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In species subject to individual and social learning, each individual is likely to express a certain number
of different cultural traits acquired during its lifetime. If the process of trait innovation and transmission
reaches a steady state in the population, the number of different cultural traits carried by an individual
converges to some stationary distribution. We call this the trait-number distribution. In this paper, we
derive the trait-number distributions for both individuals and populations when cultural traits are inde-
pendent of each other. Our results suggest that as the number of cultural traits becomes large, the trait-
number distributions approach Poisson distributions so that their means characterize cultural diversity
in the population. We then analyse how the mean trait number varies at both the individual and popu-
lation levels as a function of various demographic features, such as population size and subdivision, and
social learning rules, such as conformism and anti-conformism. Diversity at the individual and popu-
lation levels, as well as at the level of cultural homogeneity within groups, depends critically on the
details of population demography and the individual and social learning rules.
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1. INTRODUCTION
In evolutionary biology, demographic factors of a
population include its size, the degree to which popu-
lation size changes over time, or the level of population
subdivision, whether by sex, age or geography. All of
these are expected to affect the evolutionary dynamics
of phenotypes. This is true for any phenotype and
whether the sources of phenotypic variation under
study are genetic [1–3], cultural [4–6] or both.

The level of standing phenotypic variation and how
this changes over time, as well as the degree of simi-
larity between randomly chosen individuals, are all
expected to be functions of demographic factors. In
turn, the demographic properties of a population are
affected by variation in phenotypes, which leads to a
coupled dynamic that has received a lot of attention
in the biological literature (e.g. [7,8]). There is much
less theory on how cultural variation affects demography
or how demography affects cultural diversity.

How do demographic factors, such as population size,
population subdivision and migration rates between sub-
groups, affect cultural diversity? In population genetics,
population size, in partnership with rates of genetic
mutation, plays a central role in the structuring of genetic
diversity. Indeed, the product NU of population size (N)
andmutation rate (U) was shown by Kimura & Crow [9]

to be a key element of the neutral theory of genetic evol-
ution, and it determines Ewens’ [10] distribution of the
number of representatives of each allele in a population,
the so-called configuration distribution, which was
derived in a one-trait population genetic setting (i.e. a
single gene). The neutral model has come into promi-
nence not only in population genetics, but also in
ecology [11] and archaeology [12] as the null model
that describes diversity in the absence of selective differ-
ences (among alleles), ecological advantage (for species)
or biases in cultural transmission of artefact style.

It is natural to ask whether in cultural evolutionary
models the analogous product of population size and
rate of innovation emerges as a central parameter
describing patterns of cultural diversity. This will be
the case at least for a one-trait cultural model with
random copying and no memory [12] as this is very
close to the neutral model of population genetics. In
this model, individuals carry a single cultural trait for
which they may express one of several variants
[5,6,13]. Alternatively, individuals may be regarded
as either expressing or not expressing the trait.
These two situations can be described in terms of a
one-trait cultural model with many (the former case)
or two (the latter case) variants segregating in the
population, analogous to alleles in the one-gene popu-
lation genetic setting. The main difference from
classical population genetics is that, since the rules of
cultural transmission are more flexible than Mendelian
rules, the dynamics of one-trait cultural variation are
expected to span a wider range [5].
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But the fact that culture, particularly in humans, is
acquired cumulatively during an individual’s lifespan
makes the issue of the interaction between population
size and innovation rate more complicated. When indi-
viduals are subject to both individual and social
learning (i.e. cultural innovation and transmission),
each is likely to acquire and express a certain
number of different cultural traits during its lifetime
(e.g. lists of poisonous foods; techniques to build
arrows and make a fire; methods of hunting, cultiva-
tion and domestication; modes of social organization;
or mystical beliefs). The analogies between cultural
evolution models and standard neutral models from
population genetics may then fail. Here, the role of
the cultural ‘memory’, or its opposite, cultural ‘obso-
lescence’, may be just as important as innovation in
producing the distribution of cultural diversity
[14,15]. Further, the rules of social learning
themselves, such as whether a trait is copied at
random from the population or with some particular
preference [5,6,13], may critically affect the
distribution of cultural diversity at both the individual
and population levels.

Understanding why different individuals express
different traits thus entails understanding the
dynamics of the accumulation of cultural traits (each
of which may vary), a process that may be affected
by demographic factors as well as the processes of cul-
tural innovation and transmission. In this paper, we
study two aspects of the accumulation of multiple
independent cultural traits in finite populations (sto-
chastic models). First, we ask how many cultural
traits are expressed at a steady state of the cultural
dynamics at both the individual and population
levels; that is, what is the form of the distribution
of the number of traits? Second, we ask how the
trait numbers and the level of cultural homogeneity
across individuals within populations vary as functions
of demographic factors (such as the size of the popu-
lation or its degree of subdivision) and of the
features of social learning rules, such as whether
individuals learn from others by random copying,
by conformist transmission, or by anti-conformist
transmission.

2. MULTI-TRAIT CULTURAL MODEL
(a) Individual decision process
We consider a panmictic population of finite size N
(see table 1 for a list of symbols). Each individual in
this population may carry up to c distinct culturally
transmitted traits. We assume that a focal individual
in this population is characterized by the state vector

t ¼ ðo1; o2; . . . ; ocÞ; ð2:1Þ

where oi ¼ 1 if this individual carries trait i, oi ¼ 0
otherwise. We assume that each state, absence or pres-
ence (0 or 1), of each trait changes in a probabilistic
way as a result of individual and/or social learning
events (collectively referred to as updating events).
Denote by pi the probability that an individual who
carries trait i before updating also carries that trait
after updating and by qi the probability that an

individual who does not carry trait i before updating
carries that trait after updating.

