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Abstract
Global Climate Models are the main tools for climate projections. Since many models exist, it is common to use Multi-
Model Ensembles to reduce biases and assess uncertainties in climate projections. Several approaches have been proposed 
to combine individual models and extract a robust signal from an ensemble. Among them, the Multi-Model Mean (MMM) 
is the most commonly used. Based on the assumption that the models are centered around the truth, it consists in averaging 
the ensemble, with the possibility of using equal weights for all models or to adjust weights to favor some models. In this 
paper, we propose a new alternative to reconstruct multi-decadal means of climate variables from a Multi-Model Ensemble, 
where the local performance of the models is taken into account. This is in contrast with MMM where a model has the same 
weight for all locations. Our approach is based on a computer vision method called graph cuts and consists in selecting for 
each grid point the most appropriate model, while at the same time considering the overall spatial consistency of the resulting 
field. The performance of the graph cuts approach is assessed based on two experiments: one where the ERA5 reanalyses are 
considered as the reference, and another involving a perfect model experiment where each model is in turn considered as the 
reference. We show that the graph cuts approach generally results in lower biases than other model combination approaches 
such as MMM, while at the same time preserving a similar level of spatial continuity.

Keywords Climate projections · Multi-model ensemble · Multi-model aggregation · Graph cuts

1 Introduction

Global circulation models (GCMs) are key tools to project 
as robustly as possible the potential evolution of the climate, 
especially since human activities were established to be the 
main cause of global warming (Solomon et al. 2009). How-
ever, because of climate internal variability and structural 
model uncertainties, global or regional differences between 
climate models and observations or reanalyses can occur. 
Hence, one can wonder whether those observed differences 

can lead to additional uncertainties or even biases in the 
climate projections (Palmer and Stevens 2019).

Biases can be adjusted statistically and various methods 
exist to do so, ranging from relatively simple methods that 
only correct the mean, to more sophisticated ones correcting 
the whole distribution, potentially in multivariate contexts 
(e.g., see François et al. 2020, for a review and intercompari-
son). Although bias adjustment generally improves the real-
ism of the climate simulations—at least in terms of the cri-
teria used to perform the correction and over the calibration 
period—this can be sometimes at the expense of the physical 
realism of model outputs when some dependencies (inter-
variable, spatial or temporal depending on the data) are not 
taken into account. Hence, various adjustment techniques 
were recently developed to account for such dependencies 
(e.g., Cannon 2018; Vrac 2018; Robin et al. 2019; Vrac and 
Thao 2020). However, when bias corrected, the simulations 
still present distinct trends from one model to another on 
the calibration period and potentially even more distinct on 
future projection periods with different responses to climate 
change forcing scenarios. This means that bias correction 
does not remove all uncertainties and that there is a need 
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to extract a robust signal of climate change by combining 
different climate models.

The most widely used approach so far to extract a robust 
signal among different models is to assemble those models 
into Multi-Model Ensembles (MMEs) and average them 
into multi-model means (MMM, see, e.g., Tebaldi and 
Knutti 2007; Knutti et al. 2010). These MMEs and MMMs 
are part of the Coupled Model Intercomparison Project or 
CMIPs (Dufresne et al. 2013), as an essential tool to man-
age climate-related risks for our societies (Kunreuther et al. 
2013). Common approaches to assemble MMEs include 
model weighting, and selection of representative ensem-
ble members (Cannon 2015; Sanderson et al. 2015). Equal 
weighting is the most commonly used and straightforward 
way of combining climate models (Weigel et al. 2010), but 
it does not account for model performance or interdepend-
ence. Non-equal-weighting methods are based on a search 
for optimal weights to improve the MMM result, such as 
Bayesian Model Averaging (Bhat et al. 2011; Kleiber et al. 
2011; Olson et al. 2016) or Weighted Ensemble Averag-
ing (Strobach and Bel 2020; Wanders and Wood 2016). 
Furthermore, climate models cannot be considered inde-
pendent because they are often based on similar assump-
tions, parameterizations and computer codes. Therefore, 
agreement between models does not necessary mean con-
vergence to a reliable projection (Abramowitz et al. 2019; 
Knutti et al. 2017; Rougier et al. 2013). While metrics of 
distance between models can be used to represent the wide 
range in the degree of similarity (or dissimilarity) between 
models, distances do not translate directly into a measure of 
independence (Abramowitz et al. 2019). As a consequence, 
weighting methods have been proposed that assign weights 
to models based not only on their performance, but also on 
their dependence with other models, often quantified as the 
difference (or distance) between models’ outputs (Lorenz 
et al. 2018). Some authors have proposed, as a pragmatic 
approach, a single set of weights for a given ensemble of 
models, which should yield reasonable overall performance 
while accounting for inter-model dependence (Sanderson 
et al. 2017).

The main uncertainties in model combination approaches 
are related to models themselves and also to the construc-
tion of the MME. Other methods, such as the Reliability 
Ensemble Average (REA) (Giorgi and Mearns 2002) weight 
models by taking into consideration biases and trends. How-
ever, uncertainties remain, linked to the many different sce-
narios, the model response uncertainty and the variability 
of the climate (Hawkins and Sutton 2009). The size of the 
MME also generates uncertainties: a combination based 
on a large ensemble can perform worse than with a small 
ensemble constructed with only good models (Knutti et al. 
2010), and weighting methods can increase the number of 
models needed to construct a well-performing combination 

(Brunner et al. 2020; Merrifield et al. 2019). Furthermore, 
the weights given to a model are generally global (i.e., same 
weight for all grid points), meaning that even if a model can 
represent Europe temperature very well, it can be considered 
as poor overall and will not contribute to improving Europe 
temperature projection in the combination. As a result, a 
global weighting approach might represent this area worse 
than a model alone.

