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Due to postmortem DNA degradation and microbial colonization, most ancient
genomes have low depth of coverage, hindering genotype calling. Genotype
imputation can improve genotyping accuracy for low-coverage genomes.
However, it is unknown how accurate ancient DNA imputation is and whether
imputation introduces bias to downstream analyses. Here we re-sequence an
ancient trio (mother, father, son) and downsample and impute a total of 43
ancient genomes, including 42 high-coverage (above 10x) genomes. We assess
imputation accuracy across ancestries, time, depth of coverage, and sequen-
cing technology. We find that ancient and modern DNA imputation accuracies
are comparable. When downsampled at 1x, 36 of the 42 genomes are imputed
with low error rates (below 5%) while African genomes have higher error rates.
We validate imputation and phasing results using the ancient trio data and an
orthogonal approach based on Mendel’s rules of inheritance. We further
compare the downstream analysis results between imputed and high-coverage
genomes, notably principal component analysis, genetic clustering, and runs
of homozygosity, observing similar results starting from 0.5x coverage, except
for the African genomes. These results suggest that, for most populations and
depths of coverage as low as 0.5x, imputation is a reliable method that can
improve ancient DNA studies.

Ancient DNA (aDNA) is characterized by pervasive postmortem
damage, including fragmentation and deamination'. Moreover, the
ubiquitous microbial contamination gives rise to, in most cases, low
amounts of endogenous DNA, whereas contamination with DNA
from related species is an even bigger challenge, as the endogenous
and the contaminant DNA cannot be easily deconvolved, and thus

highly contaminated genomes are often discarded from the
analyses’. As a result, most ancient genomes have low breadth and
depth of coverage, hindering confident genotype calling. Instead,
pseudo-haploid data are commonly generated by sampling one allele
per variant site**. Evermore methods and tools are developed to
study population structure, including diploid genetic properties

Department of Computational Biology, University of Lausanne, Lausanne, Switzerland. 2Swiss Institute of Bioinformatics, University of Lausanne,
Lausanne, Switzerland. *Department of Biology, California State University, Northridge, California, USA. “Lundbeck Foundation GeoGenetics Centre, Globe
Institute, University of Copenhagen, Copenhagen, Denmark. ®Department of Archaeology and Heritage Studies, Aarhus University, Aarhus, Denmark.
SInstitute for Eastern Research, Adam Mickiewicz University in Poznan, Poznan, Poland. “Institute of Archaeology and Ethnology, Polish Academy of Sciences,
Krakéw, Poland. 8Department of Anatomy, Jagiellonian University, Medical College, Krakéw, Poland. ®Institute of Archaeology, Jagiellonian University,
Krakéw, Poland. '°The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. "Trace and Environmental
DNA (TrEnD) Laboratory, School of Molecular and Life Science, Curtin University, Bentley, WA, Australia. ?GeoGenetics Group, Department of Zoology,
University of Cambridge, Cambridge, UK. "*Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK. MARUM, University of Bremen,

Bremen, Germany. "°These authors contributed equally: Anna-Sapfo Malaspinas, Olivier Delaneau.

olivier.delaneau@unil.ch

e-mail: annasapfo.malaspinas@unil.ch;

Nature Communications | (2023)14:3660


http://orcid.org/0000-0002-7725-4813
http://orcid.org/0000-0002-7725-4813
http://orcid.org/0000-0002-7725-4813
http://orcid.org/0000-0002-7725-4813
http://orcid.org/0000-0002-7725-4813
http://orcid.org/0000-0002-5309-6937
http://orcid.org/0000-0002-5309-6937
http://orcid.org/0000-0002-5309-6937
http://orcid.org/0000-0002-5309-6937
http://orcid.org/0000-0002-5309-6937
http://orcid.org/0000-0003-2818-8319
http://orcid.org/0000-0003-2818-8319
http://orcid.org/0000-0003-2818-8319
http://orcid.org/0000-0003-2818-8319
http://orcid.org/0000-0003-2818-8319
http://orcid.org/0000-0003-0359-7386
http://orcid.org/0000-0003-0359-7386
http://orcid.org/0000-0003-0359-7386
http://orcid.org/0000-0003-0359-7386
http://orcid.org/0000-0003-0359-7386
http://orcid.org/0000-0002-3906-8446
http://orcid.org/0000-0002-3906-8446
http://orcid.org/0000-0002-3906-8446
http://orcid.org/0000-0002-3906-8446
http://orcid.org/0000-0002-3906-8446
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39202-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39202-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39202-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39202-0&domain=pdf
mailto:annasapfo.malaspinas@unil.ch
mailto:olivier.delaneau@unil.ch

Article

https://doi.org/10.1038/s41467-023-39202-0

such as runs of homozygosity (ROH)®, using pseudo-haploid data.
However, on the one hand, methods designed for diploid and hap-
lotypic data cannot be easily applied to pseudo-haploid data, and, on
the other hand, these data come with increased bias toward the
reference genome®.

One alternative to downsampling the data to pseudo-haploid is to
impute low-coverage ancient genomes. The goal of imputation is to
infer missing sites, usually by using reference panels of haplotypes.
Most imputation tools employ a hidden Markov model (HMM) that
determines which assembly of reference haplotype chunks represents
the target best. The Li and Stephen model of linkage disequilibrium
(LD)” and haplotype sharing is at the core of this HMM. This model
describes LD in terms of the subjacent recombination rates. In parti-
cular, it estimates the probability of observing a chromosome (or
haplotype) given the previously sampled haplotypes from a popula-
tion by considering the new haplotype as a copy of different parts of
the sampled haplotypes while allowing mutations to arise. The tran-
sition rate between copying haplotypes is proportional to the recom-
bination rate and it decreases with the number of available haplotypes
to copy from.

SNP-array imputation is applied when genomes are genotyped at
a subset of variant sites®. SNP-array imputation of modern DNA is
often implemented to increase sample sizes for genome wide asso-
ciation studies, so as to reduce sequencing costs’. It is also possible
to impute low-coverage genomes whose genotypes cannot be
determined with certainty, in which case genotype uncertainty is
captured by likelihoods'* ™. This second type of method is suitable to
impute low-coverage ancient genomes. Present-day genotypes have
been imputed with increasing accuracy due to improved imputation
methods on the one hand, and increased reference panel size and
diversity on the other hand, such as the Haplotype Reference Con-
sortium (HRC)", the 1000 Genomes Project” and TOPMed'. These
advances have also been exploited to impute low-coverage ancient
genomes, using present-day haplotypes, assuming matching ances-
try (e.g., Martiniano et al.” Haber et al.?° Saupe et al.* Clemente
et al.”, Cox et al.” Allentoft et al.**).

