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ABSTRACT

The identification and characterisation of fractures is an important objective in many areas

of Earth and Environmental Sciences. Amplitude versus offset and azimuth (AVOAz) anal-

ysis of seismic reflection data is a key method for achieving these tasks. Theoretical and

experimental studies have shown that the presence of pore fluids together with the strong

mechanical contrast between the fractures and their embedding background give rise to

fluid pressure diffusion
:::::::::::::
wave-induced

:::::
fluid

:::::
flow

::::::::
(WIFF)

:
effects. This implies that the effec-

tive stiffness tensor of a fluid-saturated fractured rock defining its seismic response becomes

viscoelastic and frequency-dependent. In spite of this, AVOAz analysis typically relies on

end-member-type elastic stiffness models that either assume a relaxed (i.e., equilibrated)
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4CONICET, Centro Atómico Bariloche - CNEA, San Carlos de Bariloche, Argentina
5School of Earth Sciences, Zhejiang University, Hangzhou, China

1



or unrelaxed (i.e., unequilibrated) state of the wave-induced fluid pressure in the rock. In

general, however, neither the appropriateness of the chosen model nor the associated errors

in the inversion process are known. To shed some light onto this topic, we consider a poroe-

lastic medium containing parallel vertical fractures and generate synthetic seismic AVOAz

data using Rüger’s (1998) approximations for PP-wave reflection coefficients in Horizontally

Transversely Isotropic media. A Markov-chain-Monte-Carlo method is used to perform a

Bayesian inversion of the synthetic seismic AVOAz data. We quantify the influence of WIFF

effects on the AVOAz inversion results when elastic relaxed and unrelaxed models are used

as forward solvers of inversion schemes to estimate the fracture volume fraction, the elastic

moduli, and the porosity of the background rock, as well as the overall weakness of the

medium due to the presence of fractures. Our results indicate that, when dealing with

single-frequency data, relaxed elastic models provide biased but overall better inversion

results than unrelaxed ones, for which some fracture parameters cannot be resolved. An

improved inversion performance is achieved when using frequency-dependent data, which

illustrates the importance of accounting for poroelastic effects.
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INTRODUCTION

The identification, location, and characterisation of fractures receive great interest due

to their impact on the mechanical and hydraulic properties of the affected rock volumes.

Geophysical techniques in general and seismic methods in particular have been extensively

used as non-invasive means to locate fractures and to characterise their properties (e.g.,

National Research Council, 1996; Liu and Martinez, 2013). Probably the most remarkable

manifestation of the presence of fractures embedded in an otherwise isotropic background is

the effective anisotropic behavior of seismic waves. This has made the analysis of reflection

amplitude variations with offset and azimuth (AVOAz) a common and successful practice for

retrieving practically important parameters of the fractured formation such as, for example,

the density and the azimuthal orientation of the fractures, as well as the type of saturating

pore fluid (e.g., Bakulin et al., 2000; Shen et al., 2002; Fang et al., 2016).

Seismic waves propagating in fluid-saturated fractured rocks experience attenuation

and velocity dispersion caused by a mechanism broadly known as wave-induced fluid flow

(WIFF). The strong mechanical contrast between the compliant fractures and the much

stiffer embedding background favours the development of fluid pressure gradients between

these regions in response to the deformation imposed by a propagating seismic wave. The

internal friction that is associated with the fluid pressure equilibration process then man-

ifests itself in the form of seismic attenuation and velocity dispersion. Mesoscopic WIFF,

which occurs due to the presence of fractures on a scale much larger than the pore size

but much smaller than the prevailing wavelength, is considered to be a significant source of

seismic energy dissipation in the seismic frequency band (e.g., Müller et al., 2010). Fig. 1

illustrates the frequency dependence of the P-wave modulus (Fig. 1a) and the attenuation
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(Fig. 1b) normal to a set of parallel fractures. The frequencies in Fig. 1 are normalised

with respect to the characteristic frequency at which the attenuation and modulus disper-

sion due to mesoscopic WIFF are maximal. This illustrates that, in the presence of WIFF,

the anisotropic behavior of the medium also becomes frequency-dependent. The depen-

dence of the mesoscopic WIFF mechanism on the rock physical properties, the fracture

geometry, and the frequency makes the analysis of frequency-dependent seismic attributes

a valuable source of information with regard to the mechanical and hydraulic properties

(e.g., Al-Harrasi et al., 2011; Tillotson et al., 2011; Ali and Jakobsen, 2014).

Figure 1: (a) P-wave modulus dispersion and (b) inverse quality factor normal to a set of

parallel fractures as functions of the frequency normalised with respect to the mesoscopic

WIFF characteristic frequency fm. LFL and HFL refer to the low- and high-frequency

limits of the P-wave modulus, respectively. The physical properties used to compute the

complex-valued P-wave modulus C are given in Table 1.

Despite the potential value of a frequency-dependent analysis, the AVOAz interpreta-

tion of seismic data typically relies on the low- or high-frequency limits of the underlying
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frequency-dependent models (e.g., Rathore et al., 1995; Rüger, 2002; Chen et al., 2017).

Relaxed or low-frequency models (e.g., Thomsen, 1995) assume that the permeability is

sufficiently high to ensure that, at the prevailing frequencies, both the fractures and their

background are in fluid pressure equilibrium during the passage of the seismic wave. This

limit is denoted in Fig. 1 as LFL and is consistent with the well-known Gassmann (1951)

equations. Conversely, unrelaxed or high-frequency models (e.g., Hudson, 1980) are used

when the permeability is assumed to be sufficiently low such that there is not enough time

for fluid pressure communication between the fractures and the background during a seismic

wave cycle (HFL in Fig. 1). That is, the fractures behave as being hydraulically isolated

from their embedding background. Bakulin et al. (2000) performed a comprehensive anal-

ysis of inversion performance to obtain fluid-saturated fracture properties from AVO data

considering Thomsen’s (1995) and Hudson’s (1980) limiting models. It is expected that, in

the presence of significant WIFF effects, the physical and geometrical properties estimated

using these limiting models are not accurate. Indeed, Bakulin et al. (2000) pointed out that,

in the presence of WIFF effects, the interpretation of fracture properties estimated using

limiting elastic models may be ambiguous without additional information. In this work, we

address this question for the case of a medium containing a set of parallel fractures. Despite

its simplicity, this model can be regarded as a first-order approximation of many reservoirs

exhibiting a predominant direction of minimum compressive stress. In this scenario, open

fractures will tend to align perpendicular to the smallest compressive stress, which is usually

horizontal (Liu and Martinez, 2013).

