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ABSTRACT 1	

Context: Obesity is associated with neuroendocrine reproductive alterations and decreased 2	

fertility.  3	

Objective: The objective of the study was to gain insight into the neuroendocrine mechanisms 4	

implicated in these alterations. 5	

Design: The effects on pulsatile LH secretion of 28 days of hyper-caloric diet were studied in 6	

lean and regularly cycling female volunteers. ~50% extra calories (3 g sucrose/kg BW/day and 7	

1g fat/kg BW/day) were added to their individual daily requirements. Spontaneous and insulin-8	

stimulated LH secretion was recorded on two different days, before and at the end of the caloric 9	

load.  10	

Results: The hyper-caloric diet induced an average weight gain of 2.0 ± 0.3 kg (p<0.05), 11	

corresponding to a BMI increase of 0.7 ± 0.1 kg/m² (p<0.05). A concomitant decrease of 11.6 ± 12	

4.6 % in whole body insulin sensitivity was also observed (Δ = -1.6 ± 0.7 mg glucose/kg/min; 13	

p<0.05). The frequency of spontaneous and insulin-stimulated pulsatile LH secretion was 14	

increased by 17.9 ± 9.0% and 26.5 ± 9.0% respectively (both p<0.05). Spontaneous LH peak 15	

amplitude was decreased by 26.5 ± 9.0% (Δ = -0.7 ± 0.36 U/l; p<0.05), a change correlated with 16	

insulin sensitivity.  17	

Conclusions: Short-term weight gain in normal female volunteers induces alterations of LH 18	

secretion reminiscent to those observed in obesity. A decrease in insulin sensitivity may 19	

constitute a mechanistic link between obesity and its associated neuroendocrine dysfunctions. 20	

21	



	

	

2	

INTRODUCTION 22	

The activity of the female neuroendocrine reproductive axis is closely associated to nutritional 23	

status. This relationship was first established in rodents (1), and then subsequently demonstrated 24	

in other animal models and in humans (2-6). In the human, Frisch and McArthur (5) postulated 25	

that a minimum amount of body fat is necessary to allow the onset and the maintenance of 26	

regular menstrual cycles. Consistently, states of low or insufficient energy availability, such as 27	

encountered in anorexia nervosa or overexercising, can also lead to hypothalamic amenorrhea (7-28	

9), and it is generally well accepted that insufficient nutrition negatively impacts the activity of 29	

the neuroendocrine reproductive axis.  30	

Weight excess and obesity also appear deleterious for reproduction (10-13). However, 31	

compared to weight insufficiency, the mechanisms implicated here are far less understood. The 32	

first evidence indicating that excessive nutritional intake could be associated with reduced 33	

fertility was a population-based analysis conducted in over sixty countries (14). This work 34	

suggested that extreme conditions of either very low or very high caloric intake are both 35	

associated with poor reproductive outcome. The hypothesis that excessive weight can impact 36	

negatively upon the reproductive function is supported by several subsequent studies. Zaadstra et 37	

al. (15) showed in a cohort of 500 healthy women seeking insemination for male infertility that 38	

their waist-hip ratio was inversely correlated to their conception rate. Similarly, in two 39	

retrospective studies including large numbers of individuals, the relative risk of infertility was 40	

found to increase with the BMI of the female, or of both partners (12, 16). Consistently, in a 41	

prospective study of 3029 couples with unexplained infertility followed for two years, women 42	

with a BMI>28 kg/m2 had a 4% decrease in spontaneous pregnancy rate per unit increase in BMI 43	

(13). However, these epidemiologic data do not provide any mechanistic explanation.  44	

In rodents, high-fat fed obese female mice displayed lower fertility than the controls fed a 45	

normal chow, a phenotype associated with a down-regulation of hypothalamic GnRH expression 46	

(17). In humans, polycystic ovary syndrome (PCOS) is an endocrine condition associating 47	

overweight or obesity with a reproductive phenotype characterized by dysfunctions at the 48	

neuroendocrine and the ovarian levels (18-20). Peripheral insulin resistance, a hallmark of 49	

