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Abstract 32 

Invasive species often displace native species by outcompeting them. Yet, some native species 33 

can persist even in heavily invaded areas. The mechanisms mediating this local coexistence are 34 

still unclear. Fine-scale microclimatic heterogeneity could promote the local coexistence of 35 

native and invasive animal competitors. We tested if native ant species could coexist with a 36 

recent ant invader, Tapinoma magnum, by shifting their foraging activity in time or space to 37 

different microclimatic conditions. We compared the foraging activity of native epigeic ant 38 

species among invaded and uninvaded sites. We collected ants at baits in green spaces on the 39 

north, east, south and west sides of buildings in the morning, at noon and in the afternoon to 40 

test if native species foraged under different microclimatic conditions in invaded sites. Invaded 41 

sites had lower ant species richness, diversity, and relative abundance. The native black garden 42 

ant Lasius niger – one of the most widespread Palearctic ant species – persisted at high densities 43 

in invaded areas but foraged less on the east side of buildings and more on the west side. 44 

Microclimatic heterogeneity might promote native and invasive species coexistence by 45 

allowing some native species to shift their foraging behaviour to locally avoid or outcompete 46 

invasive competitors. Better understanding how fine-scale micro-environmental heterogeneity 47 

affects native species’ persistence in invaded areas could help to predict and locally mitigate 48 

the negative impacts of biological invasions. 49 

  50 
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1 | INTRODUCTION  51 

Invasive species often displace their native competitors (Brown et al. 2002; Kenis et al. 2009; 52 

Wong et al. 2021) but some native species succeed in persisting even in heavily invaded areas 53 

(e.g., Achury, Holway, & Suarez, 2020; Campbell, Frair, Gibbs, & Rundell, 2015; da Silva 54 

Silveira & Guimarães, 2020; Pacioglu et al., 2020). Yet, we know surprisingly little about how 55 

native animal species coexist locally with dominant invasive competitors, and in particular 56 

whether native species can modify their behaviour to avoid or decrease competition pressure 57 

with invaders (Berthon 2015; Ruland and Jeschke 2020). 58 

Fine-scale environmental heterogeneity might promote the local coexistence of native and 59 

invasive competitors by allowing native species to shift their foraging or nesting habits towards 60 

environmental conditions where they can avoid or outcompete invasive competitors 61 

(Melbourne et al. 2007; Nielsen et al. 2010; Hart et al. 2017). Temperature and humidity are 62 

crucial components of species’ nesting and foraging requirements and are thus expected to 63 

affect the local coexistence of competitor species (Albrecht and Gotelli 2001; Žagar et al. 2015; 64 

Paterson and Blouin-Demers 2017; Hoffacker et al. 2018). Small scale heterogeneity in thermal 65 

conditions are omnipresent in nature because they arise from the shades of geometrical features 66 

of the habitat such as terrain slopes, trees and human buildings (Napoli et al. 2016; Pincebourde 67 

et al. 2016). 68 

However, the effect of microclimatic heterogeneity on the coexistence of native and invasive 69 

animals remains unclear. Existing research has focused mainly on temporal heterogeneity such 70 

as seasonal or daily variations in temperature (Holway 1998; Roeder et al. 2018), but it is still 71 

unknow if, at a local scale (i.e., within habitats), spatial heterogeneity in microclimatic 72 

conditions can promote the coexistence of native and invasive competitors. 73 
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To address this question, we studied the effects of temporal and spatial microclimatic 74 

heterogeneity on the foraging activity of native and invasive ant competitors. Ants are an ideal 75 

model system to study the ecological effects of microclimatic conditions because they are small 76 

ectotherms whose nesting and foraging patterns are strongly influenced by variations in 77 

temperature (Spicer et al. 2017; Roeder et al. 2018). In addition, ants occupy every terrestrial 78 

landmass on Earth except Antarctica and thrive in human-altered environments such as urban 79 

and suburban areas (Pećarević et al. 2010). Urban ant communities do not strongly differ from 80 

adjacent non-urban communities but often comprise invasive species because human-mediated 81 

introduction events are more likely in urbanized areas (Perez and Diamond 2019; Dáttilo and 82 

MacGregor-Fors 2021). Moreover, urbanized areas are characterized by disturbed habitats that 83 

often favour invaders over native species (Holway et al. 2002b; Cadotte et al. 2017).  84 

Invasive ants are among the fastest spreading and the most damaging animals worldwide 85 

