Title: Chlamydia pneumoniae: possible association with asthma in children.

Authors: Asner SA, Jaton K, Kyprianidou S, Nowak AM, Greub G

Journal: Clinical infectious diseases : an official publication of the Infectious Diseases Society of America

Year: 2014 Apr

Volume: 58

Issue: 8

Pages: 1198-9

DOI: 10.1093/cid/ciu034
Chlamydia pneumoniae, possible association with asthma in children
Sandra A. Asner¹,², MD, MSc; Katia Jaton³, PhD; Sofiaanna Kyprianidou⁴, MD; Anna-Maria Libudzic Nowak¹, MD; Gilbert Greub²,³, MD, PhD

¹ Unit of Pediatric Infectious Diseases and Vaccinology, Department of Paediatrics, University Hospital Center, Lausanne, Switzerland
² Service of Infectious Diseases, Department of Internal Medicine, University Hospital Center, Lausanne, Switzerland
³ Institute of Microbiology, Department of Laboratory, University of Lausanne & University Hospital Center, Lausanne, Switzerland

Corresponding author:
Professor Gilbert Greub
Institute of Microbiology
Department of Laboratory
Rue du Bugnon 48
1011 Lausanne (Vaud)
Switzerland
Tel: 0041 21 314 49 79
Fax: 0041 21 314 40 60
E-mail: gilbert.greub@chuv.ch

Keywords: Chlamydia pneumoniae, outbreak, asthma exacerbation, molecular diagnosis
Running title: Chlamydia pneumoniae and asthma
Word count: 365
Figures: 0
Table: 1
References: 7
*Chlamydia pneumoniae* has been recognized as a common cause of community-acquired pneumonia (CAP) and other acute respiratory tract infections (ARIs) in various age groups.\(^1\) Lately, the prevalence of *Chlamydia*-associated ARIs decreased to less than 1.5% \(^2\), as a result of (i) changes in epidemiology of *C. pneumoniae* and (ii) increased specificity of new diagnostic molecular methods. Moreover, *C. pneumoniae* infection may remain undetected since clinicians may not screen the infected population. Indeed, *Chlamydia pneumoniae* has been recently identified as an agent of asthma exacerbation and has been associated with its severity, \(^3\,^4\,^5\) thus reinforcing the importance to target these patients. In Lausanne, using a duplex real-time PCR, that detects *C. pneumoniae* and *M. pneumoniae* DNA\(^6\), we reported a 0.13% prevalence of *C. pneumoniae* positive PCRs (2/1583) and identified one patient with *C. pneumoniae*-associated asthma, who recovered with antibiotics\(^7\). Below, we report a case series of *C. pneumoniae* respiratory infections in children.

From 10\(^{th}\) September to 5\(^{th}\) December 2013, 8 children were detected positive for *C. pneumoniae* from upper respiratory tract specimens (Table). Of these, 5 were admitted for either acute asthma exacerbation or asthmatic bronchitis. All but two patients presented with chronic cough without fever nor systemic symptoms. These two patients presented a co-infection with either rhinovirus or *M. pneumoniae* and were admitted for severe respiratory distress in the intensive care unit, intubated and mechanically-ventilated, respectively for a community-acquired pneumonia (patient 7) and for a severe asthma exacerbation (patient 8). Both patients with severe clinical presentation were known for pre-existing asthma condition. All patients were successfully treated with a macrolide. Interestingly, *C. pneumoniae* infection was detected by chance in 7 patients as a result of the dual format of our PCR, because a *Mycoplasma pneumoniae* PCR was requested.

In conclusion, this report supports the role of *C. pneumoniae* in asthma exacerbation. Whether *C. pneumoniae*-associated asthma may be cured with antibiotics or will also require steroids remains yet unknown and may vary from patient to patient. This case series underlines the importance of screening asthmatic children for *C. pneumoniae*. Moreover, our findings suggest that *C. pneumoniae* prevalence is likely underestimated and children with chronic cough, even in absence of fever, should be tested for *C. pneumoniae*. 
Table.

<table>
<thead>
<tr>
<th>N</th>
<th>Age years</th>
<th>Gender°</th>
<th>Asthmatic condition</th>
<th>Cough duration</th>
<th>Fever</th>
<th>ICU°</th>
<th>Sample</th>
<th>Copies/ml</th>
<th>Co-infection (copies/ml)</th>
<th>Treatment</th>
<th>Treatment duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>7</td>
<td>F</td>
<td>asthma</td>
<td>chronic</td>
<td>yes</td>
<td>no</td>
<td>throat</td>
<td>1743796</td>
<td>no</td>
<td>clarithromycin</td>
<td>14 days</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>M</td>
<td>asthma</td>
<td>chronic</td>
<td>yes</td>
<td>no</td>
<td>nasal</td>
<td>197000</td>
<td>no</td>
<td>clarithromycin</td>
<td>10 days</td>
</tr>
<tr>
<td>3*</td>
<td>7</td>
<td>M</td>
<td>None</td>
<td>chronic</td>
<td>no</td>
<td>no</td>
<td>throat</td>
<td>3100</td>
<td>no</td>
<td>clarithromycin</td>
<td>10 days</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>M</td>
<td>None</td>
<td>chronic</td>
<td>no</td>
<td>no</td>
<td>nasal</td>
<td>60</td>
<td>no</td>
<td>azithromycin</td>
<td>5 days</td>
</tr>
<tr>
<td>5*</td>
<td>8</td>
<td>M</td>
<td>asthmatic bronchitis</td>
<td>chronic</td>
<td>no</td>
<td>no</td>
<td>np°</td>
<td>78000</td>
<td>no</td>
<td>clarithromycin</td>
<td>7 days</td>
</tr>
<tr>
<td>6*</td>
<td>12</td>
<td>F</td>
<td>None</td>
<td>chronic</td>
<td>no</td>
<td>no</td>
<td>np°</td>
<td>61000</td>
<td>no</td>
<td>clarithromycin</td>
<td>7 days</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>F</td>
<td>asthma</td>
<td>acute</td>
<td>yes</td>
<td>yes</td>
<td>np°</td>
<td>170</td>
<td>Mycoplasma pneumoniae (570)</td>
<td>clarithromycin</td>
<td>14 days</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>M</td>
<td>asthma</td>
<td>acute</td>
<td>yes</td>
<td>yes</td>
<td>np°</td>
<td>208</td>
<td>rhinovirus (13071000)</td>
<td>erythromycin</td>
<td>14 days</td>
</tr>
</tbody>
</table>

*patient originated from the same eastern region of VAUD canton (nearby Yverdon);
°F: female, M: male; °NP: nasopharyngeal sample
°ICU: admission to the intensive care unit (patient 7, for a community-acquired pneumonia; patient 8, for a severe asthma exacerbation)
References.