, et al. Pegaspargase combined with concurrent radiotherapy for early-stage extranodal natural killer/T-cell lymphoma, nasal type: a two-center phase II study. Oncologist 2020; 25:e1725-e1731.
- Kim SJ, Kim K, Kim BS, *et al.* Phase II trial of concurrent radiation and weekly cisplatin followed by VIPD chemotherapy in newly diagnosed, stage IE to IIE, nasal, extranodal NK/T-Cell Lymphoma: Consortium for Improving Survival of Lymphoma study. J Clin Oncol 2009; 27:6027–6032.
- Kim SJ, Yang DH, Kim JS, et al. Concurrent chemoradiotherapy followed by Lasparaginase-containing chemotherapy, VIDL, for localized nasal extranodal NK/T cell lymphoma: CISL08-01 phase II study. Ann Hematol 2014; 93:1895–1901.
- 53. Tse E, Kwong YL. Diagnosis and management of extranodal NK/T cell lymphoma nasal type. Expert Rev Hematol 2016; 9:861–871.
- 54. Li J, Li Y, Zhong M, et al. A multicenter retrospective comparison of sequential versus sandwich chemoradiotherapy for Stage IE-IIE extranodal natural killer/ T-cell lymphoma, nasal type. J Cancer 2018; 9:1598–1606.
- 55. Jiang M, Zhang H, Jiang Y, et al. Phase 2 trial of 'sandwich' L-asparaginase, vincristine, and prednisone chemotherapy with radiotherapy in newly diagnosed, stage IE to IIE, nasal type, extranodal natural killer/T-cell lymphoma. Cancer 2012; 118:3294–3301.

- 56. Xu PP, Xiong J, Cheng S, et al. A Phase II study of methotrexate, etoposide, dexamethasone and pegaspargase sandwiched with radiotherapy in the treatment of newly diagnosed, Stage IE to IIE extranodal natural-killer/T-cell lymphoma, nasal-type. EBioMedicine 2017; 25:41–49.
- Kwong YL, Kim SJ, Tse E, et al. Sequential chemotherapy/radiotherapy was comparable with concurrent chemoradiotherapy for stage I/II NK/T-cell lymphoma. Ann Oncol 2018; 29:256–263.
- Lunning M, Pamer E, Maragulia J, et al. Modified SMILE (mSMILE) is active in the treatment of extranodal natural killer/t-cell lymphoma: a single center US experience. Clin Lymphoma Myeloma Leuk 2014; 14:S143–S144.
- Huang Y, Yang J, Liu P, *et al.* Intensity-modulated radiation therapy followed by GDP chemotherapy for newly diagnosed stage I/II extranodal natural killer/T cell lymphoma, nasal type. Ann Hematol 2017; 96:1477–1483.
- Bi XW, Xia Y, Zhang WW, et al. Radiotherapy and PGEMOX/GELOX regimen improved prognosis in elderly patients with early-stage extranodal NK/T-cell lymphoma. Ann Hematol 2015; 94:1525–1533.
- Dong LH, Zhang LJ, Wang WJ, et al. Sequential DICE combined with lasparaginase chemotherapy followed by involved field radiation in newly diagnosed, stage IE to IIE, nasal and extranodal NK/T-cell lymphoma. Leuk Lymphoma 2016; 57:1600–1606.
- 62. Zhang L, Wang Y, Li X, et al. Radiotherapy vs sequential pegaspargase, gemcitabine, cisplatin and dexamethasone and radiotherapy in newly diagnosed early natural killer/T-cell lymphoma: a randomized, controlled, openlabel, multicenter study. Int J Cancer 2021; 148:1470-1477.
- 63. Yamaguchi M, Kwong YL, Kim WS, et al. Phase II study of SMILE chemotherapy for newly diagnosed stage IV, relapsed, or refractory extranodal natural killer (NK)/T-cell lymphoma, nasal type: the NK-Cell Tumor Study Group study. J Clin Oncol 2011; 29:4410–4416.
- Kwong YL, Kim WS, Lim ST, et al. SMILE for natural killer/T-cell lymphoma: analysis of safety and efficacy from the Asia Lymphoma Study Group. Blood 2012; 120:2973–2980.
- 65. Huang HQ, Yan G, Su H, et al. Clinical outcome of an multicentre, randomized, Phase II clinical trial for patients with extranodal NK/T cell lymphoma treated by P-gemox or aspametdex. Blood 2019; 134:1469.
- 66. Yan G, Huang HO, Wang XX, et al. P-gemox regimen(pegaspargase, gemcitabine, oxaliplatin) for extranodal natural killer cell lymphoma: 10 years' realworld clinical experience from China. Blood 2018; 132:1659.
- 67. Jaccard A, Gachard N, Marin B, et al. Efficacy of L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study. Blood 2011; 117:1834–1839.
- Kim SJ, Park S, Kang ES, *et al.* Induction treatment with SMILE and consolidation with autologous stem cell transplantation for newly diagnosed stage IV extranodal natural killer/T-cell lymphoma patients. Ann Hematol 2015; 94:71–78.
- 69. Muhamad H, Suksawai N, Assanasen T, et al. Programmed cell death 1 and programmed cell death ligands in extranodal natural killer/T cell lymphoma: expression pattern and potential prognostic relevance. Acta Haematol 2020; 143:78–88.
