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Background: The need for e�ective public health surveillance systems to track

virus spread for targeted interventions was highlighted during the COVID-

19 pandemic. It spurred an interest in the use of spatiotemporal clustering

and genomic analyses to identify high-risk areas and track the spread of the

SARS-CoV-2 virus. However, these two approaches are rarely combined in

surveillance systems to complement each one’s limitations; spatiotemporal

clustering approaches usually consider only one source of virus transmission

(i.e., the residential setting) to detect case clusters, while genomic studies

require significant resources and processing time that can delay decision-

making. Here, we clarify the di�erences and possible synergies of these

two approaches in the context of infectious disease surveillance systems by

investigating to what extent geographically-defined clusters are confirmed

as transmission clusters based on genome sequences, and how genomic-

based analyses can improve the epidemiological investigations associated with

spatiotemporal cluster detection.

Methods: For this purpose, we sequenced the SARS-CoV-2 genomes of

172 cases that were part of a collection of spatiotemporal clusters found

in a Swiss state (Vaud) during the first epidemic wave. We subsequently

examined intra-cluster genetic similarities and spatiotemporal distributions

across virus genotypes.

Results: Our results suggest that the congruence between the

two approaches might depend on geographic features of the area

(rural/urban) and epidemic context (e.g., lockdown). We also identified

two potential superspreading events that started from cases in the

main urban area of the state, leading to smaller spreading events in

neighboring regions, as well as a large spreading in a geographically-

isolated area. These superspreading events were characterized by specific

mutations assumed to originate from Mulhouse and Milan, respectively.
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Our analyses propose synergistic benefits of using two complementary

approaches in public health surveillance, saving resources and improving

surveillance e�ciency.
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Introduction

The extreme rapidity of the COVID-19 pandemic revealed

the importance of developing, and strengthening, public health

surveillance systems at both international, national, and regional

levels (1). Defined as “the ongoing, systematic collection,

analysis, and interpretation of health data essential to the

planning, implementation and evaluation of public health

practice” (2), an effective public health surveillance system must

be able to monitor the spatial and temporal spread of a disease in

a timely manner, to quickly detect emerging clusters of infection

and cut chains of transmission (3).

In this context, spatiotemporal approaches that investigate

disease clustering, such as prospective space-time scan statistics

(4), can constitute an integral part of such surveillance systems

by systematically detecting emerging clusters of disease that

require further investigations. Fundamentally, space-time scan

statistics test whether the number of temporally close cases

observed in a defined area exceeds the expected number

according to the underlying at-risk population. In the context

of the COVID-19 pandemic, several studies investigated how

prospective space-time scan statistics could contribute to the

ongoing surveillance of the pandemic at different spatial

levels including a country-wide investigation using publicly

available data across the United States of America (5), as

well as investigations at higher spatio-temporal resolutions

using laboratory test results to detect COVID-19 clusters in

a Swiss state (6) and in New York City (7). A drawback of

using these approaches is that they rely on health data that

are usually geocoded to a patient’s residential location, which

constitutes only one part virus transmission. Therefore, it may

limit the ability of these scan statistics to depict epidemic

trajectories and break the infection transmission chain. Some

studies have investigated the interplay between geographical

and transmission clusters in the context of sexually transmitted

diseases (8, 9), but this research question has not been studied,

to our knowledge, in the context of COVID-19.

At the same time, the role of genomics has become critical

in the public health domain during the SARS-CoV-2 pandemic.

The first SARS-CoV-2 genome sequences allowed the scientific

community to characterize the virus and understand its zoonotic

origin, infection and transmission mechanisms, as well as

COVID-19 pathogenesis (10, 11). Sequencing data also enabled

biotechnology companies and pharmaceutical companies to

quickly develop molecular diagnostic assays and vaccines. Virus

genomes from infected individuals were constantly sequenced

and submitted to public national (12) and international (13)

databases (e.g., GISAID database), forming hubs for SARS-CoV-

2 genomic data sharing that assisted worldwide collaborations

and standardized lineages definition (14). In parallel, many

open-source bioinformatic tools were actively developed, to

compare virus genomes, define and assign lineages, facilitating

epidemiological investigations. Based on the plentiful open

data and bioinformatic tools, numerous SARS-CoV-2 genome-

based studies identified new variants of concern (15–17) and

tracked geographic transmission of the virus (18–23) in different

countries. Although we found numerous studies tracing the

origin and evolution dynamics of the COVID-19 pandemic, very

few studies examined how genomic sequencing could be used

for informed-decision making within an actionable time frame

(24, 25).