(Rabitsch 2011). Most invasive ant species are behaviourally dominant competitors that form 86 

large colonies (sometimes called ‘supercolonies’) that can cover several hectares and are 87 

composed of hundreds to thousands of interconnected nests hosting thousands of queens and 88 

millions of workers (Holway et al. 2002a). Areas invaded by invasive ants are generally 89 

characterized by low native species richness and abundance compared to adjacent non-invaded 90 

areas (e.g., up to 90% decrease in abundance in areas invaded by the Red Imported Fire Ant 91 

(Solenopsis invicta); Porter & Savignano, 1990; Wittman, 2014). Yet, native ant species 92 

frequently persist in areas heavily invaded by invasive ant species (Tartally 2006; Guénard and 93 

Dunn 2010; Vonshak et al. 2010; Wittman 2014). Understanding how microclimatic 94 

heterogeneity affects ant invasions is thus a conservation priority because it could help to limit 95 

the spread of invasive species and mitigate their impacts on native communities. 96 

We used the shades generated by buildings as a source of temporal and spatial microclimatic 97 

heterogeneity. Variations in shading conditions are omnipresent in terrestrial environments. As 98 



5 
 

surface temperature increases with the amount of absorbed solar radiation, shades can generate 99 

important microclimatic variations in space and time (Napoli et al. 2016; Pincebourde et al. 100 

2016). To test if temporal and spatial microclimatic heterogeneity generated by buildings 101 

promote the coexistence of native and invasive ant species at local scale, we baited ants around 102 

residential buildings (on north, east, south and west sides) in the morning, at noon and in the 103 

afternoon (because shades’ position changes along the day) in the presence or absence of a 104 

dominant invasive competitor: Tapinoma magnum. 105 

Tapinoma magnum, probably native from northern Africa, is an emergent invasive species of 106 

great ecological and economic concern in Europe because it can easily establish and thrive in 107 

all Europe (Dekoninck et al. 2015; Janicki et al. 2016; Seifert et al. 2017), in contrast to most 108 

other invasive ants that are limited to the Mediterranean area. The species is probably 109 

transported with plant material (it was found in garden centres and tree nurseries; Dekoninck 110 

et al., 2015; Seifert et al., 2017) and several well-established populations are known in Belgium, 111 

France, Germany and Switzerland (Seifert et al. 2017; Bujan et al. 2021). The impacts of T. 112 

magnum on native biodiversity are still unknown but its dominant behaviour and supercolonial 113 

social structure (i.e., individuals mix freely within large supercolonies containing a high 114 

number of interconnected nests) suggest that the species is highly detrimental to native ant 115 

communities (Dekoninck et al. 2015; Warren et al. 2019). 116 

In this study, we first tested the impact of T. magnum’s invasion on the richness, diversity, 117 

relative abundance and composition of native epigeic ant communities and identified which 118 

species were able to coexist with T. magnum. Then, we tested if native ants that persisted in 119 

invaded areas changed their temporal foraging patterns or spatial location compared to non-120 

invaded areas. 121 

 122 

2 | MATERIALS AND METHODS 123 
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2.1 | Study sites 124 

Our study area is a residential area of the municipality of St-Sulpice, Switzerland (WGS84 125 

coordinates: 46.51329, 6.55624). This area is partially invaded by a large colony of Tapinoma 126 

magnum, covering at least four hectares. The species was detected in this area for the first time 127 

in 2012 but it is likely that it was introduced even earlier (D. Cherix, Pers. Comm.). In July 128 

2019, we sampled ants at eight invaded and eight non-invaded sites. All sampling sites were in 129 

a homogenous environment composed of green spaces surrounding houses and buildings that 130 

are very similar in vegetation type and management intensity (i.e., short lawns with some 131 

bushes and trees). Each sampling site corresponded to a green space surrounding a residential 132 

building (buildings were constructed between 1974 and 2015; mean ± SD: 1993 ± 14) (Fig. 1a, 133 

b). We selected only large buildings (i.e. shortest side longer than 12 meters) surrounded by 134 

green spaces and with four sides accessible. For each site, sampling permission was obtained 135 

from the inhabitants of the building.  Vegetation richness and height, dominant ground species, 136 

as well as the presence of bushes or trees were recorded for each sampling site. However, as 137 

these variables were consistent across sites, they were not included in the statistical analyses. 138 

Ground temperature has been linked to foraging intensity in ants (e.g., Azcárate et al. 2007). 139 

