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Abstract

The use of high-resolution images and data acquired from terrestrial or aerial platforms enables

detailed examination of features on the earth’s surface, such as mineral deposits, geomorphological

formations, and geological structures. This information is used to map and study the subsurface,

understand geodynamic processes, and assess environmental impact. Hyperspectral remote

sensing uses the electromagnetic spectrum reflected or emitted by objects on the Earth’s surface for

various applications, including mineral identification and analysis of the distribution and properties

of materials. However achieving an accurate representation of the observed target requires the

fusion and co-registration of data obtained from various sensors due to the different acquisition

methods of each portion of the electromagnetic spectrum.

This study presents a semi-automatic co-registration workflow for the integration of geological

close-range remote sensing data. The method is designed to overcome the challenges of hypercloud

formation, where multiple sources of hyperspectral data are collected and integrated in 3D space.

The methodology involves a camera calibration process to eliminate initial distortions, followed

by stitching of small Long-Wave Infrared hypercubes obtained from a Hyper-cam device to form a

hyper-mosaic. The next step involves matching and transformation to establish an affine trans-

formation between the hyper-mosaic and an RGB image, its quality was evaluated by comparing

the differences between the coordinates of selected points and their corresponding transforms.

Next a Structure-from-Motion workflow is carried out to generate a point cloud and the determi-

nation of the RGB frame’s camera position and orientation. This then allows back-projection can

be performed onto the point cloud to generate a hypercloud. The back-projection process was

evaluated through the calculation of the three-dimensional distance between selected points and

their respective projection. An average discrepancy of 3.56 cm was achieved. The hypercloud can

be filled with data from other regions of the electromagnetic spectrum and/or used to produce

mineral maps and other geologically relevant products.

Keywords: co-registration, LWIR, hypercloud, Telops hyper-cam, SfM, homography, affine trans-

formation



Résumé

L’utilisation d’images et de données à haute résolution acquises à partir de plates-formes terrestres

ou aériennes permet d’examiner en détail les caractéristiques de la surface terrestre, telles que

les gisements minéraux, les formations géomorphologiques et les structures géologiques. Ces

informations sont utilisées pour cartographier et étudier le sous-sol, comprendre les processus

géodynamiques et évaluer l’impact sur l’environnement. La télédétection hyperspectrale utilise

le spectre électromagnétique réfléchi ou émis par des objets à la surface de la Terre pour diverses

applications, notamment l’identification des minéraux et l’analyse de la distribution et des pro-

priétés des matériaux. Toutefois, pour obtenir une représentation précise de la cible observée, il

faut fusionner et aligner les données obtenues à partir de divers capteurs en raison des différentes

méthodes d’acquisition de chaque partie du spectre électromagnétique.

Cette étude présente un flux de travail semi-automatique de co-registration pour l’intégration

de données de télédétection géologique à courte portée. La méthode est conçue pour surmonter

les défis de la formation d’hypernuages, où de multiples sources de données hyperspectrales sont

collectées et intégrées dans l’espace 3D. La méthodologie comprend un processus de calibration

de la caméra pour éliminer les distorsions initiales, suivi de l’assemblage de petits hypercubes

infrarouges à ondes longues obtenus à partir d’un dispositif Hyper-cam pour former une hyper-

mosaïque. L’étape suivante consiste à établir une transformation affine entre l’hyper-mosaïque et

une image RVB. Sa qualité a été évaluée en comparant les différences entre les coordonnées des

points sélectionnés et leurs transformations correspondantes. Ensuite, un flux de travail "Structure-

from-Motion" est exécuté pour générer un nuage de points et la détermination de la position et de

l’orientation de la caméra de l’image RVB. Cela permet ensuite d’effectuer une rétroprojection sur le

nuage de points afin de générer un hypernuage. Le processus de rétroprojection a été évalué par le

calcul de la distance tridimensionnelle entre les points sélectionnés et leur projection respective. Un

écart moyen de 3,56 cm a été obtenu. L’hypernuage peut être complété par des données provenant

d’autres régions du spectre électromagnétique et/ou utilisé pour produire des cartes minérales et

d’autres produits géologiques pertinents.

Mots-clés : co-registration, LWIR, hypernuage (hypercloud), Telops hyper-cam, SfM, homogra-

phie, transformation affine.



Short Contents

1 INTRODUCTION 1

2 LITERATURE REVIEW 4

3 METHODOLOGY 21

4 IMPLEMENTATION & RESULTS 32

5 DISCUSSION 40

6 CONCLUSIONS & RECOMMENDATIONS 44

Appendices 46

A Camera Mounting System 47

B Agisoft Metashape – Processing Report 51

C Code 62

Bibliography 89

vi



Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Short Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 INTRODUCTION 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Host Institute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 LITERATURE REVIEW 4

2.1 Remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The electromagnetic spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Interaction with earth surface features . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Hyperspectral imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Data Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Radiometric corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Geometric corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Data Fusion & Co-registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Mineral exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 METHODOLOGY 21

3.1 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Telops Hyper-Cam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Nikon Coolpix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3 Anafi Parrot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.4 3D Printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.5 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



3.2.1 Preliminary approach 1: Boresight and Lever-arm from manual matching . . 26

3.2.2 Preliminary approach 2: Triple matching . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Final approach 3: Stitch and transform . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Development environment: conda & python . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Notebooks & JupyterLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Agisoft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.4 CloudCompare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.5 Autodesk Inventor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.6 OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 IMPLEMENTATION & RESULTS 32

4.1 Site location & Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Camera mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Camera calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Stitching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 SfM workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Matching and Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Back-projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 DISCUSSION 40

6 CONCLUSIONS & RECOMMENDATIONS 44

Appendices 46

A Camera Mounting System 47

B Agisoft Metashape – Processing Report 51

C Code 62

C.1 Calculations of leverarms and boresights (Uis Dataset) . . . . . . . . . . . . . . . . . . 63

C.2 Nikon camera shooting script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

C.3 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

C.4 Arranging stitched bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C.5 Automate and plot different combinations of params (SuperGlue) . . . . . . . . . . . 78

C.6 Find the affine transform using napari . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C.7 Stitching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography 89



List of Figures

2.1 The electromagnetic spectrum [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Energy diagram of transitions between electronic states of a molecule during absorp-

tion, fluorescence and phosphorescence S - single state, T - triplet state [5] . . . . . . 7

2.3 Interactions between electromagnetic energy and earth surface features [3] . . . . . 7

2.4 Hyperspectral image (hypercube), each pixel representing a continuous spectrum [3]. 8

2.5 Block diagram of imaging Fourier Transform Spectroradiometer [16] . . . . . . . . . 10

2.6 Basic character of digital image data [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Data cube slices that are obtained from multiple sensor types [12] . . . . . . . . . . . 13

