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SUMMARY

IL-1b is a cytokine of pivotal importance to the
orchestration of inflammatory responses. Synthe-
sized as an inactive pro-cytokine, IL-1b requires
proteolytic maturation to gain biological activity.
Here, we identify intrinsic apoptosis as a non-canon-
ical trigger of IL-1b maturation. Guided by the dis-
covery of the immunomodulatory activity of viopro-
lides, cyclic peptides isolated from myxobacteria,
we observe IL-1bmaturation independent of canon-
ical inflammasome pathways, yet dependent on
intrinsic apoptosis. Mechanistically, vioprolides
inhibit MCL-1 and BCL2, which in turn triggers
BAX/BAK-dependent mitochondrial outer mem-
brane permeabilization (MOMP). Induction of
MOMP results in the release of pro-apoptotic fac-
tors initiating intrinsic apoptosis, as well as the
depletion of IAPs (inhibitors of apoptosis proteins).
IAP depletion, in turn, operates upstream of ripopto-
some complex formation, subsequently resulting in
caspase-8-dependent IL-1b maturation. These re-
sults establish the ripoptosome/caspase-8 complex
as a pro-inflammatory checkpoint that senses the
perturbation of mitochondrial integrity.

INTRODUCTION

Interleukin 1b (IL-1b) is a pleiotropic cytokine, which is crucial

to orchestrating host defense against a variety of pathogens.
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At the same time, IL-1b has been shown to participate in the

pathogenesis of many sterile inflammatory conditions (Dinar-

ello, 2011). IL-1b is synthesized as a cytosolic precursor pro-

tein that requires cleavage for biological activity. Upon matura-

tion, it is released into the extracellular space to exert its

activity, a process that typically relies on the activation of

macromolecular complexes known as inflammasomes (Broz

and Dixit, 2016). Inflammasomes are high-molecular-weight

cytoplasmic complexes formed in response to various microbi-

al molecular patterns or perturbations of cellular homeostasis.

In general, inflammasomes consist of a sensor protein (e.g., an

NLR protein), the adaptor protein ASC (gene name PYCARD),

and the protease caspase-1. Upon activation, the sensor pro-

tein seeds the prion-like multimerization of the adaptor ASC

through homotypic pyrin domain (PYD) interactions, which

induce the formation of large ASC filament structures. This in

turn results in the recruitment of caspase-1, which itself is

then activated by proximity-induced auto-cleavage. Active

caspase-1 catalyzes the proteolytic maturation of IL-1b and

its IL-1 family member IL-18 (Broz and Dixit, 2016). In addition

to its cytokine substrates, caspase-1 cleaves the cell death

effector molecule gasdermin D (GSDMD), which results in the

formation of a pore in the plasma membrane, triggering a

form of cell death known as pyroptosis (Kayagaki et al.,

2015; Liu et al., 2016; Shi et al., 2015). Mature IL-1b can gain

access to the extracellular space in the context of pyroptosis

or other types of cell death (Gaidt and Hornung, 2018). In addi-

tion, it can be released through GSDMD pores that form at the

plasma membrane preceding cell disintegration (Evavold et al.,

2018). However, under certain conditions, IL-1b can also be

released from living cells, independently of GSDMD or pyrop-

tosis (Conos et al., 2016; Gaidt et al., 2016).
uthor(s).
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Among all inflammasome sensor proteins, NLRP3 is the most

studied to date because of its critical role in sterile inflammatory

diseases. These include rare,monogenetic autoinflammatorydis-

eases, in which gain-of-function mutations within NLRP3 cause

autoactivation of the NLRP3 inflammasome, as well as common,

stimulus-dependent modes of NLRP3 activation, as observed in

gout, atherosclerosis, or Alzheimer’s disease (Dinarello, 2011;

Masters et al., 2009). Inflammasome-dependent IL-1bmaturation

is a two-step process, in which signal 1 serves as the priming

signal, which is required to induce pro-IL-1b expression, and

signal 2 constitutes the stimulus that activates the inflammasome

sensor itself. In the case of the NLRP3 inflammasome, signal 1

additionally serves to facilitateNLRP3activation at transcriptional

and post-transcriptional levels (Bauernfeind et al., 2009; Juliana

et al., 2012). While the exact mechanism of NLRP3 activation re-

mains unclear, a link has been established between most of the

currently known NLRP3 stimuli and the lowering of cytoplasmic

K+ levels. Moreover, decreases in intracellular K+ are known to

be sufficient for NLRP3 activation (Franchi et al., 2007; Pétrilli

et al., 2007). Given the fact that K+ efflux readily occurs along its

electrochemical gradient when the integrity of plasmamembrane

is breached, NLRP3 can be considered a sensor of membrane

perturbation (Gaidt and Hornung, 2018). In addition, it has been

proposed that lossofmitochondrial integrity leading to the release

of mitochondrial damage-associated molecular patterns

(DAMPs) can trigger NLRP3 inflammasome activation (Iyer

et al., 2013; Shimada et al., 2012). These studies have demon-

strated evidence for amechanism inwhichmitochondrial DAMPs

are released downstream of K+ efflux and upstream of NLRP3

activation. However, this concept was challenged by genetic

models in which the inhibition of mitochondrial DAMP release

had no effect on canonical NLRP3 activation (Allam et al., 2014).

Apart from caspase-1, other enzymes have been shown to be

capable of IL-1b maturation. This includes enzymes that can

cleave IL-1b in the extracellular space, such as neutrophil-

derived proteases, or caspase-8, which can process IL-1b in a

cell-intrinsic fashion like caspase-1(Afonina et al., 2015; Maelfait

et al., 2008). To date, several pathways leading to caspase-8-

mediated IL-1b maturation have been described. One such

pathway is the activation of caspase-8 in the context of ripopto-

some formation that leads to IL-1b cleavage (Lawlor et al., 2015;

Vince et al., 2012). The ripoptosome is a caspase-8-activating

signaling hub that is formed by receptor-interacting serine/thre-

onine-protein kinase 1 (RIPK1) under certain conditions, where

it is able to recruit Fas-associated death domain (FADD) and

subsequently caspase-8. Here, a key checkpoint function has

been ascribed to the E3 ubiquitin ligases cellular inhibitor of

apoptosis 1 (cIAP1), cIAP2, and, under certain conditions,

XIAP (referred to in the following as IAPs). In the context of

Toll-like receptor- (TLR-) and tumor necrosis factor receptor

1- (TNFR1-) dependent signaling cascades, IAPs ubiquitinate,

among other targets, RIPK1, allowing it to engage in nuclear fac-

tor kB (NF-kB) activation and preventing it from forming a ripop-

tosome complex (Feoktistova et al., 2011; Tenev et al., 2011).

However, in the absence of IAPs, de-ubiquitinated RIPK1 initi-

ates the formation of a ripoptosome complex, which can act

independently of an additional upstream signal. Thus, treating

cells with compounds that deplete IAPs leads to the formation
of a caspase-8-activating ripoptosome complex. Using this

model system, it has been shown that TLR-primedmacrophages

cleave IL-1b in a caspase-8-dependent manner (Lawlor et al.,

2015; Vince et al., 2012). However, a physiological role for this

type of IL-1b maturation has not been identified to date.

RESULTS

The Vioprolide Family of Cyclic Peptolides Induces IL-1b
Release
To identify thus-far uncharacterized immunostimulatory com-

pounds, a library of 259 natural small molecules purified from

myxobacteria was screened for its capacity to induce IL-1b

release from a murine macrophage cell line (Surup et al., 2018).

This library was chosen because myxobacteria are known for

their structurally diverse secondary metabolites that have only

scarcely been explored for their biological activity (Herrmann

et al., 2017). Our analysis identified vioprolide A (Vio A) as an

inducer of IL-1b release. Vio A belongs to a class of cyclic pep-

tolides, the vioprolides (Figure S1A), isolated from the myxobac-

terium Cystobacter violaceus (Schummer et al., 1996). While

vioprolides are known to have antifungal properties and

demonstrate cytotoxicity in eukaryotic cells (Schummer et al.,

1996; Weissman and M€uller, 2010), their mode of action re-

mains unknown, and a role in IL-1b activation has not been

reported to date (Bollati-Fogolin and M€uller, 2008). To test the

IL-1b-inducing capacity of Vio A in primary cells, we stimulated

primary murine BMDMs (bone marrow-derived macrophages)

(Figure 1A) and human PBMCs (peripheral blood mononuclear

cells) (Figure 1B) with Vio A, while nigericin and double-stranded

DNA (dsDNA) were included as controls to stimulate the NLRP3

or the absent in melanoma 2 (AIM2) inflammasome, respectively.

Vio A triggered IL-1b release in both cell populations in a dose-

dependent manner, but to a lesser extent than nigericin or

dsDNA. The other known members of the vioprolide family, vio-

prolides B, C, and D (Figure S1), also induced IL-1b release, with

Vio A and Vio B being the most potent activators (Figure 1C). Of

note, as observed for nigericin, vioprolide treatment also re-

sulted in lactate dehydrogenase (LDH) release, which is indica-

tive of a lytic form of cell death (Figure 1D). To determine whether

stimulation with vioprolides resulted in the proteolytic activation

of IL-1b in addition to its release, the cellular supernatants and

lysates of vioprolide-treated wild-type (WT) BMDMs were

probed for cleaved caspase-1 and IL-1b via immunoblotting. In

line with the positive control nigericin, vioprolides A, B, C, and

D induced the release of fully mature IL-1b (17 kDa) and cas-

pase-1 (20 kDa) into the cellular supernatant (Figure 1E). Thus,

our data demonstrate that vioprolides are a family of cyclic

peptides that are capable of inducing caspase-1 and IL-1b

activation.