In this context, our study aimed to investigate: (i) to

what extent clusters identified by space-time scan analysis

are confirmed as transmission clusters based on SARS-CoV-

2 genome sequences, (ii) how genomic-based approaches

can improve the epidemiological investigation associated with

spatiotemporal clusters, and (iii) how can a combination of both

complementary approaches be used in the context of infectious

disease surveillance systems. To answer these questions, we

sequenced the SARS-CoV-2 genomes of 172 cases contained

in a set of spatiotemporal clusters identified in the Swiss

state of Vaud during the first epidemic wave in Switzerland

(6). We then analyzed genetic similarity among cases within

spatiotemporal clusters and spatiotemporal distribution across

virus genotypes using different bioinformatic tools to better

understand discrepancies and possible synergies between

genomic-based and spatiotemporal clustering approaches.

Methods

Study design

We previously described the spatiotemporal spread of

COVID-19 during the first wave of the pandemic for the

state of Vaud, Switzerland, using a prospective space-time

scan analysis (6). Briefly, the analysis was performed on 3,317
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individuals who were tested (RT-PCR) positive for SARS-CoV-

2 between March 2 and June 30, 2020, geocoded to their

residential address. The study was approved by the Commission

cantonale d’éthique de la recherche sur l’être humain (CER-

VD), Switzerland (n◦2020-01302). Spatiotemporal clusters were

detected daily by comparing the number of observed cases to

the expected number within and outside a circular window of

varying sizes. Expected cases were estimated with a Poisson

model adjusting for population size at the inhabited hectare

level, and the analytical window was defined to contain a

maximum of 0.5% of the population at-risk and last a maximum

of 14 days.

Of the 1,784 spatiotemporal clusters identified (454 with a

p-value < 0.05), we selected 17 clusters for further investigation

(Figure 1). This small number of clusters is partly explained by

the many overlapping clusters due to analysis frequency. The

selected clusters were chosen to be representatives of the spatial

footprint and temporal variations obtained during the first

wave of the pandemic, to allow for the comparison of different

settings. We chose clusters from different geographical settings

(urban vs. rural), of different sizes in terms of geographical

coverage and number of cases, as well as some with unique

particularities. Additionally, for clusters that were detected

several days in a row (i.e., overlapping clusters), we selected the

last appearance in order to increase the time span of analysis,

even if the last occurrence was not necessarily significant

(clusters #3, #6, #15 in Figure 1). The cluster selection process

is depicted in Supplementary Figure 1.

SARS-CoV-2 genome sequencing

We sequenced the SARS-CoV-2 genome of all cases

presenting over 10,000 cp/ml from the 17 clusters to investigate

the genetic similarity within spatiotemporal clusters. SARS-

CoV-2 RNAwas extracted from nasopharyngeal swabs (COPAN

UTM medium, 3.5ml) using the MagNA Pure 96 system

(Roche, Basel, Switzerland). The viral genomes were amplified

by the CleanPlex SARS-CoV-2 panel (Paragon Genomics,

SKU 918011) following the manufacturer’s instructions (26).

The quality of amplified products was assessed by Fragment

Analyzer standard-sensitivity NGS (DNF-473; AATI) and

quantified using Qubit standard-sensitivity double-stranded

DNA (dsDNA) kit (Q32853; Invitrogen). The amplicons were

sequenced by 150 bp paired-end reads on a MiSeq (Illumina,

San Diego, CA). To evaluate sequencing quality, negative and

positive internal controls were included in each run.