A set of parallel fractures produces effective transverse anisotropy with a single axis

of symmetry. The frequency-dependent stiffness matrix describing the seismic response of

such a medium is a function of the porosity, the permeability, the pore fluid properties,
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and the elastic moduli, as well as of the geometry, the mechanical properties, and the dis-

tribution of the fractures. In general, the two classical representations used to model the

seismic effects of a set of parallel fractures are inclusions (e.g. Hudson, 1980) and linear

slip boundary interfaces (Schoenberg, 1980). The theoretical model developed by Chapman

(2003) is arguably the most extensively used approach for fracture parameter inversion us-

ing frequency-dependent seismic anisotropy data (e.g., Maultzsch et al., 2003; Chapman

et al., 2006; Maultzsch et al., 2007; Tillotson et al., 2014). This inclusion-based model takes

into account the fluid-pressure relaxation process between the pore space of the background

medium and the fluid-filled mesoscopic fractures. A drawback of utilising the model of

Chapman (2003) is that it requires an estimation of the characteristic relaxation time of

the fluid-pressure diffusion process, which is inversely proportional to fm (Fig. 1). Given

that this parameter is difficult to measure, it is generally estimated from a known charac-

teristic relaxation time of a rock sample through a calibration process, which assumes that

the relaxation time is proportional to the ratio between the fluid viscosity and the perme-

ability (e.g., Al-Harrasi et al., 2011). The linear slip model, on the other hand, assumes

that the effective compliance of the fractured medium can be computed as the sum of the

excess compliance due to the presence of fractures and the compliance of the background

medium. Brajanovski et al. (2005) used the linear slip theory (LST) to derive the frequency-

dependent anisotropic seismic response of a distribution of parallel fluid-saturated fractures,

represented as a limiting case of infinitely thin and compliant porous layers embedded in a

less porous and stiffer background. Recently, Guo et al. (2017a,b) showed that the inher-

ently small but finite aperture of fractures can produce significant departures in the seismic

response of fractured media with respect to the interface-fracture model of Brajanovski

et al. (2005).
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The goal of this work is two-fold. First, we explore the impact of neglecting the frequency

dependence of the effective anisotropy of fractured media when performing inversion of

AVOAz data. To do so, we create synthetic AVOAz data using the planar-fracture model

of Guo et al. (2017a), which accounts for the finite aperture of fractures and is valid for

fractures with radii much larger than the prevailing seismic wavelengths (Gurevich et al.,

2009). Then, we employ the typically used relaxed and unrelaxed elastic models as forward

solvers in the inversion procedure. In order to examine the inversion performance of different

models and their robustness, we follow a Bayesian approach. In a second step, we explore the

potential benefits of considering frequency-dependent data in the inversion. It is important

to mention that outlining the processing of seismic data for making them amenable to

AVOAz analysis is beyond the scope of this study. Downton (2005) provides a comprehensive

description of the processing sequence as well as of the factors related to data collection,

wave propagation effects, and data processing that may affect the quality of an AVOAz

data set.

FORWARD PROBLEM

Effective properties of fluid-saturated fractured rocks

A set of parallel fractures produces effective transverse isotropy with a single axis of symme-

try normal to the fracture planes. Assuming that the symmetry axis is parallel to the x-axis,
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the relation between the stress τij and strain εij components in the fractured medium is
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=
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·
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, (1)

where the stiffness coefficients Cij contain all the information about the fractured rock that

describes its effective anisotropic seismic response.

Under dry conditions, a common approach to compute the stiffness matrix (Eq. 1) is

following the LST formulation. In that case, the stiffness matrix of a dry fractured rock

Cdry can be estimated as (Schoenberg and Douma, 1988)

Cdry = (Sdry)−1 = (Sdry
b + Zdry)−1, (2)

where Sdry and Sdry
b are the compliance tensors of the dry fractured rock and the dry

background medium, respectively. For a set of rotationally invariant fractures whose nor-

mal is parallel to the x-axis, the dry fracture excess compliance Zdry is approximated as

(Schoenberg and Sayers, 1995)

Zdry =



ZN 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ZT 0

0 0 0 0 0 ZT



, (3)
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where ZN and ZT are the dry normal and tangential compliances, respectively. The excess

compliance predicted by the LST is similar to that produced by a set of parallel poroelastic

thin-layers having appropriate infilling material, which can be obtained as (Brajanovski

et al., 2005)

L =
Vf
ZN

,

µm =
Vf
ZT

,

(4)

where Vf is the fracture volume fraction and L and µm are the dry P-wave and shear moduli

of the fracture infill material, respectively.

Under fluid-saturated conditions, the stiffness matrix in Eq. 1 becomes complex-valued

and frequency-dependent. Guo et al. (2017a,b) propose an analytical model to compute the

Cij coefficients representing a fluid-saturated medium containing a distribution of parallel

fractures. This model relies on a poroelastic representation of the fractured medium as in

Brajanovski et al. (2005) and Gurevich et al. (2009). One of the assumptions of the model

of Guo et al. (2017a,b) is that, regardless of the direction of wave propagation, the fluid

pressure diffusion between the fractures and the background is predominantly normal to

the surface of the fractures (e.g. Krzikalla and Müller, 2011; Barbosa et al., 2018). As a

consequence, the frequency dependence of the stiffness coefficients Cij can be quantified by

a single relaxation function. Gurevich et al. (2009) showed that for a random distribution

of fractures this frequency dependence can be described as

1

Cij(ω)
=

1

Cuij
+

(
1

Cuij
− 1

Crij

)
/(1 +

√
−iωτ), (5)

with Crij and Cuij being the low- and high-frequency limits of Cij(ω), respectively, and ω the

angular frequency. These two sets of stiffness coefficients represent the effective properties

of the fractured medium for the two limiting elastic models. τ is the characteristic time of

the fluid pressure diffusion process which, due to its uni-directional nature, is the same as
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that for the P-wave modulus in the direction perpendicular to the fracture planes. Hence,

τ can be computed as (Guo et al., 2017a)

τ =

(
Cu11 − Cr11
Cr11G

)2

, (6)

and

G =

2
HC

u
11

(
αbMb
Cb
− αfMf

Cf

)2

√
MbLbη
Cbκb

+
√

MfLfη
Cfκf

. (7)

In Eq. 7, the subscripts b and f refer to background and fracture properties, respectively.

