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Abstract

Population models are often used to guide conservation management decisions. Sensitivity analysis of such models can be
useful in setting research priorities, by highlighting those parameters that have the most influence on population growth rate. Much
of the work on sensitivity analysis in this context has been for density-independent models. We present a sensitivity analysis of a
density-dependent model for a population of Short-tailed Shearwaters (Puffinus tenuirostris), in which the output of interest is the
equilibrium population size,Ne. We calculate the sensitivity and elasticity ofNe to both the equilibrium parameter value and the
strength of density-dependence associated with each input parameter. The rankings of the sensitivities and elasticities associated
with the strength of density-dependence are of particular interest, as they cannot be predicted from a sensitivity analysis for the
corresponding density-independent model. In calculating sensitivities we make use of the characteristic equation of the model,
rather than the left and right eigenvectors of the projection matrix. In order to check the robustness of our conclusions to the strength
of density-dependence specified for each input parameter, we consider a range of relative strengths. Within this range there are
no major effects on the rankings. The largest sensitivities ofNe to the strength of density-dependence were for breeder survival,
emigration and immigration; the largest corresponding elasticities were for emigration, immigration and breeder skipping rate.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In using a population model to guide management
of a species, perturbation analysis is a valuable tool for
evaluating the relative effectiveness of conservation
management decisions and highlighting those param-
eters that have the greatest influence on model outputs,
such as population growth rate. This type of analysis
can be carried out mathematically using sensitivities

∗ Corresponding author. Tel.:+44-1224-498200;
fax: +44-1224-311556.

E-mail address: j.yearsley@macaulay.ac.uk (J.M. Yearsley).

and elasticities, or numerically by analysing simu-
lation output (Burgman et al., 1993; Caswell, 2001;
Hamby, 1994; Slooten et al., 2000; Swartzman and
Kaluzny, 1987). Perturbation analysis is particularly
valuable when our knowledge of a species life-history
and the potential costs and benefits of various man-
agement alternatives is limited, when research budgets
are constrained and when decisions must be made
quickly.

Linear deterministic models are relatively easy to
construct, analyse and interpret, and much of the
published work that uses perturbation analysis for
population management involves models that are
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density-independent (Caswell, 2001; Russell, 1999;
Slooten et al., 2000). However, these models forego
much of the complexity that we know exists in
the real world. Populations do not increase with-
out limit, abundance being determined by a number
of factors and processes, including those that are
density-dependent. Density-dependent processes may
play an important role in population regulation, al-
though there is still debate on this issue. The fact
that density-dependence can be difficult to detect in
natural populations has prolonged this debate.

Given that density-dependence can be difficult to
estimate, it is important to explore how our assess-
ment of the form and strength of density-dependence
will affect our interpretation of population models.
This will help us decide whether we need to include
density-dependence in a model, and how accurately it
needs to be specified. The probability of extinction has
been shown to be sensitive to the presence and form
of density-dependence chosen (Ginzburg et al., 1990;
Beissinger and Westphal, 1998). Neubert and Caswell
(2000) explored the effects of density-dependence
on population dynamics in terms of model equilibria
and bifurcations.Grant and Benton (2000)considered
the extent to which a standard density-independent
sensitivity analysis would provide reliable conclu-
sions for a population that is density-dependent and
experiencing environmental stochasticity.

The purpose of this paper is to show how sensitiv-
ities and elasticities can be used to help set research
priorities for management of a species when the pop-
ulation model is density-dependent. In particular, we
aim to determine for which parameters it may be im-
portant to measure density-dependence. We focus on
the same population as that was considered inHunter
et al. (2000), namely the Short-tailed Shearwaters
(Puffinus tenuirostris) on Fisher Island, in the Bass
Strait, Australia.

2. Density-independent model

The Short-tailed Shearwaters is a medium-sized,
burrow-nesting procellariiform seabird. They breed
annually in south-eastern Australia, mainly on islands
around Tasmania, and migrate to northern Pacific
waters for the Australian winter. They are the most
abundant seabird in Australia, with individual colonies

ranging in size from a few hundred to several mil-
lion pairs (Serventy, 1967; Serventy and Curry, 1984;
Marchant and Higgins, 1990; Wooller and Bradley,
1999).

