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Abstract

Let Xi (i = 1, 2, . . .) be a sequence of subexponential positive independent and identi-
cally distributed random variables. In this paper we offer two alternative approaches to
obtain higher-order expansions of the tail of

∑n

i=1
Xi and subsequently for ruin prob-

abilities in renewal risk models with claim sizes Xi. In particular, these emphasize
the importance of the term P(

∑n

i=1
Xi > s,max(X1, . . . , Xn) ≤ s/2) for the accuracy

of the resulting asymptotic expansion of P(
∑n

i=1
Xi > s). Furthermore, we present a

more rigorous approach to the often suggested technique of using approximations with
shifted arguments. The cases of a Pareto-type, Weibull and Lognormal distribution
for Xi are discussed in more detail and numerical investigations of the increase in
accuracy by including higher-order terms in the approximation of ruin probabilities
for finite realistic ranges of s are given.

1 Introduction

We consider compound sums SN = X1+ · · ·+XN with independent identically distributed
(i.i.d.) random variables Xi with subexponential distribution, i.e.

lim
s→∞

P(X1 +X2 > s)/P(X1 > s) = 2,

with tail probabilities P(Xi > s) = 1−F (s) = F (s). The claim number N is independent
of the claim sizes Xi, i = 1, 2, . . . and is assumed to satisfy E

[

(1 + ǫ)N
]

<∞ for an ǫ > 0,
i.e. N is light-tailed.
It is well known that the numerical computation of the total claims distribution G(s) =
P(SN ≤ s) is usually time-consuming because of the fat tail of the claim size distribution.
This applies to both commonly suggested methods of computation: the integral equation
for densities (see e.g. [26, Th.4.4.4 and (4.4.18)]) as well as Panjer’s method ([26, Th.4.4.2])
with discretized claim size distribution. For the tail probabilities G(s) = 1 − G(s), an-
other way of approximation are asymptotic expansions that are theoretically valid for large
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values of s: for a first-order asymptotic formula see e.g. Teugels and Veraverbeke [27],
Greenwood [19], von Bahr [30] and Embrechts and Veraverbeke [15]. Later on second-
order asymptotic formulas were considered (see e.g. Omey and Willekens [24] and Grübel
[20]). Further work on approximations of compound distributions in the heavy-tailed case
can be found in Mikosch & Nagaev [22], Willekens [31] and Baltrūnas [5]. Higher-order
asymptotic expansions were finally given in Geluk et al. [18], Borovkov and Borovkov [14],
Barbe and McCormick [7] and Barbe et al. [11].

In this paper we want to review the available higher-order asymptotic expansions of G(s)
and complement some of these results. Further we give a numerical study that highlights
the advantages and disadvantages of higher-order asymptotic expansions as an approxima-
tion for G(s). These approximations for compound distributions also lead to corresponding
approximations for ruin probabilities in the collective renewal risk model with i.i.d. claim
sizes Xi and i.i.d. interclaim times, as the Pollaczek-Khintchine formula expresses the ruin
probability as a geometric compound (see Section 6).

The paper is organized as follows: in Section 2 we give an overview of available results
on higher-order approximations with a particular emphasis on the used methodology,
including a discussion of the main steps of the proof of Barbe & McCormick [7] and
Barbe et al. [11]. In Section 3 we present two alternative approaches to derive asymptotic
expansions and extend the expansion given in [7] by adding an additional term. In Section
4 we show how asymptotic approximations in terms of derivatives can be transformed
to asymptotic expansions in terms of the original function with shifted arguments. In
Section 5 an example is given of how asymptotic expansions for the light-tailed case and
higher-order asymptotic expansions can be combined. In Section 6 we then exploit the
connections to ruin probabilities. Finally, in Section 7 extensive numerical illustrations on
the performance of these approximations for a finite realistic range of s are given. Some
of the more technical proofs are postponed to the Appendix.

2 Asymptotic approximations of compound sums

Unless stated otherwise, in the sequel we will always consider an i.i.d. sequence (Xi)i≥1

with subexponential distribution function F (and X as a generic random variable with
the same distribution function) and an independent integer-valued random variable with
E
[

(1 + ǫ)N
]

<∞ for some ǫ > 0.

The classical first-order asymptotic approximation for P (X1 + · · · + XN > s) = G(s) =
a1(s) + o(F (s)), is given by

a1(s) := E[N ] F (s)

(see e.g. [26, Th.2.5.4]). A second-order asymptotic

G(s) = a2(s) + o(f(s)) (1)

was provided in Omey & Willekens [24] and [31] under the assumption that E [X] < ∞
and F has a continuous density f that is long-tailed, dominantly varying and with an
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upper Matuszewska index α(f) < −1, i.e. for all x > 0, lim sups→∞ f(x + s)/f(s) = 1,
lim sups→∞ f(xs)/f(s) <∞ and

α(f) := lim
x→∞

log
(

lim sups→∞
f(xs)
f(s)

)

log(x)
< −1.

In this case

a2(s) := a1(s) + 2 E

[(

N

2

)]

E [X] f(s).

If F (s) is regularly varying with index −α for 0 < α ≤ 1 (F (s) ∈ R−α, i.e. for all
x > 0, lims→∞ F (xs)/F (s) = x−α) with a regularly varying density f(s), a second-order
approximation for G(s) is given in Omey & Willekens [23] by

â2(s) =







a1(s) −
(2−α)Γ(2−α)
(α−1)Γ(3−2α)E

[

(

N
2

)

]

f(s)
∫ s
0 F (y) dy, 0 < α < 1,

a1(s) + 2 E

[

(N
2

)

]

f(s)
∫ s
0 F (y) dy, α = 1.

See [16], [17] and [9] for more details about â2(s).
If f(s) is not continuous, but f is of bounded total variation, it follows from Grübel [20]
that if there exists a monotonically decreasing function τ(s) with

sup
s>0

τ(s)

τ(2s)
<∞, τ(s) = O(s−4), V s+1

s f = o(τ(s)),

where V s+1
s denotes the total variation of f in the interval (s, s + 1], then G(s) =

a2(s) + o(τ(s)). The particular choice τ(s) = supy≥s f(y) then also gives (1).

In Willekens [31] and Willekens & Teugels [32] it is shown that if F (s) ∈ R−α, α > 2 and
f ′(s) is also regularly varying, or alternatively f ′′(s) exists, is asymptotically decreasing
and there exists a function χ(s) ∈ Rγ , 0 < γ ≤ 1 such that for all x ∈ R

lim
s→∞

f ′′(s+ xχ(s))

f ′′(s)
= e−x,

then a third-order asymptotic G(s) = a3(s) + o(f ′(s)) with

a3(s) := a2(s) −
E
[

N(X1 + · · · +XN−1)
2
]

2
f ′(s)

holds. Baltrūnas & Omey [6] consider distribution functions F ∈ S∗ (e.g. [21]), i.e.

lim
s→∞

∫ s

0

F (s− x)

F (s)
F (x) dx = 2E [X1] <∞

and show the quite general result that a2(s) is a second-order asymptotic if additionally
for all x > 0

0 < lim inf
s→∞

f(xs)F (x)

f(x)F (sx)
≤ lim sup

s→∞

f(xs)F (s)

f(s)F (xs)
<∞, lim

s→∞

f(s+ x)F (s)

f(s)F (s+ x)
= 1

and
F (s/2)2

f(s)
= o(1).
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Note that heavy-tailed Weibull and lognormal distributions are examples of distributions
fulfilling these requirements.

For cases where a density of X does not necessarily exist, the following results (for a
fixed number of summands) have been established: Geluk et al. [18] derive a higher-
order asymptotic expansion for the sum of two regularly varying random variables X1 and
X2 with distribution function F1(s) and F2(s), respectively, for which the second-order
behavior is given and of the form

lim
s→∞

F i(xs)/F i(s) − x−α

bi(s)
= x−αx

ρ − 1

ρ
, i = 1, 2,

where bi is a function with bi(s) → 0 (s→ ∞). If 0 < α < 1 it is then shown that

P(X1+X2 > s) =

2
∑

i=1

F i(s)−
Γ(1 − α)2

Γ(1 − 2α)
F 1(s)F 2(s)+o(1)

(

2
∑

i=1

bi(s)F i(s) + F 1(s)F 2(s)

)

.

If α ≥ 1 and E [Xα
i ] <∞ then

P(X1 +X2 > s) =
2
∑

i=1

⌊α⌋
∑

j=0

Γ(α+ j)E
[

Xj
3−i

]

Γ(α)j!

F i(s)

sj
+ o(1)

2
∑

i=1

(

bi(s)F i(s) +
F i(s)

s⌊α⌋

)

.

If α ∈ N and E [Xα
i ] = ∞ then

P(X1 +X2 > s) =

2
∑

i=1





α−1
∑

j=0

Γ(α+ j)E
[

Xj
3−i

]

Γ(α)j!

F i(s)

sj
+

Γ(2α)

Γ(α)2
1

sα

∫ s

0
F 3−i(y) dy





+ o(1)
2
∑

i=1

(

bi(s)F i(s) +

∫ s

0
F 3−i(y) dy

)

.