Moreover, L = Km + 4µm/3 and C = L+ α2M are the dry and saturated P-wave moduli,

with Km denoting the dry frame bulk modulus. The equivalent elastic moduli of the poroe-

lastic material filling the fractures can be obtained using Eq. 4. The Biot-Willis effective

stress coefficient α and Biot’s fluid-storage modulus M are defined as

α = 1−Km/Ks,

M =

(
α− φ
Ks

+
φ

Kfl

)−1

,

(8)

where φ is the porosity, Kfl and Ks the bulk moduli of the fluid phase and the solid grains,

respectively, κ the permeability, η the viscosity of the saturating fluid, and H the inverse

of the fracture intensity.

The details of the computation of the coefficients Crij and Cuij involved in Eq. 5 for a

medium containing a distribution of parallel fractures are given in Appendix A. It is impor-

tant to mention that computing the corresponding relaxed and unrelaxed limits (Eqs. A-1

and A-5, respectively) requires knowledge of the effective properties under dry conditions

(Eq. 2).
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AVOAz model

A seismic wave incident at a boundary between two anisotropic media can generate reflected

quasi-P-waves and quasi-S-waves as well as transmitted quasi- P-waves and quasi-S-waves.

In general, the reflection and transmission coefficients vary with the direction of incidence.

This is important because the AVOAz characteristics can be detected and quantified through

3D seismic surveys, which makes it a popular seismic attribute for reservoir characterisation

(e.g., Mavko et al., 2009). In this work, we use PP-wave reflection coefficient data corre-

sponding to an interface separating an isotropic medium overlying an anisotropic fractured

medium (Fig. 2). Given that the minimum in-situ compressive stress in reservoirs is typ-

ically horizontal (Liu and Martinez, 2013), we assume that fractures in the lower medium

are vertical. Hence, the lower medium is characterised by horizontal transverse isotropy

(HTI) and we set the x-axis to be parallel to the symmetry axis of the fractures (Fig. 2).

Assuming weakly anisotropic media, Rüger (1998) found that the PP-wave reflection

coefficients at the interface separating two HTI media with the same orientation of the

symmetry axis can be approximated as

RPP (θ, ζ) =
∆Z

2Z̄
+

1

2

[
∆α

ᾱ
−
(

2β̄

ᾱ

)2∆G

Ḡ
+(

∆δV + 2

(
2β̄

ᾱ

)2

∆γ

)
cos2(ζ)

]
sin2(θ)+

1

2

[
∆α

ᾱ
+ ∆ε cos4(ζ) + ∆δV sin2(ζ) cos2(ζ)

]
sin2(θ) tan2(θ),

(9)

where θ is the incidence angle and ζ is the azimuth defined with respect to the symmetry

axis normal to the fractures. In addition, we have

α =

√
C33

ρ
, β =

√
C44

ρ
, G = C44, Z = αρ, ε =

C11 − C33

2C33
,

δV =
(C13 + C55)

2 − (C33 − C55)
2

2C33(C33 − C55)
, γ =

C66 − C44

2C44
.

(10)
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Figure 2: Schematic illustration of the AVOAz problem at the interface between an isotropic

medium overlying a fractured HTI medium. θ and ζ symbolise the incidence and azimuthal

angles, respectively. Fracture planes are perpendicular to the x-axis. The red star and the

black triangles illustrate the locations of the source and receivers, respectively.

Lastly, ∆f = fL − fU and f̄ = 1/2(fL + fU ) denote the difference between and the average

of the properties between the upper (subscript U) and lower (subscript L) media.

To study the poroelastic effects on the inversion of PP-wave reflection coefficient data,

we consider three models for the fractured medium stiffness coefficients in Eq. 9: (i)
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the “poroelastic model” with frequency-dependent Cij coefficients; (ii) the low-frequency

“elastic model” with real-valued Cij coefficients corresponding to the relaxed limit of the

“poroelastic model”; and (iii) the high-frequency “elastic model” which, correspondingly,

represents the unrelaxed limit of the “poroelastic model”.

INVERSE PROBLEM

In the previous section, we presented the forward problem consisting of modelling the

AVOAz response of an interface between two HTI media. In the following, we provide

a description of the Bayesian approach for solving the inverse problem as well as of the

fractured rock properties that we attempt to retrieve from the AVOAz data.

Bayesian inversion

The general forward problem linking a set of model parameters of interest mtrue to a set of

observed data dobs can be written as

dobs = F (mtrue) + ed, (11)

where
:
in

:::::
this

:::::
work

:
F (·) is the forward modelling operator containing information about

the physics and geometry of the problem
:::::::
AVOAz

:::::::::
problem

:::::
(dobs:::

is
:::::::::
obtained

:::::
from

::::
Eq.

::::
9)

and ed denotes the noise associated with the measurement of the data.
::
In

::::::::
general,

::::
for

::::::::::::
independent

:::::::::
Gaussian

::::::
noise

::::
the

:::::::
spread

:::
of

::::
the

:::::::::
posterior

::::::::::::
distribution

::::::
about

::::
the

:::::::::::
maximum

:::::
value

::
is

::::::::::
controlled

:::
by

:::
ed:::::

with
::::::
larger

:::
ed::::::::

yielding
::::::::
broader

:::::::::::
likelihoods

:::::::::::::::::::::::
(e.g. Tarantola, 2005) .