However, aDNA introduces extra challenges, including damage
and potential contamination®, and it is not clear whether ancient
individuals’ ancestries are well captured by reference panels of
present-day individuals. Moreover, a precise quantification of possible
imputation biases and errors is lacking. Hui et al.”® proposed a two-step
imputation pipeline to be applied to ancient genomes. This pipeline
first imputes based on genotype likelihoods using Beagle4.1", and then
removes sites based on their maximum genotype probability (GP), a
measure of how likely each possible genotype at a site is after impu-
tation. The resulting genotype calls are again imputed with Beagle5”,
followed by a final GP filtering step. When compared to the first
imputation step alone, this pipeline yielded larger proportions of
heterozygous sites that pass the specified GP threshold. Nonetheless, a
single downsampled ancient European genome was used to validate
these results. Cox et al.” further compared the proposed pipeline in
Hui et al. with simply imputing with Beagle4.1 and GLIMPSE, using the
same ancient genome for downsampling experiments. The precision
was highest with GLIMPSE, but Hui et al. pipeline yielded the highest
recall. Another recent study”® assessed the imputation of ancient
genomes performance by downsampling (0.1-2.0x) and imputing
genomes from five high-coverage ancient Europeans using Beagle4.0”
and various reference panel and sample size configurations. The
authors measured genotype concordance, bias towards the reference
panel and compared projections of the high-coverage, low-coverage
and imputed 1x data onto principal component analysis (PCA) of
present-day data. Imputation accuracy improved when i) using all
populations in the 1000 Genomes reference panel instead of restrict-
ing to European genotypes alone and ii) the ancient genomes were
imputed simultaneously. They found no bias increase towards the

most common reference panel allele for ancient genome coverages as
low as 0.75x.

These studies suggest that aDNA imputation performs well
under specific conditions. However, in their assessment of imputation
accuracy they used a limited sample of ancient genomes (one*® or
five”®) and of only European descent. Furthermore, more accurate and
efficient low-coverage imputation methods are available, e.g.,
GLIMPSE®, than the methods they tested, i.e., Beagle4.0 and 4.1.

Here, we make use of 43 ancient genomes®?°~°, including an
ancient trio and 42 high-coverage (>10x) genomes, from four different
continents and different time spans to assess i) imputation accuracy of
low-coverage ancient genomes and ii) how imputation affects down-
stream analyses. Our overall goal is to give users a sense of the per-
formance of imputation and to measure whether large biases are
introduced in standard downstream population genetic analyses; we
do not compare the pseudo-haploid and the imputation strategies in
this study as we believe they can be used in a complementary fashion.
To this end, we downsampled to low coverage this diverse dataset of
ancient genomes, which allowed us to quantify imputation perfor-
mance across different ancestries, unlike, to our knowledge, any other
previous study. We imputed the downsampled ancient genomes with
GLIMPSE®, a state-of-the-art imputation and phasing tool that was
shown to accurately impute low-coverage present-day genomes when
relying on 1000 Genomes” as a reference panel. In the next sections,
we show that imputation yields accurate genotypes at common var-
iants (minor allele frequency (MAF) >5%) starting at 0.5X, and transi-
tion and transversion sites are imputed with similar accuracy. We
obtain low error imputation error rates for 1x non-African ancient
genomes and we observe a decrease in imputation accuracy at rare
variants for the ancient genomes dated back more than 30,000 years
before present. We further assess imputation and phasing perfor-
mance in the case of the ancient trio. We test different post-imputation
filtering stringency levels and we find that more stringent filtering
resulted in a higher number of lost alternative-allele variant sites. We
show that imputation of in-solution capture (1240 K) sequenced gen-
omes produces more accurate genotypes at the capture sites, with a
small reduction in accuracy at the non-targeted common variants. To
address our second goal, we study the effects of imputation not only
on PCA, but also on genetic clustering and ROH analyses. Comparing
to the high-coverage genomes, we obtain similar results for these
downstream applications when depth of coverage is at least 0.5x.

23,26,28

Results

The approach we followed in this study is schematically described in
Fig. 1a. We generated two datasets: imputed genotypes from down-
sampled genomes and corresponding validation genotypes called
from the high-coverage ancient genomes, that is, the ground truth. We
started by sampling fractions of the sequencing reads from the 43
ancient genomes to obtain genomes with average depths of coverage
between 0.1x and 2.0x. Then, using bcftools™ (see Supplementary
Note 1 and Supplementary Fig. 1 on the choice of genotype caller prior
to imputation), we generated genotype likelihoods at biallelic sites of
the 1000 Genomes phase 3 v5 data’ phased with TOPMed®, the
imputation reference panel, including all transition sites, in contrast to
other studies®®. We then imputed the data with GLIMPSE with the dif-
ferent steps described in the methods section. Lastly, we called gen-
otypes for the high-coverage genomes and filtered out low-quality calls
(methods, Supplementary Note 2 and Supplementary Fig. 2), thus
reducing the deamination impact. Finally, we assessed imputation
performance and compared downstream analyses’ results.

Three out of the 43 ancient genomes in this study constitute a trio
(mother, father and son) that were re-sequenced in this study®**, in
contrast to the remaining 40 genomes. These 43 ancient genomes
were published in different studies and relate to different epochs and
continents. In total, the data includes 22 individuals from Europe, five
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Fig. 1| Methodology and individual samples’ origin and age. a Overview of the
procedure we followed., b Geographical origin and age in years before present
(ybp) of the 43 individual samples used in this study as well as the different
populations represented in the 1000 Genomes reference panel (ACB: African
Caribbean in Barbados, ASW: African ancestry in Southwest USA, BEB: Bengali from
Bangladesh, CDX: Chinese Dai in Xishuangbanna, China, CEU: Utah residents with
Northern and Western European ancestry, CHB: Han Chinese in Beijing, China, CHS:
Southern Han Chinese, CLM: Colombian in Medellin, Colombia, ESN: Esan in
Nigeria, FIN: Finnish in Finland, GBR: British in England and Scotland, GIH: Gujarati

Indian from Houston, Texas, GWD: Gambian in Western Divisions in the Gambia,
IBS: Iberian populations in Spain, ITU: Indian Telugu from the UK, JPT: Japanese in
Tokyo, Japan, KHV: Kinh in Ho Chi Minh City, Vietnam, LWK: Luhya in Webuye,
Kenya, MSL: Mende in Sierra Leone, MXL: Mexican ancestry in Los Angeles, Cali-
fornia, PEL: Peruvian in Lima, Peru, PJL: Punjabi from Lahore, Pakistan, PUR: Puerto
Rican in Puerto Rico, STU: Sri Lankan Tamil from the UK, TSI: Toscani in Italy, YRI:
Yoruba in Ibadan, Nigeria). WGS: whole genome sequencing; DoC: depth of cov-
erage; PC: principal component; ROH: runs of homozygosity. Made with Natural
Earth. Free vector and raster map data @naturalearthdata.com.

from Africa, eight from Asia and eight from the Americas (Fig. 1b). For
five of the individual samples, we had access to both high-coverage
shotgun and capture data. Information concerning location and age of
remains, and genome coverage is included in Supplementary Table 1
and Supplementary Table 4. To increase readability and to be able to
summarize the results in more straightforward way, we split the indi-
vidual samples into categories that reflect their geographical origin
and/or the period they lived in: Africa, Americas, Prehistoric Europe,
Historic Europe, Western Asia, South Asia and Siberia (Supplementary
Table 2). While we refer to these categories throughout the text, we
recognize, however, that these labels can be vague and are obviously
not fully descriptive, as discussed in Coop™.