2.8 Hypercloud of an open pit in Corta Atalaya [6] . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 External radiometric disturbances [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10 Image transformations [30] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.11 Affine and Perspective Transforms and corresponding matrix representation . . . . . 18

2.12 Typical SfM workflow [40] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 An overview of the proposed methodology with the different approaches . . . . . . . 22

3.2 Telops Hyper-Cam [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Nikon COOLPIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Technical specifications of Anafi Parrot . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Technical specifications of Anafi Parrot - cont’n . . . . . . . . . . . . . . . . . . . . . . 25

3.6 PRUSA 3D Printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 Workflow #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Top-view of the sensor capturing images at varying angles of a sub-vertical scene. . 28

3.9 Final workflow for co-registering the LWIR data . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Map situation of the Naundorf quarry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Target wall and imaging procedure: the images (blue squares) were taken as to make

a snake shape (white arrow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 3D modeling, printing of the camera mount for the Telops Hyper-Cam . . . . . . . . 34

4.4 The calibration "dance": shooting a checkerboard from different angles . . . . . . . 35

4.5 Stitched broadband infrared image (preview of the LWIR hypercube) . . . . . . . . . 35

4.6 Stitched LWIR hypercubes (one band view) . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Transformed stitched LWIR hypercube and overlaid on the RGB image. . . . . . . . . 37

4.8 The resulting hypercloud as seen from different angles. . . . . . . . . . . . . . . . . . 39

A.1 First sketch of the camera mount conception . . . . . . . . . . . . . . . . . . . . . . . 47

A.2 Nikon camera mounted to the Telops Hyper-Cam . . . . . . . . . . . . . . . . . . . . . 47

ix



List of Tables

2.1 Comparison of different classes of calibration methods [26] . . . . . . . . . . . . . . . 16

3.1 Telops Hyper-Cam specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Validation of the affine transform (using 4 points) in pixels . . . . . . . . . . . . . . . 41

5.2 Validation of hypercube back-projection onto the point cloud. The table contains

the differences in the x, y, and z coordinates of selected points and the calculated 3D

Euclidean distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

x



Listings

3.1 File structure of processed output data from Telops Hyper-Cam . . . . . . . . . . . . 24

4.1 Nikon camera coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 File structure of exported OPK of the cameras . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Code developed to back-project an image onto a point cloud . . . . . . . . . . . . . . 38

C.1 Stitching algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xi



Acronyms

2D Two-Dimensional

3D Three-Dimensional

ADC Analog Digital Conversion

CV Computer Vision

EM ElectroMagnetic

fov Field of view

FPA Focal Plane array

FTIR Fourier Transform Infrared

GNSS Global Navigation Satellite Systems

HR High-Resolution

HSI HyperSpectral Imaging

IMU Inertial measurement unit

LiDAR Light Detection And Ranging

LR Low-Resolution

LWIR Long-Wave Infrared

MPD Maximum Path Difference

MVS Multi-View Stereo

NESR Noise Equivalent Spectral Radiance

ORB Oriented FAST and Rotated BRIEF

OPD Optical Path Difference

RGB Red Green Blue

RGB-D Red Green Blue – Depth

SAR Synthetic Aperture Radar

SIFT Scale-Invariant Feature Transform

xii



SNR Signal to Noise Ratio

SfM-MVS Structure from Motion — Multi-View Stereo

ZPD Zero Path Difference



Chapter 1
INTRODUCTION

Imagine you’re standing on top of a mountain, looking down at the vast landscape below. From

your vantage point, you can see the intricate patterns of farms, forests, and towns. You can see the

meandering paths of rivers, the glistening expanse of lakes, and the rugged contours of mountains.

But what if you could see more? What if you could see beyond the visible, into the infrared? Then

you could infer the health of crops, the presence of minerals, or the effects of pollution. Meet

remote sensing.

Remote sensing is defined as "the measurement or acquisition of information of some property

of an object or phenomena, by a recording device that is not in physical or intimate contact with

the object or phenomenon under study, e.g., the utilization at a distance" [1]. This data is collected

using a variety of platforms, including satellites, aircraft, and ground-based sensors [2]. Remote

sensing allows scientists to study and monitor the Earth’s resources, environment, and climate in a

cost-effective and efficient manner [2].

Close-range remote sensing, also known as proximal remote sensing, involves the use of sensors

that are in close proximity to the objects being studied [3]. This type of remote sensing is often used

for detailed observations and measurements of small areas, such as crops, forests, and geological

features.

Radiometry is a branch of remote sensing that focuses on measuring the amount of radiation

emitted by an object in a particular part of the electromagnetic spectrum [3]. This radiation can be

in the form of visible light, infrared, or other wavelengths. Hyperspectral remote sensing is a form

of radiometry that captures a wide range of wavelengths, resulting in high spectral resolution data

that can be used to identify and classify different materials and substances based on their unique

spectral signatures [3].

1.1 Motivation

Geological close-range remote sensing focuses on the acquisition and analysis of high-resolution

images and data from terrestrial or aerial platforms, aimed at studying the geological features

and processes of a given area. It allows for a more detailed examination of important outcrops,

including mineral deposits, geomorphological formations, and other geological structures [4]. This

enables geologists and earth scientists to map and study the subsurface features, understand the

geodynamic processes, and assess the environmental impact on a particular area with greater

accuracy. In essence, geological close range remote sensing combines the science of geology

with the power of remote sensing technology, opening up a new frontier in the exploration and

understanding of the Earth’s complex geological systems [4].

The use of hyperspectral remote sensing allows for detailed analysis of the electromagnetic

spectrum reflected by objects on the Earth’s surface. This information can be used for a variety of

applications, including mineral identification and analysis of the distribution and composition of
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materials on the Earth’s surface [5]. However, often times multiple sources of hyperspectral data

are collected from sensors using different technologies from different viewing angles, leading to

the need for integration, fusion, or co-registration in order to effectively analyze the information.

Performing the integration in the 3D instead of the 2D image space in advantageous in terms of

reducing occlusion and distortion issues, facilitating the correction of illumination and atmospheric

effects in the hyperspectral data, and accurately interpreting the geometry of geological structures

[6]. This process results in a hypercloud which is a geometrically correct, spatially 3-dimensional

representation of the hyperspectral datacubes.

The end-result of this process is a detailed analysis of the electromagnetic spectrum at various

locations on the Earth’s surface, which can provide valuable insights into the distribution and

properties of materials.

1.2 Problem Framing

3D mapping of geological sites is an essential tool for characterizing the spatial distribution of

different rock types, identifying geological structures, estimating mineral resources, and monitoring

changes over time [4]. This can be further enhanced by capturing the surface’s response to various

portions of the electromagnetic spectrum.