The corresponding inverse problem aims at estimating mtrue from dobs, which generally

requires knowledge of F (·) along with prior information with regard to the distribution of

the parameters and errors. We formulate the inverse problem from a Bayesian point of view,
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whereby a prior probability distribution for the parameters of interest p(m) is updated to a

posterior distribution based on the observed data p(m|dobs) as follows (e.g. Tarantola, 2005)
:::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Mosegaard and Tarantola, 1995; Tarantola, 2005)

p(m|dobs) =
p(dobs|m) p(m)

p(dobs)
, (12)

where p(dobs|m) is the likelihood function and p(dobs) acts as a normalisation constant

to ensure that the posterior distribution integrates to unity. Assuming independent and

Gaussian distributed measurement errors with mean zero and standard deviation σd, the

likelihood is described by

p(dobs|m) =
1

(2πσ2d)
N/2

exp

[
−||r(m)||2

2σ2d

]
, (13)

where || · || denotes the `2-norm and N is the number of data. The residual r(m) for some

set of model paramaters is thus given by the sum of the parameter-error component and

the Gaussian measurement noise ed

r(m) = F (m)− dobs

= F (m)− [F (mtrue)︸ ︷︷ ︸
parameter-error

component

+ ed]. (14)

For m = mtrue, the parameter-error component is zero and the likelihood function in

Equation 13 will be maximised.

Equations 12 to 14 provide the necessary information to calculate the posterior proba-

bility of any parameter set m. However, obtaining the statistical moments of the posterior

distribution p(m|dobs) often involves unfeasible multi-dimensional integrations. As a result,

Markov-chain-Monte-Carlo (MCMC) methods are typically used to sample from p(m|dobs)

and quantify uncertainty in the inverse estimates (e.g., Tarantola, 2005). In this regard,

we use the classical Metropolis-Hastings algorithm (e.g., Metropolis et al., 1953; Hastings,

1970), which has been described in detail in Köpke et al. (2018).
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Model error

For the common scenario of using a simplified forward solver F̂ (m) in the Bayesian inversion,

the residual is given by the sum of a model-error component, a parameter-error component

and the Gaussian measurement noise ed

r(m) = F̂ (m)− dobs

= F̂ (m)− [F (mtrue) + ed]

= F̂ (m)− F (m)︸ ︷︷ ︸
model-error
component

+F (m)− [F (mtrue)︸ ︷︷ ︸
parameter-error

component

+ ed]. (15)

Comparing this result with Eq. 14 shows the addition of a model-error component, meaning

that the likelihood function given in Equation 13 will not necessarily be maximised. Indeed,

model error can lead to significant parameter biases and/or overconfident distributions if

not adequately accounted for (Brynjarsdóttir and O’Hagan, 2014).

In this work, the detailed solver F (·) is given by a poroelastic model and we use this

model to compute the “observed” data dobs. Model errors then arise when using a simplified

solver F̂ (·) based on an elastic model that considers either the
:::::::
models

::::::::::
neglecting

:::::::::::
poroelastic

:::::::
effects.

::
In

:::::::::::
particular,

:::
we

:::::::::
consider

::::
the

::::::
model

::::::
errors

:::::::::::
associated

:::::
with

::::
the

::::::
elastic

:
high- or

::::
and

the low-frequency limits of the underlying physical process.

Physical properties of fractured rocks

The properties characterising the fractured medium, for which we wish to invert using

PP-wave reflection coefficient data, are the bulk modulus Km, the shear modulus µm, the

porosity φ of the background, the dry normal and tangential weaknesses due to the presence

of the fractures ∆N and ∆T , respectively, and the volume fraction of fractures Vf . The dry
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fracture weaknesses quantify the degree of fracturing of the rock and are related to the

background medium properties as well as the dry fracture compliances of Eq. 3 (Bakulin

et al., 2000)

∆N =
ZNLb

(1 + ZNLb)
,

∆T =
ZTµb

(1 + ZTµb)
.

(16)

Weakness values range between 0 and 1, where 0 corresponds to an unfractured rock and 1

to an extreme degree of fracturing.

Given that the elastic models are not frequency-dependent, we cannot obtain any in-

formation on the background permeability .
:
or

::::
the

:::::::::
fracture

:::::::::
intensity,

::::::
which

::::::::
mainly

::::::
affect

:::
the

:::::::::::::
characteristic

::::::::::
frequency

:::
of

::::
the

:::::::::::
mesoscopic

::::::
WIFF

::::::
(Eqs.

::
5
:::
to

:::
7).

:
Hence, the background

permeability in the fractured medium is assumed to be known and related to the porosity

through the Kozeny-Carman relation for a packing of identical spheres of diameter d (e.g.,

Mavko et al., 2009)

κ = B
φ3

(1− φ2)
d2, (17)

where B depends on the geometric characteristics of the pore space. Following Rubino et al.

(2013), we chose B=0.003 and d=80 µm. The
::::::::::
parameter

:::
H,

::::
on

::::
the

:::::
other

::::::
hand

::
is
::::

set
:::
to

:
1
:::
m,

::::::
which

:::::::
means

:::::
that

:::::::::
fractures

:::
are

::::::::::
separated

::
1
:::
m.

:::::
The

:
grain and fluid properties are also

assumed to be known and to be the same for the fractures and their embedding background.