Accuracy of low-coverage ancient DNA imputation

We started by examining how imputation quality changes with
average depth of coverage, and whether transversions are more
accurately imputed than transitions, since the latter are affected by
postmortem DNA deamination, i.e., C-to-T substitutions, which might
wrongly increase the number of called heterozygous sites. We fur-
ther compared imputation performance using two different state-
of-the-art imputation methods, GLIMPSE and Beagle4.1”, where
the latter is a widely used imputation method and was also con-
sidered in ref. ?°. For that, we calculated imputation accuracy, %, that
is, the squared Pearson correlation between genotype dosage in
the aggregate of the 42 high-coverage and imputed datasets, as a
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Fig. 2 | Imputation quality assessment for 1x ancient genomes and genetic
distance to 1000 Genomes reference panel. a Imputation accuracy (r) as a
function of minor allele frequency (MAF) for the 42 high-coverage genomes
together downsampled to different depths of coverage (top left) and for individual
1x genomes (remaining plots). Depending on ancestry, MAF was specified from the
reference populations expected to be closer to the individual in question, whenever
possible, as listed in Supplementary Table 1. Individuals were put in categories that

roughly reflect their place of origin and/or time. b Allelic pairwise differences
between each ancient high-coverage genome (x-axis) and each of the 2504 indivi-
duals in 1000 Genomes reference panel, colored by continental group. ¢ Resulting
non-reference discordance (NRD) from imputing 42 ancient genomes down-
sampled to 1x. In plots b and ¢, individual samples are ordered by sample age within
each category (oldest to the left).

function of minor allele frequency (MAF) as determined from the
1000 Genomes reference panel.

We found that imputation accuracy of ancient genomes was
similar to the accuracy reported for present-day genomes when using
the same imputation method (Supplementary Note 4 and Supple-
mentary Fig. 3). Accuracy was higher at common variants (MAF > 5%)
(Fig. 2a), as rare variants are more challenging to impute®*, Imputation
accuracy was also higher for genomes with higher coverage, as these
have more data. In particular, for depths equal and greater than 0.75x,

we obtained r* > 0.90 at sites with MAF > 2%, and r* > 0.70 and r* > 0.95
for rare (0.1% < MAF <1%) and common variants (MAF >10%), respec-
tively. We then found that GLIMPSE outperformed Beagle4.1 for 1x
ancient genomes, particularly at rare variants (Supplementary Fig. 4),
similarly to the case of present-day genomes". Finally, there were small
differences in accuracy between imputed transversion and transition
sites at rare variants (0.1% < MAF <1%, r*=0.75 and = 0.77 for tran-
sitions and transversions, respectively), but these differences dis-
appeared for more common variants (Supplementary Fig. 4).
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Fixing depth of coverage at 1x, we evaluated how imputation
performs across the 42 high-coverage genomes of different ancestries
and times. In addition to imputation accuracy as a function of MAF, we
quantified genotyping error rates for homozygous reference and
alternative allele and heterozygous sites. We also report the non-
reference discordance (NRD), that is, the ratio of the number of
incorrectly imputed sites and the total number of imputed sites,
excluding correctly imputed homozygous reference allele sites.

The imputation of European, Western Asian, and most Native
American genomes yielded similar accuracy curves starting with lower
values for rare variants (0.5 < * < 0.9) and converging to r* = 0.90 from
MAF >2% (Fig. 2a). The African ancient genomes were the least accu-
rately imputed with only two out of five imputed genomes reaching
’>0.90, and error rates as high as 18% at heterozygous sites (Sup-
plementary Fig. 5), the most challenging to impute, and NRD between
4% and 29% (Fig. 2c). In contrast, most non-African imputed genomes
yielded NRD rates below 5%. This difference in imputation perfor-
mance is likely due to underrepresentation of the different African
populations in the reference panel. Indeed, the ancient African indi-
viduals in this study have much larger pairwise genetic distances to the
reference panel than non-African individuals (Fig. 2b). Although the
1000 Genomes reference panel contains individuals of African origin,
mostly from West Africa (Mende Sierra Leone (MSL), Gambian Man-
dinka (GWD), Esan Nigeria (ESN), Yoruba (YRI) and Luhya Kenya
(LWK)), the genetic diversity in Africa® is not well represented in this
panel. And yet, Native American genomes were also accurately impu-
ted, even though the populations in the reference panel show different
admixture moieties, ranging from low (e.g., Puerto Rican (PUR)) to
high Native American (e.g., Peruvian (PEL)) admixture proportions”. In
fact, Fig. 2b shows that the South American reference individuals tend
to be genetically close to the Native American genomes (small pairwise
allelic differences). We further confirmed the contribution of reference
haplotypes from the Americas to the imputation of ancient Native
American genomes by removing one continental group at a time from
the reference panel. We found that imputation performance was only
affected when using a reference panel without the American popula-
tions (Supplementary Note 7 and Supplementary Fig. 6). Imputation
accuracy dropped to 0.46 from 0.78 at variants in the lowest MAF bin
(0.1-1.0%), while it was only slightly smaller (-0.97 vs. ~0.98) at com-
mon variants (MAF > 5%).

Sample age is also expected to affect imputation performance, as
long-time distances to the present could translate into large coalescent
times between the reference populations and the ancient individuals®.
While overall imputation performance seems to be unaffected by
sample age (Fig. 2c), imputation accuracy at rare variants (MAF < 2%) is
considerably low for the three oldest individuals, i.e., Yana (-32,000
ybp)*?, SIIl (34,000 ybp)*?, and Ust’Ishim (~45,000 ybp)*’, as shown in
Fig. 2a. We found significant (at 5% threshold) negative correlations
between sample age and imputation accuracy at the two lowest MAF
bins, i.e., 0.1-1% and 1%-2%: rs = -0.465 (p value = 0.003) and r; = —0.324
(p value=0.033), respectively (Supplementary Note 8 and Supple-
mentary Fig. 7).

The newly re-sequenced ancient trio (mother, father, son) allowed
us to use an orthogonal approach based on Mendel’s rules of inheri-
tance to measure imputation and phasing quality. This trio was sam-
pled in a Late Neolithic mass burial at Koszyce***’ and was re-
sequenced in our study to a depth of coverage of 27.5x (mother,
RISE1159), 18.9x (father, RISE1168), 5.4x (son, RISE1160). In this analysis,
imputation errors corresponded to sites where parental and offspring
genotypes disagreed with Mendel transmission rules. Here, we exclu-
ded sites that are homozygous for the reference allele in the three
genomes as these positions are easier to impute. We estimated phasing
accuracy in terms of switch error rate. The switch error rate is assessed
for every two consecutive heterozygous sites by verifying if the alleles
for the two sites are located on the correct haplotypes following the

expected configuration from the trio. Mendel error rates ranged from
1.3% at 4x to 12.2% at 0.1x (Fig. 3a). For 1x data, in particular, Mendel
error rates were between 1.5% and 2.9% across the 22 autosomes. These
error rates agree with previously estimated imputation errors (Fig. 2¢
and Supplementary Fig. 5). Switch error rates varied between 1.6% at
4.0x and 8.2% at 0.1x, with errors for 1x data in the range 1.6-3.0%
(Fig. 3b). For present-day genomes and small sample sizes, switch error
rates are typically between 1% and 5%°°*%, and we achieved similar
accuracy when imputing and phasing the genomes downsampled to a
minimum coverage of 0.25x.