PCOS, has been implicated in the pathogenesis of the syndrome. Insulin, like leptin (21, 22), is a 50	

metabolic signal involved in the central nervous system regulation of body weight and 51	
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reproduction (23-25). This dual function is illustrated by the phenotype of NIRKO (for Neuron-52	

specific Insulin Receptor Knock Out) mice, which harbor a neuron-specific deletion of the 53	

insulin receptor gene (23). These mice have complete insulin resistance in the central nervous 54	

system, and develop hyperphagic obesity associated with hypogonadism of hypothalamic origin. 55	

The latter observation suggests that in mice, activation of GnRH neurons is dependent upon 56	

adequate insulin signaling within the hypothalamus. This hypothesis is consistent with our 57	

previous in vivo (26) and in vitro data demonstrating that in rodents, hypothalamic GnRH 58	

neurons are indeed insulin-sensitive (27, 28). Since we could also demonstrate that in normal 59	

young women, pulsatile secretion of LH is modulated by insulin (29), we hypothesized that 60	

insulin could play a pathophysiological role in the reproductive phenotype of PCOS. 61	

Therefore, the aim of this study was to further explore the interaction between insulin and the 62	

control of reproduction in humans. We used a model of short-term hyper-caloric diet to test the 63	

hypothesis that changes in whole body insulin sensitivity can modify the secretion of 64	

neuroendocrine reproductive hormones in humans. Given the close association between obesity 65	

and insulin sensitivity, a better understanding of the relationship of the latter with fertility could 66	

become very important in the work-up and treatment of obesity and related metabolic disorders.   67	
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MATERIALS AND METHODS 68	

 69	

Study subjects.  70	

The study was approved by the local Ethics Committee and all volunteers provided written 71	

informed consent. Subjects were recruited by poster campaign. Between June 2013 and February 72	

2014, 107 potential subjects were evaluated by telephone screenings, 27 of which were identified 73	

as eligible for the screening visit, and thirteen finally included in the study. All anthropometrics 74	

measurements were recorded at 07:30 am on the test days, after an overnight fast. Height was 75	

measured at the screening visit, and body weight was assessed at each visit.  76	

Four subjects discontinued the study for the following reasons: irregular menstrual cycles 77	

(n=1), failure to adhere to the protocol (n=2) and occurrence of hypokalemia during insulin 78	

infusion (n=1). Thus, nine subjects completed the study and were included in our analyses. After 79	

completing the study, all the volunteers were offered dietary consultations to help them restore 80	

their baseline weight. 81	

 82	

Study design  83	

A hypercaloric feeding protocol lasting 28 days was used to explore the effects of weight gain 84	

and decreased whole body insulin sensitivity on neuroendocrine reproductive hormones. To this 85	

end, pulsatile luteinizing hormone secretion was used as a surrogate marker of the activity of 86	

hypothalamic GnRH neurons (30, 31). The spontaneous and the insulin-stimulated LH secretion 87	

profiles were evaluated twice: the first time under strict conditions of controlled isocaloric diet, 88	

and the second time at the end of 28 days of hypercaloric feeding. The evaluations of LH 89	

secretion were always performed in the follicular phase of the menstrual cycle, according to our 90	

previously published protocols (29). 91	

 92	

Nutritional interventions.  93	

The controlled isocaloric diet was initiated three days before the anticipated first day of the 94	

next menstrual cycle, and was designed to last until completion of the two test days described 95	

below (approximately seven days, depending upon the occurrence of menstruations). The 96	
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energetic content of the isocaloric diet was calculated to provide 1.5 times the resting metabolic 97	

rate measured by indirect calorimetry (32, 33). The nutritional composition of the isocaloric diet 98	

was 55% carbohydrates, 15% proteins and 30% fat.  99	

The hypercaloric diet was designed to last 28 days in total, and was initiated 24 days before 100	

the expected day of the next menstrual cycle. During the initial 21 days of voluntary high calorie 101	

intake, subjects were instructed to add a supplement of sucrose (3g/kg/day, diluted in 1L of 102	

water) and lipids (1g/kg/day, 2/3 butter and 1/3 olive oil) to their ad-libitum diet. Three days 103	

before the expected day of the next menstrual cycle, they were switched for an additional seven 104	

days to controlled hypercaloric feeding, consisting in an isocaloric diet supplemented with 105	