Lastly, the porosity and permeability of open fractures are expected to be significantly

higher than those of the embedding background. Fig. 3 shows that the P-wave modulus

normal to the fractures is not sensitive to changes in porosity and permeability provided

that they assume relatively high values. The lower limit for the fracture porosity was

chosen based on the porosity values computed by Lissa et al. (2019) for synthetic open

fractures having realistic aperture distributions. The permeability κ is constrained based
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Figure 3: Sensitivity of the real component of the P-wave modulus normal to the fractures

with regard to changes in fracture porosity φ and permeability κ. Maximum relative changes

in <[C33] for varying porosity are ∼0.3%.

on the so-called cubic law, which predicts that for fractures with smooth walls separated

by a uniform aperture h, we have κ = h2/12 (Zimmerman and Main, 2004). For realistic

apertures between 0.01 and 0.1 mm (Bakulin et al., 2000), fracture permeability is thus

in the range between ∼10 and ∼1000 D. For our analysis, we assume that the porosity

and permeability of the fractures are known and equal to 0.8 and 100 D, respectively. A

summary of the properties is given in Table 1.
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Isotropic medium properties

The elastic properties of the overlying isotropic medium correspond to those of a low-

porosity sandstone and are given by (Pride, 2005)

Km = Ks
1− φ
1 + cφ

,

µm = µs
1− φ

1 + 3cφ/2
,

(18)

where c is a parameter characterising the degree of consolidation between the solid grains

and ranges between 2 (extremely consolidated) and 20 (poorly consolidated). In the fol-

lowing, we use c = 5. The porosity and permeability are 0.05 and 1µD, respectively. The

properties of the upper medium are invariant throughout the analysis and the saturating

fluid is the same as that of the fractured medium. Its seismic response is computed using

the isotropic Gassmann (1951) equations. A summary of the properties is again provided

by Table 1.

Inversion setup

To perform the forward modelling of the PP-wave reflection coefficients, we consider az-

imuthal angles ζ = {0◦, 30◦, 60◦, 90◦} and incidence angles θ from 0◦ to 50◦ discretised

in steps of 1◦ (Fig. 2). For illustration purposes, the considered measurement frequency

corresponds to the characteristic frequency fm, at which seismic attenuation and velocity

dispersion due to mesoscopic WIFF effects are maximal. Following Gurevich et al. (2009),

this frequency is fm = 1/(2πτ), with τ given by Eq. 6, and is equal to 131 Hz for the phys-

ical properties of the lower fractured medium given in Table 1. Note that by performing

the analysis at f = fm the absolute error on the effective moduli predicted by both elastic

models with respect to the poroelastic model is the same (Fig. 1).
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Table 1: Physical properties employed in the inversion procedure.

Property Upper medium Lower medium

Dry frame bulk modulus Km 28.12 GPa 13.5 GPa

Dry frame shear modulus µm 30.4 GPa 20 GPa

Grain bulk modulus Ks 37 GPa 37 GPa

Solid density ρs 2650 kg/m3 2650 kg/m3

Fluid density ρf 1090 kg/m3 1090 kg/m3

Fluid shear viscosity ηf 0.01 Poise 0.01 Poise

Fluid bulk modulus Kfl 2.25 GPa 2.25 GPa

Porosity φ 0.05 0.15

Grain shear modulus µs 44 GPa –

Permeability κ 1µD 90.9 mD

Normal weakness ∆N – 0.2

Tangential weakness ∆T – 0.2

Fracture volume fraction Vf – 0.001
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To solve the inverse problem, we assume flat prior distributions for all model parameters

whose minimum and maximum values are given in Table 2. We add uncorrelated Gaussian

noise to the synthetic data with a standard deviation of σd = 1 × 10−3 and zero mean.

For each MCMC inversion, we run one million iterations, of which the first 100,000 are

discarded because they are regarded as representing the burn-in period.

µm [GPa] Km [GPa] ∆N ∆T φ Vf

Synthetic truth mtrue 20 13.5 0.2 0.2 0.15 1E-3

Prior minimum 10 10 0.01 0.01 0.01 1E-4

Prior maximum 36 36 0.5 0.5 0.35 5E-3

Table 2: Prior ranges and true parameter values for the fractured medium.

RESULTS

Sensitivity analysis

Let us first consider the case in which we use the same forward solver in the inversion

procedure as we did for generating ”observed” synthetic data. This is also known as the

“inverse crime” as the only error source is the Gaussian measurement noise. Nevertheless,

this allows us to test the sensitivity of different forward solvers to each of the inverted

parameters before introducing model errors into the inversion procedure. The synthetic

data is generated using the parameter set mtrue in Table 2. For the relaxed and unrelaxed

models, this analysis represents the scenarios where the frequency of the seismic survey

fsurv is expected to be much higher or much lower than fm, respectively.
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The data are PP-wave reflection coefficients as functions of the angles ζ and θ at a

single frequency equal to fm, which gives a total of 204 data points. Fig. 4 shows the

inversion results when using the two elastic models as well as the poroelastic model. For

all models, accurate estimates are obtained for the elastic moduli of the background µm

and Km and the tangential weakness ∆T . The posterior distributions for the porosity φ are

narrow for all models but that corresponding to the high-frequency elastic model is biased.

The normal weakness ∆N exhibits a decreasing sensitivity (broader posterior distribution)

as the model approaches the unrelaxed limit. The decrease in sensitivity is related to

the fact that, as the fractures tend to be more hydraulically isolated from the embedding

background, their response becomes dominated by their saturating fluid instead of their

dry elastic properties (Brajanovski et al., 2005). Lastly, the fracture volume fraction Vf

is not satisfactorily resolved by any of the models. At low frequencies, on the other hand,

both the excess porosity in the medium due to the presence of the fractures Vfφf and

the background porosity φb contribute to the fluid-related stiffening effect on the saturated

effective moduli. Since φb � Vfφf , the sensitivity of the seismic response of the medium

to the fracture porosity effect is expected to be negligible in the relaxed limit. At high

frequencies, the fractures and their embedding background behave as being hydraulically

isolated and only the porosity of the fractures contributes to the fluid-related stiffening

effects in the fractures. An increased sensitivity of the seismic response to Vfφf is thus

expected for the high-frequency solution. In this context, one of the advantages of the

model of Guo et al. (2017a,b) is that it accounts for the effects associated with the finite

aperture of the fractures. In spite of this, the sensitivity to Vf under unrelaxed conditions

is not good enough to allow for its inversion from PP-wave data.
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Figure 4: Inversion results obtained in the case of no model error. That is, we use the

same model to generate the synthetic reflection coefficient data as for the inversion thereof.

Three effective medium models are considered: poroelastic (solid curve), low-frequency

elastic (dotted curve), and high-frequency elastic (dashed curve). Dots denote the “true”

parameter values.

Model error analysis

Next, we consider the case in which the synthetic data are generated using the poroelastic

model with the “true” parameter set, whereas the elastic models are used as forward solvers

in the inversion process. We wish to analyse the resulting bias with regard to the posterior

distributions due to model error. The PP-wave reflection data distribution is the same as
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in the preceding sensitivity analysis.