Thus, to verify that the time of the day and the side of building affected ground temperature we 140 

measured it using a thermometer probe (IHM multi-use digital stem thermometer 2263AT), 141 

during each sampling event and for each side of the building (at the most central point of the 142 

sampling area; see Fig. 1b).  143 

 144 

2.2 | Ant sampling 145 

Because shades follow the position of the sun during the day, each sampling site was sampled 146 

at three different times of the day: in the morning (between 7h00 and 10h30), at noon (between 147 

12h00 and 15h30) and in the afternoon (between 16h30 and 20h00). For a given site, each of 148 
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the three sampling events (morning, noon and afternoon) was conducted on a different day 149 

(Supplementary Data) to avoid that foraging trails created in the morning affect ants’ foraging 150 

behaviour at noon and in the afternoon (Jackson et al. 2006). In addition, as it was not possible 151 

to sample several sites simultaneously (the sampling was performed by one person), this 152 

sampling design allowed to prevent a potential confounding effect between the day of sampling 153 

and the sampling site. Thus, a total of 48 sampling events were performed (16 sampling sites 154 

sampled three times; Fig. 1a). Each sampling event consisted of depositing 40 baits in the green 155 

space surrounding the building. The baits (1,920 baits in total) were Eppendorf tubes (2mL) 156 

one-third filled with cotton impregnated with food. Since ant species can have different food 157 

preferences (Csata and Dussutour 2019), two types of Eppendorf tubes were prepared: 1,920 158 

Eppendorf tubes were impregnated with honey (15% honey and 85% water solution) and 159 

another 1,920 Eppendorf tubes were impregnated with tuna (50% canned tuna and 50% water 160 

solution). Thus, one bait corresponds to a pair of tubes. To record spatial variations in ants 161 

foraging activity, the 40 baits were evenly placed at each side of the building (10 to the north, 162 

10 to the east, 10 to the south and 10 to the west; Fig. S1) in two transects of five baits (Fig. 163 

1b). The first transect was one meter away from the building wall, whereas the second transect 164 

was four meters away from the first transect. On each transect, baits were placed every four 165 

meters. The exact position of baits could sometimes slightly differ from the ideal setup because 166 

of the presence of paved or partially inaccessible areas (building entry, parking lot). In these 167 

situations, baits were placed as close as possible from the ideal position, while keeping at least 168 

four meters between them (Fig. S1). Baits were placed around the buildings in a consistent way 169 

across all three sampling events. They were placed on the ground and left open for one hour, 170 

after which they were rapidly closed and collected in the same order in which they were 171 

deposited. Finally, baits were stored at -20°C until species identification. All ants were counted 172 

and identified to either species or genus level using Seifert's (2007) ant identification key and 173 
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then stored at -20°C in 90% ethanol for long term conservation. Ants from the genus 174 

Temnothorax and Tetramorium were not identified to the species level because their 175 

morphological identification is not reliable (only two workers of Temnothorax were sampled, 176 

which is not enough to perform a proper identification in this genus, and Tetramorium species 177 

need to be identify with genetic markers or complex morphometrics; Wagner et al. 2017). Bait 178 

sampling is a common method to sample epigeic ants (i.e., ants foraging above ground) and is 179 

a classic tool to study competition between ant species as well as invasive ants’ impacts on 180 

native ant communities (Porter and Savignano 1990; Bestelmeyer et al. 2000; Albrecht and 181 

Gotelli 2001; Thomas and Holway 2005; Roeder et al. 2018). However, this sampling method 182 

might not be suitable to detect and estimate the foraging activity of subterranean ant species 183 

(e.g., Lasius flavus) because they forage mostly underground. Finally, as ants can forage several 184 

meters away from their nest, this sampling design (i.e., baits every four meters) cannot 185 

differentiate between one colony foraging on several baits or multiple colonies foraging on one 186 

bait each. 187 

 188 

2.3 | Microclimatic variations induced by shading conditions 189 

To control that ground temperature was linked to the time of the day (i.e., morning, noon and 190 

afternoon) and the side of the building (i.e., north, east, south and west), and that it did not 191 

differ among invaded and non-invaded sites, we used a Gaussian generalized mixed-effect 192 

model (R package ‘glmmTMB’; Brooks et al. 2017) with ground temperature (in °C) as the 193 

response variable and time of the day (morning, noon and afternoon), building side (north, east, 194 