Whether the cultural traits are updated synchron-
ously (all individuals in the population update their
traits in the same time period), asynchronously (one
individual updates per time period), or some mixture
of the two, the set of transition probabilities fp1, q1,
p2, q2, . . ., pc, qcg determines the change in the cultural
state t ¼ (o1,o2, . . ., oc) of an individual in the
population to a new state t0 ¼ (o01,o

0
2, . . . , o

0
c) after

updating. These transition probabilities can take
different forms, ranging from the case where each
trait is updated independently from any other to the
case where the state of any trait depends on the cul-
tural state of all the other traits of all individuals

Table 1. List of symbols.

symbol definition

N number of individuals in the population
c number of distinct cultural traits that an individual

may acquire
oi indicator variable taking value unity if an

individual carries trait i, zero otherwise
ai indicator variable taking value unity if at least one

individual in the population carries trait i, zero
otherwise

nf number (random) of distinct cultural traits carried
by an individuals at equilibrium

np number (random) of distinct cultural traits in the
population at equilibrium

p probability that an individual who carries a focal
trait before updating also carries that trait after
updating

q probability that an individual who does not carry a
focal trait before updating carries that trait after
updating

x(i) probability that i individuals in the population
carry a focal trait

rf probability that a random individual carries a
focal trait

rp probability that at least one individual in the
population carries a focal trait

rs probability that two individuals randomly sampled
without replacement from the population both
carry a focal trait

lf expected number of distinct cultural traits carried
by a random individual

lp expected number of distinct cultural traits in the
population

ls expected number of shared cultural traits between
two individuals

f proportion of shared traits between two
individuals

r probability of remembering a previously acquired
trait

m innovation rate per trait
U innovation rate per individual (U ¼ cm)
s(y) probability that an individual adopts a focal trait

from another when the frequency of other
individuals in the population carrying that trait is y

b probability of copying another individual
a parameter tuning the conformist and anti-

conformist effect
m probability of learning a cultural trait from an

outsider of a focal individual’s group
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in the population (e.g. pi ¼ pi(t1, . . . , tN), qi ¼ qi(t1, . . . ,
tN), where tj ¼ (o1j,o2j , . . . , ocj) is the cultural state of
the jth individual). In the latter case, the state of the
total population for each cultural trait might affect
the dynamics of acquisition or loss of trait i in any indi-
vidual j; this would produce very complicated cultural
dynamics.

For simplicity, we assume that each cultural trait
evolves independently of all others. With this assump-
tion, the transition probabilities for a particular
trait, say i, are independent of the distribution of the
other traits in the population, but depend on the
number of individuals in the population carrying trait
i (e.g. pi ¼ pi(h), qi ¼ qi(h), where h represents the
number of individuals in the population carrying trait i).
It then follows that we can track the dynamics of trait i
in a finite population independently of what is occurring
at other traits in exactly the same way as the simplifying
assumption of linkage-equilibrium in population genetics
allows one to analyse the dynamics of multi-locus
genotypes under different demographic assumptions
(e.g. Wright’s distribution [16]).

(b) Individual and population stationary
trait-number distributions
We allow the distribution of the state of each cultural
trait for each individual in the population to eventually
converge to stationarity. The independence of the
trait-wise distributions then allows us to obtain the
individual and population level stationary trait-
number distributions, which we define as the
distributions of the number of different cultural
traits, nf and np, carried at steady state by a focal
individual randomly sampled from the population,
and by all individuals in the population, respectively.

In order to obtain these two trait-number distri-
butions, we note that the number (random) of
cultural traits nf carried by a focal individual is given by

nf ¼ o1 þ o2 þ % % % þ oc; ð2:2Þ

which is the sum over all traits carried by an individual
(recall that oi ¼ 1 if an individual carries trait i;
0, otherwise). Similarly, the random number of differ-
ent cultural traits carried by all individuals in the
population is given by

np ¼ a1 þ a2 þ % % % þ ac; ð2:3Þ

where ai ¼ 1 if at least one individual in the population
carries the trait at locus i, and ai ¼ 0 otherwise.

Because the traits are independent, the stationary
trait-number distributions (i.e. Pr(nf ¼ j) and
Pr(np ¼ j), where 0 & j & c) can be expressed in terms
of products of the expectations (means) of the indi-
cator variables appearing in equations (2.2)–(2.3)
after each trait has reached its stationary distribution
(e.g. E[oi], E[ai], where the expectations are over the
stationary frequency distributions of individuals carry-
ing trait i). These expectations give the probabilities
that a single, randomly sampled individual and at
least one individual in the population, respectively,
carry a focal trait.

If each cultural trait were to evolve under a different
dynamic from every other trait (e.g. trait-specific

updating rules), then the resulting trait-number distri-
butions would not reduce to any simple form. But if
one assumes that the parameters describing the
dynamics of each cultural trait are the same (i.e. p ¼
p1 ¼ % % %¼ pc and q ¼ q1 ¼ % % %¼ qc), then at steady
state all traits have the same probability of being car-
ried by an individual and are identically and
independently distributed. We then denote by rf the
stationary probability that an individual carries a focal
trait and rp the stationary probability that at least one
individual in the population carries that trait (rf ¼
E[o1]¼ % % % ¼ E[oc] and rp ¼ E[a1]¼ % % % ¼ E[ac]).

