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Abstract: As knee osteoarthritis is a disease of the entire joint, our pathophysiological understanding
could be improved by the characterization of the relationships among the knee components. Diverse
quantitative parameters can be characterized using magnetic resonance imaging (MRI) and com-
puted tomography (CT). However, a lack of methods for the coordinated measurement of multiple
parameters hinders global analyses. This study aimed to design an expert-supervised registration
method to facilitate multiparameter description using complementary image sets obtained by serial
imaging. The method is based on three-dimensional tissue models positioned in the image sets of
interest using manually placed attraction points. Two datasets, with 10 knees CT-scanned twice
and 10 knees imaged by CT and MRI were used to assess the method when registering the distal
femur and proximal tibia. The median interoperator registration errors, quantified using the mean
absolute distance and Dice index, were ≤0.45 mm and ≥0.96 unit, respectively. These values differed
by less than 0.1 mm and 0.005 units compared to the errors obtained with gold standard methods.
In conclusion, an expert-supervised registration method was introduced. Its capacity to register the
distal femur and proximal tibia supports further developments for multiparameter description of
healthy and osteoarthritic knee joints, among other applications.

Keywords: computed tomography; magnetic resonance imaging; osteoarthritis; registration; relationships;
segmentation; serial imaging

1. Introduction

Knee osteoarthritis is a painful, incapacitating joint disease affecting the quality of life
of hundreds of millions of people worldwide [1–3]. Reducing this major socio-economic
burden will notably require improving our understanding of the pathophysiology of the
disease, as a prerequisite for earlier disease detection and more effective treatments. Re-
cently, researchers have proposed enhancing the disease models by taking into account
the relationships between tissue parameters, rather than studying the parameters in isola-
tion [4,5]. To this end, there is a need for new developments to facilitate the multiparameter
description of knee tissues.

Advances in medical imaging in the last decades have resulted in a vast panel of
three-dimensional quantitative parameters that can be measured using magnetic resonance
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imaging (MRI) and computed tomography (CT) [6,7]. For example, particular MRI proto-
cols can quantify cartilage morphology [8] or composition [9], and bone mineral density
can be measured using CT [10]. Furthermore, it is possible to image the joint successively
using different protocols and/or modalities, a procedure known as serial imaging, in order
to extend the description of the tissues. Surprisingly, serial imaging has seldom been per-
formed to characterize the relationships among parameters in knee osteoarthritis [11–13].
Additionally, to the authors’ knowledge, none of the studies on the relationships have
registered images acquired with different protocols and/or modalities. In fact, the pa-
rameters were extracted independently from each set of images using regions of interest
determined separately. While achieving multiparametric descriptions, this methodology
suffers from some limitations. Specifically, consistency among the regions of interest is
not guaranteed, the benefit of having complementary acquisition protocols allowing the
identification of different tissues is underused, and processing time might be squandered by
the replication of some operations with each image set [14–18]. Furthermore, although this
methodology works for analyses based on large regions of interest [11,19–21], it prevents
applications requiring higher resolution, for example, those analyzing the spatial variation
of the parameters [10,22–24]. Consequently, relationship analyses would benefit from a
registration among image sets.

A few authors have already registered knee images acquired with different protocols
or modalities, mainly to help identify regions of interest that could not be (accurately)
identified in some sets of images [25–28]. In these cases, the images were registered globally
based on mutual information, such as voxel intensities [29,30]. Although common in medi-
cal imaging, this fully automatic approach is not always possible. Indeed, some acquisition
protocols have been designed to capture the local properties of the knee and it would be
risky to base the registration on the entire images without considering the specificities of the
acquisition protocols. Therefore, there is a need for an alternative, expert-based, approach
where the registration would be guided by an operator trained to identify specific features
in the images allowing the registration to be completed. Advanced knee osteoarthritis
analyses usually involve image segmentations in order to build three-dimensional mesh
models of the tissues of interest. Thus, the registration could be done by positioning the
three-dimensional models in the various image sets using features associated with the
contour of the tissues. Recently, a method in this sense was proposed where femoral bone
and cartilage models were built using an image set and then visually positioned by an
operator in another image set where the tissue contours were only partially identifiable [31].
The method was shown to be reliable, supporting an expert-based approach for registration
in serial imaging. However, this method, where the operator must manually update the
translation and rotation values until the models are positioned correctly, could be improved
by limiting the action of the operator to the placement of “attraction points” and having an
algorithm automatically positioning the models according to the attraction points.