south and west), zone (invaded and non-invaded) and their interactions as fixed effects, and 195 

sampling site and date as random effects (N = 192 measurements; Fig. 1c, d). We used analyses 196 

of deviance (i.e., Type III Wald ꭓ2 tests) to assess which variables and interactions had 197 

significant effects on each response variables. Ground temperature was best explained by the 198 
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interactive effect of time of the day and building side (N = 192, R2
conditional = 0.71, R2

marginal = 199 

0.53; see Fig. 1d). 200 

 201 

2.4 | Effect of T. magnum on native ant communities 202 

We tested if the presence of T. magnum affected native ant species’ richness, diversity and 203 

relative abundance, as well as their community composition. Native species richness was 204 

calculated as the number of native species, native species diversity as the Shannon diversity 205 

index (R package ‘vegan’; Oksanen et al. 2020) and native species relative abundance as the 206 

proportion of baits occupied by native ant species by sampling events (N = 48 sampling events). 207 

We compared the richness, diversity and relative abundance of native ant species between 208 

invaded and non-invaded sites using generalized linear mixed models (with Gaussian link 209 

functions for richness and diversity and Binomial link function for relative abundance) with 210 

sampling site and date as random effects observations (R package ‘glmmTMB’). We visualized 211 

if the composition of native ant communities differed among invaded and non-invaded sites 212 

using Nonmetric Multidimensional Scaling (NMDS; R package ‘vegan’). We also assessed 213 

differences in community composition among building side (north, east, south and west) and 214 

time of day (morning, noon, afternoon) NMDS simplifies multivariate data into a few important 215 

axes, allowing to better assess differences among groups. We computed the NMDS using the 216 

number of baits occupied by each species on each building side at each sampling event (N = 217 

192). We tested the differences in community composition between groups (invaded/non-218 

invaded, north/east/south/west and morning/noon/afternoon) using permutational multivariate 219 

analyses of variance (PERMANOVA; R package ‘vegan’). 220 

 221 

2.5 | Effects of T. magnum on native ants’ foraging activity in time and space 222 
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We measured the foraging activity of native and invasive ant species as the proportion of baits 223 

that they occupied at each building side (north, east, south, west) at each sampling event (N = 224 

192 building sides, 48 sampling events, 16 sampling sites; Fig. 1). We tested the interactive 225 

effects of T. magnum’s presence, time of the day and building side on foraging activity in the 226 

four most frequent native ant species: Lasius niger, Myrmica specioides, Myrmica sabuleti and 227 

Tetramorium sp. These species occupied more than five percent of the baits in non-invaded 228 

sites (31% for L. niger, 10% for M. specioides, 8% for M. sabuleti and 6% for Tetramorium 229 

sp.; Fig. 3). We also tested the effect of time of the day and building side on the foraging activity 230 

of T. magnum (N = 96 building side, 24 sampling events, 8 sampling sites; Fig. 1a). We used 231 

Binomial linear mixed models (R package ‘glmmTMB’) to test the effects of invasion (invaded 232 

or non-invaded sites), time of the day (morning, noon or afternoon), building side (north, east, 233 

south or west) and all possible first-degree interactions on the proportion of baits occupied at 234 

each building side (10 baits were placed at each building side per sampling event). The 235 

sampling site and date were set as random effects to account for spatial and temporal 236 

dependency of observations(Brooks et al. 2017). For each model, we used a backward selection 237 

procedure to determine the best fitting model by sequentially removing non-significant fixed 238 

effects using type III Wald ꭓ2 tests (R package ‘car’; Fox & Weisberg, 2019). We controlled 239 

for the validity of the best-fitting models by analysing models’ residuals (R package 240 

‘DHARMa’; Hartig 2018). Models’ estimations and post hoc comparisons (with Tukey 241 

corrections) were computed using the R package ‘emmeans’ (Lenth 2020). Models’ 242 

performance was assessed by computing pseudo-R2 using the R package ‘performance’ 243 

(Ludecke et al. 2019). All statistical analyses were performed in R 4.0.3 (R core team 2020). 244 

 245 

3 | RESULTS 246 

3.1 | Effect of T. magnum on native ant communities 247 
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We recorded 15 species from eight genera during this study (Fig. 3), which represents ~20% of 248 

species occurring at regional scale (i.e., in the Vaud canton; www.fourmisvaud.ch) and ~10% 249 

of species occurring in Switzerland (www.antmaps.org). T. magnum was the only non-native 250 

species detected. At non-invaded sites, Lasius niger was the most abundant species (mean ± 251 

s.e. = 31 ± 5% of baits occupied), followed by Myrmica specioides (10 ± 2%), Myrmica sabuleti 252 