The corresponding results are shown in Fig. 5. We observe that, overall, the relaxed

elastic model provides better estimations compared to its unrelaxed counterpart when the

data are affected by WIFF effects. The shear modulus of the background is
:::
and

:::::::::::
tangential

:::::::::
weakness

::::
are

:
very well constrained by both models, implying that this property

:::::
these

::::::::::
properties can be correctly estimated regardless of frequency-dependent effects. Similarly,

the bulk modulus is well constrained by both models, albeit slightly better for the elastic

low-frequency approximation. The results obtained for the normal weakness of the medium

show an interesting behavior as the posterior distribution of the low-frequency model is well

defined but biased towards lower values. This underestimation is related to the fact that the

influence of ∆N on the effective seismic properties is maximal at low-frequencies. Hence,

lower values of ∆N are needed to explain the effective stiffness of the medium when the

stiffening effect due to WIFF is not taken into account. The high-frequency elastic model,

on the other hand, has no sensitivity to the normal weakness, which is expected from the

analysis shown in Fig. 4. Also expected is that the fracture volume fraction is poorly re-

solved in both cases. The low-frequency model provides a better estimate of Vf , although at

low frequencies the sensitivity to Vf is expected to be minimal. Regarding the porosityand

tangential weakness, the effects of neglecting the frequency dependence affects the inversion

based on an unrelaxed elastic model more prominently than the one based on the relaxed

model. For both properties
:::
this

:::::::::
property, the posterior distributions are

:::::::::::
distribution

::
is
:
well

defined but slightly biased.

From the analysis of Figs. 4 and 5 it follows that the inversion performance strongly

depends on the forward model selection. In
::
It

::
is
:::::::::::
important

:::
to

:::::::
remark

:::::
that

:::
in

:
Fig. 5, we

assume that the frequency of the seismic survey fsurv is close to the characteristic frequency
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Figure 5: Inversion results with model error. The poroelastic model is used to generate

the synthetic data, while the low- (dotted curve) and high-frequency elastic models (dashed

curve) are employed for the inversion. Dots denote the “true” parameter values. Note that

the inversion of the fracture volume fraction Vf with the high-frequency model gives a peak

at around 7×10−3 when considering a larger range of prior values.

fm, at which mesoscopic WIFF effects are maximal.
:::::::::
Although

:::
for

::::::::
brevity

:::
we

:::::
only

::::::
show

::::::
results

::::
for

:::
the

:::::::::::
subsurface

::::::
model

::::::
given

:::
by

::::
the

::::::::::
properties

:::
of

::::::
Table

::
1,

::::
our

:::::::
results

::::
can

:::
be

:::::
used

::
to

:::::
infer

::::
the

::::::
elastic

::::::::::
modelling

:::::::::::::
performance

::
in

::::::
other

::::::::::
scenarios.

:
When fsurv is expected to be

lower than fm, which is typically the case for high background permeability or low fracture

density, the performance of the relaxed elastic model will lie somewhere between the results
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shown in Figs. 4 and 5. The same conclusion holds when fsurv is expected to be higher

than fm, which is the case for a low background permeability or high fracture density, with

regard to the performance of the unrelaxed elastic model in the AVOAz inversion.

Frequency-dependent data

From the analysis of Figs. 4 and 5, we can conclude that the use of elastic models

may, even in the absence of model error, result in highly confident but biased inversion

results. Interestingly, our sensitivity analysis shows that a poroelastic model does not

produce acceptable results for Vf and ∆N (Fig. 4). Given that the effective properties

of a fluid-saturated fractured medium are frequency-dependent, we now test the impact

of considering a frequency-dependent data set. We assume a frequency range such that

f/fm = {0.76, 1.21, 1.91, 3.03, 4.81, 7.63}, which results in 1224 data points. Note that for

the characteristic frequency given by the properties in Table 1, the frequency range spans

from 100 to 1000 Hz. However, the inversion results are the same regardless of the absolute

frequency values as long as the ratio with respect to fm remains the same.

Fig. 6 shows the case of an inversion using the poroelastic model without model error.

We do not consider elastic models as they neglect frequency-dependent effects. We compare

the inversion results for a single-frequency data set (solid curve in Fig. 6, which is equal

to that in Fig. 4) and a frequency-dependent data set (dashed curve). The impact of con-

sidering frequency-dependent data is not negligible, as all properties are better constrained

by the inversion and the improvement is substantial with respect to the normal weakness

as well as the fracture volume fraction. In general, additional information with regard to

the dispersion of the stiffness of the fractured medium (Fig. 1) allows for more accurate
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description of those fracture properties influencing WIFF effects.
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Figure 6: Inversion results without model error considering the poroelastic model to gen-

erate the synthetic reflection coefficient data as well as for the inversion. The solid curve

corresponds to an inversion considering only a single frequency, while the dashed curve

corresponds to a frequency-dependent data set. Dots denote the “true” parameter values.

DISCUSSION

Use of Rüger’s (1998) approximation

Exact reflection coefficients can be computed by numerically solving the linear system of

equations resulting from imposing the continuity of stress and displacements across the
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interface (e.g., Carcione, 1997). Behura and Tsvankin (2009) showed that for an incident

P-wave with a zero inhomogeneity angle (the angle between the real and imaginary parts of

the wave vector), the form of the PP- and the PS-wave reflection coefficients in arbitrarily

anisotropic viscoelastic media is the same as in purely elastic media, but all terms become

complex-valued and frequency-dependent. In practice, simple analytical approximations

based on the assumption of weak anisotropy, such as that given by Eq. 9 (Rüger, 1998)

tend to be used. Fig. 7 shows that this indeed provide a very good approximation of

Carcione’s (1997) exact solution of the reflectivity problem over a wide range of incidence

angles and hence is fully adequate for the purpose of this study. Please note that, we only

consider the reflection coefficients for ζ = 0◦ due to the 2D nature of the exact solution.