On the other hand, if α ≥ 1 is not an integer and E [Xα
i ] = ∞, then for a constant hα

P(X1 +X2 > s) =

2
∑

i=1

α−1
∑

j=0

Γ(α+ j)E
[

Xj
3−i

]

Γ(α)j!

F i(s)

sj
+ hαF 1(s)F 2(s)

+ o(1)

2
∑

i=1

(

bi(s)F i(s) + F 1(s)F 2(s)
)

.

Next, consider real-valued i.i.d. random variables X1,X2, . . . with F (s) = s−αℓ(s), where
ℓ(s) is a slowly varying function, and E [X1] = 0, E

[

X2
1

]

= 1 and E [|X1|
a] < ∞ for some

2 ≤ a ≤ α. Under the assumption that for a k ≤ a there exist functions ℓ0(s), . . . , ℓk(s)
and δk(x, s) such that

ℓ(s(1 + x)) = ℓ(s)





k−1
∑

j=0

xjℓj(s) + ykℓk(s)(1 + δk(x, s))



 ,
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and lim(x,s)→(0,∞) δk(x, s) = 0, Borovkov & Borovkov [14] showed that for a c > 0 uni-
formly in n ≤ cs2/ log(s),

G(s) = nF (s)



1 +
k
∑

j=2

(−1)j

sj
Uj(s) E

[

Sj
n−1

]

+ o(nk/2s−k)



 ,

where

Uj(s) =

j
∑

m=0

(

−α

m

)

ℓj−m(s).

Following another approach, Barbe & McCormick [7, 10] (see also [8, 9]) recently used the
concept of smoothly varying functions to derive higher-order expansions:

Definition 2.1. A function h(s) is smoothly varying with index −α and order m ∈ N

(h ∈ SR−α,m) if h(s) is eventually m-times continuously differentiable and h(m)(s) is
regularly varying with index −α−m.
For a non-integer u > 0 with u = m+ r, m ∈ N and r ∈ [0, 1), h(s) is smoothly varying
with index −α and order u (h ∈ SR−α,u), if h ∈ SR−α,m and

lim
δ→0

lim sup
s→∞

sup
0<|x|<δ

∣

∣

∣

∣

∣

h(m)(s(1 − x)) − h(m)(s)

|x|rh(m)(t)

∣

∣

∣

∣

∣

= 0.

If F (s) ∈ SR−α,u then it is shown in [7] that for k < min(α + 1, u + 1), G(s) = ak(s) +

o
(

F
(k−1)

(s)
)

with

ak(s) := a1(s) +

k−2
∑

j=0

(−1)jE
[

N(X1 + · · · +XN−1)
j+1
]

(j + 1)!
f (j)(s). (2)

Further, if the hazard rate h(s) = f(s)/F (s) ∈ SR−α,m, 0 < α ≤ 1, lims→∞ sh(s) = ∞
and lim infs→∞ sh(s)/ log(s) > 0, then it is shown in [11] that for k ≤ m + 1, G(s) =

ak(s) + o
(

F
(k−1)

(s)
)

.

Remark 2.1. The above conditions on the hazard rate are for instance fulfilled with m =
∞ for the Weibull and lognormal distribution.

Remark 2.2. For a distribution function with h(s) ∈ SR−α,∞ we have for every k > 0
that G(s) = ak(s) +O(|F (k)(s)|). Note however, that in many cases

lim
j→∞

∣

∣

∣

∣

∣

(−1)kE
[

N(X1 + · · · +XN−1)
j
]

F
(j)

(s)

j!

∣

∣

∣

∣

∣

≥ lim
j→∞

∣

∣

∣

∣

∣

∣

(−1)kE [N ] E
[

Xj
1

]

F
(j)

(s)

j!

∣

∣

∣

∣

∣

∣

= ∞,

so that limk→∞ |ak(s)| = ∞ for a fixed s (indeed, this is for instance the case for lognormal
or Weibull F ).
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Before we outline the ideas of the proofs given in [7, 11] one should mention that all proofs
for higher order expansion (except the proof in [20] which uses Banach algebra techniques)
use some decomposition of P(Sn > s) and then asymptotically evaluate involved convolu-
tion integrals.
For a distribution function F (s) and an 0 < η < 1, define the operators

McF (s) = F (s/c) and TF,ηg(s) =

∫ ηs

0
g(s − x)dF (x)

for a constant c and a function g(s), respectively. The main idea in the proofs of [7, 11] is
to use the decomposition

P(Sn > s) = P(Sn−1 ≤ (1 − η)s, Sn > s) + P(Xn ≤ ηs, Sn > s) + P(Sn−1 > (1 − η)s,Xn > ηs)

=TF ∗n−1,1−ηF (s) + TF,ηF ∗n−1(s) +
(

M1/ηF M1/(1−η)F ∗n−1
)

(s),

and further by recursion

P(Sn > s) =
n
∑

j=1

T j−1
F,η TF ∗(n−j),1−η F (s) +

n
∑

j=1

T j−1
F,η

(

M1/(1−η)F ∗(n−j)M1/ηF
)

(s). (3)

Now one makes use of finite Taylor expansions to get for m > 0, 0 ≤ i ≤ k, τ ∈ {η, 1 − η}

and an R̃k,i(s) = o
(

F
(k)

(s)
)

TF ∗m,τF
(i)

(s) =
k−i
∑

j=0

(−1)jF
(i+j)

(s)

j!

∫ τs

0
xj dF ∗m(x) +

∫ τs

0
R̃k,i(s− x) dF ∗m(x). (4)

One can show that for j ≤ k

F
(j)

(s)

∫ ∞

τs
xj dF ∗m(x) = o

(

F
(k)

(s)
)

, (5)

which for regularly varying F is a consequence of the monotone density and Karamata’s

Theorem (e.g. [12]). Further one can show that for R̃(s) = o
(

F
(k)

(s)
)

∫ τs

0
R̃(s− x) dF ∗m(x) = o

(

F
(k)

(s)
)

, (6)

which is easily seen to be true for regularly varying F (s). The proofs for F (s) 6∈ R are
more involved (for details see [10]). In [7] Laplace characters are defined by

LF,m =
m
∑

j=0

(−1)j

j!
µF,jD

j , i.e. LF,mg(s) =
m
∑

j=0

(−1)j

j!
µF,jg

(j)(s),

where µF,k =
∫∞
0 xkdF (x). This concept is useful as for two distribution functions F1 and

F2 one has
LF1,mLF2,mg(s) = LF1∗F2g(s),

6



where in the multiplication, terms of Dj with j > m are omitted. Applying (4), (5) and
(6) we get

T j−1
F,η TF ∗(n−j),1−η F (s) = Lj−1

F LF ∗(n−j)F (s) + o
(

F
(k)

(s)
)

= LF ∗(n−1)F (s) + o
(

F
(k)

(s)
)

.

Finally, one has to show that the conditioning on N = n is feasible which can be quite
intricate.

3 Higher-order results for regularly varying distributions

Let ⌈α⌉ denote the smallest integer k with α ≤ k. For F (s) ∈ SR−α,⌈α⌉, in Barbe &

McCormick [7] an asymptotic expansion of G(s) up to order m for m < α was provided.
In this section we present two alternative approaches for obtaining expansions and use
them to derive the next asymptotic term (note that for 0 < α ≤ 1 the latter is done in
Omey & Willekens [23], and that Geluk et al. [18] provide an O result). Since the step
from fixed n to a random N is straight-forward in this case (cf. Barbe et al. [11]), we will
only focus on the proof for fixed n.

At first we show that for an asymptotic expansion up to order F (s)2 the term P(Sn >
s,Mn ≤ s/2) can be neglected (although it will turn out in the numerical illustrations in
Section 7 that for smaller values of s this term is crucial for the accuracy of the asymptotic
approximation).

Lemma 3.1. Assume that F (s) ∈ R−α with α > 0, then for n ≥ 2

P (Sn > s,Mn ≤ s/2) = o(F (s)2).

Proof.

P (Sn > s,Mn ≤ s/2) ≤nP (Sn > s,Mn ≤ s/2,Mn = Xn)

≤nP (Sn−1 > s/2,Mn−1 ≤ s/2,Xn > s/n)

=nP (Sn−1 > s/2,Mn−1 ≤ s/2) P (Xn > s/n)

=n
(

P (Sn−1 > s/2)) − P (Mn−1 > s/2)
)

P (Xn > s/n) = o(F (s)2).

Under some additional conditions on F (s), an exact asymptotic for P(Sn > s,Mn ≤ s/2)
can be given:

Lemma 3.2. Assume that F (s) ∈ SR−α,2 with α > 2, then

P(Sn > s,Mn ≤ s/2) ∼

(

n

2

)

E
[

S2
n−2

]

f(s/2)2

For a proof we refer to the Appendix.

If F (s) is not regularly varying, one can show that P (Sn > s,Mn ≤ s/2) = O(F (s/2)2−ǫ)
for an ǫ > 0 under quite general conditions:
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Lemma 3.3. Assume that the following assumptions hold.