After imputation, we can filter the data based on the maximum
genotype probabilities (GP) for a site. GP is a measure of how likely
each genotype is to be true and takes values between 0 and 1 that sum
to 1 across the possible genotypes. To determine which GP value we
would use to filter the imputed data prior to downstream analyses, we
applied GP filters starting at 0.70 and up to 0.99 to four different
imputed ancient genomes downsampled to 0.Ix and 1.0x
(RISE1168>**7, SIII*, Ust-Ishim* and Mota®). We then quantified
imputation accuracy and genotype discordance. We observed a
greater boost in accuracy as the GP filter becomes stricter for 0.1x
imputed data than for 1x data (Fig. 4a). In the case of 1x data, accuracy
slightly improved for sites with MAF >5%. The exception was the
individual sample Mota (Africa), where the gain in accuracy for a spe-
cific GP filter had similar magnitude across sites with different MAF
values. This African genome yielded the second lowest imputation
accuracy amongst the 42 ancient high-coverage genomes down-
sampled and imputed in this study. Genotype discordance followed
the same trend (Fig. 4b). Genotyping error rates were higher for 0.1x
than for 1x imputed genomes, for whom error rates remained below
5%, except for Mota. Increasing GP filtering values decreased these
error rates in all instances. Then, we looked at how GP filtering affects
the number of correctly imputed heterozygous sites (Fig. 4c). The
proportion of lost heterozygous sites was much higher in the case of
0.1x data, explained by the lower imputation accuracy for this cover-
age. For 0.1x data, filtering out sites with GP <0.70 removed around
15% of correct heterozygous sites in the least. When GP >0.99, only
between 20% and 43% of correct heterozygous sites remained. In
contrast, the imputed 1.0x genomes lost a small fraction of their het-
erozygous sites as stricter GP filters were applied. This fraction was
smallest amongst the genomes of European ancestry (<8%, RISE1168
and SIII) and largest for Mota (22%), a reflection of how accurately
these genomes were imputed. In the end, a trade-off must be made
between loss of heterozygous sites and imputation accuracy. Based on
these results, we chose to remove sites with MAF <5% and set to
missing imputed sites with GP <0.80, for most of the downstream
analyses, thus keeping most heterozygous sites for 0.1x data while
controlling for imputation accuracy.

Ancient DNA studies often resort to hybridization-capture
sequencing, that increases the depth of coverage at captured pre-
specified sites®*"*%, Capture data using the widely used 1240K array®*®
were previously generated for five of the 42 high-coverage ancient
genomes, with depths of coverage at the capture sites between 1.5x
and 11.1x (Supplementary Table 4). We found that imputation accuracy
was higher at the intersection of 1240 K and 1000 Genomes sites at
variants with MAF <5%, but common variants were imputed with
similar accuracy at the capture sites and outside of these (Fig. 5 and
Supplementary Fig. 8). To study the effect of depth of coverage on
imputation of capture genomes, we imputed downsampled genomes
with depths of coverage between 0.1x and 2.0x and 0.1x and 5.0x at the
capture sites for BOT2016 and 110871 and Stuttgart, respectively.
Imputation accuracy reached 0.90 only at 2x at common variants
(MAF >5%) for BOT2016 and Stuttgart, whereas imputation perfor-
mance was lower for 110871, an African individual (Fig. 5). For the
Stuttgart genome, the gain in imputation accuracy was small when
increasing depth of coverage from 4.0x to 5.0x (>0.94 to #>0.95
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the reported haplotypes are not consistent with those derived from the trio.

for MAF > 5%). Moreover, for the same individual samples, the impu-
tation performances of 1x capture and shotgun-sequenced data with

depth of coverage between 0.1x and 0.5x were equivalent (Supple-
mentary Fig. 9).

Imputation effect on downstream analyses

In order to detect and quantify potential bias introduced by imputa-
tion, we compared the results of downstream analyses, namely, prin-
cipal component analysis (PCA) and genetic clustering analyses,
performed with the high-coverage and imputed genomes, after filter-
ing for MAF and GP (imputed data). These methods are broadly used in
population genetics to investigate population structure and demo-
graphy. PCA is a dimension reduction technique that helps visualize
patterns of population structure. In the genetic clustering analyses,
ancestries are estimated as the sum of K different clusters determined
from the data in an unsupervised fashion. We further explore the

potential of imputing low-coverage ancient genomes by estimating
ROH, whose classical applications require diploid data. ROH segments
are unbroken homozygous regions of the genome that contain infor-
mation about past and recent breeding patterns®®. ROH have been
found in all populations, but their number and size vary, depending on
demographic histories.

For the PCA, we calculated the first ten principal components
of the 1000G reference panel and projected both the high-
coverage and corresponding imputed ancient genomes onto
those. We have included both transition and transversion sites in
this analysis.

Both the imputed 1x and high-coverage ancient genomes were in
the expected continental groups as defined by present-day individuals
in the two first principal components (Fig. 6a). They also tended to
colocalize, which was particularly the case for ancient individuals
clustering with present-day Europeans, suggesting limited bias is
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Fig. 4 | Effects of applying different thresholds when filtering for genotype
probability (GP) in the case of four imputed 1x ancient genomes (RISE1168>* %,
SIS, Ust’-Ishim® and Mota®*). a Imputation accuracy. b Genotype discordance
between imputed and non-imputed genomes for homozygous reference allele
(RR), heterozygous (RA) and homozygous alternative allele (AA) sites, and also the

non-reference discordance (NRD). ¢ Proportion of correctly imputed heterozygous
sites retained for 0.1x and 1.0x data for each of the four genomes. The percentage
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introduced by imputation in the PCA results. To further verify whether
imputation introduced bias in this analysis, we took the difference in
coordinates between validation and corresponding imputed 1x gen-
omes for each principal component. As shown in Fig. 6b, the nor-
malized differences between the two datasets were small and did not
deviate significantly from O (t-test p values > 0.01). Additionally, we
found that only genomes with coverage as low as 0.1x and 0.25x show
some significant deviation from O (Fig. 6¢) for some principal

components, however, the imputed data were still placed in the
expected continental clusters in the PCA space (Supplementary
Fig. 10). This is particularly clear for European ancient genomes.
These results show that the differences between imputed and high-
coverage coordinates tended to be centered on O for the first prin-
cipal components, in particular for genomes with coverage above
0.25x, suggesting that imputation did not introduce a significant bias
to the PCA.
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Fig. 5 | Imputation accuracy, 72, as a function of minor allele frequency (MAF)
for three genomes sequenced with a 1240k capture. From top to bottom:
BOT2016, Stuttgart and 110871. We evaluated imputation accuracy at all variant
sites in 1000 Genomes (first column), at the intersection of the 1240 K array and the

1000 Genomes panel (second column), and at the sites only found in 1000 Gen-
omes (third column). The capture genomes were downsampled to coverages
between 0.1x and 2.0x, as measured on the 1240 K sites.