This information will be captured in a hypercloud, i.e. a three-dimensional representation of

geometrically accurate hyperspectral data [7]. The hypercloud serves as a powerful tool in mineral

exploration for comprehending geological processes such as mineralization and improving the

accuracy of surface and subsurface mapping.

The acquisition of data from different portions of the electromagnetic spectrum involves the

use of multiple sensors, due the variability in the employed sensing methods [3]. As a result, data is

collected from disparate sources, necessitating the process of co-registration and fusion to create a

unified and coherent product. The co-registration and fusion of data from various sensors enable

the creation of a single integrated dataset. This allows for the exploitation of complementary

information from multiple sources and enhances the accuracy and resolution of the resulting

products. Which can provide a more comprehensive understanding of the target being studied.

In this work, the main objective is the co-registration of the Long-wave Infrared data from the

Telops Hyper-Cam sensor to a 3D point cloud to get a hypercloud. The hyperspectral Long-wave

Infrared data acquired by Fourier-Transform Infrared imaging sensor poses a particular challenge

for co-registration, mainly because of the low field of view of the sensor resulting in very small

captured images, and the complex and dangerous 3D sub-vertical target geometry, which translates

into the difficulty of maintaining a spatial overlap between consecutive images. The obtained

images do not provide any 3D information due to the static position of the sensor and the lack

of GNSS receivers. One other thing is the scarcity of visual similarities between various ranges

of the electromagnetic spectrum especially the Long-Wave InfraRed and visible ranges, makes

working with Long-wave Infrared data acquired by Fourier-Transform Infrared imaging sensor very

challenging.

Breakdown of the larger objective into smaller objectives includes:

• Data processing and correction

• Exploration of various co-registration techniques

• Exploration of deep networks for some co-registration tasks

• 3D point cloud generation using Structure-from-Motion (SfM)

• Implementation of a workflow for co-registering LWIR hyperspectral data to the hypercloud.

1.3 Thesis Outline

The thesis is divided into 6 chapters, starting with this introductory chapter. Then the literature

review chapter that covers the topics of the electromagnetic spectrum, data acquisition and pro-
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cessing, and mineral exploration. The methodology chapter details the proposed approach, the

equipment, and the software used in the research. The implementation and results chapter high-

lights the fieldwork and the results and how they were obtained, followed by the discussion chapter,

and the last chapter present conclusions drawn from the research and recommendations to further

advance this work.

1.4 Host Institute

The Helmholtz Institute Freiberg for Resource Technology (HiF) is a research institute dedicated

to finding sustainable solutions for the efficient sourcing and use of metalliferous and mineral

raw materials. It was founded in 2011 as part of the German Resource Strategy, with the goal of

providing solutions for the sustainable use of these resources. HIF is funded by the German Federal

Government (90%) and the Free State of Saxony (10%), and is a member of the Helmholtz-Zentrum

Dresden-Rossendorf (HZDR), as well as a strategic partner of TU Bergakademie Freiberg. It is also a

member of the EIT RawMaterials community, and has a staff of more than 140 people from over 25

different countries.

The researchers at HiF are focused on the opportunities and limits of the Circular Economy, and

are working to develop both resource- and energy-efficient technologies related to the metalliferous

raw material cycle. This includes innovative processes for exploration, processing, metallurgy, and

recycling. To achieve this, they are using interdisciplinary approaches that integrate modeling and

valuation of recovery processes, system-integrated metal production, and resource analytics. From

a materials standpoint, HiF is particularly interested in high-tech metals like indium, gallium, ger-

manium, and rare earth elements, as well as complex materials from both primary and secondary

sources.

The HZDR, of which HiF is a part, conducts research in the areas of energy, health, and matter.

The aims of HiF include developing new technologies for the long-term supply of mineral and

metalliferous raw materials from domestic and global sources, contributing to global environmental

protection through material and energy efficiency, establishing long-term economic relations with

resource-based countries, and training a new generation of highly qualified scientists and engineers

for industry and academia.
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“Geologists seem to have rosy prospects in remote sensing for the next decade. This

period is likely to be one of consolidation rather than innovation, giving the majority of

geologists the time to get to grips with what has been happening over the last three

decades in geological remote sensing research, to apply the new data to exciting new

geological problems instead of repeatedly pawing over tiny test areas, and to catch up

with their colleagues in other fields.”

Steve Drury [8]

In 2004, Steve Drury [8] made this observation that has now undergone miles, as we will explore

in the following discussion.

The investigation of geological outcrops is a domain of significant significance within the

geosciences, primarily due to its capacity to amass geospatial information, quantify geometric pa-

rameters, and create maps of mineralogy and lithology [9]. Remote sensing is a very important tool

in achieving that, and in geology an exploration program involves four stages [9]: (1) prospecting,

(2) regional exploration, (3) detailed exploration, and (4) mine exploration.

Prior to delving further into mineral exploration, a review of the literature will be conducted

to provide an overview of the current state of knowledge in the field and to guide our subsequent

investigations.
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2.1 Remote sensing

Remote sensing is a powerful tool for studying the Earth’s surface from a distance, without making

physical contact with the object of interest.

Close-range remote sensing involves the use of sensors at relatively short distances, such as

from an unmanned aerial vehicle or ground-based platform. This type of remote sensing is useful

for collecting high-resolution data and for studying small-scale features that may not be visible

from satellite sensors. Examples of close-range remote sensing applications include surveying land,

monitoring crops, and inspecting infrastructure.

Hyperspectral remote sensing involves the measurement of the reflection of electromagnetic

radiation across a wide range of wavelengths, providing detailed information about the chemical

and physical properties of materials on the Earth’s surface. Hyperspectral sensors can identify

the unique "signature" of different materials, making them useful for a variety of applications,

including mineral exploration, environmental monitoring, and military surveillance.

In this thesis, the focus will be directed towards exploring the mineral content of subvertical

structures such as quarry walls and open pits, utilizing a multi-sensor approach to capture the

targets across different regions within the electromagnetic spectrum.

2.1.1 The electromagnetic spectrum

Light is usually interpreted as the visible light; that’s because it is what can be perceived by the eye,

but that changed in the 1800s when it was discovered that light was a more general phenomenon;

and it is more common to use electromagnetic radiation when referring to light in its various forms

[10].

The electromagnetic spectrum is the range of electromagnetic radiations.

The figure 2.1 shows important properties and relations between different radiations of the

electromagnetic spectrum. The order of these radiations in increasing wavelength is: Gamma-rays

γ, X-rays, Ultra-Violet, Visible, Infrared, Micro-waves, Radio-waves.

The infrared portion of the electromagnetic spectrum is usually divided into three sub-regions;

the near-, mid- and far-infrared, named for their relation to the visible spectrum.

The historical debate on the particle versus wave interpretation of light is well known. «Put

simply, light behaves as a wave when it propagates and like a particle when it is detected» [11].