(8 ± 3%) and Tetramorium sp. (6 ± 4%); other species occurred in <5% of baits (Fig. 3). In 253 

invaded sites, T. magnum was the most abundant species (35 ± 7%), followed by the Lasius 254 

niger (30 ± 2%), Myrmica specioides (4 ± 1%) and Tetramorium sp (2 ± 1%) (other species 255 

occurred in ≤1% of baits; Fig. 3). The presence of T. magnum was associated with lower 256 

richness (ꭓ2 = 11.1, df = 1, P < 0.001; Fig. 2a), relative abundance (ꭓ2 = 35, df = 1, P < 0.0001; 257 

Fig. 2b) and diversity (ꭓ2 = 7.8, df = 1, P = 0.005; Fig. 2c) of native ant species. Yet, the total 258 

ant relative abundance differs only marginally between non-invaded and invaded sites (ꭓ2 = 259 

3.5, df = 1, P = 0.06; Fig. 3). The proportion of baits occupied by M. specioides and M. sabuleti 260 

was lower in invaded than in non-invaded sites (For M. specioides, ꭓ2 = 4.7, df = 1, P = 0.03; 261 

For M. sabuleti., ꭓ2 = 7.5, df = 1, P = 0.006; Fig. 3). However, the proportion of baits occupied 262 

by  L. niger and Tetramorium sp. did not differ between invaded and non-invaded sites (For L. 263 

niger, ꭓ2 = 0.6, df = 1, P = 0.45; For Tetramorium sp., ꭓ2 = 1.3, df = 1, P = 0.25; Fig. 3). The 264 

composition of native ant communities was affected by T. magnum’s invasion (F = 6.5, R² = 265 

0.03, P = 0.001) and by the time of the day (F = 6.9, R² = 0.07, P = 0.001) but not by the side 266 

of the building (F = 1.03, R² = 0.02, P = 0.4). However, the differences in community 267 

composition between invaded and non-invaded sites as well as between morning, noon and 268 

afternoon sampling were relatively small (Fig. 4). 269 

 270 

3.2 | Effects of T. magnum on native ants’ foraging activity in time and space 271 
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The proportion of baits occupied by native species was affected by the time of the day in M. 272 

specioides (ꭓ2 = 29.5, df = 2, P < 0.0001) and M. sabuleti (ꭓ2 = 12, df = 2, P = 0.002) and by 273 

building side in M. sabuleti (ꭓ2 = 16.8, df = 3, P = 0.0008), Tetramorium sp. (ꭓ2 = 14.6, df = 3, 274 

P = 0.002; Table 1). Invasion and building side had an interactive effect on the probability of 275 

foraging on baits in L. niger (ꭓ2 = 13.5, df = 3, P = 0.004; Table 1). Lasius niger was not affected 276 

by invasion on the north and south sides of buildings (odds ratio = 0.63 and -0.36 respectively, 277 

df = 180, P > 0.05), but it was foraging less on the east side (odds ratio = 1.9, df = 180, P = 278 

0.06), and more on the west side of buildings (odds ratio = -2, df = 180, P = 0.04; Fig. 5) in 279 

invaded sites compared to non-invaded sites. 280 

 281 

4 | DISCUSSION 282 

Our field study demonstrated that Tapinoma magnum had a negative impact on native epigeic 283 

ant communities and should therefore be considered an important ecological threat for Europe 284 

and other temperate regions worldwide. We found that Lasius niger, the most abundant native 285 

ant in our study area, persisted in sites invaded by T. magnum and shifted its foraging activity 286 

spatially towards the west side of buildings compared to non-invaded sites where it was more 287 

active on the east side (Fig. 5). This suggests that west-exposed green spaces benefited L. niger 288 

by allowing the species to either avoid or outcompete T. magnum while the east-exposed green 289 

spaces would have the opposite effect. However, it is not clear why west-exposed green spaces 290 

favoured L. niger over T. magnum as they did not strongly differ in ground temperature from 291 

other building sides, contrarily to north-exposed areas that were up to 6°C cooler than other 292 

sides (Fig. 1d).  293 

 294 

Our findings suggest that microclimatic heterogeneity promotes the persistence of L. niger in 295 

areas invaded by its invasive competitor T. magnum. Lasius niger is among the most 296 
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widespread native species in the Palearctic realm (www.antmaps.org) and is notoriously 297 

abundant in open-vegetated habitats from urban cores to semi-natural areas (Gippet et al. 2017). 298 