Reads processing and quality control

Reads were processed with GENCOV pipeline (https://

github.com/metagenlab/GENCOV), modified from CoVpipe

(https://gitlab.com/RKIBioinformaticsPipelines/ncov_

minipipe), in order to perform sequence filtering with fastp

(27), primer trimming with fgbio (28), mapping to the reference

genome NC_045512.2 with bwa (29), alignment evaluation with

Qualimap (30), and variant calling with Freebayes (relative

number of variant supporting reads = 0.1, minimal depth =

10, absolute number of variant supporting reads = 9) (31).

Variants were further filtered by bcftools (32), determining the

consensus based on the variants supported by more than 70% of

mapped reads, whereas positions covered by fewer than 10 reads

were masked with Ns. The consensus sequence was assigned

to SARS-CoV-2 lineages using Pangolin (33). The quality of

SARS-CoV-2 genome sequences was then manually evaluated

according to quality criteria as described by Jacot et al. (34),

including mutations supported by 10–70% of mapped reads

termed “low-frequency variants”. Genome sequences that did

not pass quality criteria were repeated.

Genomic analyses

Pairwise single nucleotide variant (SNV) distances

were computed from quality-checked sequences using

Nextstrain SARS-CoV-2 multiple sequence alignment (https://

github.com/nextstrain/ncov) (35) and pairsnp (https://

github.com/gtonkinhill/pairsnp). Based on the pairwise

SNV matrix, we computed the Jaccard similarity index

(36) to quantify genetic similarity within spatiotemporal

clusters, by calculating the size of the intersection divided

by the size of the union of SNVs. Jaccard similarity

index was computed for each pair of genomes within the

same cluster. Sets of samples with identical SARS-CoV-

2 genome sequence (0 SNV distance) were defined as

“genomic groups”.

Genomic and geographic visualization

Phylogenetic analysis and visualization were conducted

with Augur and Auspice, respectively, which are parts of

Nextstrain that allows for customization and interactive web

visualization (35). The relationships among genomic groups

and samples with unique genome sequences were visualized

as minimum spanning trees (MST) on Cytoscape (37), as

demonstrated in Supplementary Figure 2. The network was

computed with the optrees package in R (https://github.

com/cran/optrees) adopting Prim’s algorithm, which finds the

shortest path by selecting a subset of the edge such that a

spanning tree is formed with the minimal total weight of

the edges (38). Each node represents either a genomic group

or an individual sequence and the weight of the undirected

edges reflects SNVs. The mapping of genomic groups within

clusters was done using QGIS 3.22 (QGIS.org, 2022. QGIS

Geographic Information System. QGIS Association. http://www.

qgis.org).
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FIGURE 1

Spatial distribution (A) and characteristics (B) of the 17 spatiotemporal clusters considered for genomic data analysis. These clusters were
identified using a space-time scan statistic run daily from March 2 to June 30 and implemented with SaTScan version 9.6.1 (43). Characteristics
include each cluster identifier with its corresponding geographical region, cluster period, relative risk of becoming infected to COVID-19 within
the cluster compared to outside, significance evaluated with 999 Monte-Carlo permutations, and the proportion of sequenced cases within
cluster. Clusters are colored according to the geographical region to which they belong.

Results

Description of selected spatiotemporal
clusters

We investigated the genetic similarity within a set of 17

spatiotemporal clusters selected from a previous study (6).

Clusters were detected from March 7 to March 30, 2020,

and lasted from 2 to 14 days, corresponding to the lower

and upper bound values of the temporal window used in the

analysis. The clusters’ geographic location and characteristics

are shown in Figure 1, where clusters are labeled according to

their chronological occurrence. Forty percent of clusters (n =

7) were in rural areas or intermediate-size cities, but the first

cluster detected (#1) occurred in the Lausanne region, the capital

of Vaud state. Cases of COVID-19 had already been declared in

Vaud state a few days before the commencement of the study

(the first case occurred on March 3), but this did not form any

cluster. Their locations are starred in Figure 1A.

