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Abstract 24 

Molecular processes are at the heart of the interactions between plants and insect herbivores. Here, 25 

we review genes and proteins that are involved in plant-herbivore interactions, and discuss how their 26 

discovery has structured the current “standard model” of plant-herbivore interactions. Plants perceive 27 

damage-associated, and possibly herbivore-associated, molecular patterns (DAMPs and HAMPs) via 28 

receptors that activate early signaling components such as Ca2+, reactive oxygen species (ROS) and 29 

map kinases (MPKs). Specific defense reprogramming proceeds via signaling networks that include 30 

phytohormones, secondary metabolites and transcription factors. Local and systemic regulation of 31 

toxins, defense proteins, physical barriers and tolerance traits protect plants against herbivores. 32 

Herbivores counteract plant defenses through biochemical defense deactivation, effector-mediated 33 

suppression of defense signaling and chemically controlled behavioral changes. The molecular basis 34 

of plant-herbivore interactions is now well established for selected model systems. Expanding 35 

molecular approaches to unexplored dimensions of plant-insect interactions should be a future 36 

priority. 37 

  38 
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INTRODUCTION 39 

Plants face numerous abiotic and biotic stresses in nature. Insects are among the most important 40 

threats to plant survival due to their abundance and diversity. Millions of years of selection pressure 41 

generated by insect herbivores has resulted in the evolution of sophisticated plant defenses. The 42 

ecology and evolution of plant-insect interactions has been studied extensively (141). With the dawn 43 

of molecular biology, scientists have also begun to unravel the molecular mechanisms underpinning 44 

these interactions. Fifteen years after the acclaimed review by Kessler and Baldwin (70) on "the 45 

emerging molecular analysis of plant responses to herbivory", this review evaluates how the 46 

development of genomic tools and gene manipulation strategies has propelled the field forward and 47 

has resulted in a detailed mechanistic understanding of plant-herbivores interactions. We focus 48 

primarily on examples that demonstrate the functional role of plant and insect herbivore genes and 49 

molecules using molecular manipulative approaches and places the resulting insights into a general 50 

conceptual framework of plant defense. This approach complements a series of recent reviews on 51 

mechanisms, ecology and evolution of plant-herbivore interactions (1, 38, 160, 186).  52 

 53 

PLANT PERCEPTION AND SIGNALING 54 

An efficient defense response requires specific recognition of the herbivore and translation into 55 

defense signaling to reprogram cellular functions. Following the identification of numerous 56 

molecules that plants can use to detect herbivore attack, recent studies have unraveled downstream 57 

elements and their role in defense signaling. Substantial progress has also been made in identifying 58 

receptors that are involved in the recognition of damage- and, albeit to a lesser extent, herbivore-59 

associated cues. 60 

 61 

Recognition of herbivore- and damage-associated molecular patterns by pattern recognition 62 

receptors 63 

The canonical model of plant herbivore perception states that plants perceive herbivory through the 64 

binding of herbivore- and damage-associated molecular patterns (HAMPs and DAMPs) to pattern 65 
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recognition receptors (PRRs). Over the last years, many HAMPs have been isolated from insect 66 

herbivores (for review see (1, 154)) and information regarding their interaction with PRRs is 67 

emerging. Radiolabeled volicitin (17-hydroxylinolenoyl-L-Gln) from Spodoptera exigua oral 68 

secretions (OS) binds to an unidentified potential PRR in the maize plasma membrane with high 69 

affinity (159). Inceptin, a peptide fragment from a chloroplastic ATP synthase that is present in S. 70 

frugiperda OS, is a highly potent defense inducer in maize and cowpea (137). The discovery of a 71 

truncated form of inceptin that inhibits defenses suggests that inceptin may be recognized by a PRR 72 

to which the modified inceptin may bind as a competitive antagonist (138). The C-terminal region of 73 

a mucin-like protein (NlMLP) that is secreted by the brown planthopper (BPH) Nilaparvata lugens 74 

induces defense responses in rice (146). Interestingly, a cluster of three G-type lectin receptor kinases 75 

(RK) confers rice resistance against BPH (91), but whether they bind NlMLP or another ligand is 76 

unknown. Recently, a leucine-rich repeat LRR-RK from rice has been shown to be essential for 77 

perception and defense against the striped stemborer (SSB) Chilo suppressalis (59). Future 78 

investigation of these cell-surface localized orphan PRRs may unveil the nature of their respective 79 

ligands.  80 

 Defense activation by HAMPs may occur independently of PRRs. Glucose oxidase (GOX) 81 

for instance is found in saliva of different caterpillar species (1). GOX induces defenses in tomato 82 

(92) but suppresses them in tobacco and Nicotiana attenuata (30, 114). By oxidizing glucose, GOX 83 

produces the signaling molecule hydrogen peroxide (H2O2). Insect H2O2 modulation of defense may 84 

not require a PRR since H2O2 can diffuse through membranes or enter the cell via aquaporins. Also, 85 

the activity of OS from the grasshopper Schistocerca gregaria on the induction of OPDA in 86 

Arabidopsis is related to lipase activity of the OS, which may directly liberate defense hormone 87 

precursors from membrane lipids (134). 88 

 Chewing herbivores inflict mechanical damage that strongly modifies the extracellular space 89 

by releasing cell wall fragments and intracellular components. Collectively called DAMPs, these 90 

chemically diverse elicitors induce defense responses. Oligogalacturonides are pectic fragments 91 

perceived by wall-associated kinases (WAKs) in Arabidopsis thaliana (76). That cells can monitor 92 
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cell wall modifications and respond by activating defense response has been observed in mutants 93 

impaired in cellulose synthesis. THESEUS1 (THE1) is a RK that senses cellulose-related cell-wall 94 

integrity (52). Like THE1, FERONIA (FER) contains two extracellular carbohydrate-binding 95 

malectin domains. FER monitors cell-wall integrity in response to salt stress by binding to pectin 96 

(39). Curiously, there is yet no information on the role of cell-wall integrity sensors like WAK1, 97 

THE1 or FER in defense against herbivores. However, it is tempting to speculate that perception of 98 

cell wall perturbation is a key factor in response to feeding. Testing insect performance on PRR 99 

mutants may unveil an additional role for these important components of the plant surveillance 100 

machinery. 101 

 Broken cells release numerous intracellular molecules in the apoplastic space. Exogenous 102 

treatment with ATP induces defense responses in Arabidopsis including an increase in cytosolic Ca2+ 103 

(22). A screen for ATP-insensitive mutants has identified DOES NOT RESPOND TO 104 

NUCLEOTIDES 1 (DORN1), a plasma membrane-localized L-type LecRK (LecRK-I.9) that binds 105 

ATP with high affinity and selectivity (22). DORN1 overexpression increases plant response to 106 

wounding, implying a role in perception of mechanical damage (22). Furthermore, extracellular ATP 107 

induces a set of jasmonate (JA)-responsive genes, indicating that perception of ATP stimulates the 108 

JA pathway (158). NAD(P) has been identified in the extracellular space of wounded Arabidopsis 109 

leaves. When applied exogenously, NAD(P) induces defense gene expression in a Ca2+-dependent 110 

manner (182). Recently, Wang et al. (164) have shown that LecRK-I.8 binds NAD+ and induces 111 

immune responses. Intriguingly, LecRK-I.8 is also implicated in Arabidopsis response to Pieris 112 

brassicae eggs (47). Whether this is linked to NAD+ perception or whether LecRK-I.8 recognizes 113 

another egg-derived ligand remains to be elucidated. It is however striking that two closely related 114 

LecRKs bind extracellular nucleotides. A G-type LecRK from N. attenuata also contributes to 115 

resistance against Manduca sexta but the corresponding ligand is unknown (43). 116 

 Wounding or insect feeding triggers the production of plant peptides that are released in the 117 

apoplastic space and are considered secondary endogenous danger signals (SDSs). The best 118 

characterized SDS is systemin from tomato, an 18 amino acid (aa) polypeptide that is cleaved from 119 
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the precursor prosystemin, spreads throughout the plant, and induces JA-dependent accumulation of 120 

proteinase inhibitors that can negatively impact chewing herbivores (119). In tomato, LRR-RK SYR1 121 

binds systemin with high affinity, and introgression lines that lack SYR1 are more susceptible to S. 122 

littoralis feeding, although local and distal induction of proteinase inhibitors is not affected (166). 123 

Systemin is restricted to Solanaceae but other wound peptides have been identified. In maize, a family 124 

of five related peptides induce emission of herbivore-related volatiles, with the 23 aa ZmPep3 125 

triggering responses similar to those induced by S. exigua (63). ZmPeps are orthologous to 126 

Arabidopsis AtPeps, which were initially discovered as defense signals that amplify innate immunity 127 

(64). AtPep1 and its homologs trigger both JA- and salicylic acid (SA)-responsive genes and are 128 

perceived by two related LRR-RKs, PEPR1 and PEPR2 (174). PEPR1, PEPR2 and PROPEP3 129 

expression is strongly activated by herbivore feeding and pepr1 pepr2 double mutants are more 130 

susceptible to S. littoralis and Pseudomonas syringae pv. tomato (Pst) infection, consistent with a 131 

dual role for the AtPep-PEPR system in danger detection against microbes and insects (74, 174). 132 