(A1) F (s) has some finite power mean µ(γ) = E[Xγ ] <∞, 0 < γ < 1;

(A2) for the hazard function R(s) = − log(F (s)) we can find an eventually concave func-
tion h0(s) with h0(s) ∼ − log(F (s));

(A3) for all δ > 0 and c > 0 we have lims→∞R(s)F (cs/R(s))δ = 0.

Then for all 0 < ε < 1 and K > 1 we can find a constant M = M(ε,K) > 0 such that for
all s > M and n ≥ 2

P (Sn > Ks,Mn ≤ s) ≤ (1 + ε)nF (s)K(1−ε), (7)

where Mn = max(X1, ...,Xn).

Proof. Cf. Appendix.

3.1 A simple approach based on another decomposition

Denote with Mn := max1≤i≤nXi and S(n−1) := Sn −Mn. Instead of the decomposition
(3), consider the decomposition

P(Sn > s) = P(S(n−1) > s/2,Mn > s/2)

+ P(Sn > s,Mn ≤ s/2) + P(Sn > s, S(n−1) ≤ s/2). (8)

We now look at the third summand in (8):

Lemma 3.4. Assume that F (s) ∈ SR−α,⌈α⌉. Denote with k := ⌈α⌉ − 1. If α 6= k+ 1 then

P(Sn > s, S(n−1) ≤ s/2) − ak+1(s) ∼ −

(

n

2

)

F (s)2
(

(1 − 2α) B(1 − α, 1 − α) + 22α
)

,

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the Beta function (for a > −1 and b > −1 it
can be written as B(a, b) =

∫ 1
0 t

a−1(1 − t)b−1 dt, for other values it is defined by analytic
continuation of this integral, cf. [2]) and ak+1 is defined as in (2). If α = k + 1 then

P(Sn > s, S(n−1) ≤ s/2) − ak+1(s) ∼
n(−1)k+1F

(k+1)
(s)

(k + 1)!

∫ s/2

0
xk+1 dF ∗(n−1)(x).

Proof. Cf. Appendix.

Theorem 3.5. Let X1, . . . ,Xn be i.i.d. random variables with common distribution func-
tion F (s) ∈ SR−α,⌈α⌉. If k < α < k + 1 then

P(Sn > s) = ak+1(s) −

(

n

2

)

F (s)2 (1 − 2α) B(1 − α, 1 − α) + o(F (s)2).

If α = k + 1 then

P(Sn > s) = ak+1(s) +
n(−1)k+1F

(k+1)
(s)

(k + 1)!

∫ s/2

0
xk+1 dF ∗(n−1)(x)

+ o

(

F
(k+1)

(s)

∫ s/2

0
xk+1 dF ∗(n−1)(x)

)

.
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Proof. Denote with X(1) ≤ · · · ≤ X(n) the order statistics of X1, . . . ,Xn, then

P(S(n−1) > s/2,Mn > s/2) = P(X(n) > s/2,X(n−1) > s/2)

+ P(X(n) > s/2,X(n−1) ≤ s/2, S(n−1) > s/2)

= P(X(n) > s/2,X(n−1) > s/2)

+ nP(Xn > s/2)P(Mn−1 ≤ s/2, Sn−1 > s/2).

It follows that as s→ ∞

P(S(n−1) > s/2,Mn > s/2) ∼ 22α

(

n

2

)

F (s)2.

Lemma 3.4 now completes the proof.

Remark 3.1. Note that if α = k + 1/2, then B(1 − α, 1 − α) = 0 in which case we do
not get the next term in the asymptotic expansion. For a stable distribution F , the next
asymptotic term in this particular situation was given in Omey & Willekens [23].

Remark 3.2. If for an integer k > 0, F (s) ∈ SR−(k+1),k+1 and E [X1] <∞, then

n(−1)k+1F
(k+1)

(s)

(k + 1)!

∫ s/2

0
xk+1 dF ∗(n−1)(x) ∼

n(−1)k+1F
(k+1)

(s)

(k + 1)!
E

[

(Sn−1)
k+1
]

.

If E [X1] = ∞ then

n(−1)k+1F
(k+1)

(s)

(k + 1)!

∫ s/2

0
xk+1 dF ∗(n−1)(x) ∼

n(n− 1)(−1)k+1F
(k+1)

(s)

(k + 1)!

∫ s/2

0
xk+1 dF (x).

Theorem 3.5 was based on the fact that F (s) has k + 1 continuous derivatives. On the
other hand, Geluk et al. [18] gave higher-order asymptotic expansions for the sum of
two random variables if F (s) fulfills a second-order regular variation condition. A similar
result is provided in the following:

Corollary 3.6. Let X1, . . . ,Xn be i.i.d. random variables with common distribution func-
tion F (s). Assume that there exists a function H(s) ∈ SR−α,⌈α⌉ such that |F (s) −H(s)|
is regularly varying with index −(α+ ρ), ρ > 0. If k < α < k + 1 then

P(Sn > s) = nF (s) +
k
∑

i=1

n(−1)iH(i)(s)

j!
E

[

Sj
n−1

]

−

(

n

2

)

F (s)2 (1 − 2α) B(1 − α, 1 − α)

+ o
(

|F (s) −H(s)| + F (s)2
)

.

If α = k + 1 then

P(Sn > s) = nF (s)+
k
∑

i=1

n(−1)iH(i)(s)

j!
E

[

Sj
n−1

]

+
n(−1)k+1H(k+1)(s)

(k + 1)!

∫ s/2

0
xk+1 dF ∗(n−1)(x)

+ o(n|F (s) −H(s)|) + o

(

n(−1)k+1H(k+1)(s)

(k + 1)!

∫ s/2

0
xk+1 dF ∗(n−1)(x)

)

.

9



Proof. Similarly to [18] we approximate

∫ s/2

0
F (s− x) dF ∗(n−1)(x) ≈

∫ s/2

0
H(s − x) dF ∗(n−1)(x).

The asymptotic expansion of

∫ s/2

0
H(s− x) dF ∗(n−1)(x)

can be evaluated as in the proof of Theorem 3.5. Since |F (s)−H(s)| is regularly varying
and H(s) is eventually continuous, F (s) −H(s) is eventually positive or negative. Hence
we get by the Uniform Convergence Theorem

∫ s/2

0
F (s− x) −H(s − x) dF ∗(n−1)(x)

∼
(

F (s) −H(s)
)

∫ s/2

0
(1 − x/s)−(α+ρ) dF ∗(n−1)(x)

∼ (F (s/2) −H(s/2))

(

1 − 2α+ρF
∗(n−1)

(s/2) +
α+ ρ

s

∫ s/2

0

(

1 −
x

s

)−(α+ρ+1)
F

∗(n−1)
(x) dx

)

= (F (s/2) −H(s/2))

(

1 − 2α+ρF
∗(n−1)

(s/2) + (α+ ρ)

∫ 1/2

0
(1 − x)−(α+ρ+1) F

∗(n−1)
(sx) dx

)

= (F (s/2) −H(s/2)) (1 + o(1)) .

3.2 A recursive scheme

Assume that η = 1/2. In [7] the main idea was to use the decomposition (3), and then
focus on

TF ∗(n−1),1/2F (s).

Instead, by focusing on
TF,1/2F

∗(n−1)(s),

we can follow a slightly different approach:

Lemma 3.7. For all s > 0 and n ≥ 2 there exist functions R̄1 and R̄2 with

R̄1(s) ≤ P(X1 > s/2)2,

R̄2(s) ≤ P(Sn > s,Mn ≤ s/2) and

P{Sn > s} =
n

n− 1

∫ s/2

0
P (Sn−1 > s− x) dF (x) + n(R̄1(s) + R̄2(s)).

10



Proof.

1

n
P(Sn > s) = P(Sn > s,Xn = Mn)

= P(Sn > s,Xn = Mn,X1 ≤ s/2) + R̄1(s)

=

∫ s/2

0
P(Sn−1 > s− x,Xn−1 = Mn−1 ≥ x) dF (x) + R̄1(s)

=

∫ s/2

0
P(Sn−1 > s− x,Xn−1 = Mn−1) dF (x) + R̄1(s) + R̄2(s)

=
1

n− 1

∫ s/2

0
P (Sn−1 > s− x) dF (x) + R̄1(s) + R̄2(s).

Before we go on we investigate the asymptotic behaviour of P(Sn > s,Mn ≤ s/2):

By Lemma 3.1 and 3.3 we get that for every ǫ > 0

F
∗n

(s) =
n

n− 1

∫ s/2

0
F

∗(n−1)
(s− x) dF (x) +O(F (s/2)2−ǫ).

Hence we can get an approximation of F
∗n

(s) from an approximation of F
∗(n−1)

(s) where
the error we add in every step is asymptotically small.

Lemma 3.8. Let F (s) be a distribution with density f(s). Assume that there exists
functions gi(s), i = 0, . . . , k for which the following assumptions hold: Assume there exist
ε > 0, a function K(s) and an M > 0 such that for s > M

(1 + ǫ)nK(s) ≥ P(Sn > s,Mn ≤ s/2) and K(s) ≥ F (s/2)2

with
∫ s/2

0
K(s− x)f(x) dx ≤ (1 + ǫ)K(s).

If for s > M and constants ai,j the inequalities

∣

∣

∣

∣

∣

∣

∫ s/2

0
F (s− x)f(x) dx− F (s) −

k
∑

j=0

a−1,jgj(s)

∣

∣

∣

∣

∣

∣

≤K(s), (9)

∣

∣

∣

∣

∣

∣

∫ s/2

0
gi(s− x)f(x) dx− gi(s) −

k
∑

j=i+1

ai,jgj(s)

∣

∣

∣

∣

∣

∣

≤K(s), i = 0, . . . k (10)

hold, then for s > 2n−2M and n = 2, 3, . . .