Thus far, the use of spatially non-uniform weights vary-
ing for each grid point has not been thoroughly considered 
in the literature on GCM combination. The consideration 
of local characteristics has mostly been taken into account 
in regional studies where an optimal number of models is 
selected for a given region of the globe (Ahmed et al. 2019; 
Dembélé et al. 2020, e.g.,), or by analyzing the performance 
of a weighed ensemble per sub-region (Brunner et al. 2019, 
2020; CH2018 2018; Lorenz et al. 2018; Olson et al. 2016). 
However, this way of proceeding might be suboptimal as 
the region is defined first (e.g. Europe), then the weights 
are defined given this study area. There is, thus, a strong 
potential for improved model combination if the weights 
and the regionalization are co-optimized at the grid point 
level. Another aspect of model averaging techniques is that 
they invariably tend to smooth out the spatial patterns found 
in the individual models, despite the fact that these patterns 
often originate from actual physical processes.

Per-grid point model combination methods have been 
considered in scientific domains other than global climatol-
ogy, such as in meteorology, where authors have shown that 
using spatially variable parameters of ensemble precipita-
tion or wind forecast models leads to increased performance 
(Kleiber et al. 2011; Thorarinsdottir and Gneiting 2010), 
showing the promise of such approaches. In particular, geo-
statistical approaches have been shown to provide an appro-
priate set of tools to characterize the spatial structure and 
inter-variable dependence, and to take these aspects into 
account in statistical ensemble approaches, e.g. (Furrer et al. 
2007; Sain and Cressie 2007; Gneiting 2014).

In this paper, we propose a model combination approach 
that improves the reproduction of observed climatological 
multi-decadal means, minimizes bias and maintains local 
spatial dependencies. It is based on a technique called graph 
cuts (GC), mainly used in computer vision (Kwatra et al. 
2003; Boykov and Funka-Lea 2006; Salah et al. 2011) and 
geostatistics (Mariethoz and Caers 2014; Li et al. 2016) to 
assemble or reshape images by “stitching” other images 
in the best possible way. We call this approach GC-based 
patchworking. The quality of the model combination is eval-
uated by the visibility of the stiches: the less visible they are, 
the better the result is. In practice, this quality is represented 
by a cost function called energy in the Markov Random 
Fields literature (Szeliski et al. 2008). GC algorithms allow 
minimizing this energy. Model output fields can be seen as 
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images where each grid point is a pixel. Therefore, we can 
use GC algorithms to combine outputs from different climate 
models so that the combination exhibits fewer biases than 
the individual models, while preserving the spatial depend-
encies locally. The result is an assemblage (i.e., patchwork) 
of the best models in terms of biases, while maintaining 
spatial consistency, i.e. minimizing stitches between model 
patches.

In this work, we compare our new GC-based patch-
working method with the traditional MMM approach. The 
data used in this study, the GC algorithm and the design of 
experiments are described in Sect. 2. Results are detailed 
in Sect. 3. Finally, Sect. 4 is dedicated to discussions and 
conclusions.

2  Data and methods

2.1  Models and reanalysis data

The reference data used in this study are the reanalysis from 
the European Centre for Medium-Range Weather Forecasts 
(ECMWF) ERA5 (Hersbach 2016). Daily surface tempera-
ture (TAS, in K) and precipitation (PR, in mm/day) data 
have been extracted for the period 1979–2019 over the entire 
globe. This work is also based on the 20 CMIP5 models 
listed in Table 1. For each model, we extracted the same var-
iables as in ERA5: TAS and PR. For the 1850–2005 period, 
data are extracted from the historical simulations and for 
the 2006–2100 period, from the projections made under the 
Representative Concentration Pathway 8.5 (RCP8.5). The 
RCP8.5 is one of the four greenhouse gas concentration 
trajectories considered by the Intergovernmental Panel on 
Climate Change in their Fifth Assessment Report. Among 
those four scenarios, RCP8.5 is the scenario leading to the 
largest warming at the end of the century with an increase 
of + 8.5 W/m2 in terms of radiative forcing. Since the aim of 
this work is to reconstruct the multi-decadal average field of 
a given variable, the original data at the daily scale are aver-
aged over a period of either 20 or 30 years depending on the 
experiments conducted in this paper (see Sect. 2.3 for more 
details). To make the comparison possible, the models and 
reanalyses are re-gridded onto a 1 ◦ × 1◦ latitude-longitude 
grid using bi-linear interpolation, which corresponds to 
65160 grid cells.

2.2  Graph cuts for multi‑model combination

In this work, we use the GC approach to combine an ensem-
ble of GCMs and reconstruct multi-decadal averages of cli-
mate fields. Our aim is to obtain a combination that is closer 
to a given reference than any of the individual models. This 
is done by selecting, for each location (here, grid point), 

the value of one of the GCMs. The selection of a GCM at 
each grid point to build the new map is called a labeling in 
the graph cuts literature. The labeling � is chosen such that 
it minimizes a cost function called Energy in the Markov 
Random Fields literature (Li 2009). In our case, the energy 
is chosen to represent the mismatch between the reference 
and the constructed map, and also to favor labelings that 
are spatially homogeneous, in order to preserve as much 
as possible the physical continuity of the selected GCMs. 
Hence, the energy E(� ) is made of two terms, the data energy 
Edata(�) and the smooth energy Esmooth(�):

where the labeling � = (fp, p ∈ P) is a tuple and fp denotes 
the selected model for the grid point p ∈ P , the set of all 
grid points.