 In summary, the first phase of insect feeding involves the perception of HAMPs and DAMPs 133 

that reach the apoplastic interface (Figure 1). HAMP PRRs have not yet been described, but recent 134 

breakthroughs have identified DAMP PRRs. Since insect feeding is accompanied by a mixture of 135 

HAMPs and DAMPs, the specific contribution of each molecule to plant defense response is difficult 136 

to assess and has led to controversy (14). The recent identification of DAMP receptors and receptor 137 

mutants such as dorn1 and lecRK-I.8 provides an excellent opportunity to revisit this issue. The 138 

identification of insect genes responsible for HAMP biosynthesis in combination with physical 139 

ablation of secretory structures could shed further light on the importance of HAMPs in plant-140 

herbivore interactions (114). 141 

 142 

Early signaling events triggered by herbivory 143 

Early signaling steps following insect perception include i) depolarization of the plasma 144 

transmembrane potential (Vm), ii) rise in cytosolic Ca2+, iii) production of reactive oxygen species 145 

(ROS), and iv) mitogen-activated protein kinase (MAPK) activity. Vm variation occurs within seconds 146 
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and [Ca2+]cyt within minutes in lima bean and Arabidopsis leaves after wounding, application of 147 

HAMPs and DAMPs, and natural feeding by S. littoralis or the aphid Myzus persicae (104, 127, 134, 148 

161, 163). The use of Ca2+ channel inhibitors suggests that the increase in [Ca2+]cyt is driven by a 149 

membrane channel (104, 134, 175). So far, the only known channel with a demonstrated effect on 150 

herbivory is the vacuolar cation channel two-pore channel 1 (TPC1). The Arabidopsis gain-of-151 

function mutant fou2 possesses a hyperactive version of TPC1, displays strong JA pathway activation, 152 

and is more resistant to S. littoralis feeding (11, 83). Interestingly, local aphid-induced [Ca2+]cyt 153 

elevation is greatly diminished (163). In addition, AtPep3 activates the plasma membrane cyclic 154 

nucleotide-gated cation channel 2 (CNGC2) and triggers [Ca2+]cyt elevation through the guanylyl 155 

cyclase activity of AtPEPR1 (127). The role of CNGC2 in response to herbivory is unknown. There 156 

are at least 57 putative cation channels in the Arabidopsis genome and it is conceivable that a high 157 

level of functional redundancy explains the paucity of characterized candidates.  158 

 The decoding of Ca2+ signals is mediated by various Ca2+-sensors, including calmodulins 159 

(CaMs), calmodulin-like proteins (CMLs), and calcium-dependent protein kinases (CDPKs). In a 160 

series of experiments, Yan et al. (175) have demonstrated that the Arabidopsis JA-biosynthesis 161 

regulator JAV1 (jasmonate-associated VQ motif 1) is phosphorylated upon wounding and interacts 162 

with CaM1, CaM4, and CaM7 in a Ca2+-dependent manner. Furthermore, the Arabidopsis CML37 163 

positively regulates S. littoralis-induced defense by activating the JA pathway (140), whereas CML42 164 

acts as a negative regulator and cml42 displays enhanced resistance to S. littoralis and higher [Ca2+]cyt 165 

accumulation (161). In N. attenuata, the Ca2+-sensor homologues NaCDPK4 and NaCDPK5 suppress 166 

JA biosynthesis and promote M. sexta herbivory through an unknown mechanism (176). Thus, 167 

available studies suggest that [Ca2+]cyt elevation after wounding/feeding is decoded by different 168 

sensors that are part of a larger regulatory network. 169 

 ROS are induced by herbivory and have been associated with plant defense regulation. Plant-170 

derived ROS are primarily produced by plasma membrane NADPH oxidases (respiratory burst 171 

oxidase homologs, RBOHs). Wounding causes a rapid local and systemic ROS burst that depends on 172 

RBOHD in Arabidopsis (109). The rbohD mutant is more susceptible to M. persicae infestation (109) 173 
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and a silenced rbohD line in N. attenuata is more susceptible to S. littoralis (172). By contrast, 174 

Arabidopsis the rbohD/F mutant is more resistant to S. exigua and T. ni feeding (9). Thus, ROS can 175 

act as both positive or negative regulators of plant resistance. As RBOHs are activated by ROS-176 

dependent Ca2+ influx and CDPKs they likely interact closely with Ca2+ in early defense signaling. 177 

 Herbivory and wounding rapidly activate MAPKs (57). Silencing genes encoding wound-178 

induced protein kinase (WIPK/MPK3) and salicylic-acid induced protein kinase (SIPK/MPK6) in N. 179 

attenuata inhibits JA biosynthesis, expression of WRKY transcription factors, and accumulation of 180 

defense compounds (171). Silencing tomato MPK6 orthologs MPK1 and MPK2 renders plants more 181 

susceptible to M. sexta and the potato aphid Macrosiphum euphorbiae (67, 85). In rice, SSB activates 182 

MPK3 and MPK6, which positively regulate JA accumulation. Consequently, the ir-mpk3 line is more 183 

susceptible to SSB feeding (60, 88, 167). In contrast, N. attenuata MPK4 suppresses JA-dependent 184 

defenses and silencing MPK4 increases resistance to the specialist M. sexta but not to the generalist 185 

S. littoralis (51).  186 

 In summary, molecular studies have provided clear evidence for the involvement of Ca2+, 187 

ROS, and MAPKs in plant responses to DAMPs and HAMPs, thus supporting current models of early 188 

defense signaling. However, major open questions remain. It is for instance unclear how potential 189 

PRRs are connected to these early signaling events, how Vm variation is connected to Ca2+ influx, if 190 

there is a hierarchical or independent organization of the signaling network, how positive and 191 

negative regulatory steps are modulated, and to what extent the network topology is species-192 

dependent (Figure 2). Understanding the topology of early signaling networks of plant responses to 193 

herbivory thus remains a major challenge which may require the integration of quantitative genetics 194 

and systems biology approaches to be overcome. 195 

 196 

Jasmonate signaling as a conserved core pathway in herbivory-induced responses 197 

Hormonal signaling networks connect perception and early signaling to broad transcriptional 198 

reorganization and defense induction. JA signaling is well established as the core pathway that 199 

regulates plant defense responses against herbivores, and intense research over the last two decades 200 
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has revealed essential molecular components of the JA pathway (58). In brief, upon injury, acyl-lipid 201 

hydrolases release a-linolenic acid (18:3) from galactolipids in plastid membranes. Oxygenation by 202 

13-lipoxygenases (LOX) is followed by epoxidation and cyclization reactions to generate cis-(+)-12-203 

oxo-phytodienoic acid (OPDA). OPDA is transported into the peroxisome where it is reduced and 204 

undergoes three cycles of b-oxidation to form (+)-7-iso-JA. (+)-7-iso-JA is transported into the 205 

cytosol where it is conjugated to Ile by jasmonoyl amino acid conjugate synthase (JAR1). JA-Ile is 206 

the canonical bioactive jasmonate and is transported into the nucleus by the ABC transporter JAT1 207 

where it binds to its receptor, a complex consisting of CORONATINE-INSENSITIVE1 (COI1), 208 

JASMONATE-ZIM DOMAIN (JAZ) and an inositol-polyphosphate cofactor. COI1 is a component 209 

of a SKP1–CUL1–F-box protein (SCF) E3 ubiquitin ligase complex (SCFCOI1) and, upon binding JA-210 

Ile, interacts with JAZ repressors and triggers their degradation by the 26S proteasome. JAZ 211 

degradation releases repression of MYC transcription factors, resulting in expression of defense genes 212 

and resistance against a wide variety of herbivores (Table 1 and Table S1). The JA signaling pathway 213 

was likely already present in early land plants such as liverwort. It has been recently shown that COI1 214 

of Marchantia polymorpha is a functional protein that regulates resistance to herbivory (111). 215 

Strikingly, MpCOI1 harbors a single amino acid substitution that allows it to bind to two isomeric 216 

forms of dinor-OPDA, but not to JA-Ile, which is absent from M. polymorpha (111). 217 

 Although the JA pathway has been extensively studied, there are still some open questions. 218 

The connection between early defense signaling and the activation of acyl-lipid hydrolases in 219 

chloroplasts to initiate JA biosynthesis for instance remains largely unknown. A recent study by Yan 220 

et al. (175) in Arabidopsis has shown that Ca2+/Cam-dependent phosphorylation of JAV1 leads to its 221 

degradation by the proteasome, disrupting a nuclear JAV1-JAZ8-WRKY51 repressing complex that 222 

inhibits expression of JA biosynthesis genes. This work provides the first coherent model that links 223 

herbivore-induced [Ca2+]cyt accumulation with JA biosynthesis. Of note, JA accumulates within 30 224 

seconds in wounded Arabidopsis tissues (44), suggesting that the first JA burst does not require 225 

transcriptional activation of JA biosynthesis genes and that JAV1-mediated regulation may rather be 226 

a secondary amplification step (Figure 2). 227 
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 228 