∣

∣

∣

∣

∣

F
∗n

(s) − nF (s) −

k
∑

i=0

A
(n)
i gi(s)

∣

∣

∣

∣

∣

≤ V (1 + ǫ)n−1nk+3K(s). (11)
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where

V = 1 +

k
∑

i=0

i+1
∑

j=1

∑

−1=j0<···<jj=i

∣

∣

∣

∣

∣

j−1
∏

l=0

ajl,jl+1

∣

∣

∣

∣

∣

,

and for i ≥ 0

A
(n)
i =

i+1
∑

j=1

1

j!
(n)j+1

∑

−1=j0<···<jj=i

j−1
∏

l=0

ajl,jl+1
,

where (n)j = n(n− 1) · · · (n− (j − 1)).

Proof. We prove the assertion (11) of the theorem by induction on n. For n = 2 we use

F
∗2

(s) = 2

∫ s/2

0
F (s − x)f(x)dx+ F (s/2)2

and take from (9) with |R̂(s)| ≤ K(s)

2

∫ s/2

0
F (s− x)f(x)dx = 2F (s) + 2

k
∑

i=0

a−1,igi(s) + 2R̂

= 2F (s) +

k
∑

i=0

A
(n)
i gi(s) + 2R̂.

Finally, the error 2R̂(s) + F (s/2)2 is bounded by 3K(s) ≤ V nk+3K(s).
Assume now that (11) holds for some n ≥ 2. Then with |R̂i(s)| ≤ K(s), (i ≥ 1) and

|R̂0| ≤ F (s/2)2 + (1 + ε)nK(s)

we obtain

F
∗(n+1)

(s) =
n+ 1

n

∫ s/2

0
F

∗n
(s− x)f(x)dx+ (n+ 1)R̂0(s)

=
n+ 1

n

∫ s/2

0

[

nF (s− x) +
k
∑

i=0

A
(n)
i gi(s− x)

]

f(x)dx

+ (n+ 1)R̂0(s) + V (n+ 1)nk+2(1 + ε)nR̂1(s)

=(n+ 1)F (s) +
n+ 1

n

k
∑

i=0



na−1,i +A
(n)
i +

i−1
∑

j=0

A
(n)
j aj,i



 gi(s)

+ 2(n + 1)(1 + ε)nR̂3(s) + (n+ 1)V nk+2(1 + ε)nR̂1(s) +
n+ 1

n

(

n+
k
∑

i=0

A
(2)
i

)

R̂2(s).

Since
∣

∣

∣

∣

∣

n+ 1

n

k
∑

i=0

A
(n)
i

∣

∣

∣

∣

∣

≤ (n+ 1)nk+1(V − 1)

12



we get that the error term is less then (n ≥ 2, k ≥ 0)

V (1 + ǫ)n(n+ 1)(nk+2 + nk+1 + 2)K(s) ≤ V (1 + ǫ)n(n+ 1)k+3K(s).

At last note that

n+ 1

n



na−1,i +A
(n)
i +

i−1
∑

j=0

A
(n)
j aj,i





=
n+ 1

n



A
(n)
i + na−1,1 +

i−1
∑

j=0

j+1
∑

l=1

1

l!
(n)l+1

∑

−1=l0<···<ll=j<ll+1=i

l
∏

m=0

alm,lm+1





=
n+ 1

n



A
(n)
i +

i+1
∑

j=1

1

(j − 1)!
(n)j

∑

−1=j0<···<jj=i

j−1
∏

l=0

alj ,lj+1





=

i+1
∑

j=1

∑

−1=j0<···<jj=i

n+ 1

n

(

1

(j − 1)!
(n)j

j−1
∏

l=0

alj ,lj+1
+

1

j!
(n)j+1

j−1
∏

l=0

ajl,jl+1

)

=

i+1
∑

j=1

∑

−1=j0<···<jj=i

n+ 1

n

n(n)j
j!

j−1
∏

l=0

ajl,jl+1

=
i+1
∑

j=1

∑

−1=j0<···<jj=i

1

j!
(n+ 1)j+1

j−1
∏

l=0

ajl,jl+1
= A

(n+1)
i .

For the choice gi(s) = F
(i)

(s) it becomes clear that one has to evaluate TF,1/2F
(i)

(s) and
TF,1/2K(s), so that we end up in the same situation as in [7, 11].

4 Asymptotics with a shifted argument

We have seen that for higher-order asymptotic expansions, in principle one needs the
derivatives of F (s) or of a related function. In this section we want to give an asymptotic
expansion which only consists of F (s) evaluated at different arguments, i.e

P (SN > s) ∼ x1 E [N ] F (s − k1) + · · · + xm E [N ] F (s− km) =: aS
m(s).

for constants x1, . . . , xm and k1, . . . , km. This has the advantage that we do not need to
evaluate the derivatives of F (s). Further, under appropriate conditions the approximation
aS

m(s) can be of the same asymptotic order as a2m(s) as defined in (2). To that end, assume
that

P (SN > s) = E [N ]F (s) +
m−1
∑

i=1

(−1)iciF
(i)

(s)

i!
+ o

(

F
(m−1)

(s)
)

,

where according to (2), ci = E
[

N(X1 + · · · +XN−1)
i
]

. For any k, a Taylor expansion of
F (s − k) at s0 = s yields

P (SN > s) = E [N ] F (s− k) +

m−1
∑

i=1

(−1)i(ci − E [N ] ki)F
(i)

(s)

i!
+ o

(

F
(m−1)

(s)
)

.
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So when we choose m different values of ki (i = 1, . . . ,m), multiply the corresponding
equation by xi and add them all, one obtains aS

m(s) as an approximation of P (SN > s)

with an asymptotic decay of order o
(

F
(m−1)

(s)
)

, if xi (i = 1, . . . ,m) are chosen as the

solution of the equations

m
∑

j=1

xj = 1 and

m
∑

j=1

(ci − E [N ] ki
j)xj = 0 (i = 1, . . . ,m),

or equivalently











1 1 · · · 1
k1 k2 · · · km
...

...
. . .

...

km−1
1 km−1

2 · · · km−1
m





















x1

x2
...
xm











=











1
c1/E [N ]

...
cm−1/E [N ]











.

Since the above matrix is of Vandermonde type, it is regular as long as ki 6= kj for i 6= j.
Now we still have the freedom to choose the values of kj . If

P (SN > s) = E [N ]F (s) +

2m−1
∑

i=1

(−1)iciF
(i)

(s)

i!
+ o

(

F
(2m−1)

(s)
)

,

we can try to choose kj (j = 1, . . . ,m) such that

m
∑

j=1

(cm+i − E [N ] km+i
j )xj = 0 for i = 1, . . . ,m.

Example 4.1. For m = 1 this results in k1 = c1/E [N ] = E [X] E
[

N2 −N
]

/E [N ] and
subsequently

P (SN > s) = E [N ] F

(

s− E [X]

(

E[N2]

E[N ]
− 1

))

+ o(f(s)).

If furthermore N is Poisson(λ)-distributed, then this results in the simple formula

P (SN > s) = λ F
(

s− λE [X]
)

+ o(f(s)),

which seems to have been used in actuarial practice; so the above reasoning provides a
formal justification for its use.

Remark 4.1. If F (s) is not sufficiently differentiable, then there might at least exist a
function H(s) with

F (s) = H(s)+o
(

H(2m−1)(s)
)

and P (SN > s) =

2m−1
∑

i=0

(−1)iciH
(i)(s)

i!
+o
(

H(2m−1)(s)
)

,

in which case the above procedure still establishes an asymptotic expansion aS
m(s) of P (SN > s)

only involving the tails F (s− ki). If the ci do not depend on H (but only on F ), then we
only need the existence of H (cf. Corollary 3.6).
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5 Approximations of geometric sums

In the numerical illustrations in Section 7, we will see that even higher-order expansions
can lead to poor estimates for G(s) when s is not sufficiently large. In Thorin & Wikstad
[29, 28] and Asmussen & Binswanger [3], approximations of G(s) were given that work
reasonably for small s but do not have the right asymptotic behavior, so that it is difficult
to judge when to switch from this approximation to the above asymptotic expansion for
increasing s. In this section we give an example how one can use the decomposition (8) to
combine approximations for small s and asymptotic expansions. We will concentrate on
geometric compounds, i.e.