3g/kg/day of sucrose and 1g/kg/day of lipids. During that period, we provided all necessary food 106	

to the volunteers, who were asked to restrain from eating anything else. Controlled feeding was 107	

adopted during the last week of the intervention in order to normalize the nutritional intake at the 108	

time of the tests. Also, volunteers were asked to avoid all strenuous physical activity during the 109	

entire overfeeding period. The two nutritional interventions (isocaloric and hypercaloric feeding) 110	

were separated by at least one month. 111	

 112	

Test days 113	

At the end of each intervention (isocaloric or hypercaloric feeding), volunteers were admitted 114	

twice to the Clinical Research Center of the University hospital of Lausanne, the first time for a 115	

“clamp day” and the second time for a “fasting test day”. All test days consisted in frequent 116	

(every 10 minutes) blood sampling and were started at 07:00 am with the admission of the 117	

volunteer after an overnight fast. On the fasting days, a single catheter was inserted into a 118	

forearm vein, and frequent blood sampling was started after 30 minutes of rest. The total 119	

duration of the protocol was ten hours, during which volunteers were kept fasted. Body 120	

composition was evaluated by bioimpedance analysis (Imp DF50, ImpediMed) during the day. 121	

For the clamp days, a second catheter was inserted into a contralateral forearm vein to infuse 122	

insulin and glucose. During clamp days, subjects underwent the same frequent blood sampling 123	

protocol as the fasting day, this time together with a hyperinsulinemic euglycemic clamp lasting 124	

throughout the ten hours of sampling. Clamp days were performed first, between day 2 and 7 of 125	

the menstrual cycle, and fasting days took place exactly three days later. The order of the test 126	
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days was not randomized, to avoid programming a full day of fasting before the clamp.  All 127	

blood samples were immediately centrifuged upon collection, and serum was frozen onsite. 128	

Hyperinsulinemic and euglycemic clamps were performed according to our previously 129	

published protocol (29). A bolus of insulin was injected thirty minutes after the insertion of the 130	

catheters, followed by a constant infusion at a rate of 1 mU/Kg/min, which was continued for ten 131	

hours. Blood samples were obtained every five minutes for the assessment of glycemia, using 132	

two different measures obtained onsite on a glucometer (Accu-chek Aviva, Roche). A variable 133	

infusion of 20% glucose allowed clamping of glycemia at 5.5 mmol/L (34). 134	

 135	

Assays and data analysis 136	

LH, FSH and insulin were measured by immunoenzymmologic assay (COBAS, Roche 137	

Diagnostics International AG, Rotkreuz, Switzerland). Leptin and grehlin were measured by 138	

ELISA and adiponectin by  multiplex analysis, using commercially available kits and reagents 139	

(Merck Millipore AG, Schaffhausen, Switzerland). Oestradiol, progesterone, and testosterone 140	

were measured by chemiluminescent microparticle immunoassay (Architect i2000SR, Abbott 141	

AG, Baar, Switzerland). Glucose was measured by hexokinase, cholesterol by cholesterol-142	

oxydase and p-amino-antipyrine (CHOD-PAP), HDL cholesterol by CHOD-PAP, homogeny 143	

polyethylene glycol, LDL cholesterol calculated with Friedewald formula, hsCRP by 144	

immunoturbidimetry and triglycerides by glycerol phosphate oxydase PAP (all on COBAS, 145	

Roche Diagnostics International AG, Rotkreuz, Switzerland). 146	

The characteristics of LH pulsatility were analysed by a modified Santen and Bardin method 147	