Signaling networks mediated by small metabolites 229 

Plant responses to herbivory display a great deal of specificity, which is incompatible with the notion 230 

of a single hormonal pathway controlling all responses. Indeed, numerous other hormones are known 231 

to influence JA-dependent and JA-independent responses through hormonal cross-talk. Furthermore, 232 

inducible plant secondary metabolites are emerging as defense regulators that can modulate defense 233 

deployment, thereby increasing the specificity of the signaling networks underlying plant defense 234 

responses. 235 

 Salicylic acid (SA), ethylene (ET), and abscisic acid (ABA) are stress-related phytohormones 236 

that are induced upon herbivory and are well established modulators of plant resistance to herbivores. 237 

The impact of these hormones on resistance seems to be highly context-dependent. SA-deficient 238 

tomato plants for instance are more susceptible to the potato aphid, while SA-signaling mutants in 239 

Arabidopsis are not affected in their resistance to M. persicae (28, 85). Furthermore, mutants deficient 240 

in SA biosynthesis (sid2-1) or signaling (npr1) are more resistant to S. littoralis and Bemisia tabaci 241 

(10, 179). The SA pathway is known to antagonize JA signaling and can therefore act as a negative 242 

regulator of JA-dependent defenses in plants. Silencing a rice 1-aminocyclopropane-1-carboxylic 243 

acid (ACC) synthase reduces rice ET production and resistance to a chewing herbivore (SSB), but 244 

increases resistance to a phloem feeder (BPH) (93). Arabidopsis ethylene-insensitive mutants ein2-1 245 

and ein3 eil1 on the other hand are more resistant to S. littoralis and S. exigua (10, 151). ET-stabilized 246 

transcription factors ETHYLENE-INSENSITIVE 3 (EIN3) and EIN3-LIKE1 (EIL1) interact with 247 

JA-activated MYC2 and inhibit JA-regulated defenses against herbivores, providing a molecular 248 

mechanism for such ET/JA antagonism (151). ABA-deficient Arabidopsis plants are more susceptible 249 

to S. littoralis (10). In N. attenuata, HERBIVORE ELICITOR REGULATED 1 (HER1) inhibits 250 

ABA catabolism. Lines with reduced HER1 expression are more susceptible to M. sexta and 251 

accumulate less JA and defense metabolites (31). Because ABA is involved in drought stress, a 252 

response that often occurs after leaf damage, it is not surprising that ABA contributes and may even 253 

reinforce plant resistance to chewing herbivores. The recent finding that expression of Arabidopsis 254 
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chloroplast-localized glycerolipid A1 lipases PLIP2 and PLIP3 is induced by ABA and leads to JA 255 

accumulation provides an attractive mechanistic link between ABA accumulation and downstream 256 

JA-defense responses. Herbivore performance on plip2/3 mutants has however not been tested (165). 257 

Furthermore, pea aphid performance is decreased on the ABA biosynthesis mutant aba1-1 in 258 

Arabidopsis (55). In summary, SA, ET and ABA are well established modulators of plant defense 259 

and resistance, but their impact varies between plant species and herbivore feeding guilds. 260 

 Growth hormones such as gibberellins (GAs), auxin and cytokinins (CKs) are also thought to 261 

be involved in the regulation of anti-herbivore defenses. GAs regulate growth via proteasome-262 

mediated degradation of DELLA repressors. DELLAs modulate the JA pathway by physically 263 

interacting with JAZs, thereby preventing the negative effect of JAZs on MYC2-related defense 264 

expression. Thus, activation of the GA pathway leads to DELLA degradation and inhibition of JA 265 

responses. However, the Arabidopsis quad della mutant does not display dramatic changes in defense 266 

metabolite accumulation upon S. exigua feeding and insect performance has not been tested (82). In 267 

contrast, a rice GA-accumulating mutant increases resistance to BPH, suggesting that GAs positively 268 

regulate defense against phloem-feeding insects (88). Auxins and CKs have been explored in the 269 

context of systemic defense regulation and are discussed in more detail in the section “Systemic 270 

regulation of defenses”. 271 

 Apart from hormones, induced plant secondary metabolites are increasingly recognized as 272 

regulators of plant defense deployment. Glucosinolate (GS) breakdown products in Arabidopsis and 273 

benzoxazinoids in maize act as positive regulators of callose accumulation (24, 107), and various 274 

plant volatiles prime JA signaling and plant defense (97). Flavonols and the GS breakdown product 275 

indole-3-carbinol inhibit auxin transport and perception signaling and may thereby influence plant 276 

responses to herbivores (69). These recent findings blur the dichotomy between defense hormones 277 

and defense metabolites and suggest that plants can use a wide variety of molecules to specifically 278 

regulate their defenses. Understanding the evolutionary and ecological implications of this 279 

phenomenon will be greatly facilitated by the availability of secondary metabolite biosynthesis 280 

mutants in various plant species. 281 
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 In addition, studies in N. attenuata suggest that small RNAs can modulate the JA pathway 282 

during herbivory. Insect feeding induces a significant change in the small-RNA transcriptome (120), 283 

and N. attenuata mutants in components of the small-RNA machinery are more susceptible to insects 284 

(Table S1). However, how is the reprogramming of plant defenses modulated by small RNAs and 285 

whether this regulation occurs in other plants will need further research. 286 

 287 

Transcription factors as major players in early and late defense signaling 288 

Transcription factors play a key role in regulating defenses both up- and downstream of 289 

phytohormone signaling. Basic helix–loop–helix (bHLH) MYCs form a transcriptional complex that 290 

regulates defense against herbivores in Arabidopsis. In absence of insect feeding, JAZs bind and 291 

repress MYCs. Activation of the JA pathway leads to JAZ degradation, subsequent binding of MYCs 292 

to MED25 of the mediator complex, and recruitment of RNA polymerase II (for review see (58)). 293 

Four closely related MYCs from the IIIe subgroup of bHLH factors act synergistically to control JA-294 

dependent defenses. Indeed, single and higher order mutants of MYC2, MYC3, MYC4, and MYC5 295 

display increasing susceptibility to S. littoralis and S. exigua feeding (40, 152). Furthermore, myc234 296 

is as susceptible as coi1-1 to S. littoralis and both mutants show a similarly altered transcriptome in 297 

response to feeding, indicating that MYCs are the main contributors of defense against chewing 298 

herbivores in Arabidopsis (144). MYCs bind to G-box on promoters of target genes, including GS 299 

biosynthesis genes (40, 145). In addition to MYCs, GS biosynthesis requires coordinate activity of 300 

six MYB transcription factors. MYB28, MYB29, MYB76 and MYB34, MYB51, MYB122 regulate 301 

synthesis of methionine-derived aliphatic-GS and tryptophan-derived indole-GS, respectively (42). 302 

These MYBs interact directly with MYC2, MYC3 and MYC4, but not with JAZs, and are also 303 

necessary for GS biosynthesis and defense (145). For instance, myb28myb29 lacks aliphatic-GS and 304 

is susceptible to several lepidopteran herbivores (115). Thus, MYCs and MYBs together constitute a 305 

functional regulatory module that controls expression of GS genes in Arabidopsis. 306 

 In addition, MYCs regulate expression of other anti-herbivore genes. In Arabidopsis, MYC2 307 

binds to the promoter of TPS11 and TPS21 to regulate sesquiterpene biosynthesis (56). In N. 308 
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attenuata, MYC2 homologues directly control nicotine biosynthesis (170). In tomato, MYC2 309 

regulates the expression of a large number of defense genes, including genes coding for known 310 

antiherbivore defense proteins like threonine deaminase and proteinase inhibitor 1 (33). Besides 311 

MYCs, other transcription factors with demonstrated anti-herbivore effect have been identified, 312 

including for instance WRKY18/40/53/70 or MYB75 (88, 118, 144) (Figure 2, Table 1 and Table 313 

S1). How these proteins regulate defense is however unclear. 314 

 Evidence of a negative regulation of MYC activity has recently been demonstrated. Four 315 

members of IIId subgroup of Arabidopsis bHLHs (bHLH3, bHLH13, bHLH14 and bHLH17) act 316 

additively as transcription repressors. Also known as JA-ASSOCIATED MYC2-LIKE (JAMs), they 317 

competitively bind to target sequences of MYC2. Consequently, JAM single or multiple mutants have 318 

enhanced JA-dependent defenses and are more resistant to S. exigua (131, 153). As discussed above, 319 

WRKY51 inhibits JA biosynthesis through association with JAV1 and JAZ8. WRKY51 binds to a 320 

W-motif on the promoter of AOS and inhibits its expression, potentially preventing unnecessary JA 321 

biosynthesis in absence of feeding (175). Rice MPK3/MPK6 directly phosphorylate WRKY53 (178), 322 

which in turn interacts with MPK3/MPK6 and suppresses their activity (60). This creates a negative 323 

feedback loop that restricts overexpression of defense genes. Accordingly, ir-wrky53 is more resistant 324 

to the stem borer C. suppressalis (60). These findings illustrate a tight regulation of different steps of 325 

the JA pathway by various transcription factors (Figure 2). Future work should elucidate whether 326 

and how different biotic or abiotic stresses interact with these negative regulators.  327 