If we further assume that the number of cultural
traits c that may possibly be carried by an individual
becomes very large and that both rf and rp become
very small as c becomes large, standard results show
that the stationary trait-number distributions are
Poisson: Pr(nf ¼ j) ¼ P( j;lf) with parameter lf ¼ crf,
which is the expected number of cultural traits carried
by an individual, and Pr(np ¼ j) ¼ P( j;lp) with
parameter lp ¼ crp, which is the expected number
of different cultural traits in the population ([17]
with c !1 in lf and lp, and P( j;l) ¼ exp(2l)lj/j!).
Hence, the distributions of cultural diversity at the
individual and population levels are fully characterized
by the two means, lf and lp, respectively, of the
trait-number distributions.

The fact that both rf and rp become vanishingly
small as c becomes large can be justified if the total
innovation rate of cultural traits by an individual
during a given time period is a constant. Then, it is
natural to posit that the innovation rate per trait is
inversely related to trait number and that both rf and
rp will be proportional to this innovation rate (see
examples below).

(c) Abundance distribution and measure
of cultural homogeneity
In order to evaluate the means, lf and lp, of the trait-
number distributions, we must find expressions for rf
and rp. To obtain these, we need the stationary abun-
dance distribution x(i), which gives the probability
that i individuals in the population carry a focal trait
and which ultimately depends on the transition
kernels p and q. From the abundance distribution,
one then has

rf ¼
XN

i¼1

i

N
xðiÞ; ð2:4Þ

where i/N is the probability that a randomly sampled
individual from the population carries the focal trait
when i individuals in the population carry that trait
and x(i) is the probability of the latter event. We also
have

rp ¼
XN

i¼1

xðiÞ ¼ 1' xð0Þ; ð2:5Þ

which is the probability that at least one individual in
the population carries the cultural trait.

Different individuals will carry different cultural
traits and the population will be heterogeneous for
the expression of these traits. In order to obtain
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some intuition about the level of cultural homogeneity
in the population, we introduce the probability rs that
two individuals randomly sampled without replace-
ment from the population both carry a focal trait.
This is

rs ¼
XN

i¼1

iði ' 1Þ
NðN ' 1Þ

xðiÞ; ð2:6Þ

which is related to the standard population genetic
measure of the probability of identity between pairs
of distinct individuals (Wright’s fixation index [18–
21]) except that here we take into account only the
probability that two individuals carry the same trait
and not the probability that neither carry the trait.
From rs we can evaluate the average number of
shared traits between two individuals as ls ¼ crs
because each trait is independent of all others. Then
the proportion of shared traits among two randomly
sampled distinct individuals in the population is

w ¼ ls
lf

; ð2:7Þ

namely, the average number of shared traits between
two individuals divided by the average number of
traits per individual.

3. INVENTION, RECOLLECTION AND
TRANSMISSION OF CULTURAL TRAITS
(a) Transition probabilities
Our aim now is to analyse the values that lf, lp and w
can take under various models of cultural evolution.
To that end, we assume that both individual and
social learning may affect the transition probabilities
p(h) and q(h) of a focal trait, where h is the number
of individuals in the population carrying that trait.
Specifically, we assume that just before updating of a
focal trait, a focal individual previously carrying that
trait remembers it with probability r and if the trait is
not remembered, the individual invents it de novo
with probability m. More generally, r can be inter-
preted as the probability that the individual retains a
trait acquired previously.

If the individual neither remembers nor invents the
focal trait, it may be acquired through social learning
according to some social learning rule s( y), which
gives the probability that an individual adopts the
focal trait from another individual when the frequency
of other individuals in the population carrying that
trait is y. The social learning rule may include
transmission schemes such as threshold responses,
conformism, or anti-conformism [22]. If the individ-
ual had not carried the trait previously, it either
invents it with probability m or it copies it from the
population with probability s( y).

From the above assumptions, we have for h ( 1

pðhÞ ¼ r þ ð1' rÞ mþ ð1' mÞ ) s
h' 1

N ' 1

! "# $
; ð3:1Þ

and for N . h ( 0

qðhÞ ¼ mþ ð1' mÞ ) s
h

N ' 1

! "
; ð3:2Þ

where the first term in both equations can be
thought of as the probability of individually learning
the focal trait, while the second term is the probability
of learning the trait socially.

Because the transition probabilities, p(h) and q(h),
apply to each individual in the population, they can
be used to derive models of synchronous updating,
asynchronous updating or a mixture of these updat-
ing processes. It is well established in the stochastic
process literature that the simplest process that
leads to an explicit expression for the probability
x(i) that i individuals in the population carry a
focal trait is asynchronous updating (e.g. [16, p. 9],
[17, p. 269], [23]). We therefore assume asynchro-
nous updating and the details of the calculation
of x(i ) are presented in appendix A (see equations
(A 1)–(A 5)).

(b) Random copying
In order to investigate how cultural diversity depends
on various social learning rules, we start by assuming
the simplest frequency-dependent social learning
rule; namely, random copying:

sðyÞ ¼ by: ð3:3Þ

Hence, when social learning occurs, an individual
copies the trait from another individual randomly
sampled from the population, with probability b.