Thus, L. niger is probably the most frequent native competitor for invasive ants in European 299 

landscapes and might be able to limit the spread of invasive ant species either by monopolizing 300 

available resources or physically dominating the invader. Our results are consistent with 301 

previous findings that invasive ants (Lasius neglectus) can be outcompeted by native 302 

competitors under certain environmental conditions (i.e., > 30°C; Frizzi et al. 2017) and that L. 303 

niger is a challenging competitor that can limit the foraging success of highly invasive species 304 

such as Argentine ants (Linepithema humile ; Cordonnier, Blight, Angulo, & Courchamp, 305 

2020). However, it is possible that, over time, T. magnum can displace L. niger from baits 306 

(Thomas and Holway 2005; Carval et al. 2016). This is beyond the scope of our study which 307 

focused the ant’s immediate foraging response by collecting ants one hour after placing the 308 

baits in the field. It is also unclear if the presence of T. magnum alters the spatial distribution 309 

of L. niger’s colonies (i.e., fewer colonies of L.niger on the east-exposed green spaces), or if L. 310 

niger colonies maintained their pre-invasion spatial distribution but changed their foraging 311 

strategy to better avoid or outcompete T. magnum (e.g., changes in the foraging distance or 312 

number of foragers recruited). Phenotypic plasticity in thermal tolerance, competitive 313 

behaviour or diet (Bujan et al. 2020; Balzani et al. 2021; Trigos-Peral et al. 2021) might help 314 

species co-exist locally, for example by limiting direct competitive interactions. Future research 315 

could explore if it enables L. niger to persist in invaded areas. 316 

 317 

In other native ant species (M. specioides and M. sabuleti), foraging activity uniformly 318 

decreased in invaded sites (Fig. 3, Table 1) and did not shift towards different time of day or 319 

building side (Table 1). This suggests that not all native species can modify the microclimatic 320 

conditions at which they forage in response to invasion, either because their plastic response is 321 
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limited (e.g., great territoriality, limited foraging distance from nests) or because, in invaded 322 

sites, the two most dominant species – T. magnum and L. niger – already occupied most 323 

available resources (Savolainen and Vepsäläinen 1988). Behavioural shifts of native species 324 

(i.e., foraging or nesting) induced by the presence of an invasive competitor were observed in 325 

various native animals including fish, amphibians, reptiles, insects and molluscs (Thomson 326 

2004; Alcaraz et al. 2008; Wright et al. 2010; Stuart et al. 2014; da Silva Silveira and Guimarães 327 

2020) and it would therefore be interesting to assess to which extent  the availability of 328 

alternative microenvironmental conditions help species to behaviourally respond to invaders or 329 

to find micro-refuges (Astorg et al. 2020).  330 

 331 

Overall, native ant communities were poorer in invaded areas. However, our sampling method 332 

cannot evaluate T. magnum’s impacts on subterranean ant communities because it detects only 333 

ground-foraging species. Yet, it is likely that T. magnum might have little or no impacts on 334 

subterranean ant species (eg, Lasius flavus) because they occupy a different ecological niche 335 

(Holway et al. 2002a). It also possible that we missed species that are present in the area because 336 

we collected baits after one hour. Future studies could thus combine several sampling methods 337 

(eg, baits and pitfall traps; Porter and Savignano 1990) or more intense baiting design ( eg, bait 338 

collection every hour over a 24 hours period; Albrecht and Gotelli 2001) to get a more complete 339 

picture of native ant communities in invaded and non-invaded sites. Our results show that T. 340 

magnum impacts native epigeic ant communities and suggest that the spread of this new 341 

invasive ant species might threaten other ground-dwelling arthropod taxa, as is the case with 342 

the invasion of Lasius neglectus, another highly invasive ant in Europe (Nagy et al. 2009). 343 

 344 

To date, ~40 ant species have established invasive populations in Europe (Rabitsch 2011; 345 

Schifani 2019), yet, only Lasius neglectus and Tapinoma magnum (and to a lesser extent 346 
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Linepithema humile), can grow large outdoor super-colonies in central and northern Europe, 347 

while other invasive ant species are limited to the Mediterranean area (Ugelvig et al. 2008; 348 