For the genetic clustering analyses, we focused on the European
genomes. Present-day Europeans can generally be modeled with
three ancestral populations: western hunter-gatherers, early European
farmers and Steppe pastoralists*’. Ancient European individual sam-
ples tend to exhibit different distributions of these three ancestries
across time and space. We asked whether imputation of European
ancient genomes artificially increases the amount of inferred Steppe-
like ancestry for these individuals, since most present-day European
individuals have Steppe ancestry, including the European populations
in the 1000 Genomes reference panel. For instance, we assessed
whether the Steppe-like component increases in imputed western
hunter-gatherer genomes like Loshbour*. To this aim, we performed
unsupervised admixture analyses with the software ADMIXTURE®,
including transitions and transversions. We used as a reference panel
the genetic data of 61 ancient individuals®>**” present in the 1240K
dataset®’, including nine western hunter-gatherers, 26 Anatolian
farmers and 26 individuals with Steppe-like ancestry (see

Supplementary Table 5). We estimated ancestry proportions for the
imputed and validation data separately varying the number of clusters
(K) between two and five. For K=2, 4, and 5, we observe qualitatively
similar results for imputed and high-coverage data (see Supplemen-
tary Note 11). Here we show the results obtained with K= 3 (Fig. 7a), as
these clusters seemingly capture the three aforementioned ancestries.
The admixture proportions are qualitatively similar between the high-
coverage ancient genomes and the corresponding imputed ones, and,
in the particular case of Loschbour, the only western hunter-gatherer
imputed in this study, we estimated 100% western hunter-gatherer-like
ancestry with both imputed 1x and high-coverage data (Fig. 7b). In
order to compare the admixture results across imputed data with
different depths of coverage, we took the difference between ancestry
proportions estimated for the validation and imputed genomes for
each ancestry component and each coverage (Fig. 7c). We observed
larger differences with imputed 0.1x and 0.25x data. For the remaining
depths of coverage, the small differences distributed around O show
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respectively; the plot on the left contains the coordinates of the whole data set and
the plot on the right shows the coordinates of European modern individuals as well
as of the European-labeled ancient individuals that cluster with these. b Boxplots
(where horizontal lines represent, from bottom to top, the first quartile, the median

9 10

depth of coverage

and the third quartile, and the whiskers lengths are 1.5 times the interquartile range)
of the normalized differences in coordinates between validation and correspond-
ing 1x imputed genomes for the first 10 principal components and resulting

p values from testing whether differences are significantly different from 0 (n=42
independent individual samples, two-sided t-test, no adjustments were made for
multiple comparison); individual data points are overlaid and colored according to
the region and/or epoch as in the previous plot. ¢ —log;o p values obtained when
testing whether differences between imputed and validation data are significantly
different across the six depths of coverage and for the first four principal compo-
nents (n =42 independent individual samples, two-sided t-test, no adjustments
were made for multiple comparison); the red dashed line indicates a p value of 0.01.

that imputation introduced limited bias towards a particular ancestry
in this analysis.

Then, we first quantified ROH using transversions only to minimize
the aDNA damage impact on the validation estimates. We examined
how well the imputed and the validation ROH overlapped in chromo-
some 10 for each depth of coverage and for four different individuals,
namely Ust-Ishim® (Siberia), Rathlin1”* (Europe), A460°® (Americas),
and Mota** (Africa) (Fig. 8a). The imputed 0.1x data had an excess of
ROH when compared to the high-coverage data. This likely results from
i) reduced imputation accuracy and ii) removal of a large proportion of
heterozygous sites when applying post-imputation filters (Fig. 4c). As
the depth of coverage increased, the number of falsely identified ROH
tended to decrease, while most validation ROH were also found
amongst the imputation ROH. We then compared the total ROH

lengths, stratified by segment size, measured in the imputed data with
the validation data for the different depths of coverage and the same
four individuals (Fig. 8b). Again, we found the largest discrepancies
between validation and imputed 0.1x data, with an excess of ROH seg-
ments, particularly of the shortest kind (0.5-1.0 Mb). For coverages
above 0.1x, the total ROH lengths in the imputed genomes were close to
the validation ROH, particularly for A460 (5% difference) and Ust’Ishim
(0.7% difference). Lastly, restricting to imputed 1x data, we contrasted
the total length of small ROH (<1.6 Mb) with the total length of longer
ROH (>1.6 Mb) obtained with transversions only (Fig. 8c) and all sites
(Fig. 8d). When using transversions only, the total ROH lengths esti-
mated for high-coverage and corresponding imputed 1x genomes were
similar, particularly for the European genomes. Furthermore, the ROH
trends for the ancient individuals mostly agreed with documented ROH

Nature Communications | (2023)14:3660



Article

https://doi.org/10.1038/s41467-023-39202-0

a Anatolian farmers Steppe individuals WHG
(reference) (reference) (reference)

High-coverage

Imputed 1x

Genomes imputed in this study

5L ZeBB TN LN YT YT
I} Bor = N
252 23 aORfRa SIS
G2 Swuds Sak
25 5 20c ATo
ST F x
Jas}
1.0 b ® High-coverage data
0.91 A Imputed 1x data
0.8
s o
i
0.7
2 'Yy %
© 9 @
£06
$05 *
0 0.57 ®x @ 4
5 vy @ i
2 04 & . g7 " . b S S S
£ 04 o " TSR " 8 ex
® oA 85 @i ® oa O
0.3 oA
0.2 (3 i &
27 A& [ 73 @ [
o % o o o % e m o o o
J ® [ 7Y
0.1 Y oA ®
0.0 [ 7%
¢ 3 3 £ ¢ 8 8 f 8 % g 3 % 5 33 og
% g8 2 z 2 Qg T T £ @ N N o o N o T I < >
s = s £ T o % (%) » 6 = f
[5] -
2 7] s ) 4] © 2 T %)
| T o o
0
imputed ancient genomes
(o3
0.101 o
3
X}
©
£
7]
© 0.05+
< .
E . N . .
o
=] B TR e e Ak
X 4 PRSI A S - EESST I O =~ B o . i o | N J—
I g d T Lohit a4
3
Qo
E
c 0.05
o
k)
il
©
>
0.10 B

T T T

0.1 0.25 0.5

T T

075 10 2.0

depth of coverage

Fig. 7 | Unsupervised admixture analyses of European ancient individuals with
three clustering populations, where Anatolian farmers, Steppe individuals and
Western Hunter-Gatherers (WHG) are split into the three clusters. a Resulting
admixture proportions and clusters for the reference and the 21 European indivi-
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izontal lines represent, from bottom to top, the first quartile, the median and the
third quartile, and the whiskers lengths are 1.5 times the interquartile range) of the
differences between the values of ancestry components obtained with the high-
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for their present-day counterparts, with Africans having the smallest
total ROH lengths and Native Americans the longest®°.