In the wave theory, electromagnetic radiation has :

• frequency ν: the number of cycles of light that pass a given point in one second

• amplitude a: the magnitude of the wave’s displacement (½ the height between the peaks and

troughs); it is related to the intensity of the wave (brightness for light, loudness for sound)

• wavelength λ: the distance between corresponding points in 2 adjacent light cycles

• speed V : V =λ×ν

• energy E : E = h ×ν where Planck’s constant h = 6.626×10−34 J .s

The other theory, offers insights into how light interacts with matter. In this -particle- theory,

the electromagnetic radiation is composed of discrete units called photons or quanta [3].

The energy of a quantum is :

Q = hν (2.1)

where:

• Q: energy of a quantum, joules (J)

• h: Planck’s constant h = 6.626×10−34 J .s

• ν: frequency

All matter at temperatures above absolute zero (0K , or −273◦C ) continuously emits electromag-
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Figure 2.1: The electromagnetic spectrum [5]

netic radiation [3].

The energy radiated by objects is, among other things, a function of the surface temperature of

the object as expressed by the Stefan-Boltzmann law [3]:

M =σT 4 (2.2)

where:

• M : total radiant exitance from the surface of a material; w at t s(W )m−2

• σ: Stefan–Boltzmann constant, 5.6697×10−8W m−2K −4

• T : absolute temperature (K ) of the emitting material

Actually this law is expressed for an energy source that behaves as a black body: a hypothetical,

ideal radiator that totally absorbs and re-emits all energy incident upon it. And real objects only

approach the black body [3].

The spectral distribution of the emitted energy also varies just as the energy emitted by an

object varies with temperature [3]. The lower part of the figure 2.1 shows energy distribution curves

for a black body at different temperatures.

* EM energy propagates in waves formed by electric and magnetic fields

Quantization theory of the energy of electrons responsible of the main transitions in specific

regions of the EM spectrum. see figure [5]. Every individual atomic species (atoms, ions, molecules)

can have a possible quantum state that are well defined at a characteristic energy level [5].

Electronic, vibrational, rotational and translational processes and electron spins are associated

with sets of energy levels that an atomic species can have [5]. Every set have one low energy or

ground state, and multiple high energy or excited states reached when absorbing the equivalent of

the state’s energetic difference; and then momentarily transition back to a lower energy state by an

emission of of the same energy for that transition [5].

The figure 2.2 illustrates this notion using an energy diagram.
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Figure 2.2: Energy diagram of transitions between electronic states of a molecule during absorption,

fluorescence and phosphorescence S - single state, T - triplet state [5]

.

2.1.2 Interaction with earth surface features

When energy from light, radio waves, or other forms of electromagnetic radiation hits a feature

on the earth’s surface, it can do one of three things: reflect off the feature, be absorbed by it, or

pass through it [3]. This is shown in the figure 2.3 for a small piece of a body of water. Applying the

principle of conservation of energy, we can state the interrelationship among these three energy

interactions as [3]:

E I (λ) = ER (λ)+E A(λ)+ET (λ) (2.3)

where:

E I : incident energy

ER : reflected energy

E A : absorbed energy

ET : transmitted energy

with all energy components being a function of wavelength λ.

Figure 2.3: Interactions between electromagnetic energy and earth surface features [3]

This last equation is an energy balance equation that demonstrates the relationship between

reflection, absorption, and transmission. Two points to consider about this relationship are: first,
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the amount of energy reflected, absorbed, and transmitted will vary for different Earth features,

depending on their material type and condition, these variations allow us to distinguish different

features in an image [3]. Second, the wavelength dependency means that, even within a given

feature type, the proportion of reflected, absorbed, and transmitted energy will vary at different

wavelengths, and therefore, two features may be indistinguishable in one wavelength range but be

very different in another wavelength band [3].

2.1.3 Hyperspectral imaging

Hyperspectral imaging is acquiring images in many, very narrow, contiguous spectral bands

throughout the visible, near-IR, mid-IR, and thermal-IR portions of the spectrum [3].

The figure 2.4 portrays a hypercube: a pixel constructed from a continuous spectrum.

Figure 2.4: Hyperspectral image (hypercube), each pixel representing a continuous spectrum [3].

Passive hyperspectral reflectance measurements in visible and infrared portions of the electro-

magnetic spectrum, are rapid, non-destructive and safe [5].

It can provide information about the distribution of rock-forming and alteration minerals, specific

compounds and ions [5].

More differentiation of small compositional changes of substances in comparison to true color or

multi-spectral [5].

Hyperspectral remote sensing allows for a variety of scientific and industrial fields to obtain spatially

continuous compositional information of samples, outcrops, or regions that are inaccessible, large,

dangerous or environmentally valuable [5].

2.2 Data Acquisition

2.2.1 Principles

Remotely sensed data can be classified in a variety of ways depending on: the wavelength of

electromagnetic radiation that is being used to collect the data, the target that is being observed, the

scale at which the data is being collected, the type of the sensor used, and the spectral resolution

(number of bands) [3].

In terms of wavelength, remote sensing data can be classified as visible, infrared, or microwave,

depending on the portion of the electromagnetic spectrum that is being used to collect the data [3].

This will be addressed in the next subsection.
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In terms of the target that is being observed, remote sensing data can be classified as active

or passive, depending on whether the sensor is emitting energy or simply detecting energy that

is being emitted by the target [3]. Active sensors, such as radar, emit their own energy and then

measure the reflection of that energy off the target [3]. Passive sensors, such as cameras, simply

detect energy that is being emitted by the target, such as visible light or infrared radiation [3].

The scale classification ranges from satellites observing the Earth at different altitudes (actively

and passively) space-borne class, passing by the airborne-class including manned aircraft and

unmanned ones e.g. drones to Terrestrial/Small-angle Scans and finally to the lab or near-field [5].

Sensor type classification the properties and capabilities of the sensors. One type of sensor is

the point spectrometer, which is used to measure the intensity of light at different wavelengths

[12]. Another type is the pushbroom spectrometer, which scans a scene to collect data over a wide

area [12]. Spectral 2D imagers are another type of sensor, and these can be further divided into

several subtypes [12]. The multi-camera 2D imager uses multiple cameras to capture images [12].

The sequential 2D imager captures images sequentially, and the snapshot 2D imager captures

multiple images at the same time. Within the snapshot 2D imager, there are several sub-types

such as the multi-point spectrometer, mosaic filter-on-chip camera, spatio-spectral filter-on-chip

camera, characterized (modified) RGB camera, and spatio-spectral camera [12]. These different

types of sensors each have their own advantages and disadvantages, and are used in a variety of

applications. The figure 2.7 presents the data captured by different types of sensors.