While the clusters included 264 lab-confirmed RT-PCR

positive cases, only those with a viral load above 10,000

copies/ml (N = 172, 65.4%) could be sequenced (see the
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FIGURE 2

Genetic distance between and within spatiotemporal clusters. (A) Phylogenetic tree with 172 sequences and 2 Wuhan reference genomes. (B)
Timeline of cases appearing in geographical regions. (C) Jaccard similarity within geographical regions. Jaccard distance was calculated
between all pairs of samples in the same region. The overall median is indicated as a dotted line. The geographical regions were ordered based
on the date of the first case in the region.

proportion by cluster in Figure 1B), though this did not affect

characterization of the affected populations. The number of

cases within clusters varied from 3 to 38 (cluster #7), where

individuals were 52.3% female, with a mean age of 57.2 years

(σ = 20.2). Detailed characteristics per cluster are provided

in Supplementary Table 1. Infected individuals in rural areas

tended to be older (median age 73 vs. 54 years, p-value <

0.001, Wilcoxon) with a lower mean viral load (230 vs. 590

million copies/ml, p-value = 0.04, Wilcoxon) when compared

to individuals in urban areas.

The nine clusters within Lausannemetropolitan area (#1, #2,

#4, #6, #8, #9, #10, #13, #16, a total of 94 cases) were labeled

uniformly as the “Lausanne region” to reduce the complexity

of representation. This choice was reinforced by the distinct

patterns observed between these urban clusters and the rest of

the state.

Genetic similarity within spatiotemporal
clusters

In order to verify whether space-time clusters were

transmission clusters based on SARS-CoV-2 genome sequences,

we explored the genetic heterogeneity among 172 cases,

within and between space-time clusters. The evolutionary

relationships among SARS-CoV-2 genomes included in different

spatiotemporal clusters were first examined using a phylogenetic

tree (Figure 2A). Overall, most spatiotemporal clusters did not

appear as a monophyletic group on the phylogenetic tree.

However, most cases in cluster #7 appeared on the same branch

together, as did all cases in cluster #3 and cluster #5 that appeared

at the very beginning of the outbreak, seven days or more

before the peak of the epidemic curve (March 18) (Figure 2B).

Similarly, the sub-clusters within the Lausanne region did not

show any clear clustering on the phylogenetic tree, except for

the last Lausanne cluster (cluster #16), which occurred after the

lockdown (March 16).

We compared the genetic homogeneity among

spatiotemporal clusters, where the genetic similarity between

pairs of samples was quantified with the Jaccard similarity

index. In general, intra-cluster genetic similarity was higher

in rural regions than in urban areas (p-value < 22e-16,

Wilcoxon). The genetic similarity was greater than the

median in four clusters (clusters #3, #5, #7, #17) (Figure 2C).

Cluster #3, #5 and #7 are early-appearing clusters that

aggregated in the phylogenetic tree and showed the highest

Jaccard genetic similarities. They were followed by cluster

#17, which occurred in the second largest city of Vaud

at the end of the first epidemic wave, after the lockdown

(March 16). Clusters #11, #12 and #15 with the lowest
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FIGURE 3

Comparison between spatiotemporal clusters and genomic groups in phylogenetic trees. (A) Divergence of cases in di�erent geographical
regions at SNV level. (B) Definition of genomic groups. Cases with identical genome sequences were assigned to a genomic group. Overall 20
genomic groups were identified with varying numbers of cases within each group. The rest of the cases have unique sequences named
singletons.

genetic similarity appeared after March 11 (close to the peak;

<7 days).

The Lausanne region, the largest urban area of Vaud,

showed low similarity among cases compared to the median

(Figure 2C). Although the genetic similarity of the nine clusters

forming the Lausanne region remained relatively constant at

low levels throughout the timeline, the genetic similarity varied

over time, showing a similar pattern as other clusters with

a decrease in similarity toward the peak of contaminations,

and an increase back the lockdown (Supplementary Figure 3).

Interestingly, Lausanne cluster #8 exhibited a significantly

lower Jaccard similarity compared to cluster #7, located in the

mountainous areas in the north-west of the state, even though

they appeared on the same day (p-value <22e-16, Wilcoxon)

(Figure 2C).