The deterministic population model we consider is
based on the one described inHunter et al. (2000),
which also provides background to the study. The
model is for females only, and is stage-structured. Pre-
breeders are classified by age (1–15) and postbreeding
females by “breeding age” (0–25), which is the num-
ber of yearssince an individual’s first breeding attempt
(Fig. 1). In each year following the initial breeding
attempt, fecund females are classified as breeders and
non-breeders. Each breeding female is assumed to lay
one egg. The number of eggs that survive to fledging
is determined by a parameter for breeding success.
Survival from fledging to 1 year is determined by a
parameter for juvenile re-appearance rate. Immigrants
enter the model at prebreeder age 3. Prebreeders are
allowed to begin breeding between the ages of 2 and
15 and are also subject to emigration from age 3. A
parameter for “probability of first breeding” controls
the rate of flow of females from each prebreeder age
cohort into the breeding part of the population. Breed-
ers and non-breeders that reach breeding age 25 and
survive another year are cycled back into the year-25
breeding and non-breeding age classes. We assume
here that skipping rate, breeding success, breeder
survival and non-breeder survival do not depend
on age.

If the number of females of breeding agei that
can potentially breed at timet is written asNi(t), the
projection equations for the model are

N0(t + 1) = m

15∑
α=0

µα

25∑
i=0

Ni(t − α), (1)

Ni+1(t + 1) = sNi(t), i = 0, 1, . . . , 23, (2)

N25(t + 1) = s{N24(t) + N25(t)}, (3)

wherem is fecundity (female chicks per female),µα

is the probability that a fledged chick will surviveα
years as a prebreeder before entering the breeding pop-
ulation, ands is the annual survival rate for a breeding
female.

For consistency, we use the same notation for the
input parameters as inHunter et al. (2000), and as
shown inTable 1. The parametersm, s andµα can be
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Fig. 1. Life-cycle graph for the Short-tailed Shearwater model. PBx: prebreeder of agex and Ax: adult of breeding agex.

Table 1
Notation for the model parameters, together with their estimated values (Hunter et al., 2000)

Name Parameter Estimate

PFB Scaling factor for the probability of first breeding 1.000
PST Probability prebreeders stay at colony each year after prebreeding age class 3 0.755
IMM Ratio of immigrants to year 2 natal prebreeders entering prebreeder age class 3 1.222
BRK Probability that a breeding bird skips a breeding season 0.314
BS Breeding success 0.306
JR Juvenile reappearance rate from fledging to year 1 0.583
BRS Breeder survival 0.912
NBRS Non-breeder survival 0.912
PBR1 Prebreeder reappearance probability from year 1–2 0.867
PBR2 Prebreeder reappearance probability from year 2–3 0.923
PBR3 Prebreeder reappearance probability from year 3 onwards 0.912

The mean of the estimated population size was approximately 150.
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written in terms of the input parameters as follows

m = BS (1 − BRK) JR, (4)

s = BRS(1 − BRK) + NBRS BRK, (5)

µ0 = PFBP1, (6)

µ1 = µ0 PBR1

(
1 − P1

P1

)
P2, (7)

µ2 = µ1 PBR2(1 + IMM )

(
1 − P2

P2

)
P3, (8)

µ3 = µ2 PBR3

(
1 − P3

P3

)
P4, (9)

µα = µα−1 PBR3 PST

(
1 − Pα

Pα

)
Pα+1,

α = 4, 5, . . . , 15, (10)

wherePα is the probability that a prebreeder of age
α−1 enters the breeding population the following year.

The model we use differs slightly from the “av-
erage breeder” model ofHunter et al. (2000)in two
ways. First, non-breeders are not explicitly modelled:
they are allowed for by assuming that a fraction of
each breeding age class does not breed (seeEq. (4)).
Second, the manner in which we calculate the sensi-
tivity coefficient for the parameter PFB differs from
the approach adopted byHunter et al. (2000). Hunter
et al. (2000)varied the parameter PFB whilst keeping
the expected age of first breeding constant. We vary
the parameter PFB and make no attempt to control
the expected age of first breeding: this leads to fewer
constraints on the model dynamics, at the expense of
not matching the data so closely.