Vioprolides Induce IL-1b Release and Cell Death via
NLRP3-Dependent and -Independent Mechanisms
To elucidate the pathway of vioprolide-mediated IL-1b matura-

tion and LDH release, we stimulated WT BMDMs and cells defi-

cient for the inflammasome components NLRP3, ASC, and cas-

pase-1/11 with Vio A and Vio B, as well as with nigericin and

dsDNA. In WT macrophages, stimulation with Vio A and Vio B
Cell Reports 25, 2354–2368, November 27, 2018 2355
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Figure 1. The Vioprolide Family of Cyclic Peptolides Induces IL-1b Release

(A) Wild-type (WT) BMDMswere primed with LPS (200 ng/mL) for 4 hr and stimulated with indicated concentrations of Vio A (in mM), nigericin, and dsDNA for 8 hr.

(B) Human PBMCs primed with LPS (50 pg/mL) for 4 hr and followed by stimulation with different concentrations of Vio A (in mM) and nigericin for 6 hr.

(C–E) LPS-primedWT BMDMs treated with nigericin and 20 mMof Vio A, B, C, and D for 8 hr. Samples were analyzed for (C) IL-1b release via ELISA and tested for

(D) LDH activity in cellular supernatant and (E) immunoblot.

Data are depicted as mean + SEM of (A) four, (B) two (C and D) three or one representative blot of (E) three independent experiments. Sup, supernatant;

Lys, lysate.

See also Figure S1.
resulted in the dose-dependent release of cleaved IL-1b (Figures

2A and S2A), as well as LDH (Figures 2B and S2E). While viopro-

lide-mediated IL-1bmaturation and LDH release were largely un-

affected by NLRP3, ASC, or caspase-1/11 deficiency (Figures

2A, 2B, S2A–S2H, and S3A–S3D), caspase-1 maturation was

fully abrogated in NLRP3- and ASC-deficient BMDMs (Figures

S3B and S3C). The control stimuli nigericin and dsDNA acted

as expected in regard to their NLRP3, ASC, and/or caspase-1

dependence (Figure 2A). It should be noted that lytic cell death

and its surrogate marker LDH release upon NLRP3 stimulation

is caspase-1 dependent at early time points, but executed by

caspase-1-independent mechanisms in Casp1�/� cells at later

time points (Figures S3E–S3G) (Antonopoulos et al., 2015).

Moreover, we also studied the role of the pyroptosis effector

molecule GSDMD, which has been shown to mediate cell death

and IL-1b release downstream of inflammasome activation

(Kayagaki et al., 2015; Shi et al., 2015). As expected, BMDMs

deficient in GSDMD showed a marked delay in IL-1b and LDH

release after NLRP3 inflammasome stimulation (Figures 2C

and 2D), yet Vio A-dependent LDH release was unaffected by
2356 Cell Reports 25, 2354–2368, November 27, 2018
GSDMD deficiency. Furthermore, while Vio A stimulation re-

sulted in IL-1b and LDH release by different TLR ligands,

including lipopolysaccharide (LPS) (Figure 2E), Vio A-induced

LDH release occurred even in the absence of any TLR ligands

(Figure 2F). Thus, our data demonstrate that vioprolides activate

both NLRP3 inflammasome-dependent and -independent path-

ways. However, the maturation and release of IL-1b and the in-

duction of cell death are largely independent of inflammasome

components and GSDMD.

Vio A Triggers BAX- and BAK-Dependent Intrinsic
Apoptosis, Resulting in IL-1b and LDH Release
At this point, our results raised the following questions: which

caspase-1-independent cell death program is triggered by vio-

prolides, and how do vioprolides trigger the maturation and

release of IL-1b? At the same time, what mechanism results in

vioprolide-dependent activation of the NLRP3 inflammasome?

To address the first question, we went on to further characterize

the cell death induced by vioprolide exposure. To this end, we

performed a DNA laddering assay, which revealed that Vio A
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Figure 2. Vioprolides Induce IL-1b Release

and Cell Death via NLRP3-Dependent and

-Independent Mechanisms

(A and B) BMDM samples deficient in various in-

flammasome proteins were primed with LPS

(200 ng/mL) for 4 hr and followed by 20 mMof Vio A

and Vio B. Nigericin and dsDNA were used as

controls. Cellular supernatants were assessed by

(A) IL-1b ELISA and (B) LDH release after 8 hr.

(C and D) IL-1b (C) and LDH measurement (D) in

the cellular supernatants of LPS-primed WT and

Gsdmd�/� BMDMs stimulated with nigericin and

Vio A for the indicated time points.

(E and F) WT and Casp1/11�/� BMDMs were

primed with or without different TLR ligands for

4 hr (LPS: 200 ng/mL, Pam3CSK4: 2.5 mg/mL,

R848: 2 mg/mL). Priming was followed by stimu-

lation of Vio A and nigericin for 8 hr; cellular su-

pernatants were analyzed for (E) IL-1b via ELISA

and (F) LDH activity.

Error bars represent mean + SEM of (A and B) four,

(C and D) two, and (E and F) three independent

experiments. *p < 0.05, **p < 0.01, ns, not signifi-

cant. Either individual genotypes were compared

to the WT genotype or individual conditions were

compared to the respective unstimulated control.

See also Figures S2 and S3.
stimulation induced DNA fragmentation, a hallmark of apoptosis

(Figures 3A and S4A). Although LDH release is not considered

characteristic for apoptotic cell death, it has been shown that

apoptotic stimuli can also result in LDH release due to secondary

necrosis at late time points (England et al., 2014). Therefore, to

differentiate between apoptotic and lytic cell death, we per-

formed a time course for caspase-3 activation and LDH release

using the protein kinase inhibitor staurosporine (STS) as an

apoptosis-inducing control (England et al., 2014). Here, differ-

ences in caspase-3 activation and LDH release could be

observed. Whereas Vio A treatment resulted in early proteolytic
Cell Reports
processing of caspase-3 (120 min) (Fig-

ure 3B), LDH release took place at a later

time point (6 hr) (Figure 3C). Furthermore,

we also observed processing of the initi-

ator caspase-9 within 60 min of Vio A

treatment, which was in line with early

caspase-3 activation (Figure 3B). As ex-

pected, STS induced caspase-9 and

caspase-3 activation, as well as DNA

laddering (Figures 3A and 3B). Moreover,

as previously shown, STS induced LDH

release at later time points (6 and 10 hr)

(Figures 3C and S6D) (England et al.,

2014; Shimada et al., 2012). Caspase-9

represents the initiator caspase involved

in intrinsic apoptosis, which is activated

by cytosolic cytochrome c released from

mitochondria after mitochondrial outer

membrane permeabilization (MOMP) (El-

more, 2007). To study its potential involve-
ment, WT BMDMs were stimulated with Vio A, and cytosolic frac-

tions were isolated at various time points. Cytosolic cytochrome c

was detected upon exposure to Vio A within minutes after treat-

ment and was followed by the activation of caspase-9 and

caspase-3 (Figure 3B; data not shown), strongly suggesting that

Vio A treatment leads to the induction of MOMP.

MOMP is controlled by anti-apoptotic B cell lymphoma 2

(BCL2) protein family members that inhibit the oligomerization

of pro-apoptotic members BAX and BAK, which in turn induces

the release of pro-apoptotic factors such as cytochrome c (Youle

and Strasser, 2008). Thus, to investigate the role of the BCL2
25, 2354–2368, November 27, 2018 2357
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Figure 3. Vio A Triggers BAX- and BAK-Dependent Intrinsic Apoptosis, Resulting in IL-1b and LDH Release

(A) WT BMDMs were stimulated with Vio A and B for 6 hr and analyzed for DNA laddering. STS and LPS + nigericin were used as positive and negative controls,

respectively. These data are representative of three independent experiments.

(B and C) WT BMDMs were treated with Vio A and STS, and samples were probed for (B) immunoblot and (C) LDH activity at indicated time points. Data are

depicted as (B) one representative blot or (C) means + SEMs of three independent experiments.

(D–F) LPS primed WT and Bax�/�/Bak1�/� BMDMs treated with Vio A and STS for the indicated time points. Samples were taken for (D) immunoblot at the

indicated time points. In addition, cellular supernatants were analyzed for (E) LDH activity and (F) IL-1b via ELISA. Data are shown as (D) one representative blot or

(E and F) mean + SEM of three independent experiments. *Non-specific cross-reactivity of the antibody. *p < 0.05, **p < 0.01, ns, not significant.