Comparison of spatiotemporal clusters
and genomic groups

We further investigated the genetic divergence of

geographical clusters at single nucleotide variant (SNV)

level (Figure 3A). The distance in SNVs compared to the

Wuhan reference genome varied between 2 to 13 mutations.

The first cases in the Lausanne region (in cluster #1) harbored

5 SNVs, while some later cases showed fewer mutations (2 or 4
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FIGURE 4

Genetic relationship among genomic groups and singletons in minimum spanning tree. Nodes and edges indicate unique sequences and SNV
distance. The number of cases in genomic groups is represented by the size of the pie. Genomic groups consist of cases in di�erent
geographical regions. The triangles are single cases with their size proportional to the log value of viral load detected by qPCR. They are
represented in squares according to their occurrence in time.

SNVs). Among the 172 SARS-CoV-2 genomes, we identified 20

sets of cases carrying identical genomes, hereafter referred to as

“genomic groups” (Figure 3B), in order to avoid confusion with

geographical clusters. These 20 genomic groups include 101 of

the 172 cases (group1: 37; group2: 12; group3: 6; group4 and

group5: 5 each; group6 and group7: 4 each; group8 and group9:

3 each; group10-group20: 2 each). The other 71 genomes did

not belong to any genomic group as they exhibited unique

sequences (“singletons”). The genetic relationships among

the 20 genomic groups and the 71 singletons were visualized

on a minimum spanning tree network (Figure 4). This can

be visualized with Figure 5, which shows the distribution of

genomic groups within spatiotemporal clusters.

We identified 12 genomic groups of the 20 that were

restricted to a single area (Lausanne region: 6, cluster #5:

2, cluster #7: 2, cluster #11: 2) and eight genomic groups

that consisted of individuals living in two to seven different

regions that always included at least one individual from the

Lausanne region (Figure 4). For four spatiotemporal clusters,

all cases were attributed to the same genomic group (clusters

#1, #3, #15, #17) (Figure 5). We observed spatial heterogeneity

within clusters, yet, unsurprisingly, cases that occurred in

the same building usually shared the same genomic group

(Supplementary Figure 4). The size of these multi-regional

genomic groups varied between two to 37 cases. Group1

and group2 were the largest groups, with 37 and 12 cases,

respectively. We investigated these groups further as there may

have been superspreading events in each group. Group1 cases

were split into seven geographical regions, connected to cases

in the same cluster by one or two SNVs distance (Figure 4).

Three of the Lausanne region cases in group1 and one case

with 1 SNV distance from group1, which occurred on day 0,

could represent the origin of the superspreading event that

formed group1 cases. Group2 likely started with one case in the

Lausanne region that was diagnosed on day 4, followed by 11

cases in spatiotemporal cluster #7 (in the mountainous north-

west region). Although both group1 and group2 were identified

as lineage B.1, sharing four nucleotide mutations (C241T,

C3037T, C14408T, A23403G), each group was characterized

by a specific mutation (Supplementary Table 2). The mutation

C15324T characterized exclusively group1 and all group1-

associated cases (or groups), except for group4. Likewise, the

mutation A26530G featured only group2 and its neighbors

(Figure 4).
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FIGURE 5

Distribution of genomic groups within clusters. The size of the circle is proportional to the number of cases.

FIGURE 6

Graphical representation of findings and conclusion.
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Discussion

Congruence between two approaches in
di�erent contexts

Although the distinct use of spatiotemporal clustering

and genomic-based approaches for COVID-19 management

is recognized in the literature, we did not find any study

investigating how the combined use of these two methods could

compensate for their respective shortcomings in a surveillance

context. By investigating the extent to which spatiotemporal

clusters were confirmed as transmission clusters based on

SARS-CoV-2 genome sequences, our results suggest that the

consistency across the two methods might vary according to

geographic characteristics of the area (rural/urban) and the

epidemic context.