This study aimed to develop an expert-supervised registration method for serial
imaging based on three-dimensional tissue models and attraction points. The method was
evaluated for the registration of the distal femur and the proximal tibia, because there
is a concrete need to combine image sets of the knee from complementary protocols or
modalities to improve our understanding of knee osteoarthritis [4–7]. Specifically, the
influence of the number of attraction points, as well as the intraprotocol and intermodality
registration error were determined.

2. Materials and Methods
2.1. Expert-Supervised Registration Method

The method proposed in this study requires at least one set of images for the segmen-
tation of the tissue of interest and the creation of its three-dimensional mesh model, and
one or more other sets of images where the three-dimensional model is imported based
on attraction points placed manually. The method works similarly with entire or partial
tissues. In addition to single tissues, it is possible to work with an agglomeration of full
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and/or partial tissues. In the present study, there were two distinct (partial) tissues of
interest: the distal femur and the proximal tibia. These anatomical parts correspond to
the portions of the femur and tibia usually imaged in clinics for the evaluation of the knee
joint [32]. To account for possible motion of the femur with respect to the tibia between
image sets, the femur and tibia were registered separately.

The procedure, which is similar for both bones, is illustrated for the femur in Figure 1.
Specifically, previously described methods were used to segment and build a three-
dimensional mesh model of the bones (Figure 1A,B) [32–34]. The segmentation followed a
subpixel approach consisting of contouring the tissues in the sagittal plane with B-spline
curves. A graphical interface was designed to load a set of images and let an operator
navigate through the images in order to manually place attraction points on the edges of
the bones (Figure 1C,D). To facilitate future use, the method was implemented to work
with attraction points distributed more or less homogeneously in space. Concretely, with
this methodology, the operator is simply asked to distribute the points, without having
to localize particular features or follow more specific guidelines. After placement of the
points for a bone model in an image set, the three-dimensional model was automatically
positioned following its attraction points using the coherent point drift (CPD) algorithm
(Figure 1E) [35]. At this stage, the procedure is completed, with the bone model from
one image set registered to another image set (Figure 1F). The registration can be used to
identify the bone voxels in the second image set (Figure 1G) or to establish an anatomical
correspondence for more advanced analyses [27].
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Figure 1. Illustration of the expert-supervised registration method for the distal femur. The method
can accommodate other anatomical structures, such as the proximal tibia, and a higher number of
image sets.

2.2. Imaging Datasets

Two datasets were used for this research project approved by the relevant ethics committees.
The first dataset corresponded to 10 formalin-fixed cadaveric adult knees scanned

(DATA1_CT1) and rescanned (DATA1_CT2) after repositioning using a 64-row detector
helical CT machine (Discovery CT750HD; GE Healthcare, Chicago, IL, USA). To allow
the comparison of the proposed expert-supervised registration method to a gold stan-
dard, five fiducial markers were embedded in each distal femur and proximal tibia before
scanning. The acquisition protocol was as follows: tube voltage, 120 kVp; reference
tube current-time product, 200 mAs; bone convolution kernel, boneplus; voxel size of
0.5 mm × 0.5 mm × 0.312 mm. Following local regulations regarding research on deceased
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persons, the CT images were the only data available for the samples. A senior muscu-
loskeletal radiologist with 11 years of experience (P.O.) read the CT scans and, based on the
presence and severity of osteophytes [36], concluded that five of the knees had osteoarthritic
changes (three mild and two severe changes). In addition, the CT images indicated that the
knees were exempt of any signs of traumatic bone lesion, previous knee surgery, tumor,
chronic inflammatory joint disease and articular crystal deposition disease.