When we added transitions to estimate ROH, the distance
between imputed and validation ROH increased for some genomes
(Fig. 8d). In the case of the ancient Native American Sumidouro5°®, this
distance dramatically increased. The high-coverage estimate for
Sumidouro5 was now located between the African and European
values, but the imputed estimate remained close to both the high-
coverage and imputed values obtained with transversions only.
For this genome, we found major differences between high-coverage
ROH sizes obtained with transversions only and all sites, whereas the
corresponding imputed ROH were highly consistent (Supplementary
Fig. 18). This indicates that the discordance between validation and
imputed ROH, when transitions were included, originated from the
validation data. Indeed, Sumidouro5 is a very damaged genome
(40% deamination rate at read termini)*®, which likely led to an excess
of heterozygous calls in the high-coverage data, despite the quality
filtering (see methods).

Discussion

In aDNA studies, pseudo-haploid data generation is standard proce-
dure to handle low-coverage genomes. Ancestry information can be
recovered from analyses of these data, such as PCA and genetic clus-
tering analyses which work well at coverages as low as 0.1x’>. Com-
pared with pseudo-haploid data, imputing genotypes allows to work
on diploid genomes and to directly apply some population genetic
tools developed for modern data.

Here we showed that low-coverage ancient genomes can be
imputed with similar accuracy as modern genomes. In particular, for
shotgun-sequenced data, we obtained accurate results at common
variants, for coverages starting at 0.5x from MAF > 5% (or at 0.75x from
MAF > 2%). However, we observed that this threshold is dependent on
the ancient genomes’ ancestry. The representation of a given popula-
tion in the reference panel can have a profound impact on imputation
accuracy, with genotyping errors at alternative allele sites above 5%
and up to 25% among African 1x genomes. Despite the absence of 100%
Native American reference populations, most Native American ancient
genomes were accurately imputed. The presence of haplotypes with
partial Native American ancestry in the reference panel allowed us to
recover variants private to Native American populations. Moreover, we
found that age can negatively impact imputation accuracy of rare
variants, which was the case of three non-African individual samples
older than 30,000 years. These results have far-reaching implications
for the potential of imputing ancient genomes, since it is not guaran-
teed that there will be a present-day population that directly descends
from the ancient individual's population without having admixed.
Our results suggest that, on the one hand, using admixed reference
populations that share recent ancestry with the ancient genomes can
be enough to attain accurate imputation, even at rare variants, and, on
the other hand, we can still impute common variants well in the case of
non-African genomes that are either very old, such as Ust’Ishim, or that
are poorly represented in the reference panel, such as Andaman, likely
owing to their common history.

Furthermore, using five genomes that were both obtained via in-
solution capture and shotgun sequencing (>10x for the latter), we
found that imputation performance of capture-sequenced data was
higher at the capture sites than outside of these and particularly for
rare variants, and imputing a 1x (target sites) capture genome and a
0.25x shotgun-sequenced genome result in similar error rates. More-
over, imputation accuracy was below 0.90 for coverages below 2x at
the target sites. We therefore recommend a minimum depth of cov-
erage of 2x at capture sites, but ideally higher than that (imputation
accuracy levelled off at around 4x for the Stuttgart genome), to attain
accurate imputed calls, in the case of well represented ancestries.

For most genomes, we obtained similar results with high-coverage
and imputed data with coverages as low as 0.5x for the downstream
analyses we carried out, i.e., PCA, admixture clustering and ROH esti-
mation. Imputation did not introduce major bias for the first principal
components, nor did it considerably increase the proportion of any of
the three main ancestry components found in Europeans. The simi-
larity of validation and imputed ROH segments is worthy of note, since
ROH estimation typically requires reliable knowledge of genotypes,
which is only available for high-coverage genomes. This means that
ROH estimation methods designed for diploid data can be applied to
low-coverage ancient genomes after imputation.

Although we did not remove transition sites prior to imputation,
we found that transversion and transition sites were imputed with
comparable accuracy. In fact, when we compared ROH estimates
performed with transversions and all sites, we observed that imputa-
tion corrected ROH in the case of Sumidouro5, with 40% C-to-T mis-
match frequency at the end of the reads. Given this observation,
imputation of ancient genomes has the potential of correcting geno-
types that are affected by damage and other sources of error. Whether
imputation can help reducing the effect of contamination remains to
be assessed.

We did not explore numerous genotype and haplotype-based
applications that can greatly benefit from imputation of low-
coverage ancient genomes, such as temporal selection scans and
local ancestry inference. Moreover, genotype imputation, in general,
is expected to improve as more and larger reference datasets
become available. The recent release of 200K whole-genome
sequences in the UK Biobank’™, which can be used as a reference
panel for imputation, offers an opportunity to improve imputation
performance in the case of low-coverage European genomes,
including ancient genomes, especially at rare variants and lower
depths of coverage”. In the case of ancient DNA, when the target
genome is not well represented by modern reference populations or
when a boost in imputation accuracy is required, additional refer-
ence panels can be assembled with high-quality ancient genomes of
individuals with more closely shared ancestry. Furthermore, the
number of sequenced ancient genomes has been growing exponen-
tially and with no sign of slowing down. This means that more and
more ancient genomes will be available with different ancestries and
from different time periods and with that comes the opportunity to
expand existing reference panels with ancient genomes and to
implement imputation in a more standardized way.

Methods

In this section, we describe the methods implementation, starting with
the Koszyce ancient trio data generation, followed by imputation, that
includes all the file processing, imputation using GLIMPSE and using
Beagle4.1, then the three downstream applications (PCA, genetic
clustering analyses and ROH) and finishing with the reference data sets
used in this study. All post-imputation analyses and corresponding
plots were produced using python v3.6.12 and R v4.0.3.

The Koszyce ancient trio data generation

The Koszyce ancient trio (mother, father and son) was originally
sequenced in ref.*” and re-sequenced to higher coverage in the con-
text of this study. The DNA was extracted from petrous bone exca-
vated from a Late Neolithic mass grave in Koszyce, in what is today
Poland.

Using the same DNA extracts as ref.*, two additional double-
stranded libraries per sample were constructed based on ref.’®. This
was followed by enzymatic USER treatment to remove DNA damaged
sites in the form of uracils. The optimal PCR cycle number was deter-
mined by qPCR. Indexed and amplified libraries were purified, quan-
tified on an Agilent Bioanalyzer 2100, and pooled equimolarly. The
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pooled libraries were then sequenced on two Novaseq lanes (150
paired-end reads).

The sequenced reads mapping was performed as in ref.?. The
sequenced reads were aligned to both the human reference genome
build 37 and the mitochondrial genome (rCRS). After alignment, reads
were filtered based on a mapping quality threshold of 30 and sorted
using Picard v.1.127 (http://broadinstitute.github.io/picard/) and
samtools’. The resulting data was merged at the library level and
duplicates were removed using Picard MarkDuplicates v.1.127. The
merged data was then consolidated at the sample level. To improve the
accuracy of the alignment, sample-level BAM files were realigned using
GATK”” v.3.3.0. Subsequently, the md-tag was updated and extended
base alignment qualities (BAQs) were calculated using samtools
calmd v.1.10.