We often found less genetic similarity within clusters

in urban areas compared to rural areas (p-value <2.2e-16,

Wilcoxon). This could be explained by differences in social

activities and population mobility. In rural areas, we expect

many close contacts to occur among a few people from the same

village, where a single introduction event might spread quickly

with fewer opportunities to acquire new variants. As infected

individuals in rural clusters were significantly older (p-value <

0.001, Wilcoxon), the genetic similarity within spatiotemporal

clusters could also possibly be associated with restricted mobility

of elderly people. In contrast, urban areas have numerous

factors that could multiply the risk of simultaneous circulations

of multiple variants, such as more frequent use of public

transportation and larger places of gathering (39). Within

spatiotemporal clusters, cases located in the same building were

generally epidemiologically linked, as they often stemmed from

within-household transmission events. Transmission in densely

inhabited structures, such as cluster #16 that occurred in a

migrant center after lockdown, resulted in significantly higher

genetic similarity than other clusters in the Lausanne region

(Supplementary Figure 3).

Moreover, the congruence between spatiotemporal and

transmission clusters appeared to vary along the epidemic curve.

The genetic similarity was typically higher during the lockdown

and at the very beginning of the pandemic, where only a few

cases were detected, than during the epidemic peak. As no study

to our knowledge has examined the congruence of space-time

scan and genetic clustering for SARS-CoV-2, it is difficult to

interpret our findings in light of other publications. However,

several studies have investigated similar research questions in the

context of sexually-transmitted diseases. For example, authors

found that space-time scan clustering was less successful than

genetic clustering in identifying HIV-transmission patterns in

small or urban HIV-endemic areas of Los Angeles County (8),

while a study in the Netherlands observed a higher incidence

of Hepatitis B associated with higher genetic clustering in rural

areas (40). However, even if similar patterns were observed in

our study, the marked differences in disease characteristics do

not permit a direct comparison.

In both genomic group1 and group2, the first cases from the

Lausanne region seemed to spread in many neighboring areas,

including a geographically isolated area (cluster #7), showing

the significant impact of urban areas and superspreading

events. Genomic group1 and group2, assigned to B.1 lineage,

were differentially characterized by the mutations C15324T

and A26530G, respectively. First, the mutation C15324T was

suspected to originate from Mulhouse (France) according to

Stange et al. (23), where the first case with an identified source

of infection was from a religious gathering in Mulhouse. This

mutation was the main feature of that local cluster (“Basel-city”)

in the early period of the first wave. Moreover, the mutation

C15324T was found in other countries, mostly France and

Luxembourg at considerable proportions (18.70% and 20.69% of

population sequenced, respectively), but not in Italy (until 23rd

March 2020). Second, the mutation A26530G was mentioned by

Alteri et al. (41) as a key feature of the early Lombardy (Italy)

cluster, with >90% of intra-patient prevalence circulating mid-

February. It was assumed to be the origin of the subsequent

transmission chain in the Lombardy region based on its small

number of foreign sequences at the bases of the transmission

chain. Thus, we hypothesize that superspreading events in

genomic group1 and group2 might stem from secondary cases

of Mulhouse and Milan outbreaks, respectively.

The major strength of the present study lies in the fine-scale

resolution of the analysis, and the high-quality dataset used to

investigate the interplay between genomic and spatiotemporal

clustering approaches. At the beginning of the pandemic, the

Institute of Microbiology of Lausanne University Hospital

received all samples from Vaud state ensuring a comprehensive

coverage of all cases in the area within the time frame

studied here. This was rarely achieved in most other regions

that commonly had multiple testing and sequencing centers,

which makes it difficult to obtain an in-depth overview of

the local epidemiology. However, the sampling of individuals

could be biased due to untested individuals, likely leading

to underestimates of superspreading events. Indeed, at the

beginning of the pandemic, only symptomatic individuals were

tested, although asymptomatic but contagious individuals could

have contributed to the spread of the virus. Furthermore, only

a portion (n = 172; 8%) of total positive cases were sequenced

in the present study, which could affect the generalization of our

results. In comparison, Bruningk et al. (42) sequenced 40% (n

= 247) of the positive cases in the city of Basel, providing a

much higher resolution but limited to a single town. As a tradeoff

between the size of the study area and the sequencing density,

our choice was partly dictated by the objective of comparing

transmission within rural and urban settings, which is rarely

done. In addition, the mobility restrictions (e.g., lockdown,

homeworking, restaurants closure) and the limited genomic

distances observed during the early pandemic could inflate
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the genetic similarity observed within spatiotemporal clusters.