3. density-dependent model

Suppose the value of each input parameter at timet
is a function of the number of female breeders,N(t) =∑25

i=0Ni(t). Specifying the form of this dependence
for each parameter will to some extent be arbitrary,
due to the lack of data. Indeed, one of the key motiva-
tions for carrying out this analysis is to assess which
of the density-dependent relationships are the most
important to quantify. Even if such data are difficult
or impossible to collect, it might still be important to

assess this dependence. In a review of seven possible
functional forms for density-dependence in survival,
Bellows (1981)recommended one that has a flexi-
ble form and involves only two parameters (Model 5
therein; seeMaynard Smith and Slatkin, 1973). Using
a slightly different notation fromBellows (1981), we
write this function as

ln

(
X(N)

1 − X(N)

)
= a + b ln(N), (11)

whereX(N) is the value of the parameterX at popula-
tion sizeN (from hereon we do not explicitly show the
dependence ofN upon time). Note that use ofN rather
than ln(N) in this equation would lead to a function that
is less flexible (Bellows, 1981; Usher, 1972). Eq. (11)
is a reparametrisation of the generalised Beverton and
Holt function (Beverton and Holt, 1957; Maynard
Smith and Slatkin, 1973), and can be rewritten to
explicitly show the form of density-dependence as

X(N) = 1

1 + e−aN−b
. (12)

Eq. (11) can be used directly for those parame-
ters that vary between zero and one. The parameters
IMM, BS and PFB do not satisfy these constraints,
so we rewrite them in terms of parameters that do, as
follows

IMM = PIMM

1 + PIMM
, BS = PBS

2
,

PFB= PPFB

max(Pα)
. (13)

Density-dependence for each of these parameters is
then achieved by applying the relationship inEq. (11)
to the parametersPIMM , PBS andPPFB.

For each parameterX, we can specify a value fora
in Eq. (11)by substituting the estimates ofX and N
that have been obtained for the study population on
Fisher Island. This leads to

a = ln

{
X(NFI)

1 − X(NFI)

}
− b ln(NFI), (14)

whereNFI is the population size on Fisher Island. Es-
timates ofX(NFI) are given inTable 1, and we chose
the value ofNFI to be the mean of the annual estimates
of population size, which was approximately 150.

The value ofb in Eq. (11)determines the strength
of the density-dependence in the region ofNFI: the
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Fig. 2. An illustration of the form of the relationship between an
input parameterX(N) and the number of female breedersN. The
parameterb takes the values−0.2 (dashed line),−1.0 (dotted line)
and −5.0 (solid line). The parametera is specified byEq. (14),
usingNFI = 150 andX(NFI) = 0.5.

greater the value of |b|, the stronger the dependence in
this region, as illustrated inFigs. 2 and 3. In order to
specifyb, we summarised the likely form and strength
that density-dependence might take for each param-
eter (Table 2), with the strength being specified as

Fig. 3. The input parameters as a function of the number of female breeders, for different relative strengths of density-dependence (δ).
The parameters PBR1 and PBR2 have the same behaviour as PBR3, and NBRS has the same behaviour as BRS. Where a graph has three
lines, solid, dotted and dashed lines correspond toδ = 2, 5, 10 respectively. Parameters with intermediate density-dependence (JR and BS)
haveδ = 1.

low, moderate or high. Moderate density-dependence
was arbitrarily defined as having|b| = 1. In or-
der to allow the difference between low and high
density-dependence to vary, they were specified as
having |b| = 1/δ and |b| = δ respectively, forδ = 2,
5 and 10 (Fig. 3). Note that the form ofEq. (11)does
not allow us to include the Allee-type effects thought
plausible for PFB, IMM, JR, BRS and PBR. For these
parameters, density-dependence has been assumed to
be negative.

4. Sensitivities and elasticities

When vital rates are influenced by density, popula-
tion dynamics become non-linear. The population is
characterised not by a growth rate but by the existence
and stability of equilibria, the bifurcations that may
occur when stability is lost, and the patterns (cycles,
quasicycles, chaos) that follow bifurcations (Neubert
and Caswell, 2000). Assessment of the sensitivity
and elasticity of several different types of model out-
put has been suggested for density-dependent models
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Table 2
Estimates for the functional forms of density-dependence

Parameter Form Importance Possible mechanism

PFB + → − High Younger birds are less likely to secure burrows as density increases
PST − High As density increases prebreeders are less likely to secure a burrow, and so are

more likely to prospect and breed elsewhere
IMM + → − High A minimum density is needed to provide stimuli to attract immigrants to a colony,

but as density increases immigrants are less likely to secure a burrow and stay at a
colony