 328 

Systemic regulation of defenses 329 

Herbivores are often mobile and move from attacked to non-attacked tissues. Upon herbivore attack, 330 

plants can use systemic signals to regulate defenses in systemic tissues in preparation of incoming 331 

attack. JA signaling is well established to be important for the activation of systemic defense 332 

regulation. Grafting experiments with N. attenuata show that silencing homologues of JA 333 

biosynthesis and perception genes such as AOC and COI1 in the roots reduces the capacity to 334 

accumulate nicotine and to deploy it to the leaves, leading to enhanced aboveground herbivory by M. 335 
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sexta and S. littoralis (41). To what extent JAs are moving between local and systemic tissues to 336 

regulate defenses is still subject to debate. Through localized manipulation of JA biosynthesis and 337 

perception, the production of JAs in systemic tissues, but not in locally induced tissues, has been 338 

shown to be important for systemic defense deployment in Arabidopsis and N. attenuata (41, 77). In 339 

Arabidopsis, glutamate-receptor like genes (GLRs) are required for the induction of systemic JA 340 

synthesis. Silencing of GLRs has been associated with a reduction in wound-induced, systemic 341 

surface potential charges, suggesting that electrical potentials are important for the systemic induction 342 

of JAs (113). Ca2+ and ROS have also been implicated in rapid systemic signaling, most probably in 343 

interaction with membrane potentials (for review see (54)).  344 

 Recent work demonstrates that, apart from JA, other mobile hormones such as CKs and auxins 345 

may regulate systemic defense responses. Wounded N. attenuata plants silenced in homologues of 346 

the CK receptor CHASE-DOMAIN CONTAINING HIS KINASE 2 accumulate lower levels of 347 

caffeoylputrescine in systemic leaves (133). Furthermore, inhibiting auxin transport through 348 

application of the IAA biosynthesis inhibitor L-kynurenine, or the IAA transport inhibitor TIBA 349 

abolishes herbivore-induced systemic induction of stem anthocyanins (102). Further experiments 350 

with auxin and CK signaling mutants are required to understand the impact of these hormones on 351 

plant resistance to herbivores. 352 

 Plants can also use volatiles to regulate systemic defenses. Several volatile organic 353 

compounds, including C6 green-leaf volatiles, terpenes and indole can be emitted by herbivore-354 

attacked leaves and can induce and/or prime defenses in systemic leaves (36). Using an igl mutant 355 

that does not produce indole, it has been shown that this volatile is required for the priming of 356 

monoterpenes in systemic maize leaves (37). Arabidopsis genes involved in root response to (E)-2-357 

hexenal include the gamma-amino butyric acid (GABA) transaminase HER1, which degrades 358 

GABA, and the oxidoreductase HER2, which regulates the redox status in mitochondria (110, 132). 359 

Systemic signaling through plant volatiles may be particularly important when vascular constraints 360 

and long vascular distances between adjacent tissues limit the spread of internal signals.  361 

 362 
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Spatiotemporal control of plant defense deployment 363 

Many constitutive and induced defenses show pronounced ontogenetic (i.e. developmental) patterns 364 

and vary with the age of plants and organs. While this variation has been mapped in great detail in 365 

many different plant species (6), the underlying molecular mechanisms are only beginning to be 366 

unveiled. In addition, secondary metabolite transporters have been identified as important 367 

determinants of defense distribution (see sidebar titled Secondary Metabolite Transport). 368 

 In maize, the decline of benzoxazinoids in older plants has been mapped to the Bx gene cluster 369 

containing major benzoxazinoid biosynthesis genes (183). Expression of Bx1, the gene encoding for 370 

an indole-3-glycerol-phosphate lyase which provides indole as a benzoxazinoid precursor, is 371 

associated with benzoxazinoid levels, and overexpression of this gene enhances benzoxazinoid levels 372 

in older maize plants (183), thus suggesting that the decrease of these metabolites in older plants is 373 

the result of transcriptional regulation of biosynthesis genes (96). Transcriptional regulation is also 374 

thought to regulate the tissue specific production of alkaloids and other secondary metabolites in 375 

plants (84). For instance, a cluster of ERF transcription factors regulate the expression of nicotine 376 

biosynthesis genes in tobacco. Although nicotine accumulates specifically in roots, expression of 377 

some of these ERFs is not restricted to roots and is also observed in leaves, suggesting that another 378 

factor is crucial for root-specific biosynthesis or that ERFs are inhibited in the leaf (150). In N. 379 

attenuata, CKs co-vary with caffeoylputrescine inducibility, which is higher in young than old leaves. 380 

Increasing CK levels through dexamethasone-inducible expression of the CK biosynthesis 381 

isopentenyltransferase is sufficient to restore the inducibility of caffeoylputrescine in old leaves (17). 382 

In N. attenuata flowers, only one member of the JAZ family of repressors, NaJAZi, regulates 383 

constitutive accumulation of defense compounds and silenced NaJAZi lines show reduced feeding by 384 

the florivore H. virescens (87). The capacity to manipulate ontogenetic patterns of defense expression 385 

will eventually allow to test long-standing ecological hypotheses such as the optimal defense theory, 386 

which predicts that ontogenetic patterns reflect costs and benefits of defense production (108).  387 

 Defense metabolites also show diurnal fluctuations that may be tailored to insect feeding 388 

behavior. For instance, Arabidopsis displays circadian accumulation of JA and GS that correlates 389 
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with circadian feeding of T. ni. Plants exposed to experimentally desynchronized T. ni larvae are 390 

significantly more eaten than under normal conditions (46). In N. attenuata, many herbivore-induced 391 

metabolites show diurnal rhythmicity in a tissue-specific manner (72). Silencing the clock component 392 

ZEITLUPE (ZTL) in N. attenuata renders plants more susceptible to S. littoralis. ZTL interacts with 393 

JAZs, and therefore enhances MYC2-dependent expression of nicotine biosynthesis genes (86). 394 

Tobacco plants emit herbivore-induced volatiles during the night to repel oviposition by nocturnal 395 

female moths of the pest Heliothis virescens (27). Similarly, N. attenuata TPS38 is expressed in 396 

flowers during the night and produces (E)-a-bergamotene that attracts M. sexta moths for pollination, 397 

whereas the same gene is expressed in leaves upon M. sexta feeding and triggers production of (E)-398 

a-bergamotene during the day to attract predators of M. sexta larvae (185). 399 

 400 

PLANT DEFENSE TRAITS 401 

Physical barriers, secondary metabolites and defense proteins directly determine herbivore resistance 402 

by interacting with the feeding, digestive system and physiology of the attacker (38, 57). Over the 403 

last years, molecular studies have been instrumental in providing evidence for the functional 404 

importance of a number of putative defense traits in vivo.  405 

 406 

Toxic secondary metabolites 407 

Plants produce hundreds of thousands of different specialized metabolites, and many of them are 408 

assumed to function as defenses by reducing the digestibility of plants. In Arabidopsis, mutations in 409 

genes involved in GS biosynthesis, regulation, or activation render plants highly susceptible to a wide 410 

range of chewing herbivores (Table 1 and Table S1). For specialist insects adapted to GS, 411 

metabolites from the phenylpropanoid pathway provide some level of resistance. Arabidopsis fah1-7 412 

lacks sinapoyl malate and shows increased susceptibility to P. brassicae (117). In addition, reduced 413 

levels of kaempferol 3,7-dirhamnoside in OE-MYB75 correlates with increased P. brassicae 414 

performance (118). In tobacco, reducing nicotine content in silenced N. attenuata lines increases 415 

performance of M. sexta, S. exigua and other native herbivores, an effect that can be reversed by the 416 
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application of nicotine (99, 155). In maize, a bx1 mutant devoid of benzoxazinoids DIMBOA-Glc 417 

and HDMBOA-Glc allows increased feeding by S. exigua and S. littoralis (98). In tomato, production 418 

of the sesquiterpene 7-epizingiberene by expression of a terpene synthase from a wild variety 419 

increases resistance to M. sexta (8). The diterpene rhizathalene A is produced in Arabidopsis roots by 420 

terpene synthase TPS08 and feeding by the root herbivore Bradysia sp. significantly increases in 421 

tps08-1 (162). In dandelion (Taraxacum officinale), silencing the germacrene A synthase ToGAS1, 422 

which catalyzes formation of sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester in root 423 

latex, enhances the attractiveness of roots to the common cockchafer Melolontha melolontha (62). 424 

 For phloem-feeding insects, the role of secondary metabolites is less clear. Mutants with 425 

altered indole-GS levels for instance display contrasting effects on aphid performance (5, 124). The 426 

camalexin-deficient pad3-1 on the other hand is susceptible to aphids (81). In maize, benzoxazinoids 427 

are directly toxic and regulate callose inducibility, which allow them to operate against chewing and 428 

phloem feeding insects (107). A bx13 mutant defective in the conversion of the benzoxazinoid 429 