G(s) = (1 − ρ)
∞
∑

n=0

ρnF
∗n

(s).

for a ρ > 0. For an approximation for small s we will use an asymptotic for G(s) for ρ→ 1
and fixed s which was recently developed in Blanchet and Glynn [13]. In a ruin-theoretic
setting (where G(s) represents the ruin probability, cf. Section 6) this would correspond
to low safety loading. The crucial idea in [13] is to approximate G(s) by

P

(

N
∑

n=0

XiI{Xi≤s/(1−ρ)} > s

)

, (12)

and to use a uniform renewal theorem (developed in [13]) to get

P

(

N
∑

n=0

XiI{Xi≤s/(1−ρ)} > s

)

∼
1 − ρ

ρθ̂1−ρ
s

dφ1−ρ
s (θ)
dθ

∣

∣

θ=θ̂1−ρ
s

e−sθ̂1−ρ
s =: aBG(s) as ρ→ 1,

where for k > 0

φk
s(θ) :=

∫ s/k

0
eθxdF (x) + F (s/k),

and θ̂k
s is the solution of φk

s(θ) = ρ−1.

Remark 5.1. For fixed s and ρ the approximation

P

(

N
∑

n=0

XiI{Xi≤s/k} > s

)

≈
1 − ρ

ρθ̂1−ρ
s

dφ1−ρ
s (θ)
dθ

∣

∣

θ=θ̂1−ρ
s

e−sθ̂1−ρ
s

is exactly the Cramér-Lundberg approximation (see e.g. [25]) for a compound geomet-
ric distribution with claim sizes Yi = XiI{Xi≤s/k}. This approximation is known to be
reasonable in the light tailed case.

A natural question is the quality of the approximation when s is large.

Lemma 5.1. Assume that F (s) ∈ SR−α,1, α > 0 and − log(F (s)) is eventually concave
then for any k > 0

1 − ρ

ρθ̂k
s

dφk
s (θ)
dθ

∣

∣

θ=θ̂k
s

e−sθ̂k
s ∼

αkF (s/k)k

(ρ−1 − 1)k(− log(F (s/k)))k+1
.
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Proof. Cf. Appendix.

Hence for large s the above approximation developed in [13] may not be satisfactory.
Motivated by Lemma 5.1 and (8) we want to approximate, now for a k ≥ 1,

P(SN > s,MN ≤ s/k) ≈
1 − ρ

ρθ̂k
s

dφk
s (θ)
dθ

∣

∣

θ=θ̂k
s

e−sθ̂k
s .

Note that
{

n
∑

i=0

XiI{Xi≤s/k} > s

}

\ {Sn > s,Mn ≤ s/k} ⊂
{

S(n−1) > s,Mn > s/k
}

.

If we choose k = 1 then clearly

P(SN > s) = P(MN > s) + P (SN > s,MN ≤ s) .

and by the above we arrive at the asymptotic

aG
1 (s) := P(MN > s) +

1 − ρ

ρθ̂1
s

dφ1
s(θ)
dθ

∣

∣

θ=θ̂1
s

e−sθ̂1
s =

ρF (s)

1 − ρF (s)
+

1 − ρ

ρθ̂1
s

dφ1
s(θ)
dθ

∣

∣

θ=θ̂1
s

e−sθ̂1
s .

Further we get under the conditions of Lemma 5.1 that

G(s) = aG
1 (s) +O(F (s)/ log2 F (s)).

If we choose k = 2 we have, similarly to (8),

P(Sn > s) = P(Sn > s,Mn > s/2) + P(Sn > s,Mn ≤ s/2).

As can be seen from Lemma 3.1 and 3.3, for every ǫ > 0

|P(Sn > s) − P(Sn > s,Mn > s/2)| = O
(

F (s)2−ǫ
)

.

It follows that a higher order asymptotic up to order O
(

F (s)2−ǫ
)

for P(Sn > s) is a
higher order asymptotic of P(Sn > s,Mn > s/2), too. We have chosen to use aS

1 (s) to
approximate P(Sn > s,Mn > s/2), hence we get

aG
2 (s) := aS

1 (s) +
(1 − ρ)

ρθ̂2
s(φ

2
s)

′(θ̂2
s)
e−sθ̂2

s

as an approximation to P(SN > s). Note that this approximation is asymptotically of the
same order as aS

1 (s) itself.

Remark 5.2. One should note that for the evaluation of aG
k (s) one has to find θk

s and
evaluate the derivative of the moment generating function of F , so the evaluation of aG

k (s)
is not as straight-forward as the evaluation of the asymptotic expansions.
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6 Expansions for ruin probabilities

The above approximations for geometric compound distributions immediately yield cor-
responding approximations for ruin probabilities ψ(s) in the collective renewal risk model
with i.i.d. claim sizes Xi, i.i.d. interclaim times Ti, initial capital s and constant premium
intensity c > E [X] /E [T ], as the Pollaczek-Khintchine formula gives for every s ≥ 0

ψ(s) = (1 − ρ)

∞
∑

n=1

ρnH∗n
0 (s),

where H0(s) = H+(s)/H+(∞) and H+ is the defective distribution of the ladder height
of the random walk

∑n
i=1(Xi − cTi) with ρ = H+(∞) < 1 (see e.g. Rolski et al. [26,

Th.6.5.1]). If the interclaim times Ti are exponential with parameter λ (i.e. the compound
Poisson risk model), then the ladder height distribution H+ can be expressed through the
integrated tail distribution function

FI(s) =
1

E [X]

∫ s

0
F (x)dx

resulting in

ψ(s) =

(

1 −
λE [X]

c

) ∞
∑

n=1

(

λE [X]

c

)n

F ∗n
I (s).

Hence the results of the previous sections can be applied whenever FI admits expansions
for convolutions. This approach was exploited by Baltrūnas [4, 5] to obtain second-order
asymptotic approximations for the renewal risk model.
Using the above results it is now straight-forward to write down higher-order expansions.
For instance, consider a compound Poisson model, where the claim size distribution F (s)
has a density f(s) such that its negative derivative −f ′(s) is regularly varying with index
−α− 2, α > 3, (so that the first three moments µk := E

[

Xk
]

(k = 1, 2, 3) exist), then the
expansion for the infinite horizon ruin probability ψ(s) of third-order reads

ψ(s) =
ρ

1 − ρ
F I(s)+

ρ2

(1 − ρ)2
µ2

2µ2
F (s)+

(

ρ2

(1 − ρ)2
µ3

3µ2
+

ρ3

(1 − ρ)3
µ2

2

4µ3

)

f(s)+o(f(s)).

(13)

7 Numerical computation of compound distributions

7.1 Upper and lower bounds

For the Panjer method we first discretize the distribution F (s) as follows: we start with a
step size ∆ > 0 and define the point probabilities fi(k∆) for Fi by

f1(k∆) =

∫ (k+1)∆

k∆
f(x)dx, k = 0, 1, 2, ...

f2(k∆) =

∫ k∆

(k−1)∆
f(x)dx, k = 1, 2, ...
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These are upper and lower bounds for F (s) in the sense that for all s ≥ 0

F 1(s) ≤ F (s) ≤ F 2(s).

The corresponding approximations for G(s) are upper and lower bounds:

G1(s) ≤ G(s) ≤ G2(s),

where for i = 1, 2

Gi(s) =
∞
∑

n=0

P{N = n}F ∗n
i (s), s ≥ 0.

For the computation of the point probabilities gi(k∆) of Gi(s) we use Panjer’s recursion:

g1(0) =

∞
∑

n=0

P{N = n}f1(0)
n

g1((k + 1)∆) =

k+1
∑

j=1

(

a+ b
j

k + 1

)

f1(j∆)g1((k + 1 − j)∆)

(1 − af1(0))
, k = 0, 1, 2, ...

and

g2(0) = P{N = 0}

g2((k + 1)∆) =
k+1
∑

j=1

(

a+ b
j

k + 1

)

f2(k∆)g2((k + 1 − j)∆), k = 0, 1, 2, ...

We need two different recursions because of f1(0) > 0. It turns out that the method of
upper and lower bounds is – apart from its programming effort – quite efficient.

Remark 7.1. For fixed stepsize ∆ we get by the subexponentiality of F that

lim
s→∞

F 1(s)

F (s)
= lim

s→∞

F 2(s)

F (s)
= 1.

and hence

lim
s→∞

G1(s)

G2(s)
= 1.

7.2 Higher-Order Approximations

In this section we want to give numerical illustrations of the performance of the discussed
estimators. We will reproduce the result of Abate et al. [1] that the first-order asymptotic
formula is of little use in the range of finite s that is of interest in real world applica-
tions. It turns out that higher-order results can improve the approximation considerably
(see Example 7.1), but it is also demonstrated that in other cases the improvement may
be marginal (see Example 7.3) or that higher-order asymptotic expansions even do not
improve the estimate at all (cf. Example 7.2). To assess the performance of the approxi-
mations we compare it to the upper bounds au(s) and lower bounds al(s) based on Panjer
recursion described in Section 7.1. The curves in the following plots show the relative
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Figure 1: Relative probabilities for geometric compound distributions with ρ = 0.7 and
lognormal claimsize with µ = 0 and σ = 1

probabilities ai(s)/a(s), where a(s) := (au(s) + al(s))/2 is the average of the upper and
the lower bound, and the x-axis is in logarithmic units (− log10(a(s))). Hence the x-values
in the range of 1 and 6 correspond to tail (ruin, respectively) probabilities between 10%
and 0.0001%, which should include all values of s that are of practical interest.