BRK + High Increased disturbance as density increases results in failed breeding attempts,
increased divorce rates and higher probability of skipping breeding

BS − Moderate Increased disturbance as density increases can result in an increase in failed
breeding attempts

JR + → − Moderate Protection from predation at low densities, but lower survival as density increases
due to competition for food

BRS + → − Low Benefits from group foraging at low densities but increased competition for food at
high densities

NBRS − Low Increased competition for food at high densities
PBR1 + → − Low Protection from predation at low densities, but lower survival as density increases

due to competition for food
PBR2 + → − Low Protection from predation at low densities, but lower survival as density increases

due to competition for food
PBR3 + → − Low Protection from predation at low densities, but lower survival as density increases

due to competition for food

+ indicates purely positive density-dependence,− indicates purely negative density-dependence, and+ → − indicates an Allee-type effect
where density-dependence is positive at lowN and becomes negative at higherN.

(Caswell, 2001; Grant and Benton, 2000). We focus
on the effect of changes in parameter values on the
equilibrium population size,Ne. Previous work has
either used the concept of an invasion exponent (Rand
et al., 1994; Grant, 1997; Grant and Benton, 2000) or
extended the standard density-independent sensitivity
analysis, which involves eigenvalues of the projec-
tion matrix, to the density-dependent case (Takada
and Nakajima, 1992, 1998; Takada and Nakashizuka,
1996). Here we show how the characteristic equation
of the model (Caswell, 2001) can be used to provide
an alternative expression for the sensitivity ofNe. A
disadvantage is that it can be complicated to derive and
difficult to use. However, if the life-cycle is such that
all individuals must share a common life-history stage
(e.g. a juvenile stage), then the characteristic equation
is particularly simple (Caswell, 2001). This approach
has been used by others in the context of density-
independent models (Keyfitz, 1971; Lebreton, 1996)
and may provide some advantages by simplifying the
derivation of analytical expressions for the sensitivi-
ties and elasticities of the equilibrium population size.

When equilibrium is reached, the population growth
rate is zero and the characteristic equation for the

model is
15∑

α=0

µα(N)

25∑
i=0

mi(N) li(N) = R0(N) = 1, (15)

whereli = ∏i−1
j=0sj andR0(N) is the net reproductive

rate atN (Caswell, 2001). Note thatmi, µα andli are
all functions ofN. We can differentiate this equation
with respect to any parameterX and rearrange terms
to give the sensitivity,sX, of Ne to the parameterX as

sX = ∂Ne

∂X
= − ∂R0/∂X

∂R0/∂N

∣∣∣∣
N=Ne

. (16)

The corresponding elasticity is given by

eX = ∂ln(Ne)

∂ln (X)
= X

Ne

sX. (17)

An example of the calculation of sensitivity (for breed-
ing success) is provided in theAppendix A. The sensi-
tivity of Ne to a change inX(Ne) will be proportional to
the sensitivity of population growth to a change inX in
the corresponding density-independent model (Takada
and Nakashizuka, 1996; Caswell, 2001). The key addi-
tional information provided here is the sensitivity and
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Table 3
Values ofb used for calculation of the sensitivities and elasticities,
whereδ was chosen to have the values 2, 5 and 10

Parameter Value ofb

PFB −�

PST −�

IMM −�

BRK +�

BS −1
JR −1
BRS −1/�
NBRS −1/�
PBR1 −1/�
PBR2 −1/�
PBR3 −1/�

elasticity for the strength of the density-dependence
(b) associated with each input parameter.

Note that sensitivity analysis with respect toNe

is only relevant when an equilibrium population size
exists: if density-dependence is too strong population
size may become unstable, leading to stable oscilla-
tions or chaos.