DIMBOA-Glc to DIM2BOA-Glc and HDM2BOA-Glc slightly enhances the performance of the corn 430 

leaf aphid, Rhopalosiphum maidis (50). 431 

 432 

Defense proteins 433 

Overexpression of proteinase inhibitor (PIs) genes in transgenic plants has provided the first evidence 434 

that PIs are efficient antiherbivore proteins (66). Further work with knock-out lines has confirmed 435 

the importance of PIs in several plant species against various herbivores (Table S1). Overexpression 436 

of a cysteine protease in maize disrupts insect peritrophic matrix and severely retards growth of S. 437 

frugiperda (122). Depletion of essential amino acids from insect diet is another efficient defense 438 

strategy. Transgenic tomato lines deficient in a threonine deaminase (TD2) are more susceptible to S. 439 

exigua and T. ni (45). Interestingly, proteolytic activation in insect midgut releases feedback 440 

inhibition by Ile and enhances TD efficiency (20). Similarly, TD-deficient N. attenuata lines are more 441 

susceptible to M. sexta (68). Finally, overexpression of arginase in tomato significantly reduces Arg 442 

in larval midgut and renders plants more resistant to M. sexta (20). 443 
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 To our knowledge, there are only three reports demonstrating a role for defense proteins 444 

against phloem-feeding insects. Overexpression of PP2-A1, a member of the multigene family of 445 

Arabidopsis phloem lectins, reduces M. persicae infestation, presumably by clogging sieve pores 446 

(180). SLI1 is a recently identified membrane-anchored chaperone that is postulated to prevent stylet 447 

from piercing the parietal membrane of sieve tubes. Arabidopsis sli1 shows enhanced feeding and 448 

infestation by M. persicae (75). In rice, Bph6 is an unknown protein that interacts with exocyst 449 

subunit EXO70E1. Bph6-carrying cultivars provide resistance to BPH and S. furcifera by increased 450 

exocytosis and cell wall reinforcement (48). 451 

 452 

Volatiles as attractants of herbivore natural enemies 453 

Plants that are attacked by herbivores release distinct volatile blends, which affect herbivores and 454 

increase the attraction of herbivore natural enemies. Over the last years, molecular approaches have 455 

helped to understand how these effects affect plant-herbivore interactions. Overexpressing a 456 

hydroperoxide lyase gene (HPL) in Arabidopsis enhances the production of green leaf volatiles, 457 

renders plants more attractive to the Cotesia glomerata parasitoid and increases P. rapae larval 458 

mortality (147). Silencing HPL in N. attenuata significantly reduces the attraction of the egg predator 459 

Geocoris punctipes in the field (49), and silencing LOX2, which is involved in green-leaf volatile 460 

biosynthesis, reduces predator recruitment and increases damage by M. sexta (142). Transgenic 461 

Arabidopsis lines that overexpress the maize terpene synthase TPS10 emit more herbivore-induced 462 

sesquiterpenes and are more attractive to Cotesia marginiventris (139). Interestingly, expression of 463 

the maize AP2/ERF EREB58 is induced by JA treatment and this factor binds to the promoter of 464 

TPS10 to control the production of volatile sesquiterpenes (89). In rice, silencing S-linalool synthase 465 

diminishes attraction of the parasitoid Anagrus nilaparvatae, leading to enhanced BPH performance 466 

in laboratory and field conditions (173). In maize, overexpression of the terpene synthase TPS23 467 

increases the recruitment of entomopathogenic nematodes, the western corn rootworm and S. 468 

frugiperda in the field (29), resulting in neutral effects on plant yield (130). Overexpressing the 469 

terpene synthase Eβf in wheat repels aphids and increases parasitoid recruitment in the laboratory, 470 
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but has not resulted in clear effects in a two-year field trial (15). A recent study with an indole 471 

deficient igl maize mutant demonstrates that indole attracts parasitoids to plants, but reduces the 472 

attractiveness of the caterpillars themselves, thereby reducing overall parasitoid recruitment (177). 473 

Together, these manipulative studies reveal that the effects of plant-volatiles on plant-herbivore 474 

interactions can be multifaceted and can result in unexpected patterns, which complicates their use as 475 

strengtheners of biological control (160). 476 

 477 

Physical barriers 478 

Physical barriers of plants such as trichomes, cuticule, epidermis and bark tissues are important to 479 

stop herbivores from attaining nutritious plant tissues. Arabidopsis lyrata genotypes with mutation in 480 

GLABROUS1 suffer from a higher abundance of leaf-chewing insects on the leaves in the field (73), 481 

whereas Arabidopsis gl1 is more susceptible to S. littoralis in the laboratory (128). Surprisingly, an 482 

Arabidopsis mutant with reduced cuticular wax and cutin is more resistant to feeding by the generalist 483 

S. littoralis (7). Apart from these studies, there are surprisingly few reports on the impact of molecular 484 

manipulation of physical defenses on plant-herbivore interactions. 485 

 486 

Tolerance strategies 487 

The capacity to regrow and reproduce after herbivore attack is important for plant survival and 488 

represents a complementary strategy to resistance. However, the molecular basis of plant tolerance 489 

to herbivory remains poorly studied. Herbivore attack depletes carbohydrates in the roots of N. 490 

attenuata and reduces the regrowth capacity of defoliated plants. Both effects are absent in JA-491 

deficient ir-AOC plants and can be recovered by JA application (101). Solanaceae species that display 492 

a lower JA burst upon herbivory have greater defoliation tolerance (103), suggesting that JA signaling 493 

regulates both processes in opposite directions, most likely by antagonizing GA signaling (100). 494 

Furthermore, silencing the SNF1-related kinase SnRK1, which is also downregulated by herbivory, 495 

increases carbon transport to the roots and prolongs flowering in N. attenuata and may thus help to 496 

buffer root carbohydrate depletion and increase tolerance (143). 497 
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 498 

Progress with genomics approaches 499 

Whole-genome analyses of herbivore-attacked plants have generated an unbiased view on 500 

transcriptional investment in defense, associated biological functions and quantitative contribution of 501 

signaling pathways. Generally, insects from the same feeding guild trigger overlapping transcriptome 502 

signatures, whereas these are clearly distinct between chewing larvae and phloem-feeding insects (81, 503 

128). In all these experiments, the dominating biological functions activated by herbivory are 504 

responses to biotic and abiotic stress, production and response to ROS, calcium signaling, cell wall 505 

modification, secondary metabolism, hormone metabolism and transcriptional regulation. Consistent 506 

with the prominent role of the JA pathway, induction of a large majority of insect-responsive genes 507 

depends on a functional COI1 (128, 144). 508 

 Because forward genetic screens are not easily amenable for plant-insect interactions, genetic 509 

approaches such as quantitative trait locus (QTL) mapping and genome-wide association studies 510 

(GWAS) hold promise to uncover novel molecular players. Recording aphid behavior on 350 511 

Arabidopsis accessions for instance has led to the identification of SLI1, a novel protein that is 512 

postulated to impair phloem ingestion (75). GWAS has also been used in Arabidopsis to determine 513 

loci that control variation in GS profiles in various environmental or developmental conditions (13, 514 

18), or loci that are linked to the combined response to P.rapae feeding and drought (26). In maize, 515 

QTL-mapping led to the identification of a benzoxazinoid O-methyl transferase whose deactivation 516 

by a transposon is associated with increased callose accumulation and aphid resistance (107). 517 

Through a similar approach, an α-bergamotene synthase involved in pollinator and herbivore natural 518 

enemy attraction was identified in N. attenuata (185). As genomes and mapping populations become 519 

available for other plant model species, such strategies may prove valuable to exploit natural genetic 520 

diversity and discover novel important defense genes. 521 

 522 

HERBIVORE ADAPTATIONS TO PLANT DEFENSES 523 
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Herbivore adaptations to plant defenses are as diverse and fascinating as plant defenses themselves. 524 

Technological advances such as next generation sequencing and the development of RNAi have 525 

begun to yield novel insights into the molecular biology of plant-insect interactions from the insect’s 526 

perspective.  527 

 528 

Detoxification and neutralization of plant defenses 529 

Herbivores possess a variety of detoxification systems that allow them to deal with host toxins. 530 

Several herbivore genes have been identified that allow them to cope with plant defenses. Silencing 531 

the cytochrome P450 CYP6AE14 in the cotton bollworm decreases larval growth, and the effect is 532 

more dramatic in the presence of gossypol (106). However, additional studies have not confirmed a 533 

role of CYP6AE14 in gossypol detoxification and this enzyme may thus be involved in general stress 534 

responsiveness (79). In M. sexta, silencing CYP6B46 reduces nicotine levels in the hemolymph and 535 

renders M. sexta caterpillars more susceptible against wolf spiders (80). Excreted nicotine levels 536 

remain the same, however, and the exact function of CYP6B46 remains to be elucidated. M. sexta 537 

caterpillars with reduced β-glucosidase (BG1) levels no longer deglycosylate the 538 

hydroxygeranyllinalool diterpene glycoside lyciumoside IV and show developmental effects when 539 

feeding on lyciumoside IV-containing diets (126). Herbivores may also be able to deactivate 540 

structural defenses of their host plants. BPH secretes an enzyme with cellulose-degrading endo-β-541 