Charrier et al. 2020). Thus, the spread of T. magnum threatens all Europe and it is likely that 349 

the species can established in other parts of the world if introduced by human activities such as 350 

the global horticultural trade (Dekoninck et al. 2015; Seifert et al. 2017). Eradicating 351 

established invasive populations is costly, often fails and does not prevent reintroduction events 352 

(Pluess et al. 2012; Ujiyama and Tsuji 2018). Thus, it is urgent to manage this new invasion by 353 

preventing human-mediated dispersal of T. magnum to new locations (Gippet et al. 2019) and 354 

by limiting its impacts where it is already established (e.g., Guyot et al. 2015). Understanding 355 

how microclimatic conditions shape native and invasive species foraging activities offers 356 

promising insights to efficiently combat biological invasions. Taking advantage of 357 

microclimatic conditions might help design more target-specific eradication campaigns 358 

(Buczkowski et al. 2018) by, for example, depositing poisoned baits at the precise location and 359 

time that maximizes poison intakes by the invader and minimizes it for its native congeners. 360 

Finally, rather than trying to eradicate established invasive populations, it might sometimes be 361 

more efficient to mitigate their negative impacts by helping native species to locally 362 

outcompete them (Guo et al. 2018). In habitats that are particularly threatened by invasive 363 

species introductions (e.g., urban green spaces, residential areas), increasing microclimatic and 364 

more generally environmental heterogeneity may be an effective, environmentally friendly, 365 

cheap, and easy way to limit the impacts of invasive species. Homogenous habitats (e.g., lawns) 366 

could be avoided by creating microenvironmental heterogeneity in shading conditions (e.g., by 367 

planting trees or building artificial terrain slopes) but also in soil properties (e.g., type, 368 

compaction), vegetation management (i.e., heterogenous mowing; e.g., Suggitt et al. 2011) and 369 

in irrigation practices (i.e., heterogenous watering).  370 
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Our results highlight the potential role of micro-environmental heterogeneity in mediating 371 

native and invasive species coexistence. However, additional research is needed to generalize 372 

our findings and to address the mechanisms involved. Our study was performed in a single 373 

suburban area composed of very homogenous and highly maintained lawns. Replicating our 374 

experiment in other landscape contexts and seasons would thus allow to better assess the 375 

consistency of our findings across different urban areas as well as its validity in rural and semi-376 

natural habitats (e.g., pastures, meadows, scrublands). However, to replicate our experiment in 377 

other locations, adjacent invaded and non-invaded areas composed of similar non-homogenous 378 

habitats are required (e.g., Angulo et al. 2011). If this set-up is not possible, researchers may 379 

test the effects of micro-environmental heterogeneity on native and invasive ants’ coexistence 380 

by experimentally adding shaded microhabitats to adjacent invaded/non-invaded environments 381 

(e.g., Wittman et al. 2010). This would allow generating microclimatic heterogeneity 382 

independently of the time of the day and to avoid the constraints linked to the utilization of 383 

buildings to generate shade as building walls are not always perfectly aligned with the cardinal 384 

directions. Yet, despite these limitations understanding the micro-environmental consequences 385 

of human buildings is interesting because invasive species often thrive in urbanized areas. 386 

 387 

5 | CONCLUSION 388 

Shades are an omnipresent source of spatial and temporal microclimatic heterogeneity. Yet,  389 

their consequences on species’ foraging activity, community structure and their potential role 390 

in the local coexistence of native and invasive species are understudied  (Stahlschmidt and 391 

Johnson 2018; Ibarra-isassi et al. 2021). This study is a first step towards understanding how 392 

shading conditions could mediate the local coexistence of native and invasive competitors and 393 

should stimulate future research to explore the effects of fine-scale environmental 394 
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heterogeneity on native and invasive species coexistence and how these effects might change 395 

across seasons or at other latitudes.  396 
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 666 

 667 

Fig. 1. Sampling design. (a) Position of the eight invaded (dark-red dots) and the eight non-668 

invaded (light blue dots) sampling sites; (b) A typical sampling site composed of a green space 669 

surrounding a building. Baits (colored dots) were placed in a standardized way around the 670 

buildings. The red crosses indicate where ground temperature was measured for each sampling 671 

event; (c) Average ground temperature in invaded and non-invaded sampling sites; (d) 672 