Anisotropy of fractured medium

The scenario of a fractured medium with HTI symmetry is favourable for our inversion

setup as the reflection coefficients vary both with azimuth ζ and incidence angle θ. The

inversion results are expected to be worse when the sensitivity to any of these two angles

decreases. To illustrate this, we consider a fractured VTI medium, for which the symmetry

axis is parallel to z-direction and the data only vary with θ. The corresponding expressions

for the reflection coefficients are given in Appendix B. The stiffness matrix describing the

VTI medium can be obtained by performing a 90◦ rotation of the matrix corresponding to

the HTI medium (e.g., Mavko et al., 2009).

As for the HTI case, we consider PP-wave reflection coefficient data at a single frequency

equal to fm. As the data only depend on θ, the number of data points reduces to 51.

Fig. 8 shows a sensitivity analysis similar to the one shown in Fig. 4 where the same
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Figure 7: Comparison of reflection coefficients computed using the exact solution of Carcione

(1997) (dots) and the approximate solution of Rüger (1998) (solid curve) for ζ = 0◦. The

interface separates an elastic isotropic medium overlying a viscoelastic HTI medium. The

physical properties of the model are given in Table 1.

model is utilised in the inversion and in the forward solver to generate the “observed” data.

Compared with the HTI case, the results are clearly worse. The sensitivity of the reflection

coefficients to ∆N , ∆T , and Vf is very poor. The results for the elastic moduli of the

background are acceptable. As opposed to the HTI case, the background porosity results

are poorest for the low-frequency elastic model. The case with model error is not shown

because, based on the above sensitivity analysis, the performance of the inversion procedure
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is expected to be extremely poor.
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Figure 8: Inversion results without model error for a fractured VTI medium overlain by

an isotropic elastic medium. Only PP-wave reflection coefficients are considered. Three

effective medium models are considered, namely, the poroelastic (solid curve), low-frequency

elastic (dotted curve), and the high-frequency elastic model (dashed curve). Dots denote

the “true” parameter values given in Table 1.

In an attempt to improve the inversion results shown in Fig. 8, we have considered

frequency-dependent reflection coefficient data. The additional data correspond to the

same frequency range considered for the HTI case. Fig. 9 shows the corresponding results.

In general, the frequency-dependent data provide better results than the single-frequency

data. The background properties are better constrained and, as for the HTI case, there is
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a slight improvement with regard to the normal weakness results. However, the inherent

lack of sensitivity to fracture properties due to the symmetry of the fractured medium also

persists for the frequency-dependent data.
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Figure 9: Inversion results without model error considering the poroelastic model to both

generate and invert the synthetic reflection coefficient data. The solid curve corresponds

to an inversion considering only a single frequency, while the dashed curve represents a

frequency-dependent data set. Dots denote the “true” parameter values.

Inverse problem

This work was focused on the inversion of reflectivity characteristics, because reflection co-

efficients are commonly estimated in seismic reflection experiments and the approximations
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considered in this study are broadly accepted in the community. We have, however, also

explored the inversion of phase velocity anisotropy data. The results related to the model

error were similar to those shown in this work. That is, the main error was observed in the

estimation of the normal weakness ∆N . In this work, we have assumed the saturating fluid

to be known. Future studies can include the fluid properties into the inversion procedure.

Moreover, a partial fluid saturation can be accounted for and quantified through a satura-

tion parameter
:
.
:::::
Note

:::::
that

:::
for

:::::
lower

:::::
bulk

:::::::::
modulus

::
of

::::
the

:::::
fluid

:::::
(e.g.,

:::::::::::::
gas-saturated

:::::::::::
fractures),

:::
the

:::::::::
pressure

:::::::::
gradients

:::::::::
induced

:::
by

::::
the

::::::
waves

::::
are

::::
less

::::::::::
significant

:::::
and,

:::::::::::::::::
correspondingly,

::::
the

::::::::::
magnitude

:::
of

::::
the

::::::::::
associated

:::::::::::
poroelastic

:::::::
effects

::::::::::
decreases.

:::
In

:::::
this

:::::
case,

:::
an

:::::::
elastic

::::::
model

:::
is

::::::::
expected

:::
to

:::::::::
perform

::::::
better

::::::
than

::
in

::
a
:::::

fully
::::::::::::::::

water-saturated
::::::

case.
::::

On
::::
the

::::::
other

::::::
hand,

::::
we

:::
can

::::
see

:::::
that

:::
the

:::::::::
viscosity

:::
of

:::
the

:::::
fluid

:::::::
affects

::::
the

:::::::::::::
characteristic

::::::::::
frequency

:::
of

::::
the

:::::::::::
mesoscopic

::::::
WIFF. More realistic fracture distributions, such as random distributions, can be consid-

ered by using numerical simulations instead of analytical models, from which the elastic

models can be obtained from the low- and high-frequency limits of the poroelastic solution.

However, for expensive forward solvers of this kind, the inversion scheme considered in

this study is not be feasible, as obtaining meaningful statistics with MCMC often requires

millions of iterations. One approach for circumventing this problem involves the analysis

and correction for the model error, which may reduce the bias of the posterior parameter

distribution (e.g., Köpke et al., 2018).

CONCLUSIONS

We have explored the impact of neglecting mesoscopic WIFF effects in the inversion of

fractured rock properties from seismic reflection coefficient data. We have considered a

poroelastic model to describe the frequency-dependent anisotropic seismic response of a
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medium containing parallel fractures with HTI symmetry. The model error is introduced

by considering elastic models in the inversion procedure, which correspond to the typically

used relaxed and unrelaxed limits of the underlying poroelastic model. We have chosen

the properties of the fractured medium in such a way that WIFF effects related to the

poroelastic nature of the underlying model are maximal at the frequency of the data. The

inverse problem consists of estimating both fracture and background rock properties from

PP-wave reflection coefficients observed at different azimuths and incidence angles.

An initial sensitivity analysis showed that even when the assumptions of the elastic

models are fulfilled, errors in the estimation of the fracture volume fraction as well as

significant uncertainties in the degree of fracturing are expected. When WIFF effects are

included in the synthetic data, a relaxed, Gassmann-type elastic model provides better

inversion results than the unrelaxed model, which assumes hydraulically isolated fractures.