1,4-glucanase activity (NlEG1) into rice plants. Silencing NlEG1 decreases the capacity of BPH to 542 

reach the phloem with its stylet and reduces its fitness, suggesting that this enzyme helps BPH to 543 

break down plant cell walls (65). Together, these examples illustrate the capacity of insects to deal 544 

with plant defenses. They also illustrate the limits of inferring function from sequence homology and 545 

call for orthogonal biochemical experiments to distinguish between herbivore genes that are 546 

specifically involved in detoxification and host plant adaptation, and genes that are part of general 547 

stress-coping mechanisms. Many other studies have associated biochemical features of insect 548 

herbivores with adaptation to plant defense metabolites (90), including for instance highly conserved 549 

molecular changes that render sodium-potassium pumps resistant to toxic cardiac glycosides (32), 550 
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glycosylation of benzoxazinoids to avoid the production of toxic hemiacetals (95), the diversion and 551 

detoxification of GS through a series of different enzymes (169), and the deactivation, sequestration 552 

and reactivation of various plant toxins as a potential means of self-defense (123, 129). Testing for 553 

the importance of these traits through molecular manipulation of insect genes is an exciting future 554 

prospect.  555 

 556 

Plant defense suppression  557 

Insect herbivores may be able to inject salivary molecules into plants to suppress defense induction. 558 

Putative defense suppressors (so-called effectors) have mainly been described in phloem-feeders. For 559 

instance, when transiently overexpressed in N. benthamiana using Agrobacterium tumefaciens, Me10 560 

and Me23 from the potato aphid M. euphorbiae increase aphid performance, and Me10 had similar 561 

effects in tomato when delivered through Pst (4). Furthermore, stable expression of C002, Mp1, and 562 

Mp2 from M. persicae in Arabidopsis increase aphid performance, while silencing C002 and Mp2 563 

through plant-mediated RNAi reduces aphid performance (34, 125). The molecular mechanisms by 564 

which these putative effectors increase aphid performance are currently unclear. Me47 from M. 565 

euphorbiae has glutathione-S-transferase (GST) activity against isothiocyanates and may thus have 566 

a role in detoxification. However, Me47 suppresses rather than enhances M. euphorbiae performance 567 

on Arabidopsis, which produces isothiocyanates during GS breakdown (71). 568 

 Much less is known about effectors from lepidopteran insects. GOX in Helicoverpa zea 569 

salivary glands inhibits nicotine production (114). OS from Anticarsia gemmatalis contain a modified 570 

inceptin that inhibit plant defenses. Strikingly, deletion of only one amino acid from inceptin 571 

transforms a defense-inducing HAMP into an effector (138). Unknown proteins or peptides from 572 

lepidopteran OS suppress defenses in Arabidopsis and N. attenuata (25, 136). Clearly, more studies 573 

are needed to identify effectors from chewing herbivores and demonstrate their function by gene 574 

knock-out methodologies. 575 

 Apart from injecting their own effectors during feeding, insect herbivores may use additional 576 

molecular strategies to suppress plant defenses. The capacity of the Colorado potato beetle to suppress 577 
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plant defenses is abolished in individuals that are treated with antibiotics (23). The beetle saliva 578 

contains numerous bacteria, and reinoculating antibiotic-treated individuals with bacterial isolates or 579 

treating plants with flagellin from one group of isolates (Pseudomonas sp.) restores defense 580 

suppression, suggesting that beetles use bacterial flagellin as an effector (23). JA-dependent plant 581 

defenses are also suppressed following egg deposition through activation of the SA pathway that 582 

triggers SA/JA cross-talk, but the involved effector molecules remain to be discovered (16).  583 

 In response to bacterial and fungal effectors, some plant genotypes have evolved numerous 584 

resistance genes that detect effector activity and trigger an hyperactivation of defenses. Resistance 585 

genes code for intracellular nucleotide binding and leucine rich repeat domain-containing proteins 586 

(NB-LRRs). Strikingly, very few insect NB-LRRs have been characterized and all of them are 587 

efficient against phloem-sucking insects (Table S1). The reason for such bias is unknown and merits 588 

further investigation. 589 

 590 

Behavioral adaptations 591 

The onset and outcome of plant-herbivore interactions often depends on behavioral responses of 592 

herbivores. Many plant defenses for instance do not primarily operate through intoxication, but 593 

through deterrence or repellency (12, 99). The capacity of herbivores to choose the right plants and 594 

tissues or to avoid defenses by behavioral strategies are key adaptations that allow them to survive 595 

within diverse plant communities that include toxic or unsuitable individuals. So far, studies 596 

addressing the molecular underpinning of host plant choice and herbivore behavior are surprisingly 597 

rare. Potential chemosensory receptor proteins have been identified in different herbivores (35), and 598 

gene editing approaches for major herbivore pests are becoming available (181). In a proof-of-599 

concept study using S. littoralis, mutation of olfactory receptor co-receptor (Orco) genes by 600 

CRISPR/Cas9 shows that antennae of Orco moths no longer respond to plant volatiles (78). Thus, 601 

functional studies involving the molecular manipulation of herbivore behavior are becoming possible 602 

and have the potential to substantially enhance our understanding of how insects detect and respond 603 

to plant cues. 604 
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 605 

FASCINATING BUT UNEXPLORED INTERACTIONS 606 

Most molecular insights into plant-herbivore interactions are derived from a few model systems. We 607 

argue that the time is ripe to leave the beaten track and to address unexplored but fascinating examples 608 

of plant-insect interactions in model and non-model species (Figure 3). Below, we discuss a few 609 

selected examples. 610 

- Some specialized herbivores induce striking changes in plant leaf morphology to produce galls. 611 

These diverse and elaborate structures generally provide shelter against natural enemies (156). 612 

How insect-derived cues prevent plant defense and dramatically alter plant development is 613 

largely unknown. 614 

- As a stunning example of a potential plant defense mechanism that targets insect behavior, 615 

cyanogenic glycoside-containing plants of the Passiflora genus display egg-like structures 616 

evenly dispersed on leaves, possibly to repel oviposition by the adapted herbivore Heliconius 617 

cydno (168). The evolution, genetic basis and exact ecological consequences of this 618 

phenomenon is unknown.  619 

- Acacia trees provide food in the form of extrafloral nectar and modified leaflet tips (Beltian 620 

bodies), and swollen thorns as home. Ants constantly patrol the tree to remove unwanted insect 621 

herbivores and parasitic plants. The origin, establishment and stability of this type of tritrophic 622 

interaction has rarely been studied at the molecular level.  623 

- Insect- and plant-associated microbes strongly influence plant-insect interactions. Remarkable 624 

examples include for instance larvae of the Colorado potato beetle that contain defense-625 

suppressing bacteria in their oral secretions (23) and effector proteins from insect-vectored 626 

phytoplasma that inhibit JA-defenses (157). For plant-associated microbes, high-throughput 627 

sequencing has allowed the identification of numerous leaf-inhabiting microbes but how they 628 

influence plant-insect interactions is poorly studied. 629 

 630 

CONCLUSIONS 631 
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Two decades of intense research on molecular plant-herbivore interactions in monocot and dicot plant 632 

species has unveiled a significant number of conserved molecular players involved in plant responses 633 

to insects. The rich catalogue of defense genes allows for a better understanding of i) the intricate 634 

signaling network underlying plant defenses ii) the genetic basis of defense traits and iii) mechanisms 635 

of herbivore adaptations to plant defenses. Challenges for the future will be to fill the existing gaps 636 

in our understanding of how perception is connected to downstream steps, how specificity is obtained 637 

with common signaling modules between herbivory and pathogenesis, and how insect perceive and 638 

respond to plant toxins. Leaving the “beaten track” and exploring the diversity of interactions between 639 

plants and herbivorous insects will also be essential. Herbivores have established specific interactions 640 

with plants over evolutionary time, including both biochemical and behavioral adaptations, which in 641 

turn have shaped the evolution of specific plant defense regulation and expression patterns. 642 

Understanding the molecular mechanisms underlying these phenomena holds the key to fully 643 

appreciate the beauty and diversity of plant-herbivore interactions. 644 

 645 

SUMMARY POINTS 646 

1. Plants detect and respond to damage and herbivore-associated molecular patterns (HAMPs and 647 

DAMPs) by activating defense responses. DAMP receptors have recently been identified, thus paving 648 

the way to understand the relative importance of DAMPS and HAMPS for plant-herbivore 649 

interactions. 650 

2. Early signaling events in plant defense responses involve Ca2+, ROS and MAPK signaling. Each 651 

layer has been shown to be important for plant defense and often includes both positive and negative 652 

regulators. Species-specific topologies of early defense signaling networks are emerging and require 653 

further investigation. 654 

3. The JA pathway is an essential component of defense against chewing herbivores. In addition, 655 

several other small molecules, including growth and stress hormones as well as volatile and non-656 

volatile secondary metabolites can regulate plant defenses. Plants thus have a substantial arsenal of 657 
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conserved and specific signaling molecules at their disposal to specifically regulate defenses against 658 

herbivores. 659 

4. Transcription factors, including MYCs and WRKYs, play a crucial role in regulating defense 660 

signaling and activating the transcription of defense genes. Recent work shows how transcription 661 

factors mechanistically link early defense signaling, hormone signaling and defense deployment. 662 