Finally, remote sensing data can be classified based on the spectral resolution [3]. Many sensors

collect data in multiple bands or wavelengths, and the number of bands can vary depending on the

sensor and the application [3]. For example, a sensor with a large number of bands may be able to

detect a wide range of wavelengths and provide more detailed information about the features being

studied, while a sensor with fewer bands may have a narrower range of wavelengths but may be

able to collect data more quickly or at a lower cost [3].

The visible and infrared ranges are certainly among the most widely studied and utilized in

many applications, such as imaging and remote sensing [3]. The human eye is able to perceive light

in the visible range, which makes it easy for us to interpret and understand images captured in this

range [3]. Additionally, the atmosphere is relatively transparent in certain infrared bands, making it

possible to gather useful data from satellites and other remote sensing platforms [3]. We will dive

deeper into this 2 special ranges next.

Visible Visible wavelengths are those that are visible to the human eye and are typically used

to observe features on the Earth’s surface such as vegetation, bodies of water, and man-made

structures.

They are typically defined as those between 400 and 700 nanometers (nm). Within this range,

different colors correspond to different wavelengths: red light has a wavelength of around 700 nm,

green light has a wavelength of around 550 nm, and blue light has a wavelength of around 450

nm. In remote sensing, images are often captured using sensors that are sensitive to these specific

wavelengths, resulting in red, green, and blue channels of information. These channels can then be

combined to create a full-color image of the Earth’s surface.

Infra-Red Infrared wavelengths are longer than visible wavelengths and are used to observe

features on the Earth’s surface that are not visible in the visible spectrum, such as changes in

temperature and humidity.

Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the

interaction of infrared radiation with matter by absorption, emission, or reflection.

Most materials absorb electromagnetic radiation in the IR spectral region at wavelengths (from

0.8 to 14 µm) that are characteristic of the material’s molecular structure [13]. Some of the IR

spectrometers are: grating-based/dispersive IR spectrometers, FTIR spectrometers, and filter-

based or non-dispersive IR (NDIR) instruments [13]. We will dig deeper into FTIRs.
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FTIR A Fourier Transform InfraRed spectrometer also called interforometer is an instru-

ment which acquires broadband spectra from NIR to LWIR [14]. The interferometer produces a

unique type of signal which has all of the infrared frequencies “encoded” into it [15]. Unlike other

multi/hyper-spectral instruments (grating monochromator or spectograph), FTIR spectrometers

collect all wavelengths simultaneously, this is known as the Multiplex or Felgett Advantage [14].

The figure 2.5 represents the layout of the imaging FTIR spectrometer.

Figure 2.5: Block diagram of imaging Fourier Transform Spectroradiometer [16]

The interferometer employ a beamsplitter that have as input the infrared beam and divides it

into 2 optical beams: one beam reflects off of a flat fixed mirror, the other beam reflects off of a flat

slightly dynamic mirror (few mm) [15]. The 2 beams reflect off of their respective mirrors and are

recombined when they meet back at the beamsplitter.

The signal exiting the interferometer called interferogram is the result of these 2 beams interfering

with each other (because the path that one beam travels is a fixed length, the other constantly

changing due to its mirror movements).

The interferogram has the unique property that every data point (a function of the moving mirror

position) of the signal has information about every infrared frequency of the source.

As the interferogram is measured, all the frequencies are being measured simultaneously.

For analysis a frequency spectrum (plot of the intensity at each individual frequency) is needed. So

the interferogram need to be “decoded” for interpretation. This decoding can be done via Fourier

transformation.

Some of the major advantages of FT-IR over the dispersive technique include [15]:

• Speed: Because all of the frequencies are measured simultaneously, most measurements by

FT-IR are made in a matter of seconds rather than several minutes. This is sometimes referred

to as the Felgett Advantage.

• Sensitivity: Sensitivity is dramatically improved with FT-IR for many reasons. The detectors

employed are much more sensitive, the optical throughput is much higher (referred to as

the Jacquinot Advantage) which results in much lower noise levels, and the fast scans enable

the co-addition of several scans in order to reduce the random measurement noise to any

desired level (referred to as signal averaging).

• Mechanical Simplicity: The moving mirror in the interferometer is the only continuously

moving part in the instrument. Thus, there is very little possibility of mechanical breakdown.

• Internally Calibrated: These instruments employ a HeNe laser as an internal wavelength

calibration standard (referred to as the Connes Advantage). These instruments are self-

calibrating and never need to be calibrated by the user.
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Optical Path Difference (OPD) is the difference in distance traveled by the two beams in an

interferometer [14]. It is calculated by multiplying the distance traveled by the moving mirror

(multiplied by 2, 4, or other multiplier, which is a function of the number of reflecting elements

used), and the index of refraction of the medium in the interferometer.

FT-IR has a natural reference point when the moving and fixed mirrors are at the same distance

from the beam splitter, it is called the zero path difference or ZPD [14].

LiDaR LiDaR stands for Light Detection and Ranging is a technology that provides highly precise

registration of spatially distributed data [17]. The LIDAR system consists of a laser device, an

inertial navigational measurement unit, a high-precision airborne global positioning system, and

a computer interface [17]. In contrast to most optical remote sensing methods, the acquisition

of LIDAR data is not significantly influenced by solar illumination and can be performed during

nighttime [17]. Among the various return attributes, intensity is the most frequently requested and

utilized [17].

The sensors mentioned above can be installed on various platforms, including satellites, air-

planes, drones, terrestrial vehicles, or ground-based setups, to capture data from a target [18].

Airborne hyperspectral imaging sensors are employed for large-scale remote sensing applications,

while satellite-based sensors are utilized for even larger scales, such as monitoring vegetation health,

detecting land cover changes, and mapping geology [18]. On the other hand, drones equipped with

hyperspectral sensors are deployed for smaller-scale applications such as precision agriculture,

environmental monitoring, and infrastructure inspection [18]. In addition, terrestrial hyperspectral

sensors are utilized in laboratory settings for analyzing samples or conducting field spectroscopy of

vegetation and soil [18].

Before delving into how data is processed, it is worth talking about how it is saved and stored.

2.2.2 Data Products

Digital image

Before electronic sensors were invented, analog cameras used chemicals on light-sensitive film to

detect changes in energy in a scene [3]. By developing the film, we would get a record of the energy

signals [3]. The film acted as both a detector and a recorder [3].

These pre-digital cameras had many advantages: they were simple, affordable and provided a

lot of detail and accuracy in the image [3]. Nowadays, electronic sensors make an electrical signal

that matches the changes in energy in the original scene [3]. A common example of an electronic

sensor is a digital camera [3]. Different types of electronic sensors have different designs and

detectors, such as charge-coupled devices (CCD) or antennas for detecting microwaves signals [3].