5. Results

Using the values ofb in Table 3leads to equilib-
rium population sizes of breeding females of 146,
143 and 137 forδ = 10, 5 and 2 respectively. The
absolute values for the sensitivities and elasticities

Table 4
The absolute values for the sensitivities and elasticities, and their rankings, of the equilibrium population size (Ne), to the equilibrium
parameter value and the strength of density-dependence associated with each parameter (b), usingδ = 2 in Table 3(Ne = 137)

Parameter Equilibrium parameter value Value ofb

|Sensitivity| |Elasticity| |Sensitivity| |Elasticity|

BRS 239 1 1.60 1 1.70 1 0.00623 7
PBR3 122 2 0.820 2 0.873 6 0.00319 8
PST 107 3 0.617 3 1.65 2 0.0242 1
BS 87.8 4 0.204 6 0.941 5 0.00688 6
NBRS 80.7 5 0.540 4 0.575 9 0.00210 9
JR 46.0 6 0.204 5 1.01 4 0.00742 5
BRK 34.1 7 0.0687 11 0.628 7 0.00919 3
PBR1 31.9 8 0.204 7 0.114 10 0.000416 10
PBR2 30.1 9 0.204 8 0.0657 11 0.000240 11
PFB 13.9 10 0.111 10 0.603 8 0.00882 4
IMM 11.3 11 0.121 9 1.53 3 0.0224 2

Rankings are based on the absolute values of the coefficients. Sensitivities and elasticities are shown to three significant figures.

of Ne to changes inX(Ne) for the caseδ = 2 are
given in Table 4. We distinguish between two types
of sensitivity/elasticity: those which we label “equi-
librium parameter value” refer to the response when
a parameter’s value at the equilibrium population
size,X(Ne), is varied, whilst those labelled “value of
b” refer to the response when a parameter’s density-
dependence,b, is varied. The sensitivities and elas-
ticities of Ne to the equilibrium parameter values
are proportional to what we would obtain from the
equivalent density-independent model, i.e. withb set
to zero for each parameter (Takada and Nakajima,
1998). As Takada and Nakajima (1998)suggest,
changing the equilibrium value of breeder survival
has by far the largest effect onNe, a common find-
ing with density-independent models for long-lived
species (Goodman, 1980; Brault and Caswell, 1993;
Weimerskirsch et al., 1996; Crook et al., 1998;
Heppell, 1998; Russell, 1999; Heppell et al., 2000;
Slooten et al., 2000). The largest sensitivities ofNe

to the value ofb are for breeder survival (BRS), em-
igration (PST) and immigration (IMM), whereas the
largest corresponding elasticities are for emigration
(PST), followed by those for the immigration (IMM)
and breeder skipping rate (BRK).Table 5shows the
absolute relative values of the sensitivities, for the
three values ofδ, for both the equilibrium value and the
strength of density-dependence. These suggest that the
rankings of the sensitivities are almost independent of
the quantification of low and high density-dependence.
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Table 5
The absolute values for the relative sensitivities, and their rankings, of equilibrium population size (Ne) to the equilibrium parameter value
and strength of density-dependence associated with each parameter (b), for the three values ofδ in Table 3

Equilibrium parameter value Value ofb

� �

Parameter 10 5 2 10 5 2

BRS 1 1 1 1 1 1 1 1 1 1 1 1
PBR3 0.525 2 0.523 2 0.512 2 0.525 6 0.523 6 0.512 6
PST 0.451 3 0.452 3 0.448 3 0.905 3 0.921 2 0.971 2
BS 0.385 4 0.381 4 0.368 4 0.568 5 0.562 5 0.552 5
NBRS 0.315 5 0.32 5 0.338 5 0.315 9 0.32 9 0.338 9
JR 0.202 6 0.2 6 0.192 6 0.611 4 0.605 4 0.595 4
BRK 0.143 7 0.143 7 0.143 7 0.345 7 0.35 7 0.369 7
PBR1 0.137 8 0.137 8 0.134 8 0.0793 10 0.0761 10 0.0667 10
PBR2 0.129 9 0.129 9 0.126 9 0.0459 11 0.044 11 0.0385 11
PFB 0.0573 10 0.0577 10 0.0581 10 0.324 8 0.332 8 0.354 8
IMM 0.0463 11 0.0466 11 0.0472 11 0.908 2 0.906 3 0.897 3

The scaling is relative to the sensitivity ofNe to breeder survival probability (BRS).Ne = 146, 143 and 137 forδ = 10, 5 and 2
respectively. Rankings are based on the absolute values of the sensitivities. The relative sensitivities are shown to three significant figures.

It is also of interest to consider which parameters
are relatively unimportant in terms of the strength
of their density-dependence. Overall, the sensitivities
and elasticities ofNe, both to the parameters and to
the strength of density-dependence associated with
each parameter, suggest that we can effectively ignore
the possibility of density-dependence in the proba-
bility of first breeding, prebreeder reappearance rate
from both year 1–2 (PBR1) and year 2–3 (PBR2),
and non-breeder survival (NBRS) (Tables 4 and 5).