Estimating damage patterns
The frequency of C-to-T mismatches at the 5" end of the aligned
reads were estimated using bamdamage”.

Trimming the reads’ ends in bam files

To test the effect of trimming the ends of the aligned reads on impu-
tation accuracy (Supplementary Note 2), we used BamUtil”® v1.0.14 to
trim five base pairs from each end of the reads.

Imputation

File processing prior to imputation. We downsampled high-coverage
(10x-59x range) ancient genomes to coverages 0.1x, 0.25x, 0.5x, 0.75x,
1.0x, and 2.0x, using samtools™ v1.10. The subsampling fraction was
determined by first calculating the average coverage across the variant
sites in the 1000 Genomes phase 3 reference panel” phased with
TOPMed™ (see Datasets section) so that the resulting downsampled
genome had the intended coverage at those sites. Then, we computed
genotype likelihoods for the downsampled and the original high-
coverage genomes for the abovementioned variant sites.

To generate the genotype calls and genotype likelihoods, we
used bcftools™ v1.10 and, as default, the command bcftools mpileup
with parameters -/ -E -a “FORMAT/DP’ --ignore-RG, followed by
bcftools call -Aim -C alleles. To call genotypes from the high-coverage
genomes, we have applied additional parameters for quality control
(more details below).

We also generated both genotype calls from the high-coverage
genomes and genotype likelihoods for the downsampled data (1x) with
ATLAS” v0.9.9 (see Supplementary Note 1 and Supplementary Note 2)
using the MLE caller and the empirical post-mortem damage pattern
observed across reads, as described in https://bitbucket.org/
wegmannlab/atlas/wiki. For sake of time, we skipped the first step,
splitMerge, that separates single-end alignments by length and merges
the mates of paired-end reads and requires specification of the dif-
ferent libraries contained in a bam file. It is often the case that an
ancient genome is obtained from a mixture of paired-end and single-
end libraries. We observed that this first step we skipped did not have
much impact when the bam files only had single-end libraries, but the
genotype calling was seemingly less accurate when there were paired-
end libraries in the bam files. So, we do not report here results we
obtained from ATLAS calls from ancient genomes that were sequenced
from paired-end libraries.

To obtain a trimmed validation dataset (Supplementary Note 2),
we trimmed five base pairs at both ends of the reads using the com-
mand trimBam from the package bamutil’”® v1.0.14. Then, we called
genotypes using bcftools v1.10, as previously described.

The final validation dataset was obtained by implementing the
following filtering approach:*® i) genotype calling with bcftools v1.10
with mapping and base quality filters of 30 and 20 (-g 30 -Q 20),
respectively, and with the parameter -C 50, as recommended by
the SAMtools developers for BWA mapped data to reduce

mapping quality for reads with an excess of mismatches; ii) exclusion
of the sites that are not in the 1000 Genomes accessible genome strict
mask;*° iii) removal of sites located in regions known to contain
repeats (RepeatMask regions in UCSC Table Browser®, http://genome.
ucsc.edu/); iv) filtering out sites with extreme values of depth of cov-
erage when comparing to the average genome coverage: below the
maximum of one third of the mean depth of coverage (DoC) and eight,
that is, max(‘%’c ,8), and depth above twice the average depth; v) fil-
tering out of sites with the field QUAL below 30.

Imputation using GLIMPSE. We imputed the downsampled genomes
using GLIMPSE® v1.1.1. First, we used GLIMPSE_chunk to split chromo-
somes into chunks of sizes in the range 1-2 Mb and included a 200-kb
buffer region at each side of a chunk. Second, imputation was per-
formed with GLIMPSE_phase on the chunks with parameters --burn 10,
--main 15 and --pbwt-depth 2, with 1000 Genomes as the reference panel.
And then, we ligated the imputed chunks with GLIMPSE _ligate.

Imputation using Beagle4.1. To evaluate how GLIMPSE performs
compared to Beagle4.1" regarding imputation of low-coverage ancient
genomes, we imputed the same data, but restricted to 1.0x, with
Beagle4.1 with parameters --modelscale 2 and --niterations O, that
represent a trade-off between accurate results and running times.

Imputation accuracy evaluation. We used GLIMPSE_concordance to
quantify imputation accuracy and genotype concordance, having the
high-coverage data as validation. Only sites that were covered by at
least eight reads and whose genotypes have a posterior probability of
0.9999 or more were used in validation. With GLIMPSE_concordance
we obtained (i) imputation accuracy, that is, the squared correlation
between dosage fields VCF/DS (DS varies between 0 and 2 that can be
seen as a mean genotype value obtained from the genotype prob-
abilities: DS= Z,»Z:OiGP,-, where GP; is the genotype probability
for genotype i) in imputed and validation datasets, divided in
MAF bins, and (ii) genotype discordance, i.e., proportion of sites
for which the most likely imputed genotype is different from the
corresponding validation genotype for homozygous reference allele
(RR), heterozygous (RA) and homozygous alternative allele sites (AA).
We also estimated non-reference-discordance, NRD, defined as
NRD = (egp+epyt€4y)/(Mpy+ My +epptegy+ey,), where ey and my
stand for the number of errors and matches at sites of type X,
respectively. NRD is an error rate which excludes the number of cor-
rectly imputed homozygous reference allele sites, which are the
majority, thus giving more weight to imputation errors at alternative
allele sites.

Testing significance of Spearman correlation between sample
age and imputation accuracy

We calculated Spearman correlation using the function spearmanr
from the python package scipy.stats. We performed a two-sided per-
mutation test with 10,000 permutations to test whether the estimated
correlation was significantly different from zero.

Downstream analyses

File processing. We filtered the imputed data by imposing that, for
each variant site, the genotype probability (VCF/GP) for the most
confidently imputed genotype to be at least 0.80. Then, we gener-
ated two datasets with different minor allele frequency (MAF) filters:
MAF > 5% (6,550,734 SNPs) for the data used in PCA and ROH ana-
lyses, and MAF >1% (11,553,877 SNPs) for admixture analysis, since
with stricter MAF filters we would lose sites that distinguish the dif-
ferent populations. We used PLINK*?* v1.90 to merge 1000 Genomes,
high-coverage and imputed data into one file. In the case of PCA and
admixture analyses, we intersected the resulting sites with the ones
present in the Allen Ancient DNA Resource (AADR) data genotyped

Nature Communications | (2023)14:3660

13


http://broadinstitute.github.io/picard/
https://bitbucket.org/wegmannlab/atlas/wiki
https://bitbucket.org/wegmannlab/atlas/wiki
http://genome.ucsc.edu/
http://genome.ucsc.edu/

Article

https://doi.org/10.1038/s41467-023-39202-0

at the 1240K array sites®, that we refer to as the “1240K dataset”
hereafter.

PCA. We performed PCA with smartpca (eigensoft® package v7.2.1)
without outlier removal (outliermode: 2). The 10 first principal com-
ponents (numoutevec: 10) were calculated using the 1000 Genomes
genetic data and both the imputed and high-coverage data were pro-
jected onto the resulting components (Isqproject: YES).