The data energy, Edata(� ) , represents the bias between the 
GC result and the reference used. It is computed as the sum 
of the absolute bias over the set of all grid points P:

where D(fp) is the absolute bias at grid point p and is equal 
to |Xp(fp) − refp| . In this expression, Xp(fp) denotes the value 
given by the model fp attributed at the grid point p. refp 
denotes the value of the reference (for instance, ERA5) at 
the same grid point p.

(1)E(� ) = Edata(� ) + Esmooth(� )

(2)Edata(� ) =
∑

p∈P

D(fp)

Table 1  List of CMIP5 models and runs used

Institute Model Runs

BCC bcc-csm1-1-m r1i1p1
BNU BNU-ESM r1i1p1
CCCma CanESM2 r1i1p1
CMCC CMCC-CESM r1i1p1
CNRM-CERFACS CNRM-CM5 r1i1p1
CSIRO-BOM ACCESS1-0 r1i1p1
CSIRO-QCCCE CSIRO-Mk3-6-0 r1i1p1
FIO FIO-ESM r1i1p1
INM inmcm4 r1i1p1
IPSL IPSL-CM5A-LR r1i1p1
MIROC MIROC-ESM r1i1p1
MOHC HadGEM2-CC r1i1p1
MPI-M MPI-ESM-LR r1i1p1
MRI MRI-CGCM3 r1i1p1
NASA-GISS GISS-E2-H r1i1p1
NCAR CCSM4 r1i1p1
NCC NorESM1-M r1i1p1
NIMR-KMA HadGEM2-AO r1i1p1
NOAA-GFDL GFDL-CM3 r1i1p1
NSF-DOE-NCAR CESM1-CAM5 r1i1p1
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The smooth energy, Esmooth(� ) , represents the quality of 
the labeling in terms of spatial consistency, i.e., the fact that 
selecting a model for one grid point and another model for 
an adjacent grid point does not introduce a spatial discon-
tinuity. This property will be referred to as “smoothness” 
hereafter:

where N is the set of adjacent grid points and p and q repre-
sent two adjacent pixels. V{p,q} is defined in the same way as 
the capacity cost in Li et al. (2016):

Note that when fp = fq , then V{p,q}(fp, fq) = 0 . Further-
more, V{p,q}(fp, fq) = 0 if and only if Xp(fp) = Xp(fq) and 
Xq(fp) = Xq(fq) . Hence, V{p,q}(fp, fq) = 0 means that the dif-
ference between two adjacent grid points is realistic since 
this difference is originally present in the two models fp and 
fq.

Figure 1 is a schematic illustration of the combination of 
two models ( � and � ) using the GC approach. In this figure, 
the reference and the models are represented as 2 by 2 matri-
ces where each element represents a grid point, the value of 
which (e.g., mean temperature over 30 years) is represented 
by a color. Those matrices can also be represented as graphs 
where each grid point corresponds to a node (circle) and 
adjacent grid points are connected by a vertice (segment). 

(3)Esmooth(� ) =
∑

(p,q)∈N

V{p,q}(fp, fq).

(4)V{p,q}(fp, fq) = |Xp(fp) − Xp(fq)| + |Xq(fp) − Xq(fq)|.

In this setting with 4 grid points, there are 24 possible com-
binations since each grid point can either be attributed the 
label � or � . The GC approach tries to find a combination of 
the two models that minimizes an energy function accord-
ing two criteria: (1) the match to a reference (data energy) 
and (2) the spatial consistency of the combination (smooth 
energy). In the graph representation, the data energy is the 
sum of the costs associated with the nodes while the smooth 
energy is the sum of the costs associated with the vertices. 
The green dashed line represents the seams of the GC, that 
is the frontiers between selected models. Only the vertices 
crossed by the green dashed lines have an associated smooth 
energy greater than 0.

When the number of models to combine is equal to 2, 
a solution can be found through optimization by finding 
a global minimum of the energy function, resulting in an 
optimal labeling (Ishikawa 2012). In practice, we often 
have more than two models, e.g., 20 in the present study. 
In this case, we use an iterative approximation developed 
by Boykov et al. (2001): the α-β swap algorithm. It starts 
by forming a solution with only one pair of models. Then 
one model in the pair is replaced by another and grid points 
attributed to either model in the pair are allowed to switch 
label: for a pair of models ( � , � ), a grid point with the label 
� , can have its label changed to � if it reduces the energy E, 
and vice versa. This is repeated a number of times for all 
pairs of models until the energy E stops decreasing. Contra-
rily to the two-model case, this procedure only ensures that a 

3

E

E

Fig. 1  Illustration of the GC approach for 2 models. First, climate 
fields are represented as graphs where grid points are nodes and 
adjacency between grid points are vertices. Then, the GC algorithm 
finds the combination of models that minimizes the energy (data and 

smooth energy). Green dashed lines represent the “seams” made to 
combine the two models. Strike-trough terms in the smooth energy 
are equal to zero singe they do not corresponds to seams
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local minimum of energy is reached. Hence, the whole pro-
cedure can be repeated a certain number of times with dif-
ferent initializations and orders of models and the outcome 
with the lowest energy can be retained. In practice, for our 
datasets and the few sensitivity tests we made, results were 
very similar (not shown) and the order of models in the α
–β swap algorithm did not matter much. For this reason, we 
have chosen in this paper to simply run the α–β swap algo-
rithm once and initialize it with the labeling that minimizes 
the data energy.