The second dataset was a convenience sample of 10 knees from 10 individuals 50 years
old or older with CT (DATA2_CT), MRI (DATA2_MRI) and radiography examinations per-
formed on the same day. The CT scans in this dataset were obtained using a 40-row detector
CT scanner (Somatom Definition AS; Siemens Healthcare, Forchheim, Germany). The acqui-
sition protocol was: tube voltage, 120 kVp; reference tube current–time product, 350 mAs
with application of a dose modulation protocol (Care Dose 4D; Siemens Healthcare, Forch-
heim, Germany); bone convolution kernel, U70u; voxel size of 0.3 mm × 0.3 mm × 0.3 mm.
The MR images were acquired on a 3-Tesla device (Magnetom Verio, Siemens Health-
care, Erlangen, Germany), using a double echo steady state (DESS) sequence (repeti-
tion time (TR), 14.25 ms; echo time (TE), 5.09 ms; matrix size of 320 × 320; voxel size
of 0.5 mm × 0.5 mm × 0.5 mm). The knees were from five males and five females with
a median age of 62 years old (1st–3rd quartiles: 59–67). A grading [37] performed by
a senior musculoskeletal radiologist (P.O.), based on lateral and posteroanterior weight-
bearing radiographies, indicated that five of the knees were osteoarthritic (three moderately
(Kellgren–Lawrence grade of 3) and two severely (Kellgren–Lawrence grade of 4)). In
addition, the imaging evaluation indicated that the knees were exempt of any signs of
traumatic bone lesion, previous knee surgery, tumor, chronic inflammatory joint disease
and articular crystal deposition disease.

The femur and tibia were segmented in each acquisition and three-dimensional bone
models were reconstructed, as explained above (see Section 2.1). One operator (H.B.)
processed the knees in DATA1_CT1 and DATA2_MRI, whereas a second operator (K.C.)
handled the knees in DATA1_CT2 and DATA2_CT. This allowed interoperator assessment,
which is more relevant than intraoperator characterization [34].

2.3. Number of Attraction Points

The attraction points are a key element of the proposed expert-supervised registration
method. Consequently, their influence should be determined to ensure that the method
is used properly. As explained above (see Section 2.1), the method was designed to work
with attraction points distributed more or less evenly in space. Therefore, the influence
of the attraction points reduces to the question of the number of points. To characterize
this aspect, one operator (H.B.) placed 4000 points on the edges of both the femur and tibia
for each image set in DATA1_CT2. Then, the three-dimensional models obtained from the
segmentation of DATA1_CT1 by the same operator were positioned in the DATA1_CT2
acquisitions using the proposed method. For each bone, the positioning was computed
10 times, with 32, 64, 128, 256, 512 and 1024 randomly selected attraction points, respec-
tively. The 600 (10 knees × 6 numbers of points × 10 repeats) femoral and tibial models
obtained this way in the images sets of DATA1_CT2 were compared to the models from
the segmentation of DATA1_CT2 by the second operator (K.C.), considered as references.
Two common metrics were used to compare the registered and reference models: (1) the
mean absolute distance (MAD), which indicates how much the surface of one model differs
compared to the surface of the other model [38]; (2) the Dice index, which quantifies the
overlap between the volumes included in each model [39]. Both metrics were computed
in three dimensions, and expressed in millimeters for the MAD and as a ratio varying
between 0.0 (no overlap) and 1.0 (perfect overlap) for the Dice index. Finally, Wilcoxon
rank-sum tests [40], with a Bonferroni correction for multiple comparisons, were performed
to compare the MAD and Dice index between consecutive numbers of points. This analysis
allowed the definition of the ideal number of attraction points that was used in the rest of
the study.
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2.4. Intraprotocol Registration Error

While the proposed expert-supervised method will fully reveal its usefulness in inter-
protocol or intermodality registrations, an intraprotocol assessment is instructive because it
provides a basis evaluation independently of the differences among the acquisition pro-
tocols or modalities. To assess the registration error intraprotocol, the three-dimensional
bone models from the segmentation of DATA1_CT1 by one operator (H.B.) were imported
in the DATA1_CT2 images sets and compared to the bone models from the segmentation
of DATA1_CT2 by the second operator (K.C.) that served as reference models. To allow
a pertinent interpretation of the results, three registration methods were tested. First, the
bone models were positioned using the proposed expert-supervised method based on an
ideal number of attraction points (see Section 2.3) placed by the operator who segmented
the acquisitions in DATA1_CT1 (H.B.). Second, the bone models were positioned by over-
lapping the fiducial markers that were embedded in the bones before CT scanning [41].
This method represents the gold standard, but it is rarely possible in vivo and interprotocol
or intermodality. Therefore, to allow the assessment of the method in an intermodality
setting (see Section 2.5), a substitution gold standard was also considered, where the bone
models were positioned by registration of the entire bone models using a standard algo-
rithm [35]. This third method corresponds to an extreme version of the proposed method,
where the operator would place an excessive number of attraction points. In practice, the
third method is obviously suboptimal as it would require unnecessary segmentation work
and would not be applicable to acquisition protocols allowing only partial segmentation
of the tissues. For the three methods, the registered bone models of the 10 femurs and
tibias in DATA1 were compared to the reference bone models using the MAD and Dice
index. Lastly, to evaluate the proposed expert-supervised method and the substitution
gold standard method, the MAD and Dice index values obtained with these methods were
compared to the results of the gold standard method using Wilcoxon signed rank tests [40].