While the unrelaxed elastic model cannot resolve the degree of fracturing, the relaxed model

provides a well-defined but biased posterior distribution, which underestimates the degree

of fracturing. We have shown that the sensitivity of the poroelastic model to the fracture

volume fraction and the normal weakness is weak when considering single-frequency data.

Conversely, the use of frequency-dependent data in the inversion procedure significantly

improves the corresponding estimations.
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APPENDIX A: EFFECTIVE PROPERTIES OF FLUID-SATURATED

FRACTURED ROCKS

Relaxed regime

Gassmann’s (1951) anisotropic equations allow to compute the relaxed or low-frequency

limit of the effective stiffness matrix of the fluid-saturated rock. The corresponding Crij

elements are related to the dry-frame stiffness coefficients Cdryij as

Crij = Cdryij + αiαjM i, j = 1, ..., 6. (A-1)

The coefficients αm are

αm = 1−

3∑
n=1

Cdrymn

3Kg
m = 1, 2, 3,

(A-2)

α4 = α5 = α6 = 0, and the scalar M is

M =
Kg

(1− K∗

Kg
)− φ(1− Kg

Kfl
)
. (A-3)

In Eqs. A-1 to A-3, φ is the overall porosity of the fractured rock, which includes the

porosities of the background and the fractures. The latter is equal to Vfφf where φf the

porosity of the fracture infill material. In addition, Kg denotes the grain solid bulk modulus,

Kfl the pore fluid bulk modulus, and K∗ the generalised drained bulk modulus defined as

K∗ =
1

9

3∑
i=1

3∑
j=1

Cdryij . (A-4)

In the following, we refer to the elastic model defined by the stiffness coefficients Crij as

the low-frequency elastic model.

Unrelaxed regime

Guo et al. (2017a) showed that it is possible to obtain the stiffness coefficients in the high-
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frequency or unrelaxed regime from the properties of the dry rock by proceeding in a similar

way as for the relaxed regime. Given that fractures behave as being hydraulically isolated,

we first compute the effective properties corresponding to the dry fractures embedded in a

saturated background

C1 = (S1)
−1 = (Ssat

b + Zdry)−1 , (A-5)

where the elements of the compliance matrix of the saturated background Ssat
b are computed

using the isotropic Gassmann (1951) equations. Next, we proceed, as for the relaxed limit,

to saturate the fractures. To do so, we consider Eqs. A-1 to A-4 but using C1 instead of

Cdry, the saturated bulk modulus Ksat
m = Km+α2M of the isotropic background instead of

the solid grains bulk modulus Kg, and the fracture porosity instead of the overall porosity,

φ. Km, α, and M are the bulk modulus of the dry matrix, the Biot-Willis coefficient and the

pore space modulus, respectively. The thus obtained coefficients correspond to those of the

unrelaxed stiffness matrix Cuij . We refer to the elastic model defined by the Cuij coefficients

as the high-frequency elastic model.

APPENDIX B: REFLECTION COEFFICIENTS FOR VTI MEDIA

Here, we present the equations necessary to compute the reflectivity of an interface sepa-

rating two VTI media for P-wave incidence. Following Mavko et al. (2009), the PP-wave

reflection coefficient for weakly anisotropic VTI media in the limit of small impedance con-

trast is

RPP (θ) =
∆Z

2Z̄
+

1

2

[
∆α

ᾱ
−
(

2β̄

ᾱ

)2∆G

Ḡ
+ ∆δ

]
sin2(θ) +

1

2

[
∆α

ᾱ
+ ∆ε

]
sin2(θ) tan2(θ),

(A-6)
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with α, β, G, Z, ε given in Eq. 10 and

δ =
(C13 + C44)

2 − (C33 − C44)
2

2C33(C33 − C44)
. (A-7)

For completeness, we also show the corresponding PS-reflection coefficient although it

is not needed for the purpose of this study. Please note that the corresponding expressions

in Mavko et al. (2009) are subject to some typographic errors, which have been corrected

here

RPS(θ) = −∆ρ

2ρ̄

sin(θ)

cos(θs)
− β̄

ᾱ

(
2∆β

β̄
+

∆ρ

ρ̄

)
sin(θ) cos(θ) +

(
β̄

ᾱ

)2(2∆β

β̄
+

∆ρ

ρ̄

)
sin3(θ)

cos(θs)
+[(

ᾱ2

2(ᾱ2 − β̄2) cos(θs)
− ᾱβ̄ cos(θ)

2(ᾱ2 − β̄2)

)
∆δ

]
sin(θ) +

[
ᾱβ̄ cos(θ)

(ᾱ2 − β̄2)
(∆δ −∆ε)

]
sin3(θ)−[

ᾱ2

(ᾱ2 − β̄2) cos(θs)
(∆δ −∆ε)

]
sin3(θ) +

[
β̄2

2(ᾱ2 − β̄2) cos(θs)
∆δ

]
sin3(θ)+[

β̄2

(ᾱ2 − β̄2) cos(θs)
(∆δ −∆ε)

]
sin5(θ).

(A-8)
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attributes applied to fracture detection in a carbonate reservoir: Geophysics, 67, 355–

364.

Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation:

SIAM.

39



Thomsen, L., 1995, Elastic anisotropy due to aligned cracks in porous rock: Geophysical

Prospecting, 43, 805–829.

Tillotson, P., M. Chapman, A. I. Best, J. Sothcott, C. McCann, W. Shangxu, and X.-Y.

Li, 2011, Observations of fluid-dependent shear-wave splitting in synthetic porous rocks

with aligned penny-shaped fractures: Geophysical Prospecting, 59, 111–119.

Tillotson, P., M. Chapman, J. Sothcott, A. I. Best, and X.-Y. Li, 2014, Pore fluid viscosity

effects on P- and S-wave anisotropy in synthetic silica-cemented sandstone with aligned

fractures: Geophysical Prospecting, 62, 1238–1252.

Zimmerman, R., and I. Main, 2004, Hydromechanical behavior of fractured rocks: Interna-

tional Geophysics Series, 89, 363–422.

40