2.3  Design of experiments

2.3.1  Combination approaches

In this paper, we compare the performance of different 
multi-model combination approaches, either based on 
MMMs or on GC. They are evaluated based on out-of-
sample testing: when needed, the approaches are tuned on a 
calibration period (learning dataset) and their performances 
are evaluated on a projection period (test dataset). This way, 
the robustness and generalization capability of the combi-
nation approaches can be assessed. We have selected three 
approaches from the MMM family and four from the GC 
one:

• multi-model mean (mmm): each model is given the same 
weight to compute the average. Since it is the most com-
monly used approach in the literature, the multi-model 
is used as a baseline in this study.

• om_present: a weighted multi-model mean where the 
weight of each model is optimized on the calibration 
period in order to minimize the cost function: 

 where the weights � = (wf )f∈F are positive and sum up 
to 1. Note that the same weight is used for all grid points.

• om_future: same as om_present except that the models 
weights are optimized on the projection period. This 
aggregation method cannot be used in practice since 
the needed reference dataset in the projection period is 
unlikely to be available. It serves as a basis to assess the 
best results one could achieve in terms of bias with a 
multi-model mean approach (provided all information 
about the reference are available).

• min_bias: at each grid point, we select the value of the 
model having the smallest absolute bias in the calibra-
tion period. The same labeling is kept for the projection 
period. It corresponds to the result of a GC where only 
the data energy is minimized.

(5)C(�) =
∑

p∈P

[
refp −

∑

f∈F

wf Xp(fp)

]2

• gc_present: a GC procedure where the data energy and 
smooth energy are defined (and optimized) with respect 
to the calibration period.

• gc_future: a GC procedure where the data energy and the 
smooth energy are defined with respect to the projection 
period. Similarly to om_future, this aggregation cannot 
be used in practice since the reference dataset in the pro-
jection period needed for the data energy is unlikely to 
be available. However, gc_future gives an idea of the best 
results one could achieve with graph cuts.

• gc_hybrid: a GC procedure where the data energy is 
defined with respect to the calibration period and where 
the smooth energy is defined with respect to the projec-
tion period. This is possible in practice as the smooth 
energy only depends on the values of the models and not 
on the reference. The formulation of gc_hybrid can make 
more sense than the gc_present as we evaluate the degree 
of spatial continuity in the projection period and not in 
the calibration period.

2.3.2  Experiments

The evaluation of the combination approaches is performed 
based on two independent experiments: 

1. An experiment where we use the ERA5 reanalysis data 
as reference. This experiment is quite realistic as rea-
nalyses assimilate observations. It gives an indication 
about the combination performances when trying to 
reconstruct the true multi-decadal average field even if 
reanalyses are not exempt from uncertainties. The draw-
back of working with observations is that observational 
records are relatively short. Thus, the performances of 
the combination approaches are assessed on a projection 
period close in time to the calibration period. Conse-
quently, the robustness of a combination approach to a 
strong evolution in the climate can be difficult to deduce 
from this experiment. In this case, the calibration period 
is defined as 1979–1998 and the projection period as 
1999–2019. Hence, changes in the multi-decadal aver-
age fields between the two periods are likely to be rela-
tively small.

2. An idealized perfect model experiment where we select 
one model as a reference that we try to reconstruct with 
the other models. In particular, this allows us to test 
the robustness of the different combination approaches 
under climate change. Here, the different combina-
tion approaches are calibrated on the historical period 
1979–2008 and evaluated on a future period 2071–2100 
as projected by the RCP8.5 scenario where there is an 
important warming. Although we do not use observa-
tional data as reference, this experiment can be justi-
fied under the “models are statistically indistinguishable 
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from the truth” paradigm. Indeed, in this paradigm, the 
truth and the models are supposed to be generated from 
the same underlying probability distribution (e.g., Ribes 
et al. 2016). This means that the role of “truth” and a 
“model” can be exchanged without modifying the under-
lying probability distribution. Hence, an approach based 
on the “models are statistically indistinguishable from 
the truth” paradigm should also work when any model 
is considered as the reference. In our experiment, each 
model is used once as a reference, for both for calibration 
and projection. Note that ERA5 reanalysis is not used in 
this experiment. The combination approaches are thus 
tested on a variety of possible references, encompassing 
cases where the truth is either in the center of the multi-
model distribution or far in the tail.

The ERA5 experiment assesses the performance of the com-
binations approaches on very short-term projections where 
the main source of uncertainty is the internal variability of 
the climate. Contrastingly, the perfect model experiment 
assesses the performance of long-term projections where 
the main uncertainties are related to the multi-model spread 
in the climate projections.

2.3.3  Evaluation metrics

In both experiments, the combination approaches are evalu-
ated on two aspects, the biases and the spatial gradients: 

1. The biases reflect the local error of a combination 
approach with respect to the reference ref, quantified by 
the mean absolute error (MAE). It is calculated by aver-
aging the absolute value of the bias at each grid point: 

 where # denotes the cardinal number of a set. Note that, 
for a given GC combination, MAEb is simply the data 
cost on the projection period normalized by the number 
of grid points #P.