Using equation (3.3) and U ¼ cm, which is the total
innovation rate of cultural traits per individual, we find
that the mean lf of the individual trait-number
distribution is approximated by

lf ≃
U

1' b' r
' Urb2

Nð1' b' rÞ3
ð3:4Þ

when the number of cultural traits, c, and the popu-
lation size, N, are large (equations (A 8)–(A 13) of
appendix A). This equation shows that lf tends to
increase with increasing values of each parameter
(U, b, r and N). The second term in equation (3.4)
accounts for the effect of stochastic fluctuations in
number of individuals carrying a focal trait (i.e.
sampling effects). These stochastic effects are greater
when there are fewer exemplar individuals in the popu-
lation from whom to copy traits, which tends to
decrease the number of traits carried by a focal
individual. The exact expression for lf is graphed in
figure 1, but numerical investigations suggest that lf
is very well approximated by equation (3.4) for most
parameter values.

The expected number lp of different cultural traits
in the population when it becomes large is
approximated by

lp ≃ U

1' b' r
þNU

b
log

1' r

1' b' r

! "

' Ubð1' bÞ
2ð1' b' rÞ2

; ð3:5Þ

which increases with NU, the product of population
size and the innovation rate per individual (equations
(A 8)–(A 14)). When r ¼ 0 and the third term is neg-
lected, this equation reduces to a result established
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previously by Strimling et al. [24]. Hence, when
individuals carry an infinite number of cultural traits
(c !1), update their traits through social learning
by random copying (e.g. according to equation
(3.3)), and have no memory (r ¼ 0), our model
becomes similar to that of Strimling et al. [24]; see
also equation (A 11) of appendix A. Note, however,
that the model of Strimling et al. [24] is based on
different biological assumptions than our model. An
‘updating’ event of cultural traits in their case actually
involves a single individual dying and its replacement
individual inventing new traits at rate U and adopting
each trait of a randomly sampled cultural parent with
probability b, which suggests that models with long-
living forgetful individuals can be recast as models
with short-living individuals with perfect memory.
The exact expression for lp is graphed in figure 1,
but as was the case for the individual mean, numerical
investigations suggest that lp is generally well

approximated by equation (3.5) even for population
sizes as small as N ¼ 10.

Figure 1 suggests that the average number of differ-
ent traits carried by an individual can be low while at
the same time the average number of different traits
in the population may be very high, which suggests
that the proportion of shared traits between two indi-
viduals, w, is likely to be low. When the population
size becomes large, this proportion is approximated by

w ≃ b

Nð1' b' rÞ
: ð3:6Þ

We see first that as population size increases, w
decreases and approaches zero and, second, that w
does not depend on the innovation rate U (equations
(A 8)–(A 15)). Hence, it is mainly social learning
that causes the homogenization of the population,
and the higher the memory the higher the proportion

0

0.5

1.0

1.5

2.0(a) (d)

(b) (e)

(c) (f)

0

10

20

30

40

0

0.5

1.0

1.5

2.0

0

10

20

30

40

20 40 60 80 100
0

1

2

3

4

5

N
20 40 60 80 100

N

lf

lf

lf
lp

lp

lp

0

20

40

60

80

100

120

140

r = 0.4

r = 0.3r = 0.2

r = 0.1

b = 0.4

b = 0.3b = 0.2

b = 0.1

b = 0.4 b = 0.3

b = 0.2

b = 0.1

U = 0.4

U = 0.3

U = 0.2

U = 0.1

r = 0.4

r = 0.3

r = 0.2

r = 0.1

U = 0.4

U = 0.3

U = 0.2

U = 0.1

Figure 1. (a–c): mean number lf of cultural traits per individual graphed as a function of population size N for various
parameter values. In (a), the innovation and the transmission rates are held constant (U ¼ 0.1 and b ¼ 0.5), while the
recall rate, r, varies; from the top to the bottom curves, r ¼ 0.4, 0.3, 0.2 and 0.1. In (b), the innovation and recall
rates are held constant (U ¼ 0.1 and r¼ 0.5), while the transmission rate b varies; from the top to the bottom curves b¼ 0.4,
0.3, 0.2 and 0.1. In (c), the transmission and memory rates are held constant (b ¼ 0.1, and r ¼ 0.5), while the innovation rate
U varies; from the top to the bottom curvesU¼ 0.4, 0.3, 0.2 and 0.1. (d– f ): mean population number of cultural traits lp graphed
as a function of population size N for exactly the same combinations of parameter values as given in (a–c).

428 L. Lehmann et al. Cultural accumulation

Phil. Trans. R. Soc. B (2011)

 on January 4, 2011rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


of shared traits because individuals tend to remember
invented traits, which can then be copied by others.
The exact expression for w is graphed in figure 2,
and the approximation of w given by equation (3.6)
is good even for small population size when the
parameters b and r are small; otherwise the
approximation requires that population size is large
(N. 50).

While there might be high cultural diversity in the
population at steady-state under the random copying
social learning rule, two individuals are unlikely to
share the same cultural traits when the population
size becomes large (figures 1 and 2). In order to inves-
tigate the extent to which this depends on the
assumptions of the learning rule (equation (3.3)), we
now analyse the values that lf, lp and w can take
under other social learning rules.

(c) Beyond random copying: sensitivity to
minority and biased conformist transmission
In copying the cultural traits of others in the popu-
lation, individuals may express various preferences
resulting in different social learning rules [22]. Here,
we consider preferences that result in sensitivity to
minority or biased conformist transmission. These
two cases can be analysed with the following social
learning rule:

sðyÞ ¼ bya

ya þ ð1' yÞa
: ð3:7Þ

When a ¼ 1 we recover the random copying social
learning rule (equation (3.3)), while for a , 1 the
probability of adopting a focal cultural trait is
increased at low prevalence of the trait in the popu-
lation (e.g. sensitivity to minority). When a . 1 we
have biased conformist transmission, and the social
learning rule curves down at low prevalence (i.e. it is
convex) and up at high prevalence.