2.5. Intermodality Registration Error

The intermodality registration error was evaluated similarly to the intraprotocol
error by having one operator (H.B.) segment one dataset (DATA2_MRI) and import the
bone models obtained that way into another dataset (DATA2_CT). The other dataset was
processed by a second operator (K.C.), leading to reference bone models that could be
compared to the registered models using the MAD and Dice index. Differently from the
intraprotocol assessment, this time, MRI-based models were positioned in CT images.
Moreover, since using fiducial markers was impossible, only two registration methods
were considered, and the MAD and Dice index values of the proposed expert-supervised
method were compared to the values obtained with the substitution gold standard method
using Wilcoxon signed rank tests [40].

All processing and statistical analyses were performed using Matlab R2019b (Math-
works, Natick, MA, USA). An alpha-level set a priori at 5% was used to determine statisti-
cal significance.

3. Results
3.1. Number of Attraction Points

The median MAD between the registered and reference models decreased from
0.53 mm with 32 points to 0.39 mm with 1024 points in the femur, and from 0.54 mm
with 32 points to 0.35 mm with 1024 points in the tibia (Figure 2, Table 1). Differences in
MAD achieved statistical significance between 32 and 64 points, as well as between 64
and 128 points, both in the femur and the tibia (adjusted p ≤ 0.03). For both bones, the
median Dice indices were above 0.95 with the six numbers of points. Dice indices differed
significantly between 32 and 64 points in the femur (adjusted p = 0.03), and between 32 and
64 points as well as between 64 and 128 points in the tibia (adjusted p ≤ 0.04).
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Figure 2. Boxplots of the mean absolute distances (MAD, left) and Dice indices (right) between
the registered and reference bone models for varying numbers of attraction points. Asterisks indi-
cate statistically significant differences between successive numbers of points (*: adjusted p < 0.05,
**: adjusted p < 0.01, ***: adjusted p < 0.001).

Table 1. Mean absolute distances (MAD) and Dice indices between the registered and reference bone
models for varying numbers of attraction points.

Number of Attraction Points

32 64 128 256 512 1024

Femur

MAD
0.53 A 0.47 A,b 0.42 b 0.4 0.39 0.39

(0.46, 0.80) (0.40, 0.56) (0.38, 0.49) (0.37, 0.46) (0.35, 0.45) (0.35, 0.44)

Dice index
0.95 a 0.97 a 0.97 0.97 0.97 0.98

(0.93, 0.97) (0.95, 0.97) (0.95, 0.98) (0.96, 0.98) (0.96, 0.98) (0.96, 0.98)

Tibia

MAD
0.54 A 0.45 A,B 0.39 B 0.36 0.35 0.35

(0.46, 0.62) (0.40, 0.53) (0.34, 0.45) (0.33, 0.41) (0.31, 0.41) (0.31, 0.40)

Dice index
0.96 a 0.97 a,b 0.97 b 0.97 0.97 0.97

(0.95, 0.97) (0.95, 0.97) (0.96, 0.97) (0.96, 0.98) (0.96, 0.98) (0.96, 0.98)

MAD and Dice indices are presented as the median (1st quartile, 3rd quartile) of 100 registrations (10 knees
× 10 repeats). MAD are reported in mm and Dice indices are unitless. Superscript letters indicate statistically
significant differences between successive numbers of points (lowercase: adjusted p < 0.05, uppercase: adjusted
p < 0.01, bold uppercase: adjusted p < 0.001). Letters a, A and A correspond to differences between 32 and 64 points,
whereas letters b, B and B correspond to differences between 64 and 128 points.