5. Plants display strong spatiotemporal variation in the expression of defense metabolites and proteins 663 

as well as physical barriers and tolerance traits. Transcriptional regulation of the underlying defense 664 

genes by developmental hormones and secondary metabolite transport are emerging as mechanisms 665 

by which defenses are regulated in space and time. 666 

6. Insects counter plant defenses through behavioral and biochemical adaptations, including the 667 

production of defense-suppressing effectors. The (simultaneous) molecular manipulation of plant 668 

defenses and insect counter defenses allows for unprecedented insights into plant-herbivore 669 

interactions and connects plant defense and herbivore defense/immunity networks. 670 

7. The current standard model of molecular interactions between plants and insect herbivores is 671 

derived from a handful of model species. Expanding molecular research to include more diverse and 672 

fascinating interactions will be essential to complement our current knowledge. 673 
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SIDEBAR: SECONDARY METABOLITE TRANSPORT 1241 

Transport allows plants to partition biosynthesis and accumulation of defensive secondary 1242 

metabolites and to control their local and systemic accumulation. Alkaloids are often synthesized in 1243 

belowground tissues and then transported to the leaves. In tobacco, NtMATE1 and NTMATE2 1244 

transport nicotine from the cytoplasm into the vacuole of root cells, while Nt-JAT1 and Nt-JAT2 have 1245 

a similar function in leaves (112, 149). Furthermore, the tobacco permease NUP1 supports uptake of 1246 

nicotine from the apoplast into root cells (53). In Coptis japonica, two ABC transporters, CjABCB1 1247 

and CjABCB2, function as berberine importers from the xylem into the rhizome (148). Finally, the 1248 

tonoplast localized nitrate/peptide family transporter CrNPF2.9 from Catharanthus roseus, exports 1249 

strictosidine from the vacuole to the cytosol (121). Most transporters identified so far function in 1250 

metabolite uptake or subcellular localization, and much less is known about the molecular basis of 1251 

systemic secondary metabolite transport. In Arabidopsis, two proton-dependent transporters, GTR1 1252 
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vasculature and the headspace for plant-herbivore interactions. 1256 
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TERMS AND DEFINITIONS 1258 

1. Herbivore-associated molecular pattern (HAMP): a component of insect oral secretions that is 1259 

detected by a plant cell surface receptor and induces defense responses. 1260 

2. Damage-associated molecular pattern (DAMP): a plant cytosolic or apoplastic molecule that is 1261 

freely released upon tissue injury. DAMPs are perceived by cell surface receptors and induce defense 1262 

responses. 1263 

3.Pattern recognition receptor (PRR): cell surface receptor with a ligand-binding ectodomain, a 1264 

transmembrane domain and an intracellular kinase domain. Some PRRs lack the kinase domain. 1265 

4. Oral secretions (OS): a mixture of insect saliva and regurgitant that can contain defense-inducing 1266 

HAMPs or effectors. 1267 

5. Nicotiana attenuata: a wild relative of tobacco that has become an important model to identify 1268 

molecular players of resistance to insects, both in the laboratory and in nature. 1269 

6. Jasmonate (JA): a generic term that refers to jasmonic acid or the bioactive form jasmonoyl-L-1270 

isoleucine (JA-Ile). 1271 

7. Secondary endogenous danger signal (SDS): a peptide that derives from a processed pro-protein 1272 

and is secreted in the apoplast upon perception of a primary danger signal. 1273 

8. CORONATINE-INSENSITIVE1 (COI1): an F-box protein that is the receptor of JA-Ile and the 1274 

major regulator of plant defense against insects. 1275 

9. JASMONATE-ZIM DOMAIN (JAZ): a family of repressors that inhibit transcription of defense 1276 

genes, including bHLH MYC factors. 1277 

10. WRKY transcription factors: transcription factors involved in defense against insects. They 1278 

target JA biosynthesis genes. Other target genes are still unknown. 1279 
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11. MYC transcription factors: basic helix-loop-helix (bHLH) transcription factors. Arabidopsis 1280 

MYC2,3,4,5 are target of JAZs and regulate transcription of defense genes. 1281 

12. Feeding guild: a group of unrelated insect species that have a similar feeding behavior, e.g. leaf 1282 

chewer, phloem feeder, cell content feeder, leaf miner. 1283 

13. Glucosinolates: sulfated secondary metabolites that are essential for defense against insects in 1284 

Brassicaceae. 1285 

14. Benzoxazinoids: indole-derived defense compounds in grasses that are effective against insects 1286 

and plant pathogens. 1287 

15. Effectors: proteins or molecules that are released by an attacker to suppress plant defenses. 1288 

 1289 

TABLES 1290 

Table 1 Examples of plant defense genes with a demonstrated role in plant-insect interactions. 1291 

 1292 

FIGURE LEGENDs 1293 

Figure 1 1294 

Perception of known or putative ligands associated with insect attack. HAMPs from oral secretions 1295 

of attacking insect herbivores are perceived by yet unknown plant cell-surface pattern recognition 1296 

receptors (PRRs) and trigger downstream defenses against insects. Cell damage releases DAMPs 1297 

consisting of cell wall fragments or intracellular metabolites that reach the apoplast. Herbivory also 1298 

triggers the production and release of endogenous secondary danger signals like AtPeps and systemin 1299 

that bind to PRRs and activate defense. Solid arrows indicate demonstrated effect on insect 1300 

performance. Dashed arrows indicate absence of direct evidence for a role in defense against insects. 1301 

Abbreviations: ATP, extracellular adenosine 5'-triphosphate; Cel, cellulose; DAMPs, danger-1302 

associated molecular patterns; DORN1, DOES NOT RESPOND TO NUCLEOTIDES 1; FACs, 1303 

fatty-acid amino-acid conjugates; EGF, epidermal growth factor; FER, FERONIA; HAMPs, 1304 

herbivore-associated molecular patterns; In, inceptin; PEPR1/2, LecRK1/2/3, lectin-like receptor 1, 1305 

2 and 3; Lec-RK-I.8, lectin-like receptor kinase I.8; LRR, leucine-rich repeat; NAD, extracellular 1306 
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nicotinamide adenine dinucleotide; OGs, oligogalacturonides; OS, oral secretions; Pect, pectin; Peps, 1307 

At-PEP1-6; PEP-Receptor 1 and 2; RLK1, leucine-rich repeat receptor-like kinase 1; SDSs; 1308 

secondary danger signals; SYR1, systemin receptor 1; THE1, THESEUS1; WAK1, Wall-associated 1309 

kinase 1. 1310 

 1311 

Figure 2 1312 

Current model of plant defense signaling network in response to herbivory. HAMPs from oral 1313 

secretions, DAMPs from damaged cells or SDSs are perceived by PRRs at the plasma membrane. 1314 

Membrane depolarization (Vm) (magenta), Ca2+ signaling (yellow), ROS signaling (green) and 1315 

downstream MAPK signaling (orange) steps are activated and trigger the biosynthesis of JA-Ile, the 1316 

bioactive form of JA. Chloroplast- and peroxisome-located enzymes (not shown) are rapidly activated 1317 

to generate the primary JA burst through unknown mechanisms (dashed arrow). Binding of JA-Ile to 1318 

the SCFCOI1 complex leads to degradation of JAZ repressors, resulting in activation of transcription 1319 

factors (emerald) that regulate the production of defense metabolites and proteins. H2O2 accumulation 1320 

can be stimulated by Ca2+-activated NADPH oxidases (RBOHD and F) or by glucose oxidase (GOX) 1321 

in oral secretions. Several negative regulators have been identified and contribute to the fine-tuning 1322 

of the JA pathway (red lines). Higher level of regulation by other hormonal pathways and plant 1323 

secondary metabolites is not shown. For more information, see text. Abbreviations: CDPK, calcium-1324 

dependent protein kinase; CaM, calmodulin; CML, calmodulin-like proteins; DAMPs, damage-1325 

associated molecular patterns; EREB58, AP2/ERF; HAMPs, herbivore-associated molecular 1326 

patterns; JAMs, bHLH3/13/14/17; JAV1, jasmonate-associated VQ motif 1; MAPK, mitogen-1327 

activated protein kinase MPK3/6, SIPK, WIPK; MYBs, MYB8/12/28/29/34/51/75/76/122; MYCs, 1328 

MYC2/3/4/5; SDSs, secondary danger signals (e.g. systemin, AtPeps); WRKYs, 1329 

WRKY3/6/18/40/53/70/72/89. 1330 

 1331 

Figure 3 1332 
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Examples of fascinating plant-insect interactions that await molecular characterization. (a) Members 1333 

of the Passiflora genus develop egg-like structures (inset) that repel oviposition by Heliconius 1334 

butterflies (b) A leaf mining insect drills tunnels underneath epidermis of a hazelnut leaf. (c) Gall 1335 

from Mikiola fagi on a beach leaf. (d) Transverse cut of beach gall uncovers M. fagi larva 1336 

(arrowhead). (e) Mutualistic interaction between bullhorn acacia (Vachellia cornigera) and 1337 

Pseudomyrmex ferruginea ant. Ants feed from extrafloral nectar-producing structures (arrowhead) 1338 

and live in hollowed-out thorns. Panels a, b, c, d from Zigmunds Orlovskis. Panel e, image number 1339 