How lf, lp and w vary as functions of the par-
ameters for these two social learning rules is graphed
in figure 3. Sensitivity to minority (a , 1) increases
both lf and lp relative to the random copying rule.
Each individual is then likely to carry more traits.
But for a given value of population size N, the differ-
ence between the mean number of traits carried by
an individual (lf) and the mean number of traits
expressed by all individuals in the population (lp)
decreases. Hence, the population becomes more
homogeneous in the expression of cultural traits.
This can also be noted from figure 3, which shows
that the proportion of shared traits between two indi-
viduals, w, no longer goes to zero as population size
increases (as occurred under random copying,
figure 2) but reaches a steady-state value. This is
because under sensitivity to minority if there is one
individual carrying a focal trait, then it is very likely
to be copied by another individual in the population,
thereby increasing the proportion of shared traits.

Exactly opposite patterns to those of sensitivity to
minority are observed under conformist transmission
(equation (3.7) with a. 1), where both lf and lp
decrease relative to the random copying rule and at
the same time the population becomes more

heterogeneous (figure 3). Hence, as a increases, the
proportion of shared traits between two individual
traits decreases rapidly as population size increases
(compare figure 3c and 3f ). This is because in the
limit of a large number of traits, the frequency of
appearances of each trait will be low (as innovation
per trait is very low). Under conformist transmission
individuals are unlikely to copy a trait that is at low fre-
quency in the population (say a trait carried by a single
individual); hence conformist transmission will inhibit
the increase in the number of individuals carrying a
focal trait, thus decreasing the proportion of shared
traits in the population.

(d) Culturally structured population
So far we have assumed that individuals interact at
random in the population, but in reality interactions
may be localized as individuals copy cultural traits
from neighbours rather than from strangers [25]. In
order to take such cultural viscosity into account, we
now assume that the population consists of an infinite
number of groups, each of finite size N. When a focal
individual in a given focal group updates a focal trait,
we assume that it copies a random individual from
its group with probability (1 2 m) and copies another
individual, randomly sampled from another group,
with probability m, where the parameter m can be
thought of as the probability of learning from out-
siders. With these assumptions, the social learning
rule is now given by

s yð Þ ¼ bfð1'mÞyþmrfg; ð3:8Þ

where y is the frequency of individuals in the focal
group (excluding the focal individual) that carry the
focal trait and rf ¼

P
i x(i)i/N is, as before, the prob-

ability that an individual randomly sampled from the
total population carries a focal trait. Here x(i) is the
stationary probability that a group in the population
contains i individuals that carry the focal trait, in
which case the focal individual copies one of these
with probability i/N (see also appendix Ab).

How lf, lp and w vary as functions of the prob-
ability m of learning from outsiders (‘cultural

r = 0.4

r = 0.2

r = 0.3

10 20 30 40 50
0

0.1

0.2

0.3

0.4
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N

j

Figure 2. Probability w that two individuals carry at least
one cultural trait in common for U ¼ 0.1 and b ¼ 0.5,
while the recall rate, r, varies; from the top to the bottom
curves, r ¼ 0.4, 0.3 and 0.2.
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migration’) in the presence of random copying
(equation (3.3)) is illustrated in figure 4. As the rate
m of cultural migration increases, the number of cul-
tural traits expressed by a single individual or by all
members in a group increases. This is because, as cul-
tural migration increases, individuals tend to copy
traits from others in the population with a fixed prob-
ability (i.e. second term in equation (3.8)), instead
of copying individuals locally where the prevalence of
a focal trait may fluctuate as a result of sampling
effects. When m ¼ 0, the model becomes similar to
the panmictic finite population size model investigated
above (equation (3.3) in equation (A 1)), which can be
interpreted as the situation where a focal group of size
N is completely isolated from other groups in the
population (no exchange of cultural traits between
groups). By contrast, when m ¼ 1, the model becomes
similar to the situation of a panmictic population of
infinite size (equations (A 16)–(A 20) of appendix A),
in which case there are no longer fluctuations in abun-
dance frequencies owing to finite population size.

It follows from these considerations that the
proportion of shared traits between individuals decreases
as the rate of ‘cultural migration’ m increases (figure 4),

and, as was the case for the panmictic model, the
proportion of traits shared between individuals decreases
as population size increases, which also reduces the
magnitude of the sampling effects. The effect of demo-
graphic factors (here N and m) on the level of cultural
homogeneity w within groups is, therefore, qualitatively
similar to the effect of these factors on the probability
that two individuals carry identical variants in standard
neutral evolutionary models, whether the variants are
genetic [1,26] or cultural [5].

(e) Norms
So far we have assumed that the cultural traits are
expressed as a result of decisions taken by individuals
alone. But some decisions are taken collectively; they
are made not by individuals acting alone, but by
groups of individuals. Suppose that the group of N
individuals has to choose whether or not to adopt a
cultural trait at the population level, which we call a
norm. Thus a norm is interpreted as being a cultural
trait that results from the aggregation of cultural
traits expressed by single individuals. In reality, the
aggregation process may be a function of the cultural
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profiles of all individuals in the population and is
therefore likely to be a complicated function of the
expression of several different traits by each individual.