Based on the statistically significant differences, the ideal number of attraction points
was defined as 128.

3.2. Intraprotocol Registration Error

The intraprotocol results are presented in Figure 3 and Table 2. Before describing them
in detail, it is useful to recall that this study assessed the methods using an interoperator
setting. With this setting, the MAD and Dice indices are sensitive to the different segmen-
tations produced by the two operators. These segmentation differences explain why the
MAD and Dice indices obtained with the gold standard do not indicate perfect matching.
This being said, the results in Figure 3 and Table 2 are twofold.
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supervised method was run with 128 attraction points. Asterisks indicate statistically significant
differences between methods (**: p < 0.01).

Table 2. Mean absolute distances (MAD) and Dice indices between the registered and reference bone
models for three registration methods used intraprotocol.

Expert-Supervised Gold Standard Substitution Gold Standard

Femur
MAD 0.43 (0.41, 0.44) ** 0.37 (0.33, 0.38) 0.37 (0.31, 0.39)

Dice index 0.97 (0.97, 0.97) ** 0.98 (0.97, 0.98) 0.98 (0.97, 0.98)

Tibia
MAD 0.39 (0.34, 0.40) ** 0.32 (0.30, 0.34) 0.33 (0.29, 0.34)

Dice index 0.97 (0.97, 0.98) ** 0.97 (0.97, 0.98) 0.97 (0.97, 0.98)

Data are presented as median [1st quartile, 3rd quartile] over 10 knees. MAD are reported in mm and Dice indices
are unitless. The expert-supervised method was run with 128 attraction points. Asterisks indicate statistically
significant differences with respect to the gold standard (**: p < 0.01).

First, the proposed expert-supervised method resulted in a statistically significantly
larger MAD (p = 0.002) and lower Dice indices (p ≤ 0.004) than the gold standard. In the
median, the MAD differed by 0.06 mm and the Dice indices by 0.003 unit.

Second, the MAD and Dice indices differed, in the median, by less than 0.01 mm and
less than 0.001 unit between the gold standard and its substitution, respectively. There was
no statistically significant difference between these two methods.

3.3. Intermodality Registration Error

When used to register MRI-based bone models in CT image sets, in an interoperator
setting, the proposed expert-supervised method reported statistically significantly larger
MAD than the substitution gold standard method, in the median, by 0.08 mm for the femur
(p = 0.003) and 0.07 mm for the tibia (p = 0.014) (Figure 4, Table 3). Dice indices were
statistically significantly lower with the proposed method for the femur (p = 0.045), whereas
no statistical difference existed for the tibia (p = 0.427). In the median, the differences in
Dice indices were of 0.004 unit for the femur and 0.003 unit for the tibia.
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Figure 4. Boxplot of the mean absolute distances (MAD, left) and Dice indices (right) between the
registered and reference bone models for two registration methods used intermodality. The expert-
supervised method was run with 128 attraction points. Asterisks indicate statistically significant
differences between methods (*: p < 0.05, **: p < 0.01).

Table 3. Mean absolute distances (MAD) and Dice indices between the registered and reference bone
models for two registration methods used intermodality.

Expert-Supervised Substitution Gold Standard

Femur
MAD ** 0.45 (0.44, 0.51) 0.36 (0.33, 0.39)

Dice index * 0.97 (0.97, 0.97) 0.97 (0.97, 0.98)

Tibia
MAD * 0.45 (0.38, 0.50) 0.33 (0.27, 0.43)

Dice index 0.96 (0.95, 0.97) 0.97 (0.96, 0.97)

Data are presented as median [1st quartile, 3rd quartile] over 10 knees. MAD are reported in mm and Dice indices
are unitless. The expert-supervised method was run with 128 attraction points. Asterisks indicate statistically
significant differences between the two methods (*: p < 0.05, **: p < 0.01).

4. Discussion

This study presented an expert-supervised registration method and showed its ca-
pacity to register the distal femur and proximal tibia. This new method is particularly
interesting because it relies on the expertise of an operator, without requiring the operator
to do the entire job manually. The adaptability it confers, with the operator specifying the
features (attraction points) to consider in the images, could be a significant advantage with
acquisition protocols optimized to measure particular parameters and not trustable over the
entire images [42]. While the method was primarily designed to bring novel possibilities
for multiparameter descriptions of the knee joint in future works [4,5], it could certainly
prove useful for a range of pathologies that would benefit from a more comprehensive
characterization of the tissues using serial imaging, including oncological, inflammatory,
and metabolic applications [43–46].