2. A spatial gradient is defined as the difference of values 
between one grid point and one of the adjacent grid cell. 
The spatial gradients are used to determine whether the 
combination approaches represent well the spatial dis-
tribution of the reference. Indeed, GC approaches can 
introduce spatial discontinuities since their results are a 
patchwork of models. Additionally, MMM approaches 
can be expected, by construction, to have smoother 
results, and thus gradients smoother than the reference. 
Overall, the ability of the approaches to reproduce the 

(6)MAEb(� ) =
1

#P

∑

p∈P

||Xp(fp) − refp
||

spatial gradients of the reference is evaluated in terms 
of mean absolute error (MAE): 

 where: 

 and Np denotes the grid points adjacent to the grid point 
p. Note that MAEg is not independent of MAEb . When 
MAEb(� ) = 0 , then MAEg(� ) = 0.

  Note that, in the graph cut approach, the smooth 
energy reflects the level of discontinuity in the resulting 
combination. However, this metric is a function of the 
selected labels and thus, it can only be used for graph cut 
based approaches. This is why we evaluate the spatial 
variability of the different combinations with the spatial 
gradients instead. The spatial gradients characterize the 
spatial variability between one grid point and its neigh-
bor. Hence, spatial gradients only represent the local 
spatial structure. Nevertheless, they make sense in the 
context of the graph cut approaches where the spatial 
discontinuity is only defined in the smooth cost with 
respect to one grid point and its neighbors.

3  Results

3.1  ERA5 experiment

In this section, we examine the performance of the various 
combination approaches in reconstructing the 1999–2019 
multi-decadal average of ERA5 surface temperature (TAS, 
in K) and total precipitation (PR, in mm/day). For concise-
ness, we will thoroughly present the results for TAS and only 
point out notable results for PR. The performance is evalu-
ated in terms of biases and spatial gradients. As a reminder, 
all multi-model approaches except gc_future and om_future 
are calibrated during the period 1979–1998 and evaluated 
during the period 1999-2019.

3.1.1  Reconstruction of TAS

Figure 2 shows the labeling obtained for the four graph cuts 
approaches. gc_present, gc_hybrid and gc_future show very 
similar labelings. This can be explained by the fact that, for 
all models and for the reference, the multi-decadal average 
of the TAS fields does not change much from 1979–1998 
to 1999–2019. The labeling obtained with min_bias is 
noisier, with significant variability in the labels between 

(7)MAEg(� ) =
1

#P

∑

p∈P

MAE(p)
g

(8)

MAE(p)
g

=
1

#Np

∑

q∈Np

||
(
Xp(fp) − Xq(fq)

)
−
(
refp − refq

)||
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adjacent grid points. However, the histogram of labels used 
is more uniform than in the other GC approaches (Fig. 3). 
For instance, for gc_present, gc_hybrid and gc_future, MPI-
ESM-LR is the most used model and is attributed to more 
than 15% of the grid points. For min_bias, each model is 
attributed to about 5% of the grid points. It suggests that 
all models have some value when considering only the bias 
at the grid point scale: for each model, there is a grid point 
where the absolute bias with respect to the reference is the 
minimum.

It is noted that gc_present is not informed by climate 
projections, therefore it is not deemed relevant for practical 
purposes. Hence, in the following (including in the perfect 
model experiment), we will not present further results in 
terms of maps for gc_present, especially as gc_present is 
similar to gc_hybrid in terms of biases and is most of the 
time between min_bias and gc_hybrid in terms of spatial 
gradients (not shown).

All approaches show similar structures of biases (Fig. 4). 
In general, we observe negative biases over the Arctic 
Ocean and over Africa and positive biases over Antarctica, 
the Southern Ocean and upwelling areas. The differences 
between the approaches are more related to the intensity of 

the biases than to their spatial structure. The MMM-based 
approaches (mmm, om_present and om_future) perform 
poorest ( MAEb of 1.18, 0.99 and 0.98, respectively). The 
results for om_future show that using a global weight for 
each model is not sufficient to reconstruct the local distribu-
tion of temperature. gc_present and gc_hybrid have similar 
performance ( MAEb of 0.71 and 0.72). gc_future has the 
second best result ( MAEb=0.56) behind min_bias ( MAEb

=0.46). This can be surprising as gc_future has been cali-
brated on the projection period, but it probably suggests that 
the bias with the reference does not change much between 
the calibration and projection period. Note that in gc_future, 
a compromise is made between the data energy and the 
smooth energy which can also explain why it is not per-
forming as well as min_bias that only considers the biases. 
Out of all approaches, min_bias is the approach with the 
noisiest spatial pattern of bias, which is expected as it does 
not consider spatial continuity.