For simplicity, suppose that a norm results from the
aggregation of the expression pattern of a focal trait
only. We can then define the aggregation function
A(o1,o2, . . . , oN) [ f0,1g, which maps the cultural pat-
tern of the focal trait into presence or absence of the
norm, where oj is the cultural state at the focal position
of the jth individual. In order to evaluate the likelihood
that the norm is expressed for various transmission
rules, we introduce an e-majority rule Ae such that
Ae ¼ 1 if the number of individuals carrying the trait
at the focal position in the population is equal to
or greater than e: that is, Ae ¼ 1 if

P
i¼1
N , oi ( e;

Ae ¼ 0 otherwise. Given an e-majority rule, the
probability he that a norm is chosen by the
individuals in the population is

he ¼ Pr
XN

i¼1

oi ( e

 !

¼
XN

i¼e

xðiÞ; ð3:9Þ

from which we can evaluate the probability of occur-
rence of a norm for the e-majority rule under the

sensitivity to minority and biased conformist social
learning rules (the choice of the e-majority rule
and the implementation of the norm itself are
other problems, whose analysis would entail model-
ling the games individuals are playing in the
population). This is graphed in figure 5. The prob-
ability of adopting the norm is greater under
sensitivity to minority than under biased conformist
transmission unless the threshold e becomes very
high. This is due to the fact, already encountered,
that at low prevalence the sensitivity to minority
social learning rule tends to increase the prevalence
of a trait in the population because individuals not
carrying that trait tend to adopt it.

4. DISCUSSION
We have presented a model for the accumulation of
independent cultural traits through individual and
social learning in finite populations. This multi-trait
cultural model allows us to characterize the cultural
diversity at the individual and population levels at
the steady state of the learning dynamics and as a func-
tion of various features of the demography and the
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rules of cultural transmission. Our model has features
in common with multilocus population genetic models
[16], and is directly related to previous models of sto-
chastic cultural evolution. When individuals in the
population carry only a single trait (c ¼ 1), it is similar
in essence to the model by Lumsden & Wilson [22]. In
contrast, when individuals may carry an infinite
number of cultural traits (c! 1), social learning
occurs through random copying (equation (3.3)),
and individuals have no memory (r ¼ 0), our model
becomes similar to the multi-trait model of Strimling
et al. [24].

Our results suggest that when individuals may invent
infinitely many cultural traits, the stationary individual
and population-wide distributions of the number of
distinct traits are Poisson. The means of these two
trait-number distributions (lf and lp) then fully charac-
terize the cultural diversity at the individual and
population levels because of our assumption of the
independence of the cultural traits, which is probably
the most stringent of our model. But this assumption
allows us to establish a null model for the trait
number distribution that is tractable and to which
other results can be compared. For instance, the
Poisson distribution plays a central role in population
genetics as the null model of reproduction (e.g. the
ideal Wright–Fisher population, [3,16,27]), and it is
by reference to this model that the effects of relaxing
demographic assumptions may be assessed. One
could thus relax the assumption of the independence
of traits, and investigate how this might affect the
steady-state distribution of trait-number at both the
individual and population levels. Further, memory (r)
might be modelled as a decreasing function of the
number of traits an individual carries, or the total inno-
vation rate (U) might be modelled as an increasing
function of this number.

The means of the trait-number distributions (lf
and lp) and the proportion of traits shared between

two randomly sampled individuals (w) are critically
affected by the demographic details and the social
learning rules. In a panmictic population with
random copying (equation (3.3)), there might be
high cultural diversity in the population, while at the
same time single individuals may carry only a few
traits (figure 1). The population will then be culturally
heterogeneous, as any two individuals are unlikely to
share cultural traits in common (figure 2). While this
pattern seems somewhat counterintuitive as we
expect individuals within populations to share cultural
traits, random copying is probably the social learning
rule that makes the accumulation model presented
here closest to standard neutral models of population
genetics. Indeed, it was shown by Strimling et al.
[24] that with a change of variable one can recover
from the mean number of traits lp, the expected
number of different variants segregating in a popu-
lation in a one-trait model, a well-known result in
population genetics [10,16].

When social learning does not occur by random
copying, very different levels of cultural homogeneity
are observed. With biased conformist transmission
two randomly chosen individuals are very unlikely to
share common cultural traits, even when population
size is low (figure 3). In contrast, when individuals
express sensitivity to a minority, single individuals
carry more cultural traits, two randomly chosen indi-
viduals are very likely to share common cultural
traits, and cultural homogeneity of the population is
increased (figure 3). These opposite patterns follow
from the fact that if there is only one individual carry-
ing a focal trait, then it is very likely to be copied
by another individual under sensitivity to minority.
By contrast, that trait is very unlikely to be copied by
another individual under biased conformist trans-
mission, thus preventing an increase in number of
the focal traits in the population. Although this inhibit-
ing effect of biased conformist transmission for the
accumulation of cultural traits has not been recognized
in the literature, one expects it to be observed more
generally as most traits are likely to appear initially as
a single (or a few) copy(ies) in a population.

Introducing population subdivison by allowing indi-
viduals to learn from others outside a focal group
reduces the local fluctuations in abundance frequen-
cies owing to sampling effects in finite populations.
The result is an increase in the number of different
traits carried by individuals (figure 4). This, in turn,
decreases the level of shared traits within groups, w,
which also decreases with group size in exactly the
same way as in a panmictic population (compare
figures 2 and 4). The effects of the two demographic
factors, m and N, are qualitatively similar to the
effect of spatial structure on the distribution of
genotypes within and between groups (e.g. [1–3]).
Hence, the effects of demographic factors on the
trait-number distribution appear to be qualitatively
equivalent to their effects on the distribution of
variants of a single gene (e.g. [1–3]).