476197198 from www.shutterstock.com. 1340 

 1341 

SUPPLEMENTAL MATERIAL 1342 

Table S1 Plant genes with a demonstrated role in plant-insect interactions 1343 

Table S2 Description of insect and nematode species mentioned in this review 1344 

  1345 
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Table 1 Examples of plant genes with a demonstrated role in plant-insect interaction 1346 
Gene Descriptiona Plant Genotypeb Insect performance Reference(s) 1347 
    on altered genotypec 1348 
Perception 1349 
LecRK1-3 Lectin-like RK Rice, N. attenuata OE lecRK1-3, ir-lecRK1 N. lugens ¯, M. sexta ­ (43, 91) 1350 
LRR-RLK1 LRR-RK Rice ir-LRR-RLK1 C. suppressalis ­ (59) 1351 
PEPR1/R2 LRR-RK, Pep receptor Arabidopsis pepr1/2 S. littoralis ­ (74) 1352 
Prosystemin Systemin precursor Tomato as-prosystemin M. sexta ­ (119) 1353 
SYR1 LRR-RK, systemin receptor Tomato syr1 S. littoralis ­ (166) 1354 
Ca2+, ROS, MAPK signaling 1355 
TPC1 Vacuolar cation channel Arabidopsis fou2  S. littoralis ¯, M. persicae ¯ (83, 163) 1356 
JAV1 JA-associated VQ motif Arabidopsis RNAi JAV1 S. exigua ¯, M. persicae ¯ (61) 1357 
CML37/42 CaM-like protein Arabidopsis cml37, cml42 S. littoralis ­, S. littoralis ¯ (140, 161) 1358 
CDPK4/5 Ca2+-dependent protein kinase N. attenuata ir-CDPK4/5 M. sexta ¯ (176) 1359 
RBOHD/F NADPH oxidase Arabidopsis, rbohD/F S. exigua ¯, M. persicae ­ (9, 109) 1360 
MPK1/2/3 MAPK Tomato, rice mpk1/2, ir-MPK3 M. sexta ­, C. suppressalis ­ (67, 167) 1361 
MPK4 MAPK N. attenuata ir-MPK4 M. sexta ¯ (51) 1362 
JA pathway 1363 
LOX2/3/4/6 13-lipoxygenase Arabidopsis, rice lox2/3/4/6, as-HI-LOX S. littoralis ­, N. lugens ¯ (19, 184) 1364 
AOS Allene oxide synthase Arabidopsis aos T. ni ­ (46) 1365 
AOC Allene oxide cyclase Rice, N. attenuata hebiba, ir-AOC  D. balteata ­, M. sexta ­ (41, 94) 1366 
OPR3 OPDA reductase Arabidopsis opr3-3 S. littoralis ­ (21) 1367 
ACX1 Acyl-CoA oxidase Arabidopsis acx1/5 T. ni ­ (135) 1368 
JAR1 JA-Ile synthase Arabidopsis jar1 T. ni ­ (46) 1369 
COI1 F-box protein Arabidopsis, coi1-1 S. littoralis ­, B. tabaci ­, (10, 41, 179) 1370 
  N. attenuata  M. sexta ­ 1371 
JAZ Jasmonate ZIM domain Arabidopsis, jaz1/3/4/9/10 T. ni ¯ (105) 1372 
Transcription factors 1373 
MYC2/3/4/5 bHLH TF Arabidopsis, myc2/3/4, myc2/3/4/5 S. littoralis ­ (145, 152) 1374 
JAMs bHLH TF Arabidopsis, bhlh3/13/14/17 S. exigua ¯ (153) 1375 
WRKY18/40 WRKY TF Arabidopsis wrky18/40 S. littoralis ­ (144) 1376 
WRKY53 WRKY TF Rice, wheat ir-WRKY53 C. suppressalis ¯ (60) 1377 
WRKY70 WRKY TF Rice, Arabidopsis ir-WRKY70, wrky70 N. lugens ¯, P. brassicae ¯ (88, 117) 1378 
MYB28/29 MYB TF (aliphatic-GS) Arabidopsis myb28/29 M. sexta ­, S. exigua ­ (115) 1379 
MYB75 MYB TF (phenylpropanoids) Arabidopsis OE MYB75, P. brassicae ­ (118) 1380 
Defense regulators (hormones and secondary metabolites) 1381 
ICS1 Isochorismate synthase (SA) Arabidopsis sid2-1 S. littoralis ¯, P. brassicae ¯ (10, 117) 1382 
NPR1 Non expressor of PR-1 (SA) Arabidopsis npr1 S. littoralis ¯, B. tabaci ¯ (10, 179) 1383 
ACS2 Ethylene biosynthesis Rice as-ACS2 C. suppressalis ­, N. lugens ¯ (93) 1384 
EIN2 Ethylene insensitive Arabidopsis ein2-1 S. littoralis ¯ (10) 1385 
EIN3/EIL1 TF, ethylene signaling Arabidopsis ein3 eil1 S. exigua ¯ (151) 1386 
ABA1 Zeaxanthin epoxidase Arabidopsis aba1-1 M. persicae ¯ (55) 1387 
ABA2 Xanthoxin dehydrogenase  Arabidopsis aba2-1 S. littoralis ­ (10) 1388 
HER1 Inhibitor of ABA catabolism N. attenuata ir-HER1 M. sexta ­ (31) 1389 
CYP714D1 CYP450 (GA catabolism) Rice eui N. lugens ¯ (88) 1390 
BX1 Indole-3-glycerol P lyase Maize bx1 R. padi ­ (3) 1391 
Direct defense traits 1392 
CYP79B2/B3 CYP450 (indole-GS) Arabidopsis cyp79b2/b3 S. exigua ­ (115) 1393 
TGG1/2 Myrosinase (GS activation) Arabidopsis tgg1/2 M. sexta ­, T. ni ­ (5) 1394 
CYP81F2 CYP450 (indole-GS) Arabidopsis cyp81F2 M. persicae ­ (124) 1395 
PAD3 Camalexin biosynthesis Arabidopsis pad3-1 B. brassicae ­ (81) 1396 
F5H Ferulate hydroxylase Arabidopsis fah1-7 P. brassicae ­ (117) 1397 
BX1/13 Benzoxazinoid biosynthesis Maize bx1, bx13 S. littoralis ­, R. maidis ­ (50, 98) 1398 
PMT Nicotine biosynthesis N. attenuata ir-PMT M. sexta ­ (155) 1399 
TPS08 Terpene synthase Arabidopsis tps08-1 Bradysia sp. ­ (162) 1400 
ShZIS Sesquiterpene synthase Tomato OE ShZIS M. sexta ¯ (8) 1401 
GAS1 Germacrene synthase Taraxacum officinale RNAi GAS1 M. melolontha ­ (62) 1402 
PIN I/II Proteinase inhibitors Tobacco OE PIN I/II M. sexta ¯ (66) 1403 
Mir1-CP Cysteine protease Maize OE Mir1-CP S. frugiperda ¯ (122) 1404 
TD Threonine deaminase Tomato as-TD2,  S. exigua ­, T. ni ­ (45) 1405 
ARG2 Arginase Tomato OE ARG2 M. sexta ¯ (20) 1406 
PP2-A1 Phloem protein Arabidopsis OE PP2-A1 M. persicae ¯ (180) 1407 
SLI1 Chaperone Arabidopsis sli1-1 M. persicae ­ (75) 1408 
GL1 Trichome formation Arabidopsis gl1 S. littoralis ­ (128) 1409 
ATL2 Wax and cutin formation Arabidopsis eca S. littoralis ¯ (7) 1410 
Putative indirect defense traits 1411 
HPL Hydroperoxide lyase N. attenuata as-HPL G. punctipes ¯¯ (49) 1412 
TPS10 Terpene synthase Arabidopsis OE TPS10 C. marginiventris ­­  (139) 1413 
TPS23 (E)-b-caryophyllene synthase Maize OE E-bC H. megidis ­­, D. virgifera ¯ (29) 1414 
LIS S-linalool synthase Rice ir-LIS N. lugens ­, A. nilaparvatae ¯¯ (173) 1415 
Others 1416 
ZTL Zeitlupe, clock component N. attenuata ir-ZTL S. littoralis ­ (86) 1417 
BPH6 Unknown, binds EXO70E1 Rice Bph6-carrying lines N. lugens ¯, S. furcifera ¯ (48) 1418 
aAbbreviations: CaM, calmodulin; LRR, leucine-rich-repeat; MAPK, mitogen-activated protein kinase; NB-LRR, nucleotide binding leucine-rich 1419 
repeat; PRR; pattern recognition receptor; RK, receptor kinase; RLCK, receptor-like cytoplasmic kinase; TF, transcription factor. bAbbreviations: as, 1420 
antisense line; OE, overexpression line; ir, inverted repeats line; RNAi, RNA interference line; VIGS, virus-induced gene silencing. c­, enhanced insect 1421 
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performance; ¯, reduced insect performance; ­­, enhanced attraction of natural enemy; ¯¯, reduced attraction of natural enemy; for a more complete 1422 
list of genes and a description of insect and nematode species, see Table S1 and Table S2. 1423 
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