Example 7.1. Consider first for F (s) a lognormal distribution with µ = 0 and σ = 1
and N has a geometric distribution with ρ = 0.7. Figure 1 gives the asymptotic approx-
imations ai(s) discussed in the previous sections for P(X1 + · · · + XN > s), plotted as
ai(s)/a(s). Values on the x-axis between 2 to 4 correspond to tail probabilities between
1% and 0.01%. One observes that the first-order approximation a1(s) dramatically under-
estimates the actual tail probability. The third-order approximation a3(s) and the shifted
first-order approximation as

1(s) improve the approximation considerably but are still too
crude for practical purposes. The relative error for the sixth-order approximation a6(s)
may already be useful in this case. The best approximation is given by the geometric esti-
mator aG

1 which has a relative error below 5% for tail probabilities larger than 0.01%, but
gets worse for smaller tail probabilities. The estimator aG

2 (s) provides approximation with
less than 20% relative error. As expected by its construction, the estimator of [13] is not
helpful at all for large s.

Example 7.2. Let now F (s) be a Weibull distribution function with parameter β = 1/4,

(i.e. F (s) = e−s1/4
) and N a Poisson distribution with λ = 2. In Figure 2 we see that the

first-order asymptotic approximation a1(s) is quite reasonable for all considered values.
The second-order asymptotic a2(s) and the first-order shifted approximation as

1(s) provide
excellent approximations for the real tail probabilities in the range below 0.1% and are still
reasonable in the range below 1%. On the other hand the sixth-order approximation a6(s)
is only useful for tail probabilities below 0.01%, so that in this case the use of orders higher
than 2 in the expansion is actually counterproductive (one reason is that for every fixed s,
limn→∞ an(s) = ∞).
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Figure 2: Relative probabilities for Poisson compound distributions with λ = 2 with
Weibull claim size β = 0.25

The final two examples consider ruin probabilities in the compound Poisson model as
described in Section 6.

Example 7.3. In Figure 3 the claims are Pareto with parameter α = 3.2, the Poisson
parameter is λ = 2, and the premium rate is c = 3.5. Here the behaviour of the asymptotic
is similar to the one in Figure 1. One should note that for ruin probabilities greater than
1% none of the asymptotic approximations gives satisfactory estimates.

Example 7.4. In Figure 4 the claims are Pareto with parameter α = 6.5, the Poisson
parameter is λ = 1, and the premium rate is c = 1.5 (which corresponds to ρ = 0.79 in
the Pollaczek-Khintchine formula). The main aim of this example is to show how valuable
the asymptotic results can be. The lines corresponding to the asymptotic approximations
are (except for ruin probabilities larger than 1%) nearly identical with the x-axis and
hence of no practical value. On the other hand one can see that the approximation aG

1 (s)
can not be distinguished from the lines of the upper and lower bound and is extremely
accurate. The approximation aG

2 (s) is similarly accurate except for small ruin probabilities
(where it is quite inaccurate). Figure 5 depicts the logarithm of the approximations with
respect to s. One can see that the behaviour of log10(ψ(s)) changes at s ≈ 60 and the
asymptotic expansions only work after that point. The picture also includes a Monte
Carlo estimate of P(SN > s,Mn > s/2), which illustrates that for moderate values of s
the asymptotic approximations are roughly able to capture the part P(SN > s,MN > s/2)
of the decomposition, but not the whole quantity ψ(s).
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[6] A. Baltrūnas and E. Omey. The rate of convergence for subexponential distributions.
Liet. Mat. Rink., 38(1):1–18, 1998.

[7] P. Barbe and W. P. McCormick. Asymptotic expansions for infinite weighted convo-
lutions of heavy tail distributions and applications, 2004.

[8] P. Barbe and W. P. McCormick. Tail calculus with remainder, applications to tail
expansions for infinite order moving averages, randomly stopped sums, and related
topics. Extremes, 7(4):337–365 (2005), 2004.

[9] P. Barbe and W. P. McCormick. Asymptotic expansions of convolutions of regularly
varying distributions. J. Aust. Math. Soc., 78(3):339–371, 2005.

[10] P. Barbe and W. P. McCormick. Asymptotic expansions for infinite weighted convolu-
tions of rapidly varying subexponential distributions. Probability Theory and Related
Fields, Online First, 2007.

22



[11] P. Barbe, W. P. McCormick, and C. Zhang. Asymptotic expansions for distributions of
compound sums of random variables with rapidly varying subexponential distribution.
J. Appl. Probab., 44(3):670–684, 2007.

[12] N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular variation, volume 27
of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 1989.

[13] J. Blanchet and P. Glynn. Uniform renewal theory with applications to expansions
of random geometric sums. Adv. in Appl. Probab., 39(4):1070–1097, 2007.

[14] A. A. Borovkov and K. A. Borovkov. On probabilities of large deviations for random
walks. i. regularly varying distribution tails. Theory of Probability and its Applica-
tions, 46(2):193–213, 2002.

[15] P. Embrechts and N. Veraverbeke. Estimates for the probability of ruin with special
emphasis on the possibility of large claims. Insurance Math. Econom., 1(1):55–72,
1982.

[16] J. L. Geluk. Second order tail behaviour of a subordinated probability distribution.
Stochastic Process. Appl., 40(2):325–337, 1992.

[17] J. L. Geluk. Tails of subordinated laws: the regularly varying case. Stochastic Process.
Appl., 61(1):147–161, 1996.

[18] J. L. Geluk, L. Peng, and C. G. de Vries. Convolutions of heavy-tailed random
variables and applications to portfolio diversification and MA(1) time series. Adv. in
Appl. Probab., 32(4):1011–1026, 2000.

[19] P. Greenwood. Asymptotics of randomly stopped sequences with independent incre-
ments. Ann. Probability, 1:317–321, 1973.
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A Proof of Lemma 3.2

We now consider the asymptotic behavior of P(Sn > s,Mn ≤ s/2) and start with an
auxiliary result. Note that for the proof of Lemma 3.2 we will condition on the case that
the two largest elements of X1, . . . ,Xn are Xn−1 and Xn.

Lemma A.1. Let X1, . . . ,Xn be i.i.d. random variables with common distribution func-
tion F (s). Assume that F (s) ∈ SR−α,2 with α > 2 then

lim
t→∞

lim
s→∞

P(Sn > s, Sn−2 ≤ t,Mn ≤ s/2)

f(s/2)2
=

1

2
E
[

S2
n−2

]

.

Proof. At first note that for x ≥ 0 and ξs ∈ (s/2 − x, s/2) by Taylor expansion

lim
s→∞

P(s/2 ≥ X1 > s/2 − x)

f(s/2)
= lim

s→∞

xf(s/2) − x2

2 f
′(ξs)

f(s/2)
= x.

Define the measure

νs (Y1 ≤ x1, Y2 ≤ x2, Y3 ≤ x3)

=
P(s/2 ≥ Xn > s/2 − x1, s/2 ≥ Xn−1 > s/2 − x2, Sn−2 ≤ x3)

f(s/2)2
.

νs converges vaguely to the measure

ν (Y1 ≤ x1, Y2 ≤ x2, Y3 ≤ x3) = x1x2F
∗(n−2)(x3).
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We have that

lim
s→∞

P(Sn > s, Sn−2 ≤ t,Mn ≤ s/2)

f(s/2)2
= lim

s→∞
νs (Y1 + Y2 − Y3 < 0, Y3 ≤ t)

= ν (Y1 + Y2 − Y3 < 0, Y3 ≤ t) .

Finally note that

ν (Y1 + Y2 − Y3 < 0, Y3 ≤ t) =

∫ t

0

∫ x3

0

∫ x3−x2

0
dx1 dx2 dF ∗(n−2)(x3)

=

∫ t

0

x2

2
dF ∗(n−2)(x).

Proof of Lemma 3.2: We have to show that

lim
t→∞

lim
s→∞

P(Sn > s,Mn ≤ s/2,Xn > Mn−1,Xn−1 > Mn−2, Sn−2 > t)

f(s/2)2
= 0

At first notice that for an arbitrary m > 0

P(Xn > s/m,Xn−1 > s/m,Sn−2 > s/m) ∼ (n− 2)m3αF (s)3 = o(f(s/2)2).

Hence we will assume that Sn−2 ≤ s/m and Xi > ((m − 2)/2m)s for i = n − 1, n. As
in the proof of Lemma A.1 we can show that there exists a constant c1 such that for all
k ≤ s/(m+ 1)

P(s/2 ≥ X1 > s/2 − k) ≤ c1kf(s).

We have that

P(Sn > s,Mn ≤ s/2, Sn−2 < s/m)

≤

⌊ s
m
⌋

∑

k=⌊t⌋

P(s/2 ≥ X1 > s/2 − (k + 1))2P(k + 1 ≥ Sn−2 > k)

≤ c21f(s)2
⌊ s

m
⌋

∑

k=⌊t⌋

(k + 1)2P(k + 1 ≥ Sn−2 > k)

≤ c21f(s)2
∫ ∞

⌊t⌋
(x+ 2)2dF ∗(n−2).