(35). LH pulse amplitude was calculated as the difference between the nadir and the highest peak 148	

within 30 minutes of the nadir. Pulse amplitudes during a given admission were averaged for 149	

each subject. Whole-body insulin sensitivity was expressed as the mean rate of glucose infusion 150	

necessary to maintain euglycemia for the last eight hours of the clamps. HOMA-IR was 151	

calculated using the standard formula (36). Statistical analyses were completed using Wilcoxon’s 152	

nonparametric signed-rank test for the between group comparison and the nonparametric 153	

Spearman’s correlation method for the correlation analysis. Power analyses were completed 154	

using SAS Power & Sample Size software (SAS Inc, Cary, NC, USA).  155	
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RESULTS 156	

Study subjects and design  157	

The subjects were women aged between 18 and 30 years (mean age 23.6 ± 0.8 y), with regular 158	

menstrual cycles of 30.2 ± 0.8 days and a mean BMI of 21.9 ± 0.7 kg/m2 (mean weight of 60.5 ± 159	

2.2 kg). Their mean body fat content was 24.1 ± 2.5 %. Mean fasting glycemia was 4.6 ± 0.1 160	

mmol/L, with a mean fasting insulin of 5.2 ± 0.7 mU/L and a mean HbA1c level of 5.3 ± 0.1 %. 161	

These parameters were assessed at the screening visit between day 4 and day 9 of the menstrual 162	

cycle and confirmed that all the variables were within the normal range at baseline. In addition, 163	

they were not pregnant, did not take hormonal contraception, were not participating in sport for 164	

more than four hours a week, did not smoke more than ten cigarettes per day and did not drink 165	

more than three alcoholic beverages per day. A complete medical history did not identify any 166	

hormonal problem, and physical examinations were unremarkable.  167	

The individual duration of the dietary intervention was somewhat variable, depending upon 168	

the length of the menstrual cycle. Thus, the controlled isocaloric diet lasted 7.1±0.7 days, the 169	

average time interval between the isocaloric and the hypercaloric phases was 62.5±11 days, and 170	

the length of the hypercaloric phase (voluntary overfeeding + controlled hypercaloric diet) was 171	

29.4±0.8 days, of which 7.6±0.6 were controlled diet. 172	

 173	

Metabolic data  174	

The hypercaloric diet induced a mean weight gain of 2.0 ± 0.3 kg, with most participants 175	

returning to their baseline weight by the final visit (Figure 1A). The subject with the lowest 176	

baseline BMI gained the least amount of weight (BMI =18.6 kg/m²; Δ weight = 0.7 kg), whereas 177	

the subject with the highest baseline BMI gained the most weight (BMI = 24.9 kg/m²; Δ weight 178	

= 4.0 kg, Figure 1B). Of note, the latter subject was also the only participant who had not 179	

returned to her inclusion weight by the final visit. The evolution of the volunteers’ body mass 180	

index followed the same pattern, with the hypercaloric diet inducing a mean increase of 0.7±0.1 181	

kg/m² (p<0.05).  We also found a significant increase of 3.8±1.5 kg in absolute fat mass at the 182	

end of the hypercaloric diet (p<0.05, Figure 1C), translating into a relative increase of 5.2±2.1 183	

% (p<0.05).  184	
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These changes in body weight and composition were accompanied by a significant decrease 185	

in whole body insulin sensitivity. The mean glucose infusion rate necessary to maintain 186	

euglycemia during the insulin clamp performed in isocaloric conditions was 12.1±3.0 187	

mg/kg/min, compared to 10.4±2.4 mg/kg/min at the end of the hypercaloric diet. The latter 188	

value, albeit still within the normal range, was significantly lower than the former (Δ = -1.57±2 189	

mg/kg/min ; p<0.05). Insulin resistance according to the homeostatic model assessment (HOMA-190	

IR) also increased significantly between the isocaloric and the hypercaloric phase (1.1±0.2 vs 191	