See also Figure S4.
protein family in Vio A-induced cell death, we used BAX- and

BAK-deficient BMDMs. In comparison to WT cells, Bax�/�/
Bak1�/� cells demonstrated a marked delay in caspase-9 and

caspase-3 activation after Vio A treatment (Figure 3D). Moreover,
2358 Cell Reports 25, 2354–2368, November 27, 2018
the deficiency of BAX and BAK both significantly delayed and

reduced Vio A-induced LDH and IL-1b release (Figures 3E and

3F). However, compared to WT cells, Bax�/�/Bak1�/� cells dis-

played an initial reduction in LDH release 4 hr after STS treatment



but not at later time points. Of note, in line with previous work, the

deficiency of BAX and BAK had no impact on STS or nigericin-

induced IL-1b maturation (Allam et al., 2014) (Figures 3F and

S4B). Analogous results were observed when we studiedmacro-

phages that ectopically overexpress Bcl2 (OXP-BCL2) (Knittel

et al., 2016). Compared to WT cells, OXP-BCL2 cells showed a

marked decrease in LDH and IL-1b release when treated with

vioprolides, while IL-1b and LDH release following nigericin stim-

ulation remained unaffected (Figures S4C and S4D). This was

paralleled by a strong decrease in vioprolide-mediated intrinsic

apoptosis induction (caspase-9 and caspase-3 activation) in

OXP-BCL2 cells (Figure S4D). As an additional control, we

used the second mitochondria-derived activator of caspase

(Smac) mimetic birinapant, which can trigger largely inflamma-

some-independent IL-1b maturation by IAP depletion (Lawlor

et al., 2015; Vince et al., 2012) (Figures S4E and S4F). As ex-

pected, birinapant treatment readily induced LDH and IL-1b

release, yet this response was only slightly affected by the over-

expression of Bcl2. In summary, these results demonstrate that

Vio A induces BAX- and BAK-dependent intrinsic apoptosis,

leading to both IL-1b maturation and LDH release.

Vioprolides Act as Translational Inhibitors
Next, we wanted to explore how vioprolides trigger BAX/BAK

activation upstream of MOMP. Pro-apoptotic Bcl-2 homology

(BH) domain 3-only proteins induce MOMP by directly activating

pro-apoptotic BAX/BAK and/or by antagonizing anti-apoptotic

BCL2 proteins (Youle and Strasser, 2008). In macrophages, it

has been shown that the depletion of the anti-apoptotic protein

myeloid cell leukemia sequence 1 (MCL-1) plays a pivotal role in

intrinsic apoptosis induction. However, MCL-1 depletion alone

is not sufficient, and at least one additional signal is required to

trigger MOMP in macrophages (Dzhagalov et al., 2007). Because

intrinsic apoptosis was observed with Vio A treatment, WT

BMDMswere tested for MCL-1 expression at the mRNA and pro-

tein levels after Vio A treatment (Figure 4A). MCL-1 is a short-lived

protein that requires constant synthesis to maintain a stable

expression level. Consequently, cycloheximide (CHX) and other

translational inhibitors quickly decrease MCL-1 levels (Adams

and Cooper, 2007). Although CHX treatment did not change

MCL-1 transcript levels, Vio A treatment led to a marked increase

in MCL-1 mRNA. Nonetheless, both CHX and Vio A treatment re-

sulted in a substantial decrease in MCL-1 protein (Figure 4A),

indicating that Vio A induces MCL-1 protein degradation at the

post-transcriptional level. To investigate whether Vio A acts as a

translational inhibitor in vitro, we used a eukaryotic cell-free trans-

lational system with mRNA encoding human hemoglobin subunit

beta (HBB) (Matheisl et al., 2015). Cell-free translational extracts

were incubated with Vio A and CHX for 40 min (Figure 4B) or

DMSOas a control. In linewith its ability to decreaseMCL-1 levels

in BMDMs, Vio A inhibited the translation of HBB in the cell-free

system. The half-maximum inhibitory concentration (IC50) was

112 nM for Vio A, while CHX displayed an IC50 of 945 nM.

Having established intrinsic apoptosis as the upstream acti-

vating pathway of Vio A-dependent IL-1b and LDH release, we

investigated whether intrinsic apoptosis in general could induce

these effects. To this end, LPS-primed BMDMs were cultured in

the presence and absence of CHX to deplete MCL-1 and treated
with the BCL2/BCL-XL (B cell lymphoma-extra large) inhibitor

ABT-737 (Oltersdorf et al., 2005) (Figure 4C). As expected,

ABT-737 treatment alone was not sufficient for the induction of

intrinsic apoptosis, and no activation of caspase-3 or caspase-

9 was observed. Thus, ABT-737 treatment alone also did not

induce the maturation of IL-1b or caspase-1. However, when

combined with CHX to induce MCL-1 depletion, ABT-737 could

trigger intrinsic apoptosis, as well as the maturation of IL-1b and

caspase-1. Conversely, in line with our previous data, CHX treat-

ment was not required for Vio A-dependent IL-1bmaturation and

caspase-1 activation (Figure 4C). Similar to Vio A, CHX + ABT-

737-induced IL-1b was largely independent of NLRP3 (Fig-

ure S5A). Furthermore, the proteasomal inhibitor MG-132 could

slightly restoreMCL-1 levels in Vio A-treated cells, which is in line

with previous reports of proteasomal degradation of MCL-1

(Adams and Cooper, 2007). Stabilizing MCL-1 levels via

MG-132 delayed the kinetics of Vio A-dependent apoptosis

and IL-1b maturation (Figure S5B). These data indicate that

vioprolides act as translational inhibitors, thus decreasing the

protein levels of the crucial pro-survival BCL2 family member

MCL-1. At the same time, vioprolides appear to confer an addi-

tional pro-apoptotic signal upstream of BAX/BAK. The combina-

tion of both functionalities then triggers MOMP in macrophages

(Figure 4D). Accordingly, these events can be mimicked by the

combination of a translational inhibitor (CHX) that depletes

MCL-1 and a BCL2/BCL-XL antagonizing compound.

Vioprolides Inhibit Pro-survival BCL2
To identify the second trigger activated by vioprolides, we used

the previously described mito-priming method (Lopez et al.,

2016). In brief, in this method, seminal vesicle epithelial cells

(SVECs) are rendered ‘‘addicted’’ to specific BCL2 proteins via

the constitutive co-expression of an anti-apoptotic and a pro-

apoptotic protein. This configuration makes them dependent

on the specific BCL2 protein for their survival. We treated

BCL2, BCL-XL, and MCL-1 mito-primed cell lines with viopro-

lides and tracked their survival in a time course experiment via

a SYTOX green exclusion assay; BCL2-, BCL-XL-, and MCL-1-

specific inhibitors served as specificity controls, whereas the

combined treatment of ABT-737 + actinomycin D was used as

a pro-apoptotic stimulus that was active across all three cell

lines. Vioprolides specifically resulted in the death of BCL2-

dependent cells, while BCL-XL-dependent cells were completely

unaffected by vioprolide treatment (Figures 5A, 5B, S5C, S5D,

and S5F). Moreover, vioprolide treatment also resulted in the

death of MCL-1-dependent cells (Figures 5C, S5E, and S5F).

Taken together with our data on BCL2 overexpression (Figures

S4C and S4D) and MCL-1 depletion (Figures 4A and 4C), these

findings confirm that vioprolides inhibit MCL-1 and BCL2,

providing two distinct triggers to initiate BAX/BAK-dependent

MOMP (Figure S5G).

Caspase-8 Is the Main Protease Catalyzing IL-1b
Maturation during Intrinsic Apoptosis
While our results thus far strongly suggested that intrinsic

apoptotic machinery mediates the cleavage of IL-1b indepen-

dently of caspase-1, the respective protease remained elusive.

In addition to cytochrome c release, MOMP triggers the release
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A B

C

D

Figure 4. Vioprolides Act as Translational Inhibitors

(A) WT BMDMs treated with or without LPS for 4 hr and followed by stimulation with Vio A and cycloheximide (CHX) for the indicated time points. Samples were

analyzed for Mcl-1 expression at mRNA level (top) and protein level (bottom).

(B) Immunoblot of cell-free translational assay for human HBB mRNA in the presence and absence of the indicated concentrations of Vio A and CHX for 40 min.

DMSO control was used for maximum translation, while translational extract without mRNA was used as negative control and for background normalization.

For IC50 determination, curve fitting was performed with non-linear regression with log(inhibitor) versus normalized response parameter logistic. Data are

mean + SEM or one representative blot of three independent experiments.

(C) WT BMDMswere primed with LPS for 4 hr and stimulated with nigericin, birinapant, Vio A, and ABT-737 in the presence and absence of CHX. CHXwas added

in the last 45 min of priming. Samples were taken after 8 hr for LDH release (top) and immunoblot (bottom).

(D) Schematic representation of Vio A-induced MOMP.

(A and C) One representative blot of three independent experiment. Error bars represent mean + SEM of three independent experiments. *p < 0.05, **p < 0.01, ns,

not significant.