Since α > 2 the integral in the last equation tends to 0 as t→ ∞. 2
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B Proof of Lemma 3.3

If F is long-tailed with sups≥0
F (s)

F (s+1)
≤ K1 then for n > s we get

∫

(0,s]

1

F (x)
dF (x) ≤

n−1
∑

i=0

F
(

(i+ 1) s
n

)

− F
(

i s
n

)

F
(

(i+ 1) s
n

) = −

n−1
∑

i=0

F
(

i s
n

)

F
(

i s
n + s

n

)

(

F
(

(i+ 1) s
n

)

F
(

i s
n

) − 1

)

≤ −K1

n−1
∑

i=0

log

(

F
(

(i+ 1) s
n

)

F
(

i s
n

)

)

= −K1

(

log
(

F (s)
)

− log
(

F (0)
))

.

From assumption (A3) of Lemma 3.3 it follows that

lim
s→∞

− log(F (s))

s
= 0, (14)

since from

lim sup
s→∞

− log(F (s))

s
> 0

the existence of a sequence sn with − log(F (s))/s > ǫ and limn→∞ sn = ∞ would follow,
and hence

lim
n→∞

R(sn)F (csn/R(sn))δ ≥ R(sn)F (c/ǫ)δ = ∞.

Proof of Lemma 3.3: The proof is a variation of the proof of Theorem 1 in [22, p.71].
For t > 0 let M(t) =

∫ s
−∞ exp(tx)dF (x). We set

t = −s−1(1 − ε) log(F (s)).

Then, according to (14), t → 0 when s→ ∞, and hence for sufficiently large s the function
h0(x) from assumption (A3) is concave on (1/t,∞), and for x > 1/t

h0(x)(1 − ε/2) ≤ − log(F (x)) ≤
h0(x)

(1 − ε/2)
.

The function
g0(x) := tx− (1 − ε/2)h0(x)

is convex on the interval [1/t, s] and hence assumes its maximum in either 1/t or s. With
g(x) = tx+ log(F (x)) we have

M(t) =

∫ s

−∞

g(x)

F (x)
dF (x), (15)

g(x) ≤ g0(x). (16)

Furthermore,

g0(1/t) = 1 − (1 − ε/2)h0(1/t) ≤ 1 + (1 − ε/2)2 log(F (1/t)),

g0(s) = −(1 − ε) log(F (s)) − (1 − ε/2)h0(s)

≤ −(1 − ε) log(F (s)) + (1 − ε/2)2 log(F (s)) = ε2/4 log(F (s)).
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We now split the integral M(t) as follows:

M(t) =

∫ 1/t

−∞
exp(tx)dF (x) +

∫ s

1/t
exp(tx)dF (x)

= M1(t) +M2(t).

One obtains

M1(t) ≤ 1 + tγ max
0≤v≤1

ev − 1

vγ
µ(γ),

M2(t) ≤

∫ s

1/t

exp(g0(x))

F (x)
dF (x) ≤ emax(g0(1/t),g0(s))

∫ s

1/t

1

F (x)
dF (x).

Assumption (A3) implies that M2(t) → 0. Hence for sufficiently large s we have

M(t) ≤ 1 + ε.

Finally, the Markov inequality implies the assertion:

P(Sn > Ks,Mn ≤ s) ≤ (1 + ε)n exp(−Kts)

= (1 + ε)nF (s)K(1−ε).

This inequality holds for sufficiently large s, say s > M(ε,K), simultaneously for all n ≥ 2.
2

Since the Markov inequality is rather crude, one cannot expect a sharp upper bound. The
bound, however, holds for a large class of subexponential distributions, as shown in the
following:

Lemma B.1. In each of the following cases, conditions (A1)-(A3) hold:

1. F (s) is a heavy-tailed Weibull distribution with density

f(s) = bsb−1 exp(−sb), s > 0, 0 < b < 1.

2. F (s) is lognormal with density

f(s) = s−1(2πσ2)−1/2 exp(−(log(s) − µ)2/(2σ2)), s > 0, µ ∈ R, σ2 > 0.

3. F (s) with tail F (s) = L(s)G(s), where G(s) is the tail of a distribution function
G(s) that satisfies (A1)-(A3) and

lim
s→∞

log(L(s))

log(G(s))
= 0. (17)
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Proof. It is clear that (A1) is true in all four cases.

1. The Weibull distribution has hazard function R(s) = sb which is concave for b < 1.
Furthermore, h(s) = −s/ log(F (s)) = s1−b, and F (ch(s))δ = exp(−δ(ch(s))b). On
the other hand, R(s) = sb which is killed by the factor exp(−δ(ch(s))b).

2. Write φ(s) for the standard normal density and Φ(s) for its distribution function.
Then for s > 0

F (s) = 1 − Φ

(

log(s) − µ

σ

)

∼
σ

log(s) − µ
φ

(

log(s) − µ

σ

)

.

Furthermore,

R(s) = − log(F (s)) ∼
1

2σ2
log(s)2 =: h0(s),

with eventually concave function h0(s). Thus h(s) = −s/ log(F (s)) grows faster
than a positive power of s. Therefore, for any c, δ > 0 the term R(s) is killed by the
factor F (ch(s))δ since for ε > 0 the term exp(− log(sε)2) decreases faster than any
negative power of s.

3. (A1)-(A2) are clear. Note that from (17) it follows that for every ǫ > 0 there exists
a Kǫ such that

L(s) ≤ KǫG(s)−ǫ

To prove (A3) notice that for an ǫ > 0 and large s

R(s)F (cs/R(s))δ) ≤ −(1 + ǫ)Kδ/2 log(G(s))G(c(1 − ǫ)/(− log(G(s)))δ/2

which, by assumption (A3) for G(s), converges to 0.

2

C Proof of Lemma 3.4

Proof. As in [7] we start with a Taylor expansion of F (s).

P(Sn > s, S(n−1) ≤ s/2) =n

∫ s/2

0
F (s− x) dF ∗(n−1)(x)

=n
k
∑

j=0

(−1)jF
(j)

(s)

j!

∫ s/2

0
xj dF ∗(n−1)(x)

+ n

∫ s/2

0

(−1)k+1xk+1F
(k+1)

(ξs
x)

(k + 1)!
dF ∗(n−1)(x),

for a ξs
x ∈ (s− x, s). Note that for ζs

x ∈ (0, x):

∫ s/2

0

(−1)k+1xk+1F
(k+1)

(ξs
x)

(k + 1)!
dF ∗(n−1)(x)

=
(s

2

)k+1
F

(k+1)
(s)

∫ 1

0
(−1)k+1x

k+1F
(k+1)

(s(1 − ζs
x/2))

(k + 1)!F
(k+1)

(s)
dF ∗(n−1)(sx/2)
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At first we have to evaluate

lim
s→∞

xk+1F
(k+1)

(s(1 − ζs
x/2))

(k + 1)!F
(k+1)

(s)
.

If ζ∞x := lims→∞ ζs
x exists, then by Karamata’s theorem we get that

lim
s→∞

xk+1F
(k+1)

(s(1 − ζs
x/2))

(k + 1)!F
(k+1)

(s)
=
xk+1(1 − ζ∞x /2)−α−k−1

(k + 1)!
.

By the definition of ζs
x in the remainder term of a Taylor expansion we get that for every

s,

xk+1F
(k+1)

(s(1 − ζs
x/2))

(k + 1)!F
(k+1)

(s)
=

F (s(1 − x/2))

(−1)k+1(s/2)k+1F
(k+1)

(s)

−

k
∑

j=0

xjF
(j)

(s)

(−1)k+1−j(s/2)k+1−jj!F
(k+1)

(s)
,

and hence

lim
s→∞

xk+1F
(k+1)

(s(1 − ζs
x/2))

(k + 1)!F
(k+1)

(s)
= lim

s→∞

F (s(1 − x/2))

(−1)k+1(s/2)k+1F
(k+1)

(s)

− lim
s→∞

k
∑

j=0

xjF
(j)

(s)

(−1)k+1−j(s/2)k+1−jj!F
(k+1)

(s)

=
2k+1(1 − x/2)−αΓ(α)

Γ(α+ k + 1)
−

k
∑

j=0

xj2k+1−jΓ(α+ j)

j!Γ(α+ k + 1)

=
2k+1Γ(α)

Γ(α+ k + 1)

∞
∑

j=k+1

(x

2

)j Γ(α+ j)

Γ(α)Γ(j + 1)
.

Note that the convergence is uniform for x ∈ (0, 1) and that ζ∞x can be evaluated through

(1 − x/2)−α =
k
∑

j=0

Γ(α+ j)

j!Γ(α)

(x

2

)j
+

Γ(α+ k + 1)(1 − ζ∞x /2)−α−k−1

(k + 1)!Γ(α)

(x

2

)k+1

Hence we have to evaluate the integral

I(s) :=
F

(k+1)
(s)Γ(α)

Γ(α+ k + 1)

∫ 1

0
(−1)k+1

(sx

2

)k+1
∞
∑

j=k+1

(x

2

)j−(k+1) Γ(α+ j)

Γ(α)Γ(j + 1)
dF ∗(n−1)(sx/2).