Establishing a spatial correspondence among image sets acquired with different proto-
cols and/or modalities, as proposed in this study, offers several advantages. First, it could
enhance the quality of the three-dimensional tissue models by limiting the segmentation
to the image sets offering the most distinct contours. Working with image sets easier to
segment could also prove beneficial for the use of automatic segmentation [47–49]. Second,
placing attraction points in some image sets rather than segmenting all the image sets could
save a significant amount of time. The gain could become even more appreciable when
some image sets display poor contours. Third, registering the models could enhance the
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analysis thanks to a better spatial consistency among the image sets and the possibility to
perform more advanced analyses, for example in terms of spatial variations [10,22–24].

As expected, the registration errors decreased with a larger number of attraction points.
However, there was a plateau starting at about 128 points, confirming the practicability of
the method. Indeed, less than three minutes were required to place 128 points (256 points
were placed in less than five minutes). Statistically significant differences were observed
between the proposed method and the gold standard/substitution gold standard, but they
were too small to be clinically relevant, with differences below 0.1 mm in median MAD
and 0.005 unit in median Dice indices. It is also worth noting that although the substitution
gold standard is frequently used in literature [50], to the authors’ knowledge, it was never
assessed for distal femur and proximal tibia registrations. In this regard, the present study
confirmed its validity, at least with acquisition protocols providing clear bone contours. The
registration of knee tissues being a relatively new consideration, there are only few prior
data for comparison. Nevertheless, the median MAD (≤0.45 mm) and Dice indices (≥0.96)
obtained with the proposed method both intraprotocol and intermodality were in line
with previous studies reporting precision errors between 0.48 and 0.81 mm [51] and Dice
indices between 0.96 and 0.98 [27,52] for the distal femur and proximal tibia. While this
comparison should be interpreted with caution due to numerous experimental differences
among studies, such as the number and condition of the study knees, the acquisition
protocols and the intra/interoperator settings, it suggests that the proposed method based
on attraction points could perform at least equivalently to other methods requiring full
segmentation of the bones.

Basing the registration on attraction points is interesting because it does not require
preprocessing the image sets to have a specific field of view or resolution. In addition
to improving the accuracy of the data extracted from the images after registration and
speeding up computation time [29], working directly with the original data makes the
method compatible with a larger panel of acquisition protocols and modalities. This could
prove particularly relevant for a democratization of analyses based on registration in clinics,
as routine acquisition protocols can include anisotropic resolutions or partial imaging of
the joint.

It should be noted that, beyond a specific method, the present study introduced a
registration concept for serial imaging. In fact, the idea of positioning a three-dimensional
model using attraction points could be implemented using other segmentation, model
building and distance minimizing algorithms [29]. In order to assess the registration error,
this study focused on the distal femur and proximal tibia. The method is obviously also
applicable to other tissues and image sets where only a portion of the tissue contour is
identifiable. Once the position of a tissue model is known in two or more image sets, a
spatial correspondence exists among the image sets. This correspondence could be used to
register other tissues, or more generally to register voxels [53,54]. For example, a bone and
cartilage model could be created with one image set and then, by positioning the model
based on the bone contour, it could be possible to identify the cartilage in another image
set where the cartilage edges are hardly identifiable [31].

Following the study objectives, this work assessed the influence of the number of
attraction points and the registration error. While this was done appropriately, with an
adequate number of knees representative of the general population [55–58] and by having
the knees processed by two operators with typical levels of experience, further research
will be necessary to characterize the proposed method in context. The limited information
available for the study knees did not affect the method or the results presented in this article.
However, future applications of the method might require a more specific description of
the samples.

5. Conclusions

In conclusion, this study presented an expert-supervised registration method and
showed its capacity to register the distal femur and proximal tibia. By facilitating multi-
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parameter description, in the future, this novel method could contribute to a better under-
standing of healthy and osteoarthritic knee joints with possible implications for disease
management, such as earlier detection. The expert-supervised registration concept could
certainly prove useful for other applications that would benefit from a more comprehensive
characterization of the tissues using serial imaging.
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