We have assumed that infinitely many cultural traits
may be invented but the number of possible indepen-
dent cultural traits may be finite. From a qualitative
point of view, allowing for a finite number of traits
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should not affect the main results reported here,
because the assumption that all c traits are indepen-
dent of each other allowed us to derive our results
from single-trait dynamics; the number of different
traits carried by an individual (or by all individuals in
the population) then varies directly with c, holding
everything else constant.

We have not incorporated organismal birth and
death into our model. Including such features should
not affect the qualitative results reported here if the
number of updating events occurring during the life-
span of an individual is sufficiently large that the
updating process converges approximately to station-
arity. It would be interesting, however, to study the
accumulation of cultural traits in the presence of a
few transmission rounds within the lifespan of an indi-
vidual and with intergenerational effects, which would
follow from including organismal birth and death.

Overall, our results suggest that the cultural diversity
at both the individual and population levels (lf and lp)
are increasing functions of the demographic factors,
namely the population size (N) and the cultural
migration rate (m), and of the organismal parameters,
namely the number of cultural traits (c) an individual
may possibly carry, the per trait innovation rate (m),
the memory (r), and the probability of adopting traits
learned socially from others (b). Hence, in addition to
the demographic parameters and the innovation rate,
which are well known to play an important role in
describing diversity in classical population genetic
models, the memory, and the intensity of cultural trans-
mission (as well as the mode of transmission) are also
likely to affect patterns of cultural diversity at both the
individual and the population levels. All of the organis-
mal features encountered may be under partial genetic
control and thus subject to genetic evolutionary change.
We can speculate that such genetic control of these
parameters may have implications for the evolution of
modern humans from their less culturally capable
predecessors, or for their success in overcoming less
cultural contemporary groups.
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APPENDIX A
(a) Stationary abundance distribution
(i) Asynchronous updating
In this appendix, we present an explicit expression for
the stationary probability x(i) that i individuals in the
population carry a focal trait under asynchronous
updating. For this case, the updating process follows
a so-called birth–death process (e.g. [16, p. 91], [17,
p. 269], [23]), and the stationary distribution is
given by

xðiÞ ¼ xð0Þ bð0Þbð1Þ % % % bði ' 1Þ
dð1Þdð2Þ % % % dðiÞ

; ðA1Þ

where x(0) is chosen so that
P

i¼0
N x(i) ¼ 1; b(h) is the

probability that, conditional on an updating event
taking place in a population with h individuals carrying
a focal cultural trait, a new individual carries that trait
after updating; and d(h) is the probability that, con-
ditional on an updating event taking place in a
population with h individuals carrying the cultural
trait, one fewer individual carries the trait after
updating ([16, eqn 2.162]).

The values of b(h) and d(h) can be obtained from
equations (3.1)–(3.2) by noting that in a population
with h individuals carrying the focal trait, an individual
not carrying it is sampled to update its cultural loci with
probability (N2 h)/N, in which case it carries the focal
trait after updatingwith probability q(h), while an individ-
ual carrying the focal trait is sampled to update its cultural
loci with probability h/N, in which case it does not carry
the trait after updating with probability 12 p(h). Thus

bðhÞ ¼ N ' h

N

! "
qðhÞ ðA2Þ

and

dðhÞ ¼ h

N
ð1' pðhÞÞ; ðA3Þ

and on insertion of equations (3.1)–(3.2), one has

bðhÞ ¼ N ' h

N

! "
mþ ð1' mÞ ) s

h

N ' 1

! "# $
ðA4Þ

and

dðhÞ ¼ h

N
ð1' rÞð1' mÞ 1' s

h' 1

N ' 1

! "# $
: ðA5Þ

Note that these equations imply that a single individual
updates all its cultural traits simultaneously. Alternatively,
one could assume that a single individual in the popu-
lation updates one cultural trait per unit time, in which
case the right-hand sides of equations (A 4)–(A 5)
would be divided by c, which will not affect the stationary
abundance distribution but only the rate of convergence
to equilibrium.

(ii) Linear updating
Substituting equation (3.3) and equations (A 4)–(A 5)
into equations (A 1), we find after rearrangement that
the stationary distribution can be expressed as

xðiÞ ¼ xð0Þ 1
i!

Yi'1

h¼0

fðN ' 1Þmþ ð1' mÞbhgðN ' hÞ
ð1' rÞð1' mÞðN ' 1' bhÞ

;

ðA6Þ

which allows us to evaluate rf and rp by using
equations (2.4)–(2.5). The resulting expressions are
complicated and involve hypergeometric functions,
but can be easily calculated numerically, for example
with Mathematica [28]. In the absence of memory,
i.e. r ¼ 0, however, it can be shown that

rf ¼
m

1' bð1' mÞ
; ðA7Þ

which is the same probability as that found in a popu-
lation of infinite size (see equation (A 20)). No such
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simple expression was found for rp when r ¼ 0. In
order to obtain more tractable analytical expressions
than equation (A 6), we will evaluate the trait-
number distributions in the limit as the number of
cultural traits and population size become large.