See also Figure S5.
of other pro-apoptotic factors such as SMAC/DIABLO (direct in-

hibitor of apoptosis-binding protein with low isoelectric point) and

mitochondrial serine protease HTRA2 (HtrA2), which antagonize

IAP proteins (Elmore, 2007). In the context of MOMP, it is well

established that IAP depletion can amplify apoptotic signaling

cascades. However, using synthetic compounds, it has also

been shown that depleting IAPs can trigger ripoptosome-depen-

dent caspase-8 activation, leading to direct IL-1b maturation

(Lawlor et al., 2015; Vince et al., 2012).Whether the latter pathway

is operational in the context of MOMP has not yet been ad-
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dressed. In the light of these considerations, we investigated

whether Vio A triggers the release of pro-apoptotic factors from

mitochondria that antagonize IAPs. To this end, unprimed WT

BMDMswere treatedwith Vio A, and cytosolic fractionswere iso-

lated at different time points. Cytochrome c was detected in the

cytosol within 15 min of Vio A treatment, and its levels increased

further with time (Figure 6A). In addition to cytochrome c, the pro-

apoptotic factor SMACwas also detected in the cytosolic fraction

2 hr after stimulation. Its release correlated with the depletion of

all three IAPs tested, predominantly cIAP2 (Figure 6A). Next, we
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Figure 5. BCL2 Inhibition Confers Second Trigger for BAX/BAK-Dependent MOMP

(A–C) BCL2- (A), BCL-XL- (B), andMCL-1- (C) dependent SVEC cells were treated with the indicated stimuli for the indicated time points. Cell death was analyzed

by SYTOX green+ cells/mm2 and normalized to the initial confluency of respective wells. Data are representative of three independent experiments.

See also Figure S5.
probed for the activation of caspase-8 in the supernatants of Vio

A-treated samples, and depletion of all three IAPs correlated with

an increase in caspase-8 activation. Moreover, in line with the

aforementioned concept of IAP depletion and subsequent cas-

pase-8 activation downstream of MOMP, BAX/BAK deficiency

markedly delayed the depletion of IAPs and caspase-8 activation.

Of note, MCL-1 degradation was independent of BAX and BAK,

thus positioning it upstream of MOMP (Figure S6A). Similar ob-

servations were made in OXP-BCL2 macrophages. Overexpres-

sion of BCL2 prevented degradation of all three tested IAPs, and

a reduced activation of caspase-8 after vioprolide treatment was

observed (Figure S6B). As previously reported, STS treatment

also resulted in the activation of caspase-8 (Figure 6A) (Antono-

poulos et al., 2013). However, the mechanism of STS-dependent

caspase-8 activation differed from Vio A in that it occurred inde-

pendently of BAX and BAK, thereby excluding MOMP as the

driving force (Figure S6A).

To determine whether caspase-8 is directly involved in Vio A-

mediated IL-1b processing, we studied IL-1b maturation in

Casp8�/�/Ripk3�/� andRipk3�/�BMDMs. Because genetic defi-

ciency of caspase-8 alone is lethal inmice due to the engagement

of the necroptotic pathway, caspase-8 deficiency can only be

investigated in an Ripk3- or Mlkl-deficient background (Dillon

et al., 2014; Kaiser et al., 2011; Oberst et al., 2011). As expected,

treatment with the Smac mimetic birinapant resulted in mature

IL-1b and LDH release from WT cells, which was completely

dependent on ripoptosome-mediated caspase-8 activation (Fig-

ure 6B) (Lawlor et al., 2015). In contrast, nigericin could still induce
IL-1b maturation in Casp8�/�/Ripk3�/� cells, although IL-1b and

LDH release were slightly reduced (Figure 6B). However, it should

be noted that deficiency in caspase-8 also leads to defects in

NF-kB signaling (Allam et al., 2014), which we could only partially

compensate for with higher doses of LPS (Figure S6C). In

contrast, Vio A-mediated IL-1b release was completely depen-

dent on caspase-8, and LDH release was substantially reduced

compared to WT cells. Because caspase-8 can initiate intrinsic

apoptosis via BH3-interacting domain death agonist (BID)

(Elmore, 2007), we additionally studied BID cleavage and the

activation of caspase-9 and caspase-3 after Vio A stimulation in

Casp8�/�/Ripk3�/� and Ripk3�/� BMDMs (Figure 6C). However,

Casp8�/�/Ripk3�/� still showed activation of intrinsic apoptosis

after Vio A treatment, demonstrating that vioprolides induce

intrinsic apoptosis independently and thus upstream of cas-

pase-8 (Figures 3B and 6C). These results were also in line with

the fact that caspase-3 activation preceded the activation of cas-

pase-8 in Vio A-treated cells (Figure S6D). Because we had

observed IAP depletion before caspase-8 activation (Figure 6A),

we additionally determined levels of cIAP1, cIAP2, and XIAP in

Casp8�/�/Ripk3�/�. Vio A treatment resulted in the depletion of

all three IAPs independently of caspase-8 (Figure 6C). In contrast,

the Smac mimetic birinapant induced the degradation of cIAP2

and XIAP in a caspase-8-dependent manner (Figure 6C). Of

note, treatment of CHX + ABT-737 and Vio A showed a similar

pattern of IL-1b and LDH release. However, the kinetics of

IL-1b and LDH release were faster for CHX + ABT-737 as

compared to Vio A (Figures S6E and S6F).
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Figure 6. Caspase-8 Is the Main Protease in IL-1b Maturation during Intrinsic Apoptosis

(A) Immunoblot of cytosolic fractions of unprimed WT BMDMs treated with Vio A for different time points. STS (4 hr) was used as a control for cytochrome

c release.

(B and C)WT,Casp8�/�/Ripk3�/� and Ripk3�/�BMDMs primed with 1000 ng/mL LPS for 4 hr followed by stimulation with nigericin, birinapant, and Vio A for 8 hr.

Samples were assessed for (B) LDH activity (top) and probed for (B and C) immunoblot.

(D) Schematic representation of Vio A and birinapant signaling pathway, in which the thick line represents strong signal, while the thin line represents weak signal.

Data are depicted as (A–C) one representative blot or (B) mean + SEM of two independent experiments. *Non-specific cross-reactivity of the antibody.

See also Figure S6.
In summary, these results indicated that vioprolide-triggered

MOMP results in the release of pro-apoptotic factors, which in

turn deplete IAPs. This leads to the activation of caspase-8

that directly matures IL-1b. While birinapant-mediated cas-

pase-8 activation bypasses the need for MOMP induction, it still

requires MOMP to fully deplete IAPs, creating a feedback loop

for maximal caspase-8 activation (Figure 6D).

Intrinsic Apoptosis Results in Ripoptosome-Caspase-8-
Dependent and -Independent NLRP3-Caspase-1
Activation
The delay in intrinsic apoptosis also correlated with a delay in Vio

A-dependent caspase-1 activation, indicating that NLRP3-in-

flammasome activation in response to Vio A is secondary to
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intrinsic apoptosis (Figure 3D). Moreover, it has been shown

that Smac mimetics result in ripoptosome-caspase-8-mediated

NLRP3-inflammasome activation (Lawlor et al., 2015). Nonethe-

less, how caspase-8 activates NLRP3-caspase-1 in this context

remains unknown. To determine which signaling step of the

MOMP-ripoptosome-caspase-8 cascade triggers NLRP3, we

studied NLRP3 activation in Casp8�/�/Ripk3�/� and Ripk3�/�

macrophages (Figures 7A and 7B). Cells were primed with LPS

and stimulated with nigericin, Vio A, and birinapant in the pres-

ence or absence of MCC950, a specific NLRP3 inhibitor (Coll

et al., 2015). As expected, nigericin-mediated caspase-1 activa-

tion was completely abrogated in the presence of MCC950 in all

of the genotypes (Figures 7A and 7B) (Coll et al., 2015). In addi-

tion to IL-1b maturation, MCC950 inhibited LDH release after



C

Sup:

Lys:

Sup:

Lys:

Lys:

Sup:

Lys:

Lys:

Lys:

Cleaved caspase-1 (p20)

Cleaved caspase-8 (p18)

Procaspase-1 (45 kDa)

Cleaved caspase-8 (p18)

*

Cleaved caspase-9 (p39)

Procaspase-9 (p49)

Cleaved caspase-3 (p17)

Procaspase-8 (57 kDa)

Procaspase-3 (35 kDa)

Beta actin

* *

*

A B
Con

tro
l

Nige
ric

in

M
CC95

0/
Nig

Vio 
A

M
CC95

0/
Vio 

A

Birin
ap

M
CC95

0/
Birin

ap

Con
tro

l

Nige
ric

in

M
CC95

0/
Nig

Vio 
A

M
CC95

0/
Vio 

A

Birin
ap

M
CC95

0/
Birin

ap

WT Casp8-/-/Ripk3-/- WT Ripk3-/-

Cleaved IL-1β (17 kDa)

Cleaved caspase-1 (p20)

Cleaved caspase-8 (p18)

Cleaved caspase-8 (p43)

Procaspase-1 (45 kDa)

Cleaved caspase-8 (p18)

Beta actin

Pro-IL-1β (35 kDa)

Sup:

Lys:

Sup:

Lys:

Lys:

Sup:

Lys:

Procaspase-8 (57 kDa)

Nigericin

Con
tro

l

0 
m

M

20
 m

M

40
 m

M

80
 m

M

0 
m

M

20
 m

M

40
 m

M

80
 m

M

0 
m

M

20
 m

M

40
 m

M

80
 m

M

Birinapant Vio A

Extracellular K+ conc.