1.5±0.2, respectively; Δ=0.4±0.1 ; p<0.05). Evaluations of circulating metabolites showed that 192	

total cholesterol, HDL cholesterol, fasting glucose and insulin levels all increased significantly 193	

with the hypercaloric diet (Supplemental table). Leptin and adiponectin were also significantly 194	

increased by hypercaloric feeding, whereas ghrelin was not affected (data not shown). 195	

 196	

Menstrual cycle & reproductive hormones.  197	

The clamp test days took place during the early follicular phase (day 4.3±0.5 of the cycle in 198	

isocaloric condition, and 5.0±0.4 in hypercaloric condition). The fasting test days, programmed 199	

three days after the clamps, occurred significantly later in the cycle (day 7.3±0.5 in isocaloric 200	

condition, and 8.0±0.4 in hypercaloric condition). The occurrence of a progression in the cycle 201	

between the two test days is also supported by the rising levels of LH and estradiol observed in 202	

the isocaloric phase (Table 1). 203	

 204	

LH secretion profiles.  205	

Figure 2 displays the spontaneous LH secretion profile of each volunteer at the end of 206	

isocaloric and hypercaloric feeding. In eight of the nine volunteers, the LH pulse frequency on 207	

the isocaloric fasting test day was between six and nine peaks in ten hours. A single volunteer 208	

(♯8) had only one LH peak. At the end of hypercaloric feeding, LH pulse frequency was 209	

increased in six individuals, unchanged in two and decreased (from eight to seven in ten hours) 210	

in a single individual (♯2). Similarly, mean LH pulse amplitude was between 0.83 and 2.43 U/L 211	

for all volunteers except subject ♯8 who had a single peak with an amplitude of 5.2 U/L. At the 212	

end of hypercaloric feeding, mean LH pulse amplitude was decreased in all subjects but one (♯9) 213	

in whom the amplitude increased from 2.0 to 2.46 U/L. Of note, subject ♯9 was also the only 214	

subject showing an increase in whole body insulin sensitivity at the end of the hypercaloric diet.  215	
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Figure 3 displays insulin-stimulated LH secretion profiles of each volunteer before and after 216	

hypercaloric feeding.  Similar to that which is observed for spontaneous LH secretion, LH peak 217	

frequency was increased in seven individuals at the end of hypercaloric feeding, and remained 218	

unchanged for the remaining two subjects (♯1 and ♯7). Mean LH pulse amplitude was decreased 219	

at the end of hypercaloric feeding period in seven out of nine volunteers. Exceptions were 220	

volunteer ♯8 and ♯9.   221	

Figure 4 summarizes the changes occurring in pulsatile LH secretion. At the end of the 222	

hypercaloric diet, the spontaneous LH pulse frequency (panel A) was increased by 17.9 ± 9.0% 223	

(p≤0.05), while the amplitude of pulses (panel C) was decreased by 26.5 ± 9.0% (p≤0.05). These 224	

changes in LH pulse amplitude were positively correlated with the changes occurring in whole 225	

body insulin sensitivity (Figure 5). LH pulse frequency was also increased by 29.9±10.2% during 226	

the insulin clamp performed at the end of the hypercaloric diet (Figure 4, panel B, p≤0.05). 227	

Finally, mean LH levels were not affected by the intervention.   228	
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DISCUSSION 229	

Obesity has been associated with alterations in neuroendocrine reproductive hormones that 230	

have been linked to impaired fertility (37), but little is known regarding the mechanisms 231	

implicated. In order to investigate the role of peripheral insulin resistance in this context, young 232	

and lean women with normal menstrual cycles were studied before and at the end of one month 233	

of administration of a hypercaloric diet. This high sugar, high fat diet, calculated to attain ~150% 234	

of their daily energy requirements, induced significant increases in body weight, decreases in 235	

whole body insulin sensitivity and increases in fasting insulin levels. Patterns of pulsatile LH 236	

secretion were significantly altered at the end of hypercaloric feeding, when compared to the 237	

isocaloric diet. Changes consisted in an increased frequency of pulsatile LH secretion with lower 238	

amplitude pulses, both in spontaneous and insulin-stimulated conditions. Of note, the respective 239	

direction of these changes is entirely coherent with these two parameters of LH pulsatility being 240	

somewhat interdependent, adding to the robustness of our observations. 241	

A modulation in the frequency of pulsatile LH secretion cannot occur at the pituitary level. 242	

Therefore, the increase observed in LH pulse frequency is likely a reflection of a hypothalamic 243	

effect of our intervention (38, 39). Rodent data showing an acceleration of the frequency of 244	

pulsatile GnRH secretion from hypothalamic explants obtained from diet-induced obese (DIO) 245	

mice suggest that this effect could be mediated by GnRH neurons (40). In contrast, the origin of 246	

the decrease in LH peak amplitude could be either at the hypothalamic or at the pituitary level 247	

(38). Indeed, a smaller peak amplitude could result from a stimulation by lower concentrations of 248	

GnRH, reflecting decreased hypothalamic GnRH secretion. However, it could equally result 249	

from a modification of the sensitivity of the pituitary gonadotroph cells to GnRH stimulation, as 250	

previously reported in another model of DIO mice (41). Although we found no overall effect of 251	

hypercaloric feeding on LH pulse amplitude during the insulin clamps, changes were observed at 252	

the individual level. LH pulse amplitude was indeed decreased during the clamps performed at 253	

the end of the period of hypercaloric feeding in seven of the nine volunteers. The two exceptions 254	

were volunteer ♯8, who displayed no peak at all during the isocaloric clamp test day, and 255	

volunteer ♯9, who experienced an increase in insulin sensitivity at the end of the hypercaloric 256	

diet. Thus, the increase in mean peak amplitude of volunteer ♯9 is entirely consistent with the 257	

positive correlation observed between spontaneous LH pulse amplitude and whole body insulin 258	

sensitivity. 259	



	

	

11	

These data confirm the existence of an important link between insulin and the control of LH 260	

secretion in humans (29), possibly related to the long term elevations in peripheral insulin levels 261	

occurring in states of insulin resistance. Indeed, one can hypothesize that the decreases in whole 262	

body insulin sensitivity observed at the end of hypercaloric feeding are not paralleled by similar 263	

decreases at the level of the CNS, rendering the hypothalamo-pituitary unit highly sensitive to 264	

these raised insulin levels. This hypothesis is entirely consistent with rodent data, where 265	

alterations in the neuroendocrine reproductive hormones similar to those reported here are 266	

induced by changes in insulin signaling within GnRH neurons as well as pituitary gonadotroph 267	

cells (40, 41). 268	

All the volunteers experienced weight gain at the end of the hypercaloric diet, resulting 269	

essentially from an incrase in fat mass. Thus, our intervention induced modifications in body 270	

composition very similar to what is usually observed in more chronic conditions of excessive 271	

energy intake, together with a number of changes in blood markers. In particular, fasting 272	

glycemia, fasting insulinemia and the insulin resistance index HOMA-IR were all increased at 273	

the end of the hypercaloric diet. As stated above, whole body insulin sensitivity measured during 274	

the hyperinsulinemic euglycemic clamp studies was also significantly decreased at the end of the 275	

hypercaloric diet, although it clearly did not reach values typically associated with insulin 276	

resistance such as those seen in type 2 diabetes mellitus.  277	

These metabolic modifications are nevertheless physiologically significant, again reminiscent 278	

of the early stages of obesity. Interestingly in this context, decreases in LH pulse amplitude have 279	

been reported in obese women (42). The present data demonstrate that short-term hypercaloric 280	

feeding of normal volunteers can reproduce some of the neuroendocrine modifications associated 281	

with excess weight of much longer duration. They also demonstrate that these alterations appear 282	

early in states of excessive caloric intake in humans, during the phase of dynamic weight gain, 283	

validating further the use of this model in the study of human obesity.  284	

As previously reported (43-45), adiponectin was higher at the end of the hypercaloric feeding 285	

period, confirming the existence of a differential regulation between short and long-term 286	

conditions of positive energy balance (46, 47). We also observed a large rise in leptin levels after 287	

hypercaloric feeding, consistent with the increase observed in fat mass. Given the well-known 288	

actions of leptin in both the regulation of energy intake and body weight and of the 289	
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neuroendocrine reproductive system, leptin was a logical candidate link between metabolic 290	

changes and the hypothalamic GnRH pulse generator in our study. However, we did not observe 291	

any significant correlation between parameters of LH secretion and leptin levels. Thus, the 292	

question of the implication of leptin in conveying signals of excessive energy intake to the 293	

hypothalamic GnRH pulse generator remains open.  294	

In conclusion, we could demonstrate that 28 days of hypercaloric feeding in normal female 295	

volunteers can induce alterations in the activity of the neuroendocrine reproductive axis that are 296	

reminiscent of the changes reported in more chronic states of obesity. Thus, our data suggest that 297	

these alterations may take place at very early stages of the disease. By showing changes in both 298	

the frequency and the amplitude of LH secretion pulses, our data also suggest that this 299	

modulation is occurring both at the hypothalamic and the pituitary levels. Moreover, the 300	

existence of a significant correlation between changes in whole body insulin sensitivity and these 301	

hormonal alterations is providing for the first time a mechanistic explanation linking the 302	

neuroendocrine dysfunctions associated with calorie overload and obesity to insulin signaling. 303	

Further work in infertile obese patients will be necessary to better delineate the therapeutic 304	

implications of our observations.  305	
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Table 1: timing of the various test days with respect to the menstrual cycle (day 1 defined as the 

first day of menstruations), with the baseline levels of reproductive hormones. P¹ indicates a 

difference between IC and IF and P² indicates a difference between HC and HF.  

Data expressed as mean ± SEM. 

IC: isocaloric clamp day; IF: isocaloric fasting day; HC: hypercaloric clamp day; HF: 

hypercaloric fasting day. 

 

 

 
 
 
Suplemental table : metabolic profiles (fasting) at the end of the iso-caloric and the hyper-caloric 

phases, respectively.  

Data expressed as mean ± SEM. 
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FIGURE LEGENDS 

 

Figure 1:  Weight and body adiposity. Panel A: weight of the volunteers at the different time 

points indicated. Panel B: evolution of individual weights of the nine volunteers. 

Panel C: fat mass before and at the end of hyper-caloric diet. 

  I: inclusion; IC: isocaloric clamp day; IF: isocaloric fasting day; HC: hypercaloric 

clamp day; HF: hypercaloric fasting day; FV: final visit. * P < 0.05.  

 Data represented as median, 10th, 25th, 75th and 90th percentile in panels A and 

C. 

 

Figure 2:  Individual profiles of spontaneous LH secretion during IF (left) and IC (right). 

Open circles indicate significant peaks. 

	 IC: isocaloric clamp day; IF: isocaloric fasting day. 

 

Figure 3: Individual profiles of insulin-stimulated LH secretion during HF (left) and HC 

(right).  

Open circles indicate significant peaks. 

 HC: hypercaloric clamp day; HF: hypercaloric fasting day. 

 

Figure 4: Characteristics of pulsatile LH secretion. Panels A and B: LH peak frequency. 

Panels C and D: LH peak amplitude. Panels E and F: mean LH levels. * P < 0.05.  

 IC: isocaloric clamp day; IF: isocaloric fasting day; HC: hypercaloric clamp day; 

HF: hypercaloric fasting day. 

 Data represented as median, 10th, 25th, 75th and 90th percentile.  

 

Figure 5: Positive correlation between LH pulse amplitude and whole body insulin 

sensitivity.  

r obtained by nonparametric Spearman’s correlation test. 
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