In terms of spatial gradients, all approaches exhibit simi-
lar patterns of differences with the reference (Fig. 5). Strong 
disparities with the reference are located in continental 
areas, in particular in regions with high reliefs. The main 
difference between the approaches is the intensity of these 

Fig. 2  Maps of models selected 
at each grid point for the 
reconstruction of TAS in the 
ERA5 experiment. Each map 
represents the labeling obtained 
for one of the GC approach: 
a min_bias, b gc_present, c 
gc_hybrid, d gc_future
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differences. All approaches except min_bias show similar 
performance ( MAEg ∼ 0.42). min_bias has the best perfor-
mance by quite a large margin ( MAEg = 0.33). For min_bias, 
the pattern of discrepancies is noisy, with a large number of 
grid points having MAE

(p)
g  close to zero. Contrary to others 

approaches, there are differences in the spatial gradients in 
the oceans, but their intensities are low. To visualize the 
statistical distributions of the biases and the gradient errors, 
Figs. 4 and 5 are respectively represented as histograms in 
Fig. S1 and Fig. S2.

It is worth noting at this point that good results on the 
period 1999–2019 do not imply that the projections at the 
end of the century are also of good quality. Hence, we 
look at the temperature projected for 2071–2100 by the 
different combination approaches, even though a quantita-
tive assessment of the projections cannot be made. Indeed, 
the ERA5 reanalysis, which serve as reference, are not 

available for this period. Nonetheless, we can observe that 
while the patterns of temperature projected for 2071–2100 
are quite similar among the different approaches (Fig. 6), 
only gc_present and min_bias do not fully respect the lati-
tudinal gradient of temperatures and exhibit temperatures 
at 90 degrees north being higher than at 70 degrees north, 
which seems non-physical. Indeed, no projections made 
with individual models show such a pattern (not shown). 
Hence, even though min_bias shows the best results both 
in terms of both bias and spatial gradient for 1999–2019, 
projections made with the min_bias approach for end of 
the century can lack robustness. The constraint brought by 
the smooth energy appears to help producing more robust 
projections. Other differences between the combination 
approaches occur near the Intertropical Convergence Zone 
(ITCZ). In this region, gc_hybrid is closer to mmm and 
min_bias is closer to om_present.

Fig. 3  Histograms of the 
number of grid points attributed 
to each model for the different 
graph cut approaches used for 
the construction of TAS in the 
ERA5 experiment
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3.1.2  Reconstruction of PR

Similar conclusions can be reached for the reconstruction of 
PR. The spatial patterns of biases and errors in the gradients 
are similar among the different approaches (Fig. S3, Fig. 
S4, and Fig. S5, Fig. S6 for the corresponding histograms.) 
Errors in terms of biases and spatial gradients are more 
important around the ITCZ. In this region, discrepancies 
in the gradients appear at the boundary between regions of 
negative and positive biases. In terms of spatial gradients, 
all methods have similar performance but in terms of bias, 
GC approaches exhibit better results, especially min_bias 
(Table 2). For the projections at the end of the 21st century, 
mmm exhibits an increase in precipitation near the ITCZ 
whereas other methods show more nuanced patterns with 
a few regions in the ITCZ where precipitation decreases 
(Fig. S7).

3.2  Perfect model experiment

In this section, we present the results of the perfect model 
experiment. Since for a given reference, the evaluation 
procedure is the same as the one employed in the ERA5 
experiment, we will only present the results summarized 
over all reference models. As for the ERA5 experiment, 
the combination approaches are evaluated for TAS and PR 
in terms of biases and spatial gradients. As a reminder, all 
combination approaches except gc_future and om_future are 
calibrated on the period 1979–2008 and evaluated on the 
period 2071–2100.

3.2.1  Summary of TAS reconstruction

Here we examine the results obtained once every model has 
been used as a reference for the variable TAS. Results in 

Fig. 4  Maps of biases with 
respect to the reference ERA5 
for the different combination 
approaches used to reconstruct 
the multi-decadal mean of TAS 
over the period 1999–2019. 
Note that the color scale is not 
linear (arctangent scale)
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terms of biases are summarized in Fig. 7. Depending on 
the reference, the performance of the different approaches 
in terms of MAEb varies substantially. Additionally, from 
one reference to another, the ranking of the approaches can 
be quite different; we can however distinguish trends. For 
all references, gc_future has the best performance, often 
by a large margin: this is expected since it is calibrated 
on the projection period. The second best performance is 
achieved by om_future, which is also calibrated on the pro-
jection period. The gap between gc_future and om_future 
shows that having one unique and global weight per model 
is sometime not enough to reconstruct the multi-decadal 
mean temperature. It is also interesting to note that when 
CCSM4 or CESM1-BGC are used as reference, om_pre-
sent and om_future reach the same level of performance, 
and gc_hybrid is not too far behind. However, the results 
of om_present highly depend on the reference. On average, 
the worst results are obtained with mmm. The graph cuts 

approaches, min_bias, gc_present and gc_hybrid, tend to 
perform similarly. The median of the MAEb is slightly better 
for gc_hybrid, but the variability of MAEb is higher than for 
min_bias and gc_present. Over all references and on aver-
age, the combination approaches have more difficulties esti-
mating the temperature multi-decadal average in the Arctic 
Ocean and on the continents (Fig. S8).