*

D

E

Con
tro

l
Nig

Nig/
M

CC95
0

Vio 
A

Vio 
A/M

CC95
0

0

20

40

60

80

100

LD
H

 re
le

as
e 

(%
)

**

ns

Con
tro

l
Nig

Nig/
M

CC95
0

Vio 
A

Vio 
A/M

CC95
0

0

6

12

18

24

**

ns

 IL
-1

 (n
g/

m
l)

β
H

um
an

Con
tro

l

Nig

Nig/
M

CC95
0
Vio 

A

Vio 
A/M

CC95
0

Sup:
Lys:
Sup:

Lys:

Lys:

Sup:

Lys:

Lys:

Sup:

Lys:

Cleaved caspase-1 (p20)

Cleaved caspase-8 (p18)

Cleaved caspase-8 (p43/p41)

Procaspase-1 (45 kDa)

Cleaved caspase-8 (p18)

Beta actin

Procaspase-8 (55 kDa)

Procaspase-3 (35 kDa)

Cleaved caspase-3 (p19/p17)
Cleaved caspase-3 (p19/p17)

Long exposure

Cleaved caspase-8 (p43/p41)

Cleaved caspase-8 (p18)

Procaspase-8 (55 kDa)

Short exposure

*

Sup

Lys

Sup

Lys

Lys

Sup

Lys

Lys

Lys

Con
tro

l

Nige
ric

in

M
CC95

0/
Nig

Vio 
A

M
CC95

0/
Vio 

A

Birin
ap

M
CC95

0/
Birin

ap

Con
tro

l

Nige
ric

in

M
CC95

0/
Nig

Vio 
A

M
CC95

0/
Vio 

A

Birin
ap

M
CC95

0/
Birin

ap

Figure 7. Intrinsic Apoptosis Results in Ripoptosome-Caspase-8-Dependent and -Independent NLRP3-Caspase-1 Activation

(A and B) Immunoblot of (A) WT and Casp8�/�/Ripk3�/� or (B) WT and Ripk3�/� BMDMs primed with LPS (1,000 ng/mL) for 4 hr and stimulated with nigericin,

birinapant, and Vio A in the presence or absence of MCC950 (added in the last hour of priming).

(C) WT BMDMs were primed with LPS (200 ng/mL) for 4 hr, followed by the addition of indicated concentrations of K+ in the medium in the last 15 min of priming.

Samples were stimulated with nigericin, birinapant, and Vio A (20 mM) and analyzed by immunoblot after 8 hr.

(D and E) Primary human monocytes were primed with Pam3CSK4 for 4 hr and followed by stimulation of nigericin and Vio A in the absence and presence of

MCC950. MCC950 was added in the last hour of priming. After 6 hr, samples were analyzed for (D) immunoblot and (E) IL-1b and LDH release.

Data are representative of (A and B) two, (C and D) three and (E) four independent experiments/donors. *Non-specific cross-reactivity of the antibody.

See also Figure S7.
nigericin treatment (Figures S7A and S7B). In line with previous

work (Lawlor et al., 2015), the Smac mimetic birinapant resulted

in NLRP3-dependent caspase-1 processing that occurred

downstream of ripoptosome/caspase-8-activation, and Ripk3

deficiency on its own led to reduced caspase-8 and caspase-1

activation. However, birinapant-mediated LDH release pro-

ceeded independently of NLRP3 (Figures S7A and S7B). Simi-
larly, Vio A-dependent caspase-1 activation was fully NLRP3

dependent. While the majority of this inflammasome response

occurred downstream of ripoptosome/caspase-8, we also

observed a small-proportion caspase-8-independent NLRP3

activation (Figure 7A).

To further characterize the observed phenomenon of cas-

pase-8-dependent NLRP3 activation, we used a hyperkalemic
Cell Reports 25, 2354–2368, November 27, 2018 2363



extracellular buffer, which inhibits NLRP3 inflammasome activa-

tion in the context of membrane perturbation (Franchi et al.,

2007; Pétrilli et al., 2007). In keeping with previously published

studies, elevated potassium levels inhibited caspase-1 matura-

tion and IL-1b release downstream of the NLRP3 activator niger-

icin (Figure 7C). At the same time, hyperkalemic extracellular

conditions completely abrogated caspase-1 activation upon

birinapant and Vio A treatment. In contrast, increased extracel-

lular potassium levels had no impact on caspase-8 processing

and only a slight effect on IL-1b release after birinapant and

Vio A stimulation. Next, to determine the ability of Vio A to induce

MOMP in other cell types, we usedmurine embryonic fibroblasts

(MEFs). Similar to macrophages, MEFs also require two triggers

for the induction of MOMP (White et al., 2014). In line with our

previous results, Vio A also induced MOMP in MEFs cells, albeit

with somewhat delayed kinetics, similar to the results obtained in

SVECs (Figure S7C).

Furthermore, to assess the bioactivity of Vio A in human cells

and compare the observations with the murine system, primary

monocytes were isolated from human PBMCs. To circumvent

alternative inflammasome activation (Gaidt et al., 2016), cells

were primed with Pam3CSK4 and stimulated with nigericin and

Vio A in the absence or presence of the NLRP3 inhibitor

(MCC950) (Figures 7D and 7E). As expected, nigericin led to

IL-1b and LDH secretion (Gaidt et al., 2017) (Figure 7E), which

correlated with the release of cleaved caspase-1 into the super-

natant (Figure 7D). Moreover, this release of mature IL-1b and

caspase-1 and nigericin-induced LDH release was completely

blocked by the addition of MCC950 (Figure 7E). Similar to

BMDMs, Vio A also resulted in IL-1b and LDH release in human

monocytes. However, unlike nigericin, IL-1b and LDH release

by Vio A was largely independent of NLRP3 inhibition, and this

IL-1b release correlated with caspase-8 activation (Figure 7D).

Furthermore, MCC950 blocked the cleavage of Vio A-induced

caspase-1 in monocytes, while the activity of caspase-8 and

caspase-3 was largely unaffected (Figure 7D). In line with our

findings in murine cells, this inhibition of caspase-1 activation

also had no substantial effect on IL-1b release (Figures 7A

and 7D).

In summary, our data indicate that vioprolide-induced ripopto-

some/caspase-8 activation constitutes the prime mechanism of

IL-1b maturation in the context of MOMP. Moreover, in addition

to this functionality, caspase-8 triggers a lytic cell death that re-

sults in K+ efflux and thereby secondary activation of the NLRP3

inflammasome. However, this mechanism has only a subordi-

nate role in the observed IL-1b maturation (Figure S7D).

DISCUSSION

Here, we formally define a signaling route that connects intrinsic

apoptosis to the activation of IL-1b, a gatekeeper cytokine of

inflammation. Validating hits from a small molecule screen

aimed at identifying previously uncharacterized regulators of in-

flammasome activation, we identified vioprolides as a class of

compounds that can trigger IL-1b maturation in macrophages.

This functionality turned out to be largely independent of inflam-

masome activation. Instead, vioprolide-dependent IL-1b matu-

ration was found to be connected to its capacity to trigger
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intrinsic apoptosis. As such, vioprolides initiate MOMP in a

BAX/BAK-dependent manner via two distinct functionalities:

on the one hand, they act as translation inhibitors, which result

in a decrease in MCL-1 levels, a pivotal pro-survival BCL2 family

protein; on the other hand, they confer a second signal through

BCL2 inhibition to initiate BAX/BAK-dependent MOMP. In

keeping with this mode of action, we could mimic all viopro-

lide-dependent effects by treating macrophages with a combi-

nation of a translational inhibitor to decrease MCL-1 levels

and the compound ABT-737 to trigger BAX/BAK activation.

While the induction of MOMP results in the activation of intrinsic

apoptosis via caspase-9, it also initiates in IAP depletion.

Consequently, depletion of IAPs leads to a caspase-8-contain-

ing ripoptosome complex that directly matures IL-1b. Cas-

pase-8 activity also amplifies intrinsic apoptosis, most probably

via BID cleavage. Of note, at later time points, vioprolides also

induced cell death and IL-1b release independently of NLRP3

in Bax�/�/Bak1�/� cells (data not shown). Nevertheless, this

BAX/BAK-independent cell death also resulted in IAP depletion

and subsequent caspase-8-dependent IL-1b maturation. As a

consequence of these processes, plasma membrane integrity

is breached, additionally resulting in caspase-8 dependent

and -independent K+ efflux, leading to NLRP3 activation. How-

ever, it should be noted that under these conditions, NLRP3

activity only plays a minor role in IL-1b maturation and cell

death. In summary, using genetic and biochemical tools, we

formally establish MOMP as a pro-inflammatory process in

macrophages, with the ripoptosome complex functioning as

its central molecular switch.

The Inflammasome Plays a Subordinate Role in MOMP-
Triggered Inflammation
While previous studies have implied mitochondrial perturbation

in the context of inflammasome-driven IL-1b maturation, these

reports established a connection between classical NLRP3 stim-

uli and MOMP downstream of K+ efflux (Iyer et al., 2013; Shi-

mada et al., 2012). Using genetic loss-of-functions approaches,

we can clearly show that MOMP is dispensable for this route of

NLRP3 activation. Nevertheless, dissecting intrinsic apoptosis

induction upstream of MOMP, we can establish MOMP as a

distinctive signal that leads to the release of bioactive IL-1b,

although in a different context. In fact, in this response pathway

it is specifically the activity of the ripoptosome/caspase-8 com-

plex and not of the NLRP3 inflammasome that governs IL-1b

maturation. This is intriguing in that NLRP3 activity is tightly con-

nected to cell damage, sensing K+ efflux as a proxy ofmembrane

integrity (Gaidt and Hornung, 2018). We also observe K+ efflux-

dependent NLRP3 inflammasome activation as a consequence

of MOMP, but this is a late event that is governed by the loss

of membrane integrity downstream of apoptotic caspase activa-

tion (McCarthy and Cotter, 1997). In agreement with this late

engagement of the inflammasome pathway, GSDMD deficiency

could not rescue the loss of membrane integrity that was

observed downstream of MOMP. Given that the kinetics of in-

flammasome activation normally supersede apoptotic signaling

cascades in regard to determining the cell fate, these results un-

derscore the unique functionality of apoptosis in maintaining

membrane integrity.