Assume that α 6= k+1. By partial integration and the Uniform Convergence Theorem we
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get

I(s) =
s

2

F
(k+1)

(s)Γ(α)

Γ(α+ k + 1)

∫ 1

0
(−1)k+1

(sx

2

)k
F

∗(n−1)
(sx/2)

∞
∑

j=k+1

j
(x

2

)j−(k+1) Γ(α+ j)

Γ(α)Γ(j + 1)
dx

−
(s

2

)k+1 (−1)k+1F
(k+1)

(s)Γ(α)F
∗(n−1)

(s/2)

Γ(α+ k + 1)

∞
∑

j=k+1

(

1

2

)j−(k+1) Γ(α+ j)

Γ(α)Γ(j + 1)

∼
(s

2

)k+1 (−1)k+1F
(k+1)

(s)Γ(α)F
∗(n−1)

(s/2)

Γ(α+ k + 1)

∫ 1

0

∞
∑

j=k+1

(x

2

)j−α−1 jΓ(α+ j)

2k−αΓ(α)Γ(j + 1)
dx

− (n− 1)F (s)F (s/2)

∞
∑

j=k+1

(

1

2

)j Γ(α+ j)

Γ(α)Γ(j + 1)

∼(n− 1)F (s)F (s/2)

∞
∑

j=k+1

j

j − α

Γ(α+ j)

2jΓ(α)Γ(j + 1)

− (n− 1)F (s)F (s/2)

∞
∑

j=k+1

Γ(α+ j)

2jΓ(α)Γ(j + 1)

= (n− 1)F (s)F (s/2)
∞
∑

j=k+1

α

j − α

Γ(α+ j)

2jΓ(α)Γ(j + 1)
.

For j ≤ k we have

∫ ∞

s/2
xj dF ∗(n−1)(x) =

∫ ∞

s/2
jxj−1F

∗(n−1)
(x) dx+

(s

2

)j
F

∗(n−1)
(s/2)

and

lim
s→∞

∫∞
s/2 jx

j−1F
∗(n−1)

(x) dx

(s/2)jF
∗(n−1)

(s/2)
=

j

α− j
.

Hence

−

k
∑

j=0

(−1)jF
(j)

(s)

j!

∫ ∞

s/2
xj dF ∗(n−1)(x) ∼

k
∑

j=0

(−1)jF
(j)

(s)(s/2)jF
∗(n−1)

(s/2)

j!

j

j − α

−

k
∑

j=0

(−1)jF
(j)

(s)(s/2)jF
∗(n−1)

(s/2)

j!

∼ (n− 1)F (s/2)F (s)

k
∑

j=0

(−1)jF
(j)

(s)(s/2)j

F (s)j!

α

j − α

∼ (n− 1)F (s)F (s/2)

k
∑

j=0

α

j − α

Γ(α+ j)

2jΓ(α)Γ(j + 1)
.
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Collecting all terms we get

P(Sn > s, S(n−1) ≤ s/2) − ak(s) ∼(n− 1)F (s/2)F (s)
∞
∑

j=0

Γ(α+ j)

2jΓ(α)Γ(j + 1)

α

j − α

= − (n− 1)F (s/2)F (s)

(

2−απ cot(πα)Γ(2α)

Γ(α)2
+ 2α−1

)

= − (n− 1)F (s/2)F (s)
(

2−α−1(1 − 2α) B(1 − α, 1 − α) + 2α−1
)

.

For α = k+1 with j 6= k+1 we can proceed as above to get that these terms are O(F (s)2).
By Karamata’s Theorem this is dominated by

F
(k+1)

(s)Γ(α)

Γ(α+ k + 1)

∫ 1

0
(−1)k+1

(sx

2

)k+1 Γ(α+ j)

Γ(α)Γ(j + 1)
dF ∗(n−1)(sx/2)

=
(−1)k+1F

(k+1)
(s)

(k + 1)!

∫ s/2

0
xk+1 dF ∗(n−1)(x).

D Proof of Lemma 5.1

At first we need an auxiliary result.

Lemma D.1. Assume that F (s) ∈ SR−α,1, α > 0 and − log(F (s)) is eventually concave,
then the solution θ(s) of

∫ s/k

0
eθ(s)xf(x)dx+ F (s/k) − ρ−1 = 0 (18)

fulfills

θ(s) = (1 + ǫ(s))
−k log(F (s/k))

s

for s→ ∞ with

ǫ(s) =
log
(

1−ρ−1

α log(F (s/k))
)

− log(F (s/k))
+ o

(

1

− log(F (s/k))

)

.

Proof. Choose δ2 > δ1 > 0 then

∫ s/k

0
eθ(s)xf(x)dx =

∫
δ1s

−k log(F (s/k))

0
F (s/k)−x(1+ǫ(s))k/sf(x)dx

+

∫ s
2k

δ1s

−k log(F (s/k))

F (s/k)−x(1+ǫ(s))k/sf(x)dx

+

∫ s
k

s
2k

F (s/k)−x(1+ǫ(s))k/sf(x)dx.
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We have that

F

(

δ1s

−k log(F (s/k))

)

≤

∫
δ1s

−k log(F (s/k))

0
F (s/k)−x(1+ǫ(s))k/sf(x)dx

≤ eδ1(1+ǫ(s))F

(

δ1s

−k log(F (s/k))

)

.

Using Potter bounds we get for constants K > 0 and δ2 > 0

∫ s
2k

δ1s

−k log(F (s/k))

F (s/k)−x(1+ǫ(s))k/sf(x)dx =

∫ 1
2

δ1
− log(F (s/k))

F (s/k)−x(1+ǫ(s)) s

k
f
(sx

k

)

dx

≤ KF (s/k)
−(1+ǫ(s))

2
s

k
f
( s

k

)

(

− log((F (s/k))

δ1

)α+1+δ2
s→∞
−−−→ 0.

By letting δ1 → 0 we get that we have to show

lim
s→∞

∫ s
k

s
2k

F (s/k)−x(1+ǫ(s))k/sf(x)dx = ρ−1 − 1.

Let b(s) = (−(1 + ǫ(s)) log(F (s/k))) then we get by the Uniform Convergence Theorem

∫ s
k

s
2k

F (s/k)−x(1+ǫ(s))k/sf(x)dx =
s

kb(s)

∫ b(s)

b(s)
2

exf

(

sx

kb(s)

)

dx

∼
s

k
f
( s

k

)

(b(s))α
∫ b(s)

b(s)
2

exx−(α+1) dx

=
s

k
f
( s

k

)

(−b(s))α (Γ(−α,−b(s)/2) − Γ(−α,−b(s)))

∼
s
kf
(

s
k

)

eb(s)

b(s)
=

s
kf
(

s
k

)

F (s/k)−(1+ǫ(s))

− log(F (s/k))(1 + ǫ(s))
∼ α

e−ǫ(s) log(F (s/k)

− log(F (s/k)

Proof of Lemma 5.1. Define ǫ(s) as in Lemma D.1. From Lemma D.1 it follows that
we have to show for any k > 0

θ̂k
s

dφk
s(θ)

dθ

∣

∣

∣

θ=θ̂k
s

= θ̂k
s

∫ s/k

0
xF (s/k)−x(1+ǫ(s))k/sf(x) dx ∼

1 − ρ

ρ
log(F (s/k)).

For δ1 > 0 and δ2 < 1 we have

θ̂k
s

∫ s/k

0
F (s/k)−x(1+ǫ(s))k/sf(x)dx =θ̂k

s

∫
δ1s

−k log(F (s/k))

0
xF (s/k)−x(1+ǫ(s))k/sf(x)dx

+ θ̂k
s

∫
δ2s
k

δ1s

−k log(F (s/k))

xF (s/k)−x(1+ǫ(s))k/sf(x)dx

+ θ̂k
s

∫ s
k

δ2s
k

xF (s/k)−x(1+ǫ(s))k/sf(x)dx.
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We have

θ̂k
s

∫
δ1s

−k log(F (s/k))

0
xF (s/k)−x(1+ǫ(s))k/sf(x)dx ≤ δ1(1 + ǫ(s))eδ1(1+ǫ(s)).

Using Potter bounds we get

θ̂k
s

∫
δ2s
k

δ1s

−k log(F (s/k))

xF (s/k)−x(1+ǫ(s))k/sf(x)dx

≤ δ2(− log(F (s/k))(1 + ǫ(s)))F (s/k)δ2(1+ǫ(s)F

(

δ1s

−k log(F (s/k))

)

s→∞
−−−→ 0.

One further obtains

δ2(1 + ǫ(s))(− log(F (s/k))

∫ s
k

δ2s
k

F (s/k)−x(1+ǫ(s))k/sf(x)dx

≤ θ̂k
s

∫ s
k

δ2s
k

xF (s/k)−x(1+ǫ(s))k/sf(x)dx

≤ (1 + ǫ(s))(− log(F (s/k))

∫ s
k

δ2s
k

F (s/k)−x(1+ǫ(s))k/sf(x)dx.

As in the proof of Lemma D.1 we can now show that

lim
s→∞

∫ s
k

δ2s
k

F (s/k)−x(1+ǫ(s))k/sf(x)dx = ρ−1 − 1.

The assertion follows with δ1 → 0 and δ2 → 1. 2
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