To perform the t-tests to test if there were significant differences
in coordinates between validation and corresponding 1x imputed
genomes for the first 10 principal components, we used the default R
function t.test, running it in unpaired mode to test whether the mean of
the differences was significantly different from 0 with a two-sided
alternative hypothesis.

Admixture analysis. We estimated admixture proportions for 21
ancient Europeans with the software ADMIXTURE® v1.3.0 in unsu-
pervised mode. For the reference panel, we used a subset of the 1240K
dataset containing nine western hunter gatherers, 26 Anatolian farm-
ers and 26 individuals of Steppe ancestry®® (see Supplementary
Table 5). Contrary to the imputed and high-coverage genomes, the
reference data are pseudo-haploid. We merged the reference panel
with each of the imputation datasets (different coverages) with plink
v1.90. We removed sites that were missing in more than 30% of the
individuals. We proceeded similarly for the high-coverage dataset. We
ran ADMIXTURE on seven configurations: merged reference panel and
high-coverage individuals, and merged reference panel with each of
the six imputed data sets (with initial coverage between 0.1x and 2.0x).
For each configuration and number of clusters, we ran ADMIXTURE for
K between two and five with 20 replicates (20 different seeds) and
chose the replicate that yielded the largest log-likelihood value. In the
final run, we obtained the standard error and bias of the admixture
estimates using the option --B 1000 that calculates these quantities
with bootstrapping and 1000 replicates.

Runs of homozygosity (ROH). We estimated ROH with plink v1.90
with the parameters’” --homozyg, --homozyg-density 50, --homozyg-gap
100, --homozyg-kb 500, --homozyg-snp 50, --homozyg-window-het 1,
--homozyg- window-snp 50 and --homozyg-window-threshold 0.05. We
estimated ROH twice: i) using transversion sites only, thus excluding
sites that can be affected by aDNA damage, and ii) using both trans-
versions and transitions.

Datasets

Ancient genomes in this study. The 43 downsampled and imputed
ancient genomes (Supplementary Table 1) were obtained from the
“Ancient Genomes dataset” that was compiled in the context of the
study of ref. >,

Reference panel for imputation. We used a version of 1000 Genomes
v5 phase 3 (2504 genomes)”, where the genomes were re-sequenced at
30x, and subsequently phased using TOPMed", and with sites present
in TOPMed. These data are available in European Nucleotide Archive,
under project PRJEB31736 and secondary study accession ERP114329.
Only biallelic sites were retained (90 million SNPs). This panel was
lifted over from build 38 to hgl9 reference genome assembly using
Picard liftoverVCF v1.18.11 (https://gatk.broadinstitute.org/hc/en-us/
articles/360037060932-LiftoverVcf-Picard-), with hg38ToHg19 chain
from the University of California, Santa Cruz liftOver tool (http://
hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver/).

Present-day European genomes. This dataset consists of a subset of
23 European genomes from the Simons Genome Diversity Project
(SGDP)®*, as specified in Supplementary Table 3. We downloaded
the corresponding bam files aligned to the hgl9 reference genome

from the Seven Bridges Cancer Genomics Cloud (https://www.
cancergenomicscloud.org). We downsampled the data to 1x and
imputed as before.

Reference panel for genetic clustering analyses. The Allen Ancient
DNA Resource (AADR)® that we refer to as “1240K dataset”, is publicly
available at https://reich.hms.harvard.edu/allen-ancient-dna-resource-
aadr-downloadable-genotypes-present-day-and-ancient-dna-data.

We extracted a subset of the 1240K dataset® containing
ancient individuals of the three ancestries we were interested in:
26 Anatolian farmers (Anatolia_N), 26 Steppe individuals (Step-
pe_EMBA), and nine western-hunter gatherers (WHG), as specified
in Supplementary Table 5, to the exclusion of Loschbour, a gen-
ome that was also included in the dataset of 42 high-coverage
genomes that we downsampled and imputed. We converted this
subset from eigenstrat format to plink bed using the convertf
command (eigensoft package v7.2.1). After that, we used plink
v1.190 to do all of the data handling, such as merging plink bed
files and filtering out sites with high missingness.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data supporting the findings described in this manuscript are avail-
able in the article and its Supplementary Information files, public
repositories and from the corresponding author upon request. The
Koszyce ancient trio data (RISE1159, RISE1160, RISE1168) generated in
this study have been deposited in the European Nucleotide Archive
(ENA) database under accession code PRJEB61632. The unfiltered
imputed ancient genomes (original genomes were downsampled to
depths of coverage in the range 0.1x-2.0x) are available in Zenodo
(https://doi.org/10.5281/zenod0.7993392). The 1000 Genomes Project
phase 3: 30X coverage whole genome sequencing data is available at the
European Nucleotide Archive, under project PRJEB31736 and secondary
study accession ERP114329 (https://www.ebi.ac.uk/ena/browser/view/
PRJEB31736). The SGDP bam files aligned to hgl9 reference genome
were downloaded from Seven Bridges Cancer Genomics Cloud. The
AADR® dataset is publicly available at https://reich.nms.harvard.edu/
allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-
and-ancient-dna-data. The remaining 40 ancient human genomes in this
study have origin on the following studies: atp016*° (https://doi.org/10.
1073/pnas.1717762115); Stuttgart & Loschbour* (https://doi.org/10.
1038/naturel3673); Ballynahatty & Rathlin1** (https://doi.org/10.1073/
pnas.1518445113); sf12* (https://doi.org/10.1371/journal.pbio.2003703);
NE1 & BR2* (https://doi.org/10.1038/ncomms6257); SII*® (https://doi.
org/10.1126/science.aao1807); SSG-A-2, HSJ-A-1 & STT-A-2* (https://doi.
org/10.1126/science.aar2625); VK1*° (https://doi.org/10.1038/s41586-
020-2688-8); SZ15, SZ3, SZ4, SZ45, SZ43 & SZ1*' (https://doi.org/10.
1038/s41467-018-06024-4); baa0l, ela01 & new01* (https://doi.org/10.
1126/science.aa06266); 110871 (https://doi.org/10.1038/s41586-020-
1929-1); Mota*  (https://doi.org/10.1126/science.aad2879);  KK1*
(https://doi.org/10.1038/ncomms9912); WCI** (https://doi.org/10.1126/
science.aaf7943); BOT2016 & Yamnaya® (https://doi.org/10.1126/
science.aar7711); Andaman, AHUR 2064, Lovelock2, Lovelock3, Clovis,
Sumidouro5, A460* (https://doi.org/10.1126/science.aav2621); USR1*
(https://doi.org/10.1038/nature25173); Saqqaq*  (https://doi.org/10.
1038/nature08835); Ust-Ishim® (https://doi.org/10.1038/nature13810);
Kolyma River & Yana*’ (https://doi.org/10.1038/s41586-019-1279-7).

Code availability

The scripts we used to impute the ancient genomes, as well pre- and
post-processing steps can be found in the following github
repository:* https://github.com/bsmota/aDNA_imputation.
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