No matter which type of detector is used, the information gathered is usually saved onto a

computer storage device, such as a hard drive, memory card, solid-state storage device, or optical

disk [3]. Even though electronic sensors can be more complex and costly than film-based systems,

they offer benefits such as a wider range of sensitivity to different colors of light, better possibilities

for calibrating and measuring with the sensor, and the possibility to save and send the information

electronically [3].

The basic character of digital image data is shown in figure 2.6 [3]. Although the image in (a)

looks like a normal photograph, it is actually made up of a grid of small, individual parts called

pixels. The brightness of each pixel corresponds to the average brightness measured electronically

from the area on the ground that the pixel covers. The figure shows 500 rows and 400 columns

of pixels. In (a), it is difficult to see the individual pixels, but they are more clear in the larger

views in (b) and (c). These are close-ups of smaller areas in the center of the image in (a). (b)

shows a close-up of 100 rows and 80 columns, and (c) shows a close-up of 10 rows and 8 columns.

Part (d) shows the numerical value assigned to each pixel, called the digital number (DN) which

corresponds to the average brightness measured by the pixel in (c). These values are obtained
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by converting the original electrical signal from the sensor into positive whole numbers using a

process called analog-to-digital conversion [3].

Figure 2.6: Basic character of digital image data [3]

In the case of a digital multispectral image, each pixel includes multiple DNs, one for each

spectral band [3].

Hypercube

A data cube or hypercube is a three-dimensional structure made up of multiple digital images

of the same scene, taken at different wavelengths that are arranged in a stacked format [3]. The

dimensions of the hypercube are defined as one spectral dimension (λ) and two spatial dimensions

(X and Y ). [19].

The figure 2.4 portrays a hypercube.

The figure 2.7 summarizes the different data cube slices that are obtained from multiple sensor

types [12].

Point cloud

Point clouds are a fundamental data representation in computer vision and remote sensing, and

they can be obtained using several techniques [20]. These techniques include image-derived

methods, Light Detection And Ranging (LiDAR) systems, Red Green Blue -Depth (RGB-D) cameras,

and Synthetic Aperture Radar (SAR) systems. Each of these methods has unique survey principles

and platforms that result in diverse data features and application ranges [20].

Hypercloud

A hypercloud is a 3D representation of hyperspectral data that is geometrically accurate [7, 21].

It is created by combining high-resolution point clouds with high-resolution spectral imagery or

datacubes.

The figure 2.8 is a false colour visualisation of a hypercloud [6].

A hypercloud make it easier for hyperspectral images to be integrated into a single product for

visualisation, interpretation and analysis [6]. The 3-D nature of this product mitigates occlusion and

distortion issues that limit approaches relying on orthographic projection, and facilitates crucial

corrections of illumination and atmospheric effects in the hyperspectral data [6].

Upon acquisition of the data, processing is required for it to be usable and free from artifacts.
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Figure 2.7: Data cube slices that are obtained from multiple sensor types [12]

Figure 2.8: Hypercloud of an open pit in Corta Atalaya [6]

2.3 Data Processing

Image processing methods can be categorized into three functional categories [22], which are as

follows, along with a list of typical processing routines [22]:

1. Image restoration compensates for image errors,noise, and geometric distortions introduced

during the scanning, recording, and playback operations. The objective is to make the

restored image resemble the scene on the terrain. Typical processing routines include:

(a) Restoring line dropouts

(b) Restoring periodic line striping

(c) Restoring line offsets

(d) Filtering random noise

(e) Correcting for atmospheric scattering

(f) Correcting geometric distortions

2. Image enhancement involves changing the appearance of an image to enhance the informa-
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tion it conveys. The goal is to make the image clearer and more informative for the viewer.

Common image enhancement techniques include:

(a) Contrast enhancement

(b) Density slicing

(c) Edge enhancement

(d) Making digital mosaics

(e) Intensity, hue, and saturation transformations

(f) Merging data sets

(g) Synthetic stereo images

3. Information extraction is the process of using a computer to combine and analyze different

aspects of a data set. The goal is to show the hidden spectral and other features of the scene

that are not clearly visible in restored and enhanced images. Common processing routines

include:

(a) Principal-component images

(b) Ratio images

(c) Multispectral classification

(d) Change-detection images The images in this report have been processed with various

combinations of these routines.

In the following, we will examine the most relevant routines for our current study.

2.3.1 Radiometric corrections

Radiometric effects refer to any factors that affect the spectroscopic information within a data set

[5]. These effects can be global, local to a specific location, or local to a specific wavelength [5]. They

can be caused by internal factors, such as technical problems with the sensor, or external factors,

such as the environment. Radiometric correction involves the alignment of the data to a reference

system and can include correction for at-sensor radiance, top of atmosphere (TOA) reflectance, or

surface reflectance [5].

Internal corrections refer to adjustments made to the data collected by the sensor itself [5]. This

includes corrections for dark current, which is caused by thermal noise, and bad pixels, which are

pixels that are not working properly. [5] Vignetting and smile corrections are also applied to account

for the uneven response of the sensor across the image [5]. Keystone correction is used to correct

any distortion caused by the angle of view of the sensor [5].

External radiometric effects can include changes in illumination, atmospheric conditions, and

the surface being observed [5]. These effects can be corrected through a variety of approaches,

including the use of calibration values, atmospheric correction algorithms, and surface reflectance

models [5].

The reflected signal from a given surface depends on a number of parameters and its behavior

can be described by the Bidirectional Reflectance Distribution Function. [23] as shown in equation

2.4:
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The Bidirectional Reflectance Distribution Function (BRDF) is a measure of the way that light is

reflected off a surface, it describes the relationship between the amount of light that is incident on

a surface and the amount of light that is reflected off of it [23]. The BRDF is a function of various

parameters, including the wavelength of the light, the direction of the incident and reflected light,

and the material properties of the surface [23].

The BRDF can be divided into two main components: specular reflection and diffuse reflection

[23]. Specular reflection is concentrated in a small area and is characterized by a single bright

spot on the surface. It is caused by light that is reflected off the surface at a single angle. Diffuse

reflection, on the other hand, is spread over a wider area and is characterized by a more uniform
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brightness across the surface. It is caused by light that is reflected off the surface at many different

angles.

The BRDF of a surface is also influenced by the angle at which light hits the surface, as well

as the surface roughness and material properties. Surfaces that reflect light in a more isotropic

manner, with a constant BRDF regardless of the direction of the incident light, are referred to as

Lambertian surfaces [23]. Non-Lambertian surfaces, on the other hand, have a BRDF that depends

on the direction of the incident light.

Figure 2.9: External radiometric disturbances [5]

2.3.2 Geometric corrections

Geometric disturbances are any factors that impact the spatial accuracy of an image or dataset.