Results in terms of spatial gradient are summarized in 
Fig. 8. The worst results are obtained with the min_bias 
approach, as expected since there is no constraint on the 
spatial consistency in the labeling selection. The second 
worst results are obtained by gc_present. It is understand-
able since the smooth energy is not optimized on the projec-
tion period. The five remaining approaches have comparable 
performances. In average, there is a slight advantage for om_
present and om_future. There are cases where om_present 
performs better in terms of spatial gradient than om_future. 
It can be explained by the fact that even if om_future is 

Fig. 5  Maps of MAE
(p)
g  with 

respect to the reference ERA5 
for the different combination 
approaches used to reconstruct 
the multi-decadal mean of TAS 
over the period 1999–2019. 
Note that the color scale is not 
linear (arctangent scale)
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calibrated on the projection period, the weights are chosen 
to only minimize the bias without accounting for the spatial 
gradients. Hence, there are cases when minimizing the bias 
degrades the spatial gradients. gc_future is only the third 
best approach despite being calibrated directly on the projec-
tion period, and despite using the knowledge of the reference 
in the future. It suggests that for very smooth fields such as 
the multi-decadal mean of TAS, patching models together 
incurs a loss in terms of spatial gradient compared to MMM 
approaches, especially if the spatial gradients are already 
well represented in the individuals models. Over all refer-
ences and on average, the spatial gradients in mountainous 
regions are not well reproduced by any of the combination 
approaches (Fig. S9). This suggests that the models exhibit 
large discrepancies in those areas. Those are also the areas 
where gc_hybrid, gc_future, and om_present show small 
improvements compared to mmm.

When looking at the maps of temperature produced for 
the end of the century projections, min_bias and gc_hybrid 
can show spatial patterns that appear unrealistic, depend-
ing on the reference. In the case of min_bias, as in the 
ERA5 experiment, the usual meridional gradient of tem-
peratures is sometimes not fully respected in high latitudes 
(not shown). For gc_hybrid, in a few cases, we can clearly 
distinguish the seams of the patchworks made by the GC 
algorithm in high latitudes. It usually corresponds to one 
model that has been attributed to one large area and exhib-
its values quite different from the other selected models 
(not shown).

3.2.2  Summary of PR reconstruction

For PR, results are similar to TAS in terms of bias in the 
sense that GC approaches (with the exception of min_
bias) tend to have smaller biases than comparable MMM 
approaches (Fig. 9). The difference in bias is however 
clearer than for temperature since all GC approaches give 
better results than om_future. In terms of spatial gradi-
ents, om_present and om_futur give slightly better results 
than gc_hybrid and gc_future (Fig. 10). As in the ERA5 
experiment, all methods have difficulties reconstructing 
the region of the ITCZ, both in terms of biases (Fig. S10) 
and of spatial gradients(Fig. S11).

Fig. 6  Maps of the projected 
multi-decadal mean of the 
variable TAS over the period 
2071–2100. They are obtained 
for the ERA5 experiment with 
the following combination 
approaches: a min_bias, b 
mmm, c gc_hybrid, d om_pre-
sent. The red rectangle high-
lights the region in the min_bias 
projection where the usual 
latitudinal gradient of tempera-
ture is not reproduced
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Table 2  Performance metrics 
of the different combination 
approaches used to reconstruct 
the multidecadal mean of PR 
during the period 2000–2019

Approach MAEb MAEg

mmm 0.46 0.18
om_present 0.39 0.17
om_future 0.38 0.17
min_bias 0.22 0.16
gc_present 0.32 0.18
gc_hybrid 0.32 0.18
gc_future 0.23 0.17
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4  Conclusions and discussion

In this paper, we introduced the Graph Cuts (GC) algo-
rithm (e.g., Kwatra et al. 2003; Boykov and Funka-Lea 
2006) as an alternative to multi-model means (MMM) to 
extract the robust signal of climate change in a multi-model 

ensemble. The GC was used to estimate the multi-dec-
adal mean field of a climate variable. GC approaches 
distinguish themselves from the traditional MMM based 
approaches that are widely used in the literature. Indeed, 
the GC approaches construct their estimations by selecting 
at each grid-cell the value of the ensemble member that is 
considered the best, i.e., the member that minimizes the 

Fig. 7  Summary plot of the 
MAEb obtained in the perfect 
model experiment for the varia-
ble TAS and computed over the 
projection period 2071–2100. 
The abscissa axis indicates the 
model used as reference
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Fig. 8  Summary plot of the 
MAEg obtained in the perfect 
model experiment for the 
variable TAS computed over the 
projection period 2071–2100. 
The abscissa axis indicates the 
model used as reference
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bias and maximizes spatial consistency. Hence, it can be 
seen as a particular case of a MMM approach using local 
weights for the models. In the case of the graph cuts, the 
weight of a given model at a given location is simply either 
equal to 1 or 0.

We have evaluated the ability of GC approaches to pre-
dict the multi-decadal mean of a climate field (TAS or PR). 

The performances of GC approaches were compared to 
three MMM approaches with global weights: mmm where 
each model has the same weight; om_present and om_
future where the weights of each model are respectively 
calibrated based on the model biases in the calibration 
period and projection period.

Fig. 9  Summary plot of the 
MAEb obtained in the perfect 
model experiment for the vari-
able PR and computed over the 
projection period 2071–2100. 
The abscissa axis indicates the 
model used as reference
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Fig. 10  Summary plot of the 
MAEg obtained in the perfect 
model experiment for the 
variable PR computed over the 
projection period 2071–2100. 
The abscissa axis indicates the 
model used as reference
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Performances were assessed based on two experiments: 
one using ERA5 reanalyses as the reference and another one 
based on a perfect model experiment setting. The results of 
the ERA5 experiment showed that when the climate does not 
evolve much between the calibration and projection periods, 
GC approaches perform better in terms of biases and have a 
similar performance to mmm in terms of spatial gradients. 
In this experiment, the best results were obtained by far by 
the min_bias approach, both in terms of bias and spatial gra-
dients. This approach simply selects, for each grid point, the 
value of the model with the minimum bias in the calibration 
period. We explain the good performance of min_bias by 
the fact that the climate can be considered almost station-
ary between periods 1979–1998 and 1999–2019. When the 
labeling given by min_bias is used for long term projections 
(2071–2100), it can lead to non-physical results. In the case 
of temperature, the latitudinal gradients of temperature are 
for instance not totally reproduced. Hence, this experiment 
did not allow us to assess the usability of the GC approaches 
for long-term projections.