- Bi XW, Wang H, Zhang WW, et al. PD-L1 is upregulated by EBV-driven LMP1 through NF-kappa B pathway and correlates with poor prognosis in natural killer/T-cell lymphoma. J Hematol Oncol 2016; 9:109.
- Chan TSY, Li J, Loong F, et al. PD1 blockade with low-dose nivolumab in NK/T cell lymphoma failing L-asparaginase: efficacy and safety. Ann Hematol 2018; 97:193–196.
- 72. Tao R, Fan L, Song Y, et al. Sintilimab for relapsed/refractory extranodal NK/T cell lymphoma: a multicenter, single-arm, phase 2 trial (ORIENT-4). Signal Transduct Target Ther 2021; 6:365.
- Asif S, Begemann M, Bennett J, *et al.* Pembrolizumab in newly diagnosed EBV-negative extranodal natural killer/T-cell lymphoma: a case report. Mol Clin Oncol 2019; 10:397–400.

- 74. Cai J, Liu P, Huang H, et al. Combination of anti-PD-1 antibody with P-GEMOX as a potentially effective immunochemotherapy for advanced natural killer/T cell lymphoma. Signal Transduct Target Ther 2020; 5:289.
- 75. Gao Y, Huang HQ, Wang XX, et al. Anti-PD-1 antibody (sintilimab) plus histone deacetylase inhibitor (chidamide) for the treatment of refractory or relapsed extranodal natural killer/T cell lymphoma, nasal type (r/r-ENKTCL): preliminary results from a prospective, multicenter, single-arm, Phase lb/II trial (SCENT). Blood 2020; 136:39- L 40.
- Kim SJ, Lim JQ, Laurensia Y, et al. Avelumab for the treatment of relapsed or refractory extranodal NK/T-cell lymphoma: an open-label phase 2 study. Blood 2020; 136:2754–2763.
- 77. Huang HQ, Tao R, Zou LQ, et al. Preliminary results from a multicenter, singlearm, Phase 2 study of CS1001, an anti-programmed death-ligand 1 (PD-L1) human monoclonal antibody (mAb), in patients (pts) with relapsed or refractory extranodal natural killer/T cell lymphoma (rr-ENKTCL). Blood 2019; 134:2833.
- 78. Wang J, Wei L, Ye J, et al. Autologous hematopoietic stem cell transplantation may improve long-term outcomes in patients with newly diagnosed extranodal natural killer/T-cell lymphoma, nasal type: a retrospective controlled study in a single center. Int J Hematol 2018; 107:98–104.
- 79. Yhim HY, Kim JS, Mun YC, et al. Clinical outcomes and prognostic factors of up-front autologous stem cell transplantation in patients with extranodal natural killer/T cell lymphoma. Biol Blood Marrow Transplant V 21 2015; 1597–1604.
- Kanate AS, DiGilio A, Ahn KW, et al. Allogeneic haematopoietic cell transplantation for extranodal natural killer/T-cell lymphoma, nasal type: a CIBMTR analysis. Br J Haematol 2018; 182:916–920.
- Wang L, Wang H, Li PF, et al. CD38 expression predicts poor prognosis and might be a potential therapy target in extranodal NK/T cell lymphoma, nasal type. Ann Hematol 2015; 94:1381–1388.
- 82. Huang H, Zhu J, Yao M, et al. Daratumumab monotherapy for patients with relapsed or refractory natural killer/T-cell lymphoma, nasal type: an open-label, single-arm, multicenter, phase 2 study. J Hematol Oncol 2021; 14:25.
- Kim HK, Moon SM, Moon JH, et al. Complete remission in CD30-positive refractory extranodal NK/T-cell lymphoma with brentuximab vedotin. Blood Res 2015; 50:254–256.
- Kim SJ, Yoon DH, Kim JS, et al. Efficacy of brentuximab vedotin in relapsed or refractory high-CD30-expressing non-hodgkin lymphomas: results of a multicenter, open-labeled Phase II trial. Cancer Res Treat 2020; 52:374–387.
- Kim WS, Ardeshna KM, Lin Y, et al. Autologous EBV-specific T cells (CMD-003): early results from a multicenter, multinational Phase 2 trial for treatment of EBV-associated NK/T-cell lymphoma. Blood 2017; 130:4073.
- Cho S-G, Kim N, Sohn H-J, et al. Long-term outcome of extranodal NK/T cell lymphoma patients treated with postremission therapy using EBV LMP1 and LMP2a-specific CTLs. Mol Ther 2015; 23:1401–1409.
- Zhang Y, Ma S, Cai J, et al. Sequential P-GEMOX and radiotherapy for earlystage extranodal natural killer/T-cell lymphoma: A multicenter study. Am J Hematol 2021; 96:1481–1490.
- Wang L, Bi XW, Zhu YJ, et al. IL-2Ralpha up-regulation is mediated by latent membrane protein 1 and promotes lymphomagenesis and chemotherapy resistance in natural killer/T-cell lymphoma. Cancer Commun 2018; 38:62.
- 89. Yan G, Huang HO, Li PF, et al. Chidamide, oral subtype-selective histone deacetylase inhibitor (HDACI) monotherapy was effective on the patients with relapsed or refractory extranodal natural killer (NK)/T-cell lymphoma. Blood 2017; 130:2797.
- Tang T, Tay K, Tao M, et al. A Phase II study of bortezomib-GIFOX (gemcitabine, ifosfamide, oxaliplatin) in patients with newly diagnosed natural-killer/ T-cell lymphoma. Blood 2016; 128:5353.