Spatial accuracy is achieved when the spatial projection of the image or dataset matches its actual

location within a reference surface or space [5]. Geometric distortions can be corrected through

a process called orthorectification, which involves compensating for geometric distortions and

aligning the dataset with a reference system [5]. There are several types of geometric disturbances

that can affect remotely sensed data, including technical imperfections of the sensor, viewing angle

of the sensor, movement of the sensor or platform, and topographic features [5]. These distortions

can be corrected through a variety of approaches, including the use of distortion coefficients,

logging sensor movement and position, warping the dataset to an orthophoto with a similar or

higher spatial resolution, and projecting the image onto a high-resolution digital elevation model

[5].

We will dissect in more details the camera calibration, the most important geometric correction.

Camera calibration Camera calibration is an essential step in setting up a measurement system,

it is necessary to calibrate the camera before any use to ensure accurate measurements [24].It helps

to ensure that the features of the image conform to the laws of projective geometry, as it allows to

determine the precise direction of the projection ray for each pixel, which is crucial for accurate

measurements and analysis.

When calibrating a camera, there are various criteria that can be used to classify the calibration

process. One way to classify camera calibration is based on whether it is linear or non-linear [25].

Linear calibration methods assume that the relationship between the camera parameters and
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the image measurements is linear, while non-linear methods take into account more complex

relationships [25]. Another way to classify camera calibration is based on whether it is intrinsic or

extrinsic [25]. Intrinsic calibration deals with the internal parameters of the camera such as focal

length and image center, while extrinsic calibration deals with the position and orientation of the

camera in the world coordinate system [25]. Additionally, camera calibration can be classified as

implicit or explicit [25]. Implicit calibration methods use the image measurements directly, while

explicit calibration methods use additional information such as 3D points or geometrical properties

[25]. Finally, camera calibration can be classified based on whether it uses 3D points or geometrical

properties [25]. The use of 3D points allows the reconstruction of the 3D scene, while the use of

geometrical properties only allows the determination of the camera’s internal parameters [25].

There are different types of algorithms that can be used for camera calibration, each with

their own advantages and limitations. Traditional visual calibration algorithms include the DLT

(Direct Linear Transformation) algorithm, the Tsai (2-steps method), and the Zhang+ [26]. These

methods are based on the principles of cross-ratio invariance, and are often used in conjunction

with nonlinear optimization techniques [27]. Additionally, the Biplane algorithm is also widely used

[27]. Camera self-calibration algorithms include those based on the absolute conic and the absolute

quadric [26]. These methods are useful for cameras that are not able to perform a traditional

calibration. Active-vision-based calibration algorithms include those based on three orthogonal

translational motions and those based on camera pure rotation [26]. These methods are useful for

cameras that have the ability to move in order to optimize the calibration process.

The table 2.1 compares the different calibration methods [26].

Table 2.1: Comparison of different classes of calibration methods [26]

Calibration algorithms Advantages Disadvantages

Traditional visual calibration High precision
Complex process

Requires calibration blocks

Camera self-calibration
No need for calibration blocks

Good flexibility
Low precision

Active-vision-based calibration Simple calculations High system cost

2.3.3 Data Fusion & Co-registration

Data fusion is the process of combining multiple data sources to create a more complete and

accurate dataset [28]. It involves the integration of data from multiple sensors or platforms to create

a single, cohesive dataset [28]. This can be done for a variety of purposes, such as to improve the

spatial, spectral, or temporal resolution of the data, or to provide complementary information

about different aspects of the Earth’s surface or atmosphere [28]. Co-registration refers to the

process of aligning multiple data sources so that they can be accurately compared or combined

[28]. This can be done through various techniques such as image registration, sensor registration,

and feature-based registration [28]. In summary, data fusion is the process of integrating multiple

data sources to create a more informative dataset, while co-registration is the process of aligning

multiple data sources so that they can be accurately compared or combined.

There are several approaches to data fusion in remote sensing, including pixel-level fusion,

feature-level fusion, and decision-level fusion [29]. Pixel-level fusion involves the combination of

data at the individual pixel level [29]. While feature-level fusion involves the integration of features

extracted from the data [29]. Decision-level fusion involves the integration of the results of different

data processing techniques or classifications [29].

Data fusion can be used to address a number of challenges in remote sensing, such as the

trade-off between spatial and spectral resolution, the limited availability of certain types of data,

and the need to integrate data from a variety of sources.
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Image transformations

The matching transformation can be rigid, affine, projective, or curved; these categories, indicating

the degree of elasticity of the transformation, have been selected such that they show a clear

distinction in geometrical properties [30].

A transformation is considered rigid if it preserves the distance between any two points when

they are mapped from the first image to the second [30]. Conversely, an affine transformation maps

any straight line in the first image onto a straight line in the second, while preserving parallelism,

and it can be decomposed into a linear transformation and a translation [30]. In contrast, projective

(or perspective) transformations (also called homographies) do not preserve parallelism between

straight lines, as straight lines in the first image can be mapped onto non-parallel lines in the

second image [30]. Curved transformations, on the other hand, may map straight lines onto

curves. One well-known class includes polynomial transformations [30]. Figure 2.10 illustrates the

aforementioned image transformations..

Figure 2.10: Image transformations [30]

The most important that we will use subsequently are the affine and perspective. Figure 2.11

shows an example and the corresponding matrix formula in homogeneous coordinates1.

Both transformations can be used to align or register images, but homography is more suitable

for images that have a significant perspective change, while affine transformation is better suited

for images with little or no perspective change. Additionally, while homography requires at least 4

non-collinear points to estimate, affine Transformation can be estimated using only 3 points.

It is imperative to have correspondences between points in both images in order to perform

these transformations. To automate this process, feature detectors have been developed.

Feature detectors

The field of feature detection in computer vision involves identifying and extracting distinctive,

repeatable patterns in images. There are several popular algorithms for feature detection, including

Scale-Invariant Feature Transform (SIFT) [31], Speeded Up Robust Features (SURF) [32], Features

from Accelerated Segment Test (FAST) [33], Scale-Invariant Feature Transform-STAR (STAR) a

derived version of CenSurE [34], and Oriented FAST and Rotated BRIEF (ORB) [35].

SIFT uses a Difference of Gaussians approach to recognize blobs as local features and has

the advantage of being invariant to both scale and rotation [31]. SURF is composed of two steps,

1Homogeneous coordinates are a mathematical representation of points and vectors in a space of one dimension

higher than the original space. This extra dimension allows for more complex transformations, such as projective

transformations, to be performed in a more convenient way. The results of these transformations can then be transformed
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Figure 2.11: Affine and Perspective Transforms and corresponding matrix representation

feature extraction and feature description, and utilizes Hessian matrix-based interest points for

efficient computation [32]. FAST considers only 16 pixels around a processing pixel, resulting in

faster computation and real-time feature detection [33]. STAR is a scale and rotation invariant

detector developed by the OpenCV library that uses Laplacian of Gaussians and two 45-degree

difference overlapped squares, it is a derived version of CenSurE [34]. ORB is a combination of FAST

and Binary Robust Independent Elementary Features (BRIEF) that results in both efficient feature

detection and accurate feature description [35].