Intrinsic Apoptosis Is Not a Silent Cell Death Program in
Myeloid Cells
In light of the important functions of apoptosis during develop-

ment and tissue homeostasis, this programmed cell death has

been long considered to be immunologically silent. This is

achieved by complex communication between apoptotic cells

and surrounding phagocytes that leads to rapid uptake and

clearance of the apoptotic content. During this process, the

plasma membrane is considered to be intact, enabling seques-

tration of putative DAMP molecules within apoptotic bodies to

prevent inflammation (Poon et al., 2014). In fact, apoptotic path-

ways display even anti-inflammatory (inflammation-suppressive)

features: efferocytosis is known to induce an anti-inflammatory

state in the respective phagocyte (Poon et al., 2014), whereas

the apoptotic death actively avoids the initiation of cell-intrinsic

pro-inflammatory program (e.g., NF-kB, cGAS-STING [stimu-

lator of interferon genes protein]) activation during perturbed

mitochondrial integrity (Giampazolias et al., 2017; Rongvaux

et al., 2014; White et al., 2014), or NF-kB activation by several

death ligands, including TNF-related apoptosis-inducing ligand

(TRAIL), FAS, or TNF (Park et al., 2005).

Nonetheless, a number of reports have indicated apoptosis as

a potent mediator of inflammation in in vitro as well as in vivo set-

tings (Bossaller et al., 2012; Faouzi et al., 2001). Although the

detailed molecular mechanisms of apoptosis-mediated inflam-

mation have remained elusive, the present study provides

conclusive evidence that intrinsic apoptosis triggers pro-inflam-

matory signaling through the maturation of IL-1b. Although

initially guided by the characterization of vioprolides, which can

trigger intrinsic apoptosis in macrophages via a 2-fold function-

ality, the inflammatory consequences of vioprolide-mediated

apoptosis are generally applicable to apoptotic cell death pro-

grams. As such, treating macrophages with cycloheximide and

ABT-737 resulted in the same response pattern. Furthermore,

it is presumable that cytokine release is not the only pro-inflam-

matory aspect of apoptotic cell death. It has been shown that

other cell types, such as epithelial cells or keratinocytes, are

capable of ripoptosome formation (Feoktistova et al., 2011;

Tenev et al., 2011). Given that these cells do not express IL-1b,

it will be of interest to determine whether and how the MOMP-

apoptotic factors-IAP depletion-ripotosome-caspase-8 pathway

triggers inflammation here.

The Ripoptosome Functions as an Innate Sensor
IL-1bmaturation by inflammasomes is an important aspect of the

antimicrobial immune defense, with inflammasome receptors

serving as ‘‘non-self-recognition units.’’ While certain inflamma-

some receptors do not participate in direct pattern recognition,

their domain architecture and signaling cascades are shared

with bona fide pattern recognition receptors (PRRs). An intriguing

finding of our work is that there is no PRR or PRR-like molecule

required for IL-1b maturation during intrinsic apoptosis. Instead,

it is the ripoptosome complex that functions as an indirect sensor

of organelle integrity (MOMP), with IAP depletion as its activating

signal. Of note, IAPdepletion coincidingwith caspase-8 activation

was not only seen for the early BAX/BAK-dependent pathway of

vioprolide-dependent IL-1b maturation but also observed for the

late, BAX/BAK-independent pathway. These observations further
strengthen the role of the ripoptosome/caspase-8 complex in

damage sensing. This mode of action is in keeping with the

concept of effector-triggered immunity (ETI), inwhich cells identify

pathogen-driven disturbances rather than pathogen-derived mo-

lecular patterns (Stuart et al., 2013). From the host perspective,

this mode of recognition bears the advantage of being indepen-

dent of a specific microbial pattern, which may evade recognition

under selection pressure. In this context, it is intriguing that IAP

molecules are involved in two distinct signaling capacities, both

serving the induction of pro-inflammatory responses. On the one

hand, IAP molecules play crucial roles in propagating pro-inflam-

matory signal transduction cascades downstream of PRR and

cytokine receptors (Darding and Meier, 2012). On the other

hand, their presence is critically required to prevent the formation

of a ripoptosome/caspase-8 complex that can mature the highly

pro-inflammatory cytokine IL-1b. These characteristics enable

IAPmolecules to serve as the rheostat of two independent pro-in-

flammatory signaling cascades.

While our study does not formally establish the ripoptosome

as a pathogen-driven ETI sensor, it is noteworthy that ripopto-

some-dependent ETI seems not to be limited to MOMP-medi-

ated activation. To this end, the Yersinia pestis effector YopJ

has been reported to induce caspase-8-dependent IL-1b matu-

ration in a BAX/BAK-independent fashion (Weng et al., 2014;

Zheng et al., 2012). Formally establishing the ripoptosome as

an ETI sensor under these pathogenic settings could provide

further insights into IL-1b maturation pathways and ETI in the

mammalian system in general.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

BAX Cell Signaling Technology Cat#2772

BAK (Polyclonal rabbit) BD Biosciences Cat#556396

BCL2 (Purified mouse) Clone 7/Bcl-2 BD Biosciences Cat#610539

Beta actin antibody (C4) Santa Cruz Biotechnology Cat#Sc-47778

BID (Human/Mouse) R&D systems Cat#AF860

Caspase-1 (p20) (human), mAb (Bally-1) Adipogen International Cat#AG-20B-0048-C100

Caspase-1 (p20) (mouse), mAb (Casper-1) Adipogen International Cat#AG-20B-0042-C100

Caspase-3 Cell Signaling Technology Cat#9662

Caspase-8 (Asp 387) (Cleaved-Mouse specific) Cell Signaling Technology Cat#9429

Caspase-8 (Full length-Mouse specific) Cell Signaling Technology Cat#4927

Caspase-8 (human) monoclonal antibody (12F5) Enzo Life Sciences Cat#ALX-804-242-C100

Caspase-9 (Mouse specific) Cell Signaling Technology Cat#9504

cIAP1 monoclonal antibody (1E1-1-10) Enzo Life Sciences Cat#ALX-803-335-C100

cIAP2 Merck Millipore Cat#AB3615

COXIV Cell Signaling Technology Cat#4844

Cytochrome C Santa Cruz Biotechnology Cat#Sc-7159

donkey anti-goat IgG-HRP Santa Cruz Biotechnology Cat#sc-2020

goat anti-mouse IgG-HRP Santa Cruz Biotechnology Cat#sc-2005

goat anti-rabbit IgG-HRP Santa Cruz Biotechnology Cat#sc-2004

goat anti-rat IgG-HRP Santa Cruz Biotechnology Cat#sc-2032

HA-antibody (Produced in Rabbit) Sigma Aldrich Cat#H6908

Human IL-1b/IL-1F2 Antibody R&D systems Cat#AF-201-NA

Mcl-1 (D35A5) Rabbit Cell Signaling Technology Cat#5453

Mouse IL-1 beta /IL-1F2 Antibody R&D systems Cat#AF-401-NA

Smac/DIABLO (mouse) monoclonal antibody (9H10) Enzo Life Sciences Cat#ALX-804-366-C100