6. Discussion

There are a number of possible measures of model
output for which the sensitivity to changes in param-
eters can be calculated for density-dependent mod-
els (Grant and Benton, 2000). We have considered
the sensitivity of the equilibrium population size to
changes in both the equilibrium value and the strength
of the density-dependence for each parameter. The
former of these two sensitivities is commonly calcu-
lated, in some form, for density-dependent models.
For example,Grant (1998)uses this type of sensitiv-
ity to investigate the effect of density-dependence in
a model of a toxicant’s effect upon a population, and
Takada and Nakashizuka (1996)calculate this sensi-
tivity for a density-dependent model of a broad-leaved

forest. Both our analysis, and that ofTakada and
Nakashizuka (1996)show that the sensitivity ofNe

to changes in the equilibrium parameter values is di-
rectly proportional to the results of a sensitivity anal-
ysis of a density-independent model evaluated atNe

(Caswell, 2001). This implies that the rankings of the
sensitivities will be identical for density-dependent
and density-independent models.

Our focus here is clearly on the sensitivity of the
equilibrium population size to changes in the strength
of density-dependence, which has received far less
attention in the literature. The only application which
we are aware of is byTanner (1999), who developed
a model of clonal zoanthids, and numerically inves-
tigated its sensitivity to changes in the strength of
density-dependence. Uncertainty in the strength of
density-dependence associated with a parameter may
have a large effect uponNe, even when the equilib-
rium value for that parameter is relatively unimpor-
tant. Thus, in the model of Short-tailed Shearwaters
the strength of density-dependence in both breeder
skipping rate and immigration had a relatively large
effect upon the predicted equilibrium population size,
even though their equilibrium values were unimpor-
tant (seeTable 4).

In this paper we have shown how the characteristic
equation for a density-dependent model of a biolog-
ical population can be used to perform a sensitivity
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analysis. The characteristic equation can be derived
from the life-cycle graph for a broad range of species.
This derivation is particularly simple for large verte-
brates, for which models tend to be age-structured,
but is likely to be more involved for plants. Unlike
other methods, it allows us to use explicit formulae
for the sensitivities (Appendix A). Previous work in
this area has mainly focussed on the use of the left
and right eigenvectors of the Lefkovitch matrix, and
its extensions (Takada and Nakajima, 1998; Caswell,
2001). Such an approach can be applied to quite gen-
eral life-cycles and benefits from the power of matrix
algebra, but the link between the eigenvectors of the
matrix and the parameters of the model is not always
clear. A recent development has been the use of inva-
sion exponents to study the stability and sensitivity of
density-dependent and stochastic models (Metz et al.,
1992; Rand et al., 1994; Ferriére and Gatto, 1995).
For a model at equilibrium, this approach is equiv-
alent to the analysis of left and right eigenvectors.
However, invasion exponents can be calculated for
cyclic, quasi-periodic and chaotic attractors, making
their use more general.

Inclusion of density-dependence in a population
model brings with it both increased reality and in-
creased uncertainty. Although few ecologists would
argue against the idea that density-dependence is likely
to be important in regulating some populations, quan-
tifying this density-dependence is fraught with diffi-
culties. We need to specify both the form and strength
of density-dependence. Several functional forms for
density-dependence have been suggested (Bellows,
1981), different measures of density may be appropri-
ate (Charlesworth, 1994), and both the strength and di-
rection of density-dependence for a parameter may be
open to debate. These uncertainties emphasise the im-
portance of sensitivity analyses for density-dependent
models. In our approach a particular functional form of
density-dependence has been assumed, and sensitivi-
ties and elasticities ofNe to changes in the strength of
density-dependence were calculated for a broad range
of possible strengths of density-dependence (Tables 2
and 3). Our approach has also assumed that female
breeding population is the relevant density, but our
approach can be extended to different definitions of
density (e.g. the density of a particular stage). A more
complete analysis would assess the robustness of our
conclusions to different forms of density-dependence

and assess whether the values used forb cover the
possible range of strengths of density-dependence
likely to be observed in real populations.