Structure from Motion

Structure-from-Motion (SfM) is a method for determining 3-D structure from a series of overlapping

images [36]. Unlike conventional photogrammetry, SfM solves for camera positions, orientations,

and scene geometry automatically, without requiring prior knowledge of the 3-D positions of targets.

The approach involves a highly redundant and iterative bundle adjustment procedure based on a

database of features extracted from the images [36]. This method is best suited for sets of images

with high overlap that capture full three-dimensional structure of the scene from multiple positions,

or images taken by a moving sensor.

The initial step in SfM is the identification of keypoints in individual images using systems

such as the Scale Invariant Feature Transform (SIFT) [37]. These keypoints are used for image

correspondence and the number of keypoints in an image depends on factors such as image

resolution, texture, and complexity [37].

Once keypoints are identified, the process of generating a dense point cloud from images

involves several algorithms and mathematical methods, including the sparse bundle adjustment,

approximate nearest neighbour algorithm, Random Sample Consensus (RANSAC), similarity trans-

formation, and triangulation and the result of this process is a sparse point cloud that can be

further processed to obtain a more dense point cloud using algorithms such as Clustering View for

Multi-view Stereo (CMVS) and Patch-based Multi-view Stereo (PMVS2) [37].

The origin of this technique lies in the field of computer vision and was developed in the 1990s

(eg. [38] and [39]).

Figure 2.12 represents a typical SfM workflow.

2.4 Mineral exploration

As mentioned earlier remote sensing plays a crucial role in the search for mineral deposits and the

reduction of costs associated with their exploration and development [9]. The exploration process

back into Cartesian coordinates, which can be interpreted in the original space.
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Figure 2.12: Typical SfM workflow [40]

generally consists of four stages, namely prospecting, regional exploration, detailed exploration,

and mine exploration, as described by (author?) [9].

In the prospecting stage, the goal is to identify potential mineral deposits, or "targets." The

most useful information for this comes from small-scale satellite images, larger-scale multispectral

images, and airborne surveys [9]. In the regional exploration stage, surface mapping is done at a

larger scale, and a few selected sites are studied using geophysical and geochemical techniques

[9]. In the detailed exploration stage, investigations are done at an even larger scale, and high

resolution remote sensing data can be useful [9]. The final stage, mine exploration, involves finding

the minerals at depth and leading to mining and development. High spatial and spectral resolution

remote sensing data is obtained [9].

However, it’s important to keep in mind that remote sensing has a limited ability to penetrate

the Earth’s surface [9]. Most mineral deposits are not visible on the surface, and remote sensing can

only see a few micrometers to a few centimeters into the Earth’s surface [9]. So, the information

gathered from remote sensing is often indirect, relying on geological setting, structure, and other

factors, rather than directly finding the mineral deposit [9].

Geological mapping is a crucial step in mineral exploration, as it helps to identify geological

features related to target mineralization [41]. Traditional methods of geological mapping involve

expert knowledge and fieldwork, which can be time-consuming, subjective, and affected by environ-

mental factors [42]. Remote sensing data and advanced data analytics, such as machine learning,

can provide a more efficient and reliable alternative [41]. Multispectral and hyperspectral remote

sensing instruments have been used to map geological features [4], such as lithological units [43],

alteration zones [44], structures [45] and and delineating rocks and minerals [46]. Image process-

ing methods are also used to enhance, extract, and detect features in satellite images [41]. The

combination of remote sensing data and digital image processing can help exploration geologists

to overcome common challenges associated with traditional methods, such as identifying barren

regions and minimizing costs [41].

In recent years, the increase in demand for various minerals coupled with a decline in the num-

ber of newly discovered mineral deposits has led exploration geologists to search for more effective

and innovative techniques to process various data types at every stage of mineral exploration [41].

Hyperspectral imagery is increasingly being used in geological mapping and mineral exploration

[21]. Extensive information can be drawn from the remotely obtained spectral signatures, and it
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is used to extract rocks composition and the occurrence of minerals [21]. This made the task of

mapping geological outcrops, cliffs, and pit walls faster and safer [21]. And more effective than

taking limited number of samples to the lab [21].

One special spectral region in the electromagnetic spectrum is the Thermal Infra-Red (TIR),

that’s because most materials absorb electromagnetic radiation in the IR at wavelengths (from

0.8 to 14 µm) that are characteristic of the material’s molecular structure [13]. Multiple research

studies have showcased the utility of Thermal Infra-Red (TIR) data in various thematic domains

and applications, such as landscape characterization, determining soil and mineral properties [47],

estimating energy fluxes [48], evapo-transpiration and soil moisture, monitoring drought, urban

heat islands [49], detecting forest fires, coal fires and volcanoes [50]. That holds true also for mineral

mapping and exploration.

Conventional field methods for studying large outcrops can be time-consuming, and correlat-

ing data from different parts of the outcrop can be challenging. The exploration of vertical cliff

sections using conventional methods poses additional difficulties, such as collecting samples on

high, vertical, crumbly, and unsafe wall faces. To overcome these challenges, various airborne

or spaceborne approaches have been developed for non-contact geospatial data collection and

analysis, such as LiDAR and hyperspectral systems [17]. LiDAR allows for the reconstruction of

the shape of vertical outcrops as digital 3D models, but the extraction of mineralogy and lithol-

ogy is still limited to the single spectral band of the LiDAR’s laser [17]. In contrast, hyperspectral

systems with high spectral resolution can enable quantitative analysis of surface composition [3].

Although imaging spectroscopy from airborne/spaceborne platforms is well-established, it has

mainly been developed in the VNIR and SWIR regions, with limitations in selectivity for mineral

identification [51]. The use of LWIR improves selectivity in certain situations due to the spectral

features associated with fundamental vibrations being stronger and sharper than their overtones

[9]. The inherent self-emission associated with LWIR, also known as TIR, enables geological surveys

in various weather and illumination conditions as solid targets such as minerals emit and reflect

TIR radiation [3].

A study by Boubanga-Tombet et al. illustrated that utilizing field-based techniques that integrate

thermal infrared hyperspectral technology can facilitate the effective mapping of mineralogy and

lithology in vertical cliff sections with a case study in in the Jura Cement carbonate quarry in

Switzerland [52]. The hyperspectral data acquired using the Telops Hyper-Cam were analysed using

temperature emissivity separation algorithms in order to distinguish between the self-emission and

reflection contributions of various minerals, and GPS data was utilized for the geometric processing

[52].

The Fourