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A B S T R A C T   

A vast majority of studies in the radiomics field are based on contours originating from radiotherapy planning. 
This kind of delineation (e.g. Gross Tumor Volume, GTV) is often larger than the true tumoral volume, sometimes 
including parts of other organs (e.g. trachea in Head and Neck, H&N studies) and the impact of such over- 
segmentation was little investigated so far. In this paper, we propose to evaluate and compare the perfor
mance between models using two contour types: those from radiotherapy planning, and those specifically 
delineated for radiomics studies. For the latter, we modified the radiotherapy contours to fit the true tumoral 
volume. The two contour types were compared when predicting Progression-Free Survival (PFS) using Cox 
models based on radiomics features extracted from FluoroDeoxyGlucose-Positron Emission Tomography (FDG- 
PET) and CT images of 239 patients with oropharyngeal H&N cancer collected from five centers, the data from 
the 2020 HECKTOR challenge. Using Dedicated contours demonstrated better performance for predicting PFS, 
where Harell’s concordance indices of 0.61 and 0.69 were achieved for Radiotherapy and Dedicated contours, 
respectively. Using automatically Resegmented contours based on a fixed intensity range was associated with a C- 
index of 0.63. These results illustrate the importance of using clean dedicated contours that are close to the true 
tumoral volume in radiomics studies, even when tumor contours are already available from radiotherapy 
treatment planning   

Introduction 

With the recent advances in computational science, the emergence of 
precision medicine is moving one step further to the clinical world. 
Radiomics allows quantitative analyses from radiological and nuclear 
medicine images with high throughput extraction to obtain prognostic 
patient information[1]. Unlike biopsies, radiomics does not require 
invasive sampling inside the tumor. It can provide an exhaustive and 
quantitative evaluation of lesion phenotype based on medical images 
that were acquired during diagnosis and treatment course. Established 
links between the radiomics features and outcomes of interest (e.g. 
staging, response to treatment) can be leveraged to assist clinical de
cisions prospectively. Radiomics features quantify the intensity, texture, 
and shape properties of provided Volumes of Interest (VOI)[2]. VOIs are 
necessary to focus the radiomics analysis on relevant biological struc
tures, such as the tumoral volume. This contouring process, among 
others, is known to have a strong impact on the performance (e.g. 

precision, robustness) of the models[3]. Thus, the VOI must be as close 
as possible to the true tumoral volume if the latter is considered as the 
main source of information concerning the targeted outcomes. 

Related work 

Radiomics studies on Head and Neck cancer (H&N) are based on 
various kinds of delineations to obtain the VOIs, including the direct 
reutilization of those used for radiotherapy planning, (semi-) automat
ically generated (e.g. based on metabolic activity thresholding), or 
dedicated to the study using expert manual contours. Combinations of 
approaches are also used in some cases, such as manual contouring 
refined using automatic re-segmentation[2]. Unfortunately, the delin
eation approach is often not clearly reported in the literature. Table 1 
lists the types of delineation methods used in several H&N radiomics 
studies. The direct reutilization of VOIs created in the context of 
radiotherapy planning was used in [4–8]. This allows performing 
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radiomics studies without the need for re-annotating the images spe
cifically for these tasks. The contours made for radiotherapy are, how
ever, very large as compared to the true tumoral volumes and frequently 
include non-tumoral tissues and parts of other organs (e.g. trachea, see 
Fig. 1). 

A few recent studies used a re-segmentation step of the initial VOI, (e. 
g. Leger et al. 2019[9] and Wenbing et al. 2021[10]) to remove air and 
only keep soft tissue. Moreover, several studies including Bogowicz et al. 
2017a[11] and Bogowicz et al. 2017b[12] performed a resegmentation 
step by manually removing slices that contain artifacts and excluding 
voxels outside the soft tissue window based on Hounsfield Units (HU). 
The performance evaluation of using automatically generated segmen
tation for building deep and traditional prognostic models was studied 
in [13–15]. Those two studies showed a comparison analysis between 
the use of manually and automatically generated VOIs. It was reported 
that fully automatic prognostic models achieved slightly better 
performance. 

Beyond the specific domain of H&N radiomics, several studies 
investigated the stability of radiomics features with regard to VOI 
delineation. The tumor segmentation step is a critical stage of the 
radiomics workflow [22]. Information extracted from those delineations 
and is crucial to extract relevant biomarkers within the VOI while 
avoiding the inclusion of peripheral non-informative regions or other 
information than tumoral site [10]. Even more so, most of the features 
extracted from the VOI are aggregated into a scalar value via an inte
grative operation [23], with a risk of decreasing the prognostic power of 
features via the dilution of relevant localized patterns with other unre
lated tissue. 

In Depeursinge et al. 2015 [24], authors used artificial contour per
turbations and observed that their model for predicting lung adeno
carcinoma recurrence remained stable as long as VOI perturbations are 
under 4 mm. Other studies investigated the impact of inter-observer 
delineation on radiomics features [25,26]. Both studies, based on a 
single center dataset, demonstrated that most of the radiomics features 
are unstable under delineation variations. The results show that for 

different kinds of tumor (e.g., H&N squamous cell carcinoma, non-small 
cell lung cancers, or malignant pleural mesothelioma) it is possible to 
find a subset of stable features. However, the prognosis power of this 
subset was not studied. Huang et al. 2017 [27] observed that both the 
number of stable features with high prognostic value and their predic
tive value differed across delineations from three radiologist observers. 
In this study, we evaluate and compare the Progression-Free Survival 
(PFS) prognosis performance between radiomics models based on two 
different VOIs types. We use Radiotherapy delineations which were used 
for treatment planning as well as Dedicated VOIs. The latter result from 
the manual re-segmentation of the initial Radiotherapy VOIs to fit the 
primary tumor as perfectly as possible when based on a fusion of 
FluoroDeoxyGlucose-Positron Emission Tomography (FDG-PET) and 
Computed Tomography (CT) images. 

Material and methods 

Patient data 

The dataset used in this work includes the training and test sets of the 
HEad and NeCK TumOR segmentation in PET/CT images (HECKTOR) 
2020 challenge [28], organized as a satellite event of the 23rd Inter
national Conference on Medical Image Computing and Computer- 
Assisted Intervention (MICCAI). The dataset was assembled from five 
centers and includes 239 cases1. It contains PET/CT images of patients 
with H&N cancer located in the oropharynx region. The clinical char
acteristics of the dataset are detailed in Table 2. 

For each patient, a PET/CT image series and two primary Gross 
Tumor Volume (GTVt) contours are available. We refer to these two 
types of delineations as Radiotherapy and Dedicated. The former was 
made for radiotherapy planning by experts in radiotherapy. Details 
about these annotations can be found in [8,28]. The Radiotherapy con
tours are potentially not suitable for radiomics studies as they are often 
larger than the true tumoral volume, considering peripheral tissues and 
trachea. For this reason, these contours were re-delineated as close as 
possible to the true tumoral volume in the context of the HECKTOR 2020 
challenge [28]. The re-delineation aims at contouring the entire edges of 
the morphological anomaly, visualized as a mass effect in the non- 
enhanced CT, for the corresponding hypermetabolic volume in the 
PET. The contouring excludes the hypermetabolic activity projecting 
outside the physical limits of the lesion, e.g., lumen of the airway or bony 
structures with no morphologic evidence of local invasion. 

Feature extraction 

In this section, we describe the extraction of features from the PET/ 
CT images prior to model building. We preprocessed both PET and CT 
images with iso-resampling of 2 × 2 × 2 mm voxels using linear inter
polation. This step is performed before feature extraction. 

In order to compare the performance using either Radiotherapy or 
Dedicated contours in the context of survival analysis, we used a classical 
radiomics pipeline. Following the preprocessing step, we extracted 
features from both PET and CT image series based on either Radiotherapy 
or Dedicated VOIs using the PyRadiomics library [29]. In addition, we 
extracted features with a Resegmented VOI initially based on Radio
therapy VOI. The re-segmentation step was achieved by thresholding CT 
images between [− 300,200] HU to only keep soft tissue. This re- 
segmentation step was used to investigate the importance of expert 
knowledge when contouring the true tumoral volume when compared to 
e.g., simple air and high-density tissue removal. An example of this new 
segmentation is illustrated (in purple) in Fig. 1. Table 3 details the 

Table 1 
VOI delineation methods used in H&N radiomics studies.  

Authors delineation 
purpose 

delineation method imaging 
modalities 

(Castelli et. al 
2019)[5] 

radiotherapy manual PET/CT 

(Leger et. al 2019) 
[9] 

radiotherapy manual + re- 
segmentation 

CT 

(Parmar et. al 
2015)[16] 

unknown manual CT 

(Zhang et. al 
2008)[17] 

unknown semi-auto Sonograms 

(Bogowicz et. al 
2017a)[11] 

radiotherapy manual + re- 
segmentation 

CT 

(Leijenaar et. al 
2018)[6] 

radiotherapy manual CT 

(Al Ajmi et. al 
2018)[18] 

unknown manual Dual-energy 
CT 

(Wang et. al 2018) 
[19] 

radiomics manual MRI 

(Zhang et. al 
2017)[20] 

radiomics manual MRI 

(Leijenaar et. al 
2015)[7] 

radiotherapy manual CT 

(Bogowicz et. al 
2017b)[12] 

radiotherapy manual 
(CT) + automatic (PET) 

PET/CT 

(Vallières et. al 
2017)[8] 

radiotherapy manual PET/CT 

(Ouyang et. al 
2017)[21] 

radiotherapy manual MRI 

(Van Dijk et. al 
2018)[4] 

radiotherapy manual MRI 

(Wenbing et. al 
2021)[10] 

radiotherapy manual PET/CT  

1 The HECKTOR data contains 254 cases, but for 13 of the test cases, the 
initial radiotherapy contours were not available. Two other patients were 
excluded because the follow-up was shorter than 3 months 
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features families and extraction parameters used in this study. A total of 
130 features were extracted per modality with additional 14 shape 
features. For each patient and for each contour type, we, therefore, 
computed a total of 274 features2. From those two modalities per patient 
(CT and PET), we extracted features from the first-order (18 features) 
and second-order (56 features) families. Regarding the second-order, we 
extracted the 56 features using two different binning strategies based on 

Fixed Bin Number (FBN) and Fixed Bin Size (FBS) (as detailed in 
Table 3). Those 56 features were divided into three subfamilies, namely 
Grey Level Co-occurrence Matrix(GLCM), Grey Level Run Length Matrix 
(GLRLM), and Grey Level Size Zone Matrix (GLSZM). Finally, we 
computed 14 shape features. 

Univariate analysis 

To compare the two types of delineation, we first performed a uni
variable analysis to investigate the stability of radiomics features 
regarding the type of VOI used. This analysis is independent of the 
radiomics model workflow. We computed the two-way mixed single 
measure Intraclass Correlation Coefficient (ICC(3,1)) [30] for every 
single feature and for both modalities to assess their stability when 
extracted from either Dedicated or Radiotherapy VOIs. The ICC is a sta
tistical indicator that gives information about the consistency of feature 
measurements. A value of zero indicates no reliability whereas a value of 
one means that the measurements are perfectly stable. This univariable 
analysis allows revealing which kind of feature is more affected by a 
change of VOI. 

We also computed the univariable C-index value of each feature to 
quantify its association with the PFS outcome. We also further used the 
results of these univariable C-indexes to select features for the multi
variable model. 

Fig. 1. Example of VOI delineation: Radiotherapy (green), Resegmented (purple), and Dedicated (blue) overlayed on a fused FDG-PET/CT image. The blue contour is 
closer to the true volume of the primary tumor. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 2 
Overview of the dataset. The centers include Hôpital Général Juif (HGJ), Montréal, CA; Centre Hospitalier Universitaire de Sherbooke (CHUS), Sherbrooke, CA; Hôpital 
Maisonneuve-Rosemont (HMR), Montréal, CA; Centre Hospitalier de l’Université de Montréal (CHUM), Montréal; Centre Hospitalier Universitaire Vaudois (CHUV), 
CH.  

Center patient Gender Age (avg.) T classification  N classification Follow-up (avg. days) events 

HGJ 55 Male  

Female 

43 
12 

62 T1 
T2 
T3 

12 
18 
16 

N0 
N1 
N2 

7 
7 
39 

1339 11      

T4 9 N3 2   
CHUS 71 Male  

Female 

50 
21 

62 T1 
T2 
T3 

6 
36 
17 

N0 
N1 
N2 

19 
4 
45 

1246 13      

T4 12 N3 3   
HMR 18 Male  

Female 

14 
4 

69 T1 
T2 
T3 

0 
2 

N0 
N1 
N2 

1 
0 
16 

1274 4      

T4 8 N3 1   
CHUM 55 Male  

Female 

41 
14 

64 T1 
T2 
T3 

8 
25 
17 

N0 
N1 
N2 

4 
8 
36 

1120 7      

T4 5 N3 7   
CHUV 40 Male  

Female 

35 
5 

63 T1 
T2 
T3 

5 
14 
17 

N0 
N1 
N2 

10 
24 

705 7      

T4 4 N3 3    

Table 3 
List of the different combinations of parameters and features.  

Image Preprocessing Binning Features 

CT Iso-resampling 
2x2x2mm 
Linear interpolation 

FBN = 32 
FBS = 50 

GLCM (24) 
GLRLM (16) 
GLSZM (16)  
First Order (18)  
Shape (14) 

PET Iso-resampling 
2x2x2mm 
Linear interpolation 

FBN = 8 
FBS = 1 

GLCM (24) 
GLRLM (16) 
GLSZM (16)  
First Order (18)  

2 We can unconventionally detail the number of features as follows: 274 = 2 
modalities × (2 binning × 56 s-order + 18 first-order) 
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Multivariable analysis 

The pipeline of the multivariable radiomics analysis used to estimate 
the influence of using Radiotherapy or Dedicated contours on the PFS 
prediction performance is depicted in Fig. 2. 

First (1), we pooled the image data from the five centers and 
randomly divided into a training/validation (80%) cohort and a testing 
(20%) cohort using a stratified shuffling method where the stratification 
criterion is the PFS outcome. This first split was repeated 100 times and 
we used the same splits of each repetition to statistically compare the 
results between the two contour types. Second (2), we computed the 
univariable C-index [31] of each feature based on the training dataset 
and (3) transformed this value (i.e. |Cindex − 0.5)|) to keep both 
concordant and anti-concordant features. (4) We used the resulting C- 
index to rank the features based on concordance with the outcome and 
retained the top 20 concordant features. The number 20 was used to 
respect a ten to one ratio between the number of features and the 
number of patients. We then used a grid-search (5) method to determine 
the feature correlation threshold value: t ∈ {0.6,0.65,0.70,0.75,0.80}. 
We used a stratified 5-folds cross-validation method to divide the sub- 
dataset into a train (80%) and a validation (20%) dataset. This step 
avoids basing the models on highly correlated feature sets. Based on this 
feature set, we trained a Cox proportional hazards model [32] (from 
scikit-survival [33] V0.14.1 in Python) on the training set to predict the 
hazard score and further computed the C-index on the validation set, as 
the performance measure to estimate the performance of this survival 
analysis. After selecting the best performing model during grid-search, 
(6) we applied it to the test set, and (7) computed the test C-index 
value. The code used to compute this pipeline is available on GitHub 
(https://github.com/Pierre1d6/CleanedContours.git). 

Results 

Influence of VOI types on feature stability 

We first compared the stability of the features across the Radio
therapy and Dedicated types of VOIs, grouping features based on their 
family and image modality. The significance of stability comparisons 
between feature families, imaging modalities, and VOI types is assessed 
using a Student t-test. The associated results are detailed in Fig. 3. We 
observe that features from PET images are more stable than those from 

CT images (p < 0.001, see Fig. 3a). When further looking at stability 
differences between feature families, we observe that shape features are 
the most stable across the five families with a median ICC around 0.7. 
Fig. 3b confirms the better stability of features regardless of their family 
when extracted from PET images. GLSZM features achieved the lowest 
stability (median ICC3 < 0.4) both in PET and CT images. These ob
servations are further interpreted in Section 5. 

Multivariable prognostic models 

We applied the multivariable radiomics workflow described in Sec
tion 3.4 and report the results in Fig. 4. 

Discussions and conclusion 

In this work, we studied the impact of using Dedicated VOIs in the 
context of H&N radiomics studies in PET/CT that are specifically fitted 
to the GTVt volume, as compared to reusing VOIs directly from radio
therapy treatment planning. 

We first investigated the stability of the features regarding their 
family type and imaging modality. Fig. 3a and 3c suggest that the fea
tures are overall more stable when computed on PET images. This can be 
explained by the difference in terms of value range between PET 
(≈[0,25] Standardized Uptake Value, SUV) and CT (≈[-1000, 1000] HU 
when including air from the trachea). Therefore, including peritumoral 
regions has a stronger impact on features extracted from the CT images, 
with air contained in the trachea around GTVt having much lower 
values in CT (-1000 HU) than in PET (0 SUV) when compared to voxel 
statistics inside GTVt. In addition, spatial deviations of the contours 
result in smaller differences in the PET because of the lower resolution 
when compared to CT. 

Fig. 3c reports the stability of features per family and across mo
dalities (PET or CT). In PET and for first-order features, a high median 
value and high variability are observed. When focusing on specific first- 
order features, we observed that the maximum was the most stable 
feature (ICC3 = 0.98) because there is no high SUV activation around 
the tumor and the maximum SUV is almost always in both VOIs. How
ever, the minimum was one of the least stable features (ICC3 = 0.2), 
which can be explained by the fact that the Radiotherapy VOI is generally 
larger than the Dedicated VOI and therefore includes lower SUV values. 
Regarding the second-order families, all GLCM, GLRLM, and GLSZM 

Fig. 2. Flow chart of the proposed radiomics analysis. Univariable steps are shown in green and multivariable analyses in gray. We repeated those steps 100 times 
with random splits to define training/validation (80%) and test (20%) sets using a stratified shuffle split method. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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feature sets were overall unstable (see Fig. 3b). When looking closely at 
Fig. 3c, however, the stability was larger in PET images, particularly for 
GLCM and GLRLM features. For GLSZM, the stability was mostly low in 
both imaging modalities. No specific parameter optimization was per
formed in the feature extraction step. Therefore, the use of default pa
rameters may explain the poor stability of those texture features. 

In this context of H&N cancer, we observed that survival models 
based on Dedicated contours achieved better performance for predicting 
PFS and led to improved patient risk stratification in comparison to 
using Radiotherapy contours. It is worth noting that using the standard 
uncorrected student’s t-test yielded a p-value close to 0 (8.51⋅10–8). We 
feel that reporting the latter is important as many studies in the field do 
not use corrections, breaking the independence assumption of the t-test 
as the repeated random splits are containing overlapping observations. 
Therefore, according Benavoli et. al [34], we performed a Bayesian 
approach to assess the performance significance between those two 
model. Thus, we computed the probability density function of the dif
ference between the results of each model (C-index dedicated contours – 
C-index radiotherapy contours). Then we calculated the integral of the 
posterior on the interval (0, +∞) and we obtained a value of 0.893. In 
other words: the probability of dedicated VOI model being more accu
rate (C-index) than Radiotherapy VOI model is 89.3%, suggesting that 9 
times over 10, a model based on dedicated ROIs will outperform the 
model based on radiotherapy ROIs. And so, by using this more appro
priate approach we can conclude from the statistical analysis that the 
use of dedicated VOIs significantly improved the prediction performance. 

It is also worth noting that the cleaning process was based on manual re- 
segmentation and may not be suitable for large-scale studies. We esti
mated duration of 20 to 30 min to perform the VOI cleaning stage for one 
patient. Moreover, adding an automatic re-segmentation step (Reseg
mented VOIs) based on fixed ranges of values did not improve the overall 
performance. The average C-index was higher than when we use the 
Radiotherapy VOIs but the Inter Quartile Range (IQR) is almost 2 times 
bigger and the average was lower. 

We also recognize some limitations of this work. First, the workflow 
proposed in this study may not be fully optimized for this task. As an 
example, we did not explore filter-based radiomics features [35,36]. Liu 
et al. [37] and other studies reported a better predictive performance to 
model PFS in H&N cancer. However, while the performance can- not be 
directly compared, the goal of this study was not to find the best model 
to predict PFS but to focus on the performance comparison between 
Dedicated and Radiotherapy contours using the classical radiomics 
approach. 

In future work, we will apply this workflow to combine clinical pa
tient data (e.g. age, gender, smoking status, tumor site) and radiomics 
features in order to further improve the prognosis performance of the 
model. 
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