XIAP Cell Signaling Technology Cat#2042

Chemicals, Peptides, and Recombinant Proteins

A-1155463 (BCL-XL inhibitor) AdooQ Bioscience Cat#A16112

ABT-199 AdooQ Bioscience Cat#A12500-50

ABT-737 AdooQ Bioscience Cat# A10255-100

Actinomycin D AdooQ Bioscience Cat#A13239-10

Birinapant BioVision Cat#2597-1

Cycloheximide Carl Roth Cat#8682.3

Lipofectamine 2000 Transfection Reagent Thermo Fisher Scientific Cat#11668019

LPS-EB Ultrapure InvivoGen Cat#tlrl-3pelps

MCC950 (CP-456773) Tocris Bioscience Cat# 5479

MG-132 Selleck Chemicals Cat# S2619

Nigericin sodium salt Sigma-Aldrich Cat#N7143-10MG

Pam3CSK4 InvivoGen Cat#tlrl-pms

R848 (Resiquimod) InvivoGen Cat# tlrl-r848

S63845 (MCL-1 inhibitor) APExBIO Cat#A8737

Staurosporine (CAS 62996-74-1) Santa Cruz Biotechnology Cat#sc-3510A

SYTOX TM Green Nucleic Acid Stain Thermo Fisher Scientific Cat#S7020

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

CD14 MicroBeads, Human Miltenyi Biotec Cat#130-050-201

Human IL-1b ELISA Set II BD Biosciences Cat#557953

Pierce LDH Cytotoxicity Assay Kit Thermo Fisher Scientific Cat#88954

Mouse IL-1b ELISA Set BD Biosciences Cat#559603

Pierce BCA Protein Assay kit Thermo Fisher Scientific Cat#23225

QIAquick PCR purification kit QIAGEN Cat#28104

RNeasy mini kit QIAGEN Cat#74106

Experimental Models: Cell Lines

BCL2 dependent SVEC cell line Lopez et al., 2016 NA

BCL-XL dependent SVEC cell line Lopez et al., 2016 NA

HeLa S3 Matheisl et al., 2015 NA

MCL-1 dependent SVEC cell line Lopez et al., 2016 NA

Experimental Models: Organisms/Strains

Human PBMCs See Methods Details NA

Nlrp3�/� mice Mariathasan et al., 2006 NA

Asc�/� mice Mariathasan et al., 2004 NA

Casp1/11�/� mice Kuida et al., 1995 NA

Casp8�/�/Ripk3�/� bone marrow Kaiser et al., 2011 NA

Ripk3�/� bone marrow Newton et al., 2004 NA

OXP-BCL2 mice Knittel et al., 2016 NA

Bax�/�/Bak1�/� bone marrow Vince et al., 2012 NA

Gsdmd�/� bone marrow Schneider et al., 2017 NA

Oligonucleotides

Primer: Hprt Forward: CTGGTGAAAAGGACCTCTCG Bieging et al., 2009 NA

Primer: Hprt Reverse: TGAAGTACTCATTATAGTCAAGGGCA Bieging et al., 2009 NA

Primer Mcl1 Forward: TGTAAGGACGAAACGGGACT Austin and Cook, 2005 NA

Primer Mcl1 Reverse: AAAGCCAGCAGCACATTTCT Austin and Cook, 2005 NA

Recombinant DNA

Hemoglobin subunit beta-pT7CFE1 This study NA

Software and Algorithms

GraphPad Prism 5 GraphPad NA
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Veit

Hornung (hornung@genzentrum.lmu.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All described mouse lines were housed under specific pathogen-free conditions. Animal housing and handling was conducted in

accordance with the Principles of Laboratory Animal Care guidelines approved by the Local Animal Care Commission of North

Rhine-Westphalia and supervised by Institutional Animal Care and Use Committee (IACUC) of the Medical Faculty, University of

Bonn (HET, House of Experimental Therapy, University Hospital, University of Bonn). Mice were euthanized according to the FELASA

guidelines by cervical dislocation. The gender of the individual mice was not documented for this study.

Preparation of murine bone marrow derived macrophages (BMDMs)
BMDMs were derived from bone marrow (BM) of 8-12 weeks old C57BL/6 mice. Nlrp3�/� (Mariathasan et al., 2006), Pycard�/� (Ma-

riathasan et al., 2004) were kindly provided by Vishva Dixit (Genentech, USA), Casp1/11�/� (Kuida et al., 1995) were from Richard A.

Flavell (Yale University, USA), bonemarrow ofCasp8�/�/Ripk3�/� (Kaiser et al., 2011),Ripk3�/� (Newton et al., 2004) were a gift from
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Egil Lien (UMASSMedical School). OXP-BCL2mice (Knittel et al., 2016) were fromHamid Kashkar (University of Cologne, Germany).

Bone marrow of Bax�/�/Bak1�/� mice (Vince et al., 2012) was kindly provided by James Vince (WEHI, Australia), Gsdmd�/�

(Schneider et al., 2017) from Petr Broz (University of Lausanne, Switzerland). Bone marrow cells were filtered and subjected to eryth-

rocyte lysis (BD Pharm lyse). For the derivation of macrophages, bone marrow cells were supplemented with 30% L929 supernatant

for 6-7 days. Cells were plated one night before the stimulation.

Isolation of human primary cells
PBMCs were isolated from heparinized blood or buffy coats from informed, consenting, and healthy volunteers according to the

principles of the Declaration of Helsinki, approved by the responsible ethics committee (Ethics committee of the Medical Faculty,

University of Bonn). Monocytes were isolated using CD14 MACS microbeads (Miltenyi Biotec) according to the manufacturer’s

protocol.

Primary cell culture
Human PBMCs and primary monocytes were cultured in RPMI medium 1640 supplemented with L-glutamine, sodium pyruvate,

10% (v/v) heat inactivated FCS and 100U/ml Penicillin-Streptomycin (all Life Technologies). Human PBMCs and monocytes (both

at 1x105/well) were plated in 96 flat-well plate 2 h before the experiment. For Western Blot preparation, human monocytes

(3x105/well) were seeded in 96 flat bottom plates with 3% FCS containing RPMI medium and samples from 5 wells were combined

for each condition. All BMDMs were cultivated in DMEM supplemented with L-glutamine with same additive as above. BMDMs

cells (1x106) were plated either in 12 well plates or 1x105 cells in 96 flat bottom plates/well. Primary MEFs were cultured in DMEM

medium with 10% (v/v) heat inactivated FCS and 100U/ml Penicillin-Streptomycin along with 1% non-essential amino acids

(all Life Technologies) and 100 mM b-Mercaptoethanol (Sigma Aldrich).

Cell lines
SVEC cells were cultured in DMEM medium containing 10% FCS and 2 mM Glutamine. HeLa S3 cells were grown to a density of

3.0–5.5 3 105 in SMEM (Sigma), supplemented with 10% FCS (GIBCO), Penicillin (100 U/ml) and 1x GlutaMAX (GIBCO) at 37�C,
5% CO2 using a spinner flask (40 rpm).

METHODS DETAILS

Cell stimulation
If not indicated otherwise, BMDMs cells were primed with 200 ng/ml ultrapure E.coli LPS (Invivogen) for 4 h. For dsDNA stimulation,

1 mg/ml of pBlueScript Plasmid DNA, isolated from E. coli with a Maxiprep Kit (Invitrogen) were complexed to Lipofectamine 2000

(Life Technologies) according to manufacturer’s protocol, and cells were stimulated with the mix for 8 h. If not stated otherwise,

Vio A, B, C and D (purified as previously described (Yan et al., 2018)) were used at 20 mM, nigericin (Sigma-Aldrich), birinapant

(Biovision) and staurosporine (Santa Cruz) were added at final 6.5 mM, 20 mM and 1 mM concentrations, respectively, for 8 h. Inhib-

itors: MG-132 (Selleck chemicals), cycloheximide (Carl Roth), MCC950 (Tocris bioscience) and ABT-737 (Santa cruz) were used

at 12.5 mM, 1mg/ml, 10 mM and 1 mM, respectively. In mito-priming assay, cells were stimulated with 1 mM concentration of either

ABT-199 (BCL2i) or A-1155463 (BCL-XLi) or S63845 (MCL-1i) specific inhibitor for BCL2, BCL-XL and MCL-1, respectively or with

mentioned vioprolides concentrations. For high extracellular K+ concentration, cells were incubated in medium that was diluted

with 150 mM KCl (Roth) in sterile water to contain indicated concentrations of K+ in the medium (Gaidt et al., 2016).

Immunoblotting, LDH and ELISA assay
BMDMs cells were plated in 12 well plates for immunoblots. Next day, cells were stimulated in 1% FCS medium for indicated times.

Supernatants were taken separately from 12 well plate for IL-1b ELISA (50 ml) (BD bioscience) and LDH (40 ml) (Thermo scientific),

performed according to manufacturer’s instructions. LDH is depicted as a percentage relative to direct cell lysis It was calculated

as LDH release (%) = 100 * (measurement – unstimulated control)/ (direct lysis control – unstimulated control). Remaining superna-

tants were precipitated and resuspended in 1X SDS laemmli buffer (Jakobs et al., 2013). Cells were lysed directly on plates in 1X SDS

laemmli buffer. Samples were heated at 95�Cwith 1100 rpm and loaded on SDS-PAGE gel (5% stacking gel and 12% separating gel;

BioRad). Afterward, proteins were transferred on nitrocellulose membrane (Amersham, GE healthcare) for 1 h. Membranes were

blocked for another 60 min in 3% milk in PBST (PBS containing 0.05% Tween 20). All primary antibodies were incubated at least

overnight in 1%milk in PBST at 4�C. Next day, membranes were incubated for at least 1 h in secondary antibody and washed gently

in PBST buffer for further 30-60min. Chemiluminescent signal was recordedwith CCD camera in Fusion SL (PEQLAB). In some blots,

whole image was contrast-enhanced in a linear fashion.

Quantitative PCR
BMDMs (7x105) were plated in 12 well plates and stimulated for 4 h. Cells were lysed in RLT buffer. Total RNA was isolated using

RNeasy mini kit from QIAGEN (74106) followed by DNase I (Thermo Fisher Scientific, EN0525) treatment. Afterward, cDNA was pre-

pared using RevertAid RT (Thermo, EP0441) using supplier’s instructions. Real time PCR was performed using Fast SYBR green
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(Thermo Fisher Scientific, 4385618) according tomanufacturer’s instructions.Hprt (Fwd primer: 50-CTGGTGAAAAGGACCTCTCG-30

and Rev primer: 50-TGAAGTACTCATTATAGTCAAGGGCA-30) (Bieging et al., 2009) was used as endogenous control. Expression of

Mcl1 was measured using Fwd primer: 50-TGTAAGGACGAAACGGGACT-30 and Rev primer: 50-AAAGCCAGCAGCACATTTCT-30

(Austin and Cook, 2005).