(b) Culturally structured population
In a culturally structured population with an infinite
number of groups following the same updating pro-
cess, groups affect each other in a deterministic way
[29]. Then, x(i) gives both the probability that i
individuals in a focal group carry a focal trait (and
thus satisfies equation (A 6)) and the probability
that a randomly sampled group in the population
consists of i individuals carrying a focal trait, which
may affect the transition probabilities of the state of
a focal group. This is the case for the updating prob-
abilities p(h) and q(h) given by equations (3.1)–(3.2)
(with equation (3.8)) of the main text, which are now
functions of the stationary distribution itself through
their dependence on rf. Thus we can no longer
obtain an explicit expression for x(i), which is now
implicitly determined (e.g. insert equation (3.8) into
equations (3.1)–(3.2), then equations (3.1) and
(3.2) into equations (A 4)–(A 5)). This distribution
can, however, be evaluated numerically from rf ¼P

i x(i)i/N, which has a closed form once equations
(3.1)–(3.2), equation (3.8) and equations (A 4)–
(A 5) have been inserted into equation (A 1). From
this, we can then compute lf, lp and w, which are
presented in figure 4.

(c) Large population size
(i) Large population size approximation
Our aim in this section is to obtain a large population
size approximation for lf, lp and w when the stationary
abundance distribution is given by equation (A 6). To
that end, we use the variable !nðiÞ ¼ limc!1 cxðiÞ, which
can be interpreted as the expected number of traits of
popularity i in the population (a quantity introduced
by [24]) in the limit of an infinitely large number of
traits. With this, we have

lf ¼ lim
c!1

crf

¼
XN

i¼1

i

N
lim
c!1

cxðiÞ

¼
XN

i¼1

i

N
!nðiÞ;

ðA8Þ

lp ¼ lim
c!1

crp

¼
XN

i¼1

!nðiÞ;
ðA9Þ

and

ls ¼ lim
c!1

crs ¼
XN

i¼1

iði ' 1Þ
NðN ' 1Þ

!nðiÞ ðA10Þ

where we used equations (2.4)–(2.6).
By using m¼ U/c in equation (A 6), it can then be

shown that the expected number of traits of popularity i

in the limit of an infinitely large number of traits (c!1)
is given by

!nðiÞ ¼ NU

ð1' rÞi
bi'1

i

Yi'1

h¼1

N ' h

ðN ' 1' bhÞ
; ðA11Þ

which, when r ¼ 0, is equation (2) of Strimling et al. [24].
The derivation of equation (A 11) from equation (A 6) by
using !nðiÞ ¼ limc!1 cxðiÞ and m ¼U/c is a bit messy to
check by hand but it can easily be done with a symbolic
algebra system such asMathematica [28].

A first order Taylor expansion of equation (A 11)
near N ¼ 1 with Mathematica gives, for N. 2 and
0, b , (N 2 1)/N,

!nðiÞ¼'l
ðði'1Þð2'ð1'bÞiÞþ2NÞ

2bi

b

1' r

! "i

)cscðði'NÞpÞcsc p'Np

b

! "
sin

ðbi'Nþ1Þp
b

! "

) sinðNpÞþO
1

N2

! "
ðA12Þ

where csc(.) is the cosecant function. Substituting
equation (A 12) without the O(1/N2) term into
equations (A 8)–(A 10) and letting N! 1 in the
summation gives

lf ≃
U

1' b' r
' Urb2

Nð1' b' rÞ3
: ðA13Þ

lp ≃ U

1' b' r
þ ðN ' 1ÞU

b
log

1' r

1' b' r

! "

' Ubð1' bÞ
2ð1' b' rÞ2

ðA14Þ

and

ls≃

bUðb2ðN'2rþ1Þ'bð1' rÞð2Nþ rþ1ÞþNð1' rÞ2Þ
NðN'1Þð1'b' rÞ4

:

ðA15Þ

Substituting equations (A 13) and (A 15) into equation
(2.7) gives w ≃ b /[N(12 b2 r)]þ O(1/N2). Note
that N ≃ N2 1 when N is large and that Strimling
et al. [24] used a different approximation in order to
derive their expression for lp (their proposition 1).

(ii) Infinite population size
In this section,we present an equation for the dynamics of
rf for a focal trait when the population size becomes infin-
itely large. In that case, we can neglect fluctuations in
the number of individuals carrying the trait during updat-
ing because the probability that a randomly sampled
individual carries the trait converges to its expectation.
Then, the probability p(rf) that a focal individualwho car-
ries the focal trait before updating also carries that trait
after updating can be written as a function of the expect-
ation rf that a randomly sampled individual from the
population carries the trait. Similarly, the probability
q(rf) that a focal individual who does not carry the focal
trait before updating carries it after updating becomes a
function of rf. Hence, the probability r0f that a focal
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individual carries the trait at the focal locus just after it has
updated that position can be expressed as

r0f ¼ rfpðrf Þ þ ð1' rf Þqðrf Þ; ðA16Þ

andgiven the formsofp(.) and q(.), equation (A 16) canbe
solved for rf at equilibrium; that is when r0f ¼ rf.

For our model, with random copying, the transition
probabilities are, from equations (3.1)–(3.2), given by

pðrf Þ¼frþð1' rÞmgþf1'ðrþð1' rÞmÞgbrf ; ðA17Þ

and

qðrf Þ ¼ mþ ð1' mÞbrf : ðA18Þ

Substituting equations (A 17)–(A 18) into equation
(A 16) and solving for rf, the equilibrium probability
that an individual carries the focal trait becomes

rf ¼
2m

1'ðbþrÞð1'mÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1'ðbþrÞð1'mÞÞ2þ4brð1'mÞm

q

ðA19Þ

and in the absence of memory, r ¼ 0, this reduces to

rf ¼
m

1' bð1' mÞ
: ðA20Þ

Substituting m ¼ U/c into equation (A 19) and taking
lf ¼ limc!1 crf, we find that the mean of the
trait-number distribution is given by lf ¼ U/(12 b2 r).
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