Novel analyses using data from successive waves might refine

our findings.

Combining genomic and spatiotemporal
clustering approaches in infectious
disease surveillance

Timing is a crucial factor in any surveillance system.

Space-time scan statistics can be run automatically as soon

as new data arrive and in near real-time using the SaTScan

software (43) in batch mode. It constitutes, therefore, a powerful

exploratory approach to detect high-incidence areas where

authorities could prioritize cases for genome sequencing and

contact tracing. The New York City Department of Health and

Mental Hygiene already adopted this approach to prioritize

interviews of patients and develop targeted actions for testing

and prevention (7, 44). Our results suggest that one could

restrict investigations to a smaller number of cases for clusters

in rural areas or within the same building due to the high

probability of epidemiological linkage, but also that during

peak period, spatiotemporal clusters do not necessarily indicate

transmission clusters. Because there are now multiple providers

for COVID-19 testing, the space-time scan analysis should use

newly reported infectious disease cases to regional authorities,

a mandatory procedure in Switzerland. The input parameters

should be fine-tuned following the recommendations from

Greene et al. (7), for example, by considering the number of

tests rather than the total population as the underlying at-risk

population to consider changes in testing rates.

An optimal framework for infectious disease surveillance

may also be complemented by other approaches. Wastewater

monitoring can give a reasonable estimate of infection level and

circulating variants taking into account asymptomatic patients

(45), while epidemiological models can make projections about

epidemic trajectories and healthcare capacity and estimate

intervention scenarios (46). Incorporating data from mobility

patterns using, for example, aggregated mobile phone data (21),

could also improve the spatiotemporal analysis of COVID-

19 dynamics, allowing for the detection of infections outside

the residential neighborhood, such as at work or activity

sites. Even though our study was limited to SARS-CoV-2,

we could imagine a similar framework for the Monkeypox

virus surveillance, where space-time scan statistics (47) and

phylogeographic investigation (48) were already used to

disentangle disease dynamics.

Conclusion

Spatiotemporal clustering and genomic approaches have

been extensively used during the COVID-19 pandemic.

The former approach was mainly used to identify high-

incidence areas to target immediate interventions and to

draw hypotheses about vulnerable populations, while the latter

allowed for tracking of the origin, transmission, and evolution

of the SARS-CoV-2 virus globally, and to understand host

susceptibility, response, disease severity, and outcomes. In

addition to the silos existing between researchers mastering

each approach, spatiotemporal methods are limited by the

fact that they usually consider only one source of virus

transmission (i.e., the residential setting), while genomic studies

require significant resources and processing time, which could

delay decision-making (Supplementary Table 3). Our genomic

investigation of spatiotemporal clusters showed that the clusters

identified by space-time scan statistics were more likely to be

epidemiologically linked in rural areas and outside the epidemic

peak. In addition, we identified two potential superspreading

events, characterized by specific mutations indicating their

respective origins from two major outbreaks in Europe at the

beginning of the pandemic. These findings suggest that we

could save considerable resources and improve the efficiency

of the public health surveillance system by synergizing both

approaches, and prioritizing genome sequencing and contact

tracing in high-incidence areas detected using spatiotemporal

clustering approaches (Figure 6).

Recently, SARS-CoV-2 genomic surveillance has

gradually reduced (49). Without the ability to track the

virus, and while much of the world remains unvaccinated,

we are unlikely to make targeted public health decisions

in the face of potentially threatening new variants. We

must remember the lessons from the first wave of the

pandemic, when lack of data and knowledge caused

societal distress, and avoid returning to such a situation

by maintaining genomic-based surveillance efforts, conjointly

with spatiotemporal surveillance.
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