Cytoplasmic extraction of BMDMs
BMDMs were plated at 6-8x106 cells per well in 6 well plate. Medium was replaced with fresh pre-warm medium with 1% FCS. After

stimulation, medium was removed and cells were washed with PBS. Cells were lysed with buffer A (250 mM sucrose, 10 mMHEPES

pH 7.8, 10mMKCl, 2mMMgCl2, 0.1 mMEGTA, 1mMDTT, 0.1%NP-40, complete protease inhibitor cocktail and 0.5mMPMSF). To

remove cell nuclei, lysates were centrifuged at 700 g for 15min. Supernatants were taken and centrifuged again for 20min at 12000 g

(modified from (Park et al., 2013)). Resulting supernatants were used as cytoplasmic fraction and protein concentrations were

measured with BCA kit (Pierce protein assay kit). Measured samples were mixed with 6X SDS laemmli buffer before running on

SDS-PAGE gels. Beta actin was used as loading control. COXIV was used as control for mitochondrial contamination in cytoplasmic

samples.

DNA laddering assay
BMDMs (2x106) were plated in 12 well-plate for each condition. DNA laddering assay was performed as described previously with

some changes (Kralj et al., 2003). Briefly, after stimulation cells were washed with PBS and lysed in 200 ml of lysis buffer (1%NP-40 in

20 mM EDTA, 50 mM Tris-HCl, pH 7.5). samples were centrifuged at 3000 rpm for 5 min and supernatants were collected. SDS (1%)

and RNase A (5 mg/ml) were added for 1 h at 56�C. it was followed proteinase K (2.5 mg/ml) treatment for 1 at 37�C. Afterward,

½ volume of ammonium acetate (stock 10M), 2 volume of ice cold ethanol and small amount of glycogen were added to the samples.

It was followed by incubated at�80�C overnight for precipitation. Next day, after centrifugation (14000 rpm) for 40 min at 4�C, pellets
were washed with 70% ethanol and dissolved in 20 ml of water. Equal amounts of DNA were loaded for each condition on a 2%

agarose gel.

Plasmid preparation for hemoglobin subunit beta (HBB)
The HBB construct was cloned into the pT7CFE1 backbone as described previously (Matheisl et al., 2015). Sequence of mRNA

construct:

ATGgcccaccaccaccaccaccacctggccaccacccatatgCTGGAAGTGCTGTTTCAGGGCCCGtacccatacgatgttccagattacgctGTGCATC

TGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAG

GCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTGTTATGGGCAACCC

TAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTTG

CCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTG

CTGGCCCATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCT

GGCCCACAAGTATCACTAA

Human in vitro translation extract
As described previously (Matheisl et al., 2015), The translation extract was prepared using HeLa S3 cells. In brief, HeLa S3 cells were

harvested (2 min, 650 g) and the pellet was washed 3 times with washing Buffer (35 mM HEPES/KOH pH 7.5, 140 mM NaCl, 11 mM

Glucose) (1 min, 650 g) and 1x with extraction Buffer (20 mMHEPES/KOH pH 7.5/4�C, 45mMKOAc, 45 mMKCl, 1.8 mMMg(OAc)2,

1 mM DTT). Next, the cell pellet was resuspended in extraction Buffer (1.2 3 109 cells/ml) and disrupted by nitrogen pressure

(300 psi, 30 min, 4�C) in a cell disruption vessel (Parr Instrument). Next, the lysate wasmixed with 1/29 volume high potassium buffer

(20 mM HEPES/KOH pH 7.5/4�C, 945 mM KOAc, 945 mM KCl, 1.8 mM Mg(OAc)2, 1 mM DTT) and incubated at 4�C for 5 min,

followed by brief centrifugation step (20 s, 14 000 rpm, 4�C). Aliquots of the resulting supernatant were frozen in liquid nitrogen

and stored at �80�C.

In vitro transcription
In vitro transcription was performed as previously with someminor changes (Matheisl et al., 2015). Plasmid was linearized with SpeI-

HF (NEB) in CutSmart (NEB) buffer at 37�C overnight and purified by QIAquick PCR purification kit (QIAGEN) before in vitro transcrip-

tion (tc) to ensure the right length of themRNA product. The final mRNA construct encoded a CrPV IGR IRES sequence for translation

initiation, an N-terminal HA- and (His)6-tag, the human HBB sequence and a polyA-tail. The reaction was performed in tc buffer

(40 mM Tris/HCl pH 7.9/4�C, 26 mM MgCl2, 0.01% Triton X-100, 2.5 mM Spermidine, 5 mM DTT, 6.25 mM ATP, 6.25 mM CTP,

6.25 mM GTP, 6.25 mM UTP, 0.2 U/ml RNasin (Ambion)) with home-made T7 RNA polymerase and 1.5 mg linearized plasmid per

100 mL reaction was used. The tc reaction was incubated for 4 h at 37�C. Additional amount of T7 RNA polymerase was added during

incubation. The resulting mRNA was purified by LiCl precipitation method and stored at �80�C.
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In vitro translation
In vitro translation (tl) was performed in tl buffer (14 mM HEPES/KOH pH 7.5/4�C, 135 mM KOAc, 20.1 mM KCl, 31 mM Mg(OAc)2,

2 mM DTT, 0.25 mM GTP, 1.56 mM ATP, 16 mM Creatine Phosphate (Roche), 0.45 mg/ml Creatine Kinase (Roche), 50 mg/ml yeast

tRNA, 0.4 mM Spermidine) with 50% (v/v) extract. This mixture was supplemented with 0.12 mM amino-acid mixture, complete

(Promega) and 0.885 U/ml RNasin (Ambion). 1 mg mRNA/12 mL translation reactions were added before incubation for 40 min at

30�C (modified from (Matheisl et al., 2015)). Reactions were terminated using 1X SDS laemmli buffer and samples were heated

for 5 min at 65�C before loading of SDS-PAGE gel. Samples were probed using anti-HA antibody (H6908) from Sigma.

Mito-priming Assay
Mitoprimed SVEC cells (Lopez et al., 2016) expressing eGFP-tBID 2A Bcl-2, eGFP-tBID 2A Bcl-XL or eGFP-tBID 2A Mcl-1 were

seeded in 24 well plates (3x104 cells/well) overnight. The following day, cells were treated in the presence of 30 nM Sytox Green

(Life Technologies) together with the indicated compounds and imaged using an Incucyte FLR instrument (Essen Bioscience).

Four images per well were acquired every hour, and the number of Sytox green positive cells per mm2 were determined. Results

were normalized to the initial confluency of each well.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
If not stated otherwise, data are presented as mean values of the indicated number of independently conducted experiments,

whereas the error bars represent the standard error of mean (SEM). If indicated, data were analyzed for statistically significant dif-

ferences using Two-way ANOVA or One-way ANOVA using Bonferoni’s correction for multiple testing if multiple conditions or exper-

imental groups were to be compared. Gaussian distribution and sphericity of datasets were assumed. For qPCR, logarithmic values

were used to obtain a normal distribution before performing statistics. Time course experiments in mito-primed cells were evaluated

using the Kruskal-Wallis H test (non-parametric one-way ANOVA) and posthoc analysis with Dunn’s multiple comparison test. The

statistical analysis was performed using GraphPad. ** p < 0.01, * p < 0.05, ns = not significant.

DATA AND SOFTWARE AVAILABILITY

All the original immunoblots images can be found on Mendeley using this link: https://doi.org/10.17632/5889f7w6s8.1
Cell Reports 25, 2354–2368.e1–e5, November 27, 2018 e5

https://doi.org/10.17632/5889f7w6s8.1

	BAX/BAK-Induced Apoptosis Results in Caspase-8-Dependent IL-1β Maturation in Macrophages
	Introduction
	Results
	The Vioprolide Family of Cyclic Peptolides Induces IL-1β Release
	Vioprolides Induce IL-1β Release and Cell Death via NLRP3-Dependent and -Independent Mechanisms
	Vio A Triggers BAX- and BAK-Dependent Intrinsic Apoptosis, Resulting in IL-1β and LDH Release
	Vioprolides Act as Translational Inhibitors
	Vioprolides Inhibit Pro-survival BCL2
	Caspase-8 Is the Main Protease Catalyzing IL-1β Maturation during Intrinsic Apoptosis
	Intrinsic Apoptosis Results in Ripoptosome-Caspase-8-Dependent and -Independent NLRP3-Caspase-1 Activation

	Discussion
	The Inflammasome Plays a Subordinate Role in MOMP-Triggered Inflammation
	Intrinsic Apoptosis Is Not a Silent Cell Death Program in Myeloid Cells
	The Ripoptosome Functions as an Innate Sensor

	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Mice
	Preparation of murine bone marrow derived macrophages (BMDMs)
	Isolation of human primary cells
	Primary cell culture
	Cell lines

	Methods Details
	Cell stimulation
	Immunoblotting, LDH and ELISA assay
	Quantitative PCR
	Cytoplasmic extraction of BMDMs
	DNA laddering assay
	Plasmid preparation for hemoglobin subunit beta (HBB)
	Human in vitro translation extract
	In vitro transcription
	In vitro translation
	Mito-priming Assay

	Quantification and Statistical Analysis
	Statistical analysis

	Data and Software Availability