Long-term projections were assessed with a perfect-
model experiment, where all models were in turn used as 
reference. Results for TAS and PR showed that the best 
GC approach usable in practice is gc_hybrid. Compared to 
min_bias, the spatial consistency constraint brought by the 
smooth energy significantly improves the robustness of gc_
hybrid. In general, the biases are more consistently reduced 
with gc_hybrid than with mmm. Depending on the reference 
selected, results of om_present were sometimes better than 
the gc_hybrid, but were sometimes the worst of all meth-
ods. The performance of om_present is thus less consistent. 
However, the gain obtained by gc_hybrid in terms of bias is 
also associated with a small loss in terms of spatial gradi-
ents compared to om_present. The comparison of om_future 
with gc_future shows that having only one global weight per 
model is not flexible enough to reconstruct the multi-decadal 
average of a field.

In both experiments, the GC results showed that every 
model was used in the reconstruction of the multi-decadal 
mean field. It indicates that every model can bring a mean-
ingful contribution to some regions where its bias is lower 
than that of other models. Overall, our results show that GC 
based approaches provide an interesting way of using MME 
and are complementary to MMM approaches.

The results of these two experiments were evaluated 
based on two metrics: one related to the bias at each grid 
point and the other based on the error in the spatial gra-
dients. The spatial gradients only look at the relationship 
between one grid point and its neighbors, so it is a very 
local metric. While we think that the two metrics used in 
this paper were sufficiently convincing to show the poten-
tial of the GC approach, the analysis of the results could 
be refined by using complementary metrics to assess how 

well the spatial variability is reproduced by the different 
combination approaches. For instance, the connectivity 
analysis (Renard and Allard 2013) and the fractions skill 
scores (Roberts and Lean 2008) are complementary met-
rics that look at the spatial variability at different spatial 
scales.

The GC approaches were introduced in this paper 
mainly as a proof of concept and could benefit from several 
improvements:

• One of the most important improvements would be to 
associate a degree of confidence or uncertainty to the 
reconstructed maps. This work would require additional 
hypotheses and to develop further the underlying statisti-
cal formulation of the GC approaches.

• When determining the labels in the GC approaches, 
the bias (data energy) and spatial consistency (smooth 
energy) have the same weight in the energy function. 
The performance of the GC approaches could be further 
improved if these weights could be optimally select. In 
the same idea, depending on the objectives when apply-
ing a model combination with a GC approach, such 
weights can be arbitrarily fixed: a practitioner more inter-
ested in preserving a spatial smoothness of the results 
than in the bias minimization would give a higher weight 
to the smooth energy than to the data energy, and con-
versely.

• In this paper, we observed that the labeling obtained for 
TAS and PR are different. To make consistent projections 
across different variables, the energy function could be 
defined such that the multi-decadal mean of TAS and PR 
are reconstructed together, resulting in a single labeling. 
More generally, the GC approach could be applied in a 
multivariate way, i.e., to more than one variable at the 
same time.

• Here, we run the GC algorithm on 2D maps without 
using the spherical geometry of the Earth. In particu-
lar, neighborhoods of grid points across the Greenwich 
meridian or across the poles are not considered. Addi-
tionally, in the GC procedures and in our evaluations, 
all grid points have the same weight despite covering 
different areas. This will need to be addressed in future 
implementations.

• We applied the GC approaches directly to model outputs. 
Before using GC approaches, model simulations could 
first be bias-corrected. Assessing the influence of bias 
correction on the multi-model combination approaches 
could be an interesting line of research.

• While we only demonstrated the GC approaches based 
on multi-decadal means, the applicability of the method 
should be tested other statistics (e.g., variance, extremes, 
etc.) or on different integration periods, such as to pro-
duce seasonal maps.
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• In the same line of idea, one could use the graph cut to 
generate time-series or spatio-temporal data by combin-
ing slices of temporal sequences coming from different 
climate models. In this case, the graph cut would be used 
to generate additional realizations of a time series, which 
is distinct from the goal pursued in this paper to provide 
more robust climate projections. However, some chal-
lenges may arise from the internal climate variability. 
Indeed, since the climate system is chaotic, the outcome 
of different simulations are not synchronized and hence 
not correlated, neither between each other nor with the 
observations. This internal variability could be dealt 
with either by redesigning the data and smooth energies 
to account for the temporal variability, or to aggregate 
the data on long (e.g. decadal) time periods where the 
chaotic behavior is smoothed out. An application with 
spatio-temporal data, with the same objective as in this 
paper, would consist of working with statistics that are 
functions of space and time and computed on multi-dec-
adal periods to reduce the effect of internal variability. 
For instance, one could use the graph cut approach to 
estimate the average seasonal cycle at the daily time scale 
and to ensure that there is a smooth transition between 
successive seasonal maps.

To conclude, GC is a promising method for applications to 
climate models combination, which we only start exploring 
in this paper.
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