Alternative functional forms for density-depen-
dence, such as the Ricker, generalised Ricker, or
Hassell functions could have been used here (Getz,
1996). The form of the density-dependence function
may affect some model conclusions, such as extinc-
tion probability estimates (Beissinger and Westphal,
1998), but its impact upon our analysis has not been
investigated. Our choice of function constrains the
density-dependence to be monotonic, which may not
always be realistic. This could be overcome by adding
one or more parameters to the function, at the cost
of making the analysis more complicated.Runge and
Johnson (2002)have recently highlighted the impor-
tance of functional form in population models, and
shown that the functional forms used in a model can
have a significant impact on a models results, such as
predictions of optimal harvest rates.

The importance of considering alternative func-
tional forms for density-dependence will depend on
the robustness of our analysis to changes in this form.
The robustness of our sensitivity analysis is likely to
boil down to the robustness of our estimate forNe:
because the sensitivity analysis is local, it would be
expected to be fairly insensitive to the functional form
of the density-dependence at the equilibrium. On the
other hand, the equilibrium population size will de-
pend to a certain extent on the form and strength of
density-dependence (as can be seen from the compo-
nents of the characteristic equation), and may show
sensitivity in certain situations: here, we attempted to
address this problem by considering different relative
strengths for the density-dependence.

If density-dependent models are to usefully inform
conservation and wildlife management decisions then
the conclusions drawn from a model should be robust
and relevant. Robustness ofNe, to both parameters and
the strength of density-dependence in parameters, can
be addressed using sensitivity analysis and rankings
of the sensitivities are often sufficient to guide man-
agement. Sensitivity analysis of density-independent
models has served as a useful tool, even though such
models involve the unrealistic assumption of expo-
nential population growth (Caswell, 2001). The rele-
vance of the use of a density-dependent model may be
diminished if the population is not at equilibrium, but
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it might be hoped that sensitivity rankings are robust
to this problem. Our analysis suggests that sensitivity
analysis of density-dependent models will be robust
to the strength of density-dependence associated with
the parameters.
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Appendix A. Calculation of sensitivities and
elasticities using the characteristic equation

To calculate the sensitivity and elasticity ofNe to
the parameterX(Ne), we differentiate the characteristic
equation (Eq. (14)) with respect toX, giving

∂R0

∂X
+ dN

dX

∂R0

∂N
= 0, (A.1)

which can be rearranged and evaluated atNe to give
Eq. (16) for the sensitivity ofNe to any parameter.
EvaluatingEq. (A.1)at Ne for our model gives,

15∑
α=0

25∑
i=0

∂

∂X
(µα(Ne) mi(Ne) li(Ne))

= −sX

15∑
α=0

25∑
i=0

∂

∂N
(µα(N) mi(N) li(N))

∣∣∣∣∣
N=Ne

(A.2)

where sX is the sensitivity ofNe to parameterX
(Eq. (16)). RearrangingEq. (A.2)gives,

sX = − 1

D

15∑
α=0

25∑
i=0

∂

∂X
(µα(Ne) mi(Ne) li(Ne))

(A.3)

whereD=∑15
α=0

∑25
i=0

∂
∂N

(µα(N) mi(N) li(N))
∣∣
N=Ne

has no effect upon the relative values of the
sensitivities.

In order to illustrate the use of this approach,
consider the sensitivity ofNe to the strength of
density-dependence in breeding success. The depen-
dence of BS onN is specified as

BS(N) = 0.5

{
1 + 0.5 − BSFI

BSFI

(
N

NFI

)bBS
}−1

.

(A.4)

This relationship involves two parameters; the breed-
ing success estimate for Fisher Island, BSFI, and the
strength of the density-dependence,bBS. We will write
the sensitivity ofNe to changes in BS(Ne) andbBS as
sBS andsb respectively. FromEq. (10), it can be seen
that the breeding success only enters into the expres-
sion for fecundity,mi, giving

sBS = − 1

D

15∑
α=0

25∑
i=0

µα(Ne) mi(Ne) li(Ne)

BS(Ne)
(A.5)

and

sb = − 1

D

15∑
α=0

25∑
i=0

µα(Ne) mi(Ne) li(Ne)

BS(Ne)

∂BS(N)

∂bBS

= 1

D

15∑
α=0

25∑
i=0

µα(Ne) mi(Ne) li(Ne)

× BS(Ne)

BSFI

0.5 − BSFI

0.5
bBS

(
Ne

NFI

)bBS−1

. (A.6)
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