Estimation of ground temperature depending on time and building side (according to the best 673 

fitting model: Temperature ~ Time * Side; marginal R² = 0.53). 674 
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 679 

 680 

 681 

 682 

Fig. 2. Impact of Tapinoma magnum on (a) the richness, (b) the relative abundance and (c) the 683 

diversity of native ant species. Coloured boxes contain 50% of the data (the median is the 684 

central thick horizontal line) and whiskers contain the lowest and highest 25% of the data. Data 685 

points are represented as symbols (horizontally jittered for visual purpose). For comparisons 686 

between groups, **: P < 0.01, ***: P < 0.001.  687 
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 697 

 698 

 699 

Fig. 3. Coloured bars represent the mean proportion of baits occupied by ants in invaded (N = 700 

8; dark red) and non-invaded (N = 8; light blue) sites. Error bars represent standard errors 701 

around the mean and red dots are median values for each group. For comparisons between 702 

groups, n.s.: non-significant, *: P < 0.05, **: P < 0.01. 703 

 704 
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 718 

 719 

 720 

Fig. 4. Composition of native ant communities. (a) Arrows represent the contribution of each 721 

species on each axis of a non-metric multidimensional scaling (NMDS) biplot. (b, c, d) Dots 722 

(N = 192) represent the ant communities at each side of building and time of the day for each 723 

sampling site (16 sampling sites * 3 times * 4 sides). Dots were coloured to assess the difference 724 

in ants’ community composition between (b) invaded and non-invaded sites, (c) side of 725 

building (North, East, South, West) and (d) time of day (morning, noon, afternoon). Ellipses 726 

include 95% of the dots of each group. 727 
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 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

Fig. 5. The effects of Tapinoma magnum’s invasion (invaded sites in red and non-invaded sites 740 

in blue) on the proportion of baits occupied by the native ant L. niger depends on the side of 741 

the building. Dots and bars are mean ± 95% CI estimations of the best-fitting model (Table 1). 742 

Asterisks indicate significant differences between invaded and non-invaded sites (.: P < 0.1, *: 743 

P < 0.05). 744 
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Tapinoma magnum 0.01 (0)

Lasius niger 0.03 (0.027)

Myrmica specioides 0.21 (0.2)

Myrmica sabuleti 0.29 (0.27)

Tetramorium sp. 0.18 (0.12)

Probability of baits 

occupied

Table 1. Effects of T. magnum’s invasion (i.e., invaded vs non-invaded), time of the day 747 

(morning, noon, afternoon) and exposition (north, east, south, west) on the proportion of baits 748 

occupied, at each building sides, by Lasius niger, Myrmica specioides, Myrmica sabuleti, 749 

Tetramorium sp. (N = 192 building sides) and Tapinoma magnum (only in invaded sites; N = 750 

96 building sides). Ten baits were deposited at each building side during each sampling events 751 

(Fig. 1, Fig. S1). Dark blue cells indicate significant effects (p < 0.05). Models’ statistical 752 

details are in Table S1. 753 
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Species Best model ꭓ² df P

(Intercept) 28.87 1 < 0.0001

Invasion 0.4 1 0.53

Building side 7.04 3 0.07

Time of day 22.23 2 < 0.0001

Invasion : Building side 13.45 3 0.004

(Intercept) 43.05 1 < 0.0001

Invasion 4.79 1 0.03

Time of day 29.5 2 < 0.0001

(Intercept) 39.07 1 < 0.0001

Invasion 7.66 1 0.006

Building side 16.84 3 0.0008

Time of day 12.03 2 0.002

(Intercept) 73.3 1 < 0.0001

Building side 14.58 3 0.002

Tapinoma magnum (Intercept) 21.86 1 < 0.0001
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Lasius niger

Myrmica specioides

Myrmica sabuleti

Table S1. Analyses of deviance (Type III Wald ꭓ² tests) of the best fitting models of the 768 

proportion of baits occupied (Binomial GLMs) by each native ant species (N = 192 building 769 

sides and 16 sampling sites) and T. magnum (N = 96 building sides and 8 sampling sites) (See 770 

Table 1). 771 
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Fig. S1. Position of the baits around each sampling sites. Large dots indicate building used as 784 

invaded (red) and non-invaded (blue) sampling sites. Small dots give the approximate (±1 m) 785 

position of baits around the buildings. Their colour indicates the cardinal category at which 786 

they were assigned. Background satellite view is from Esri, Digital Globe, Earthstar 787 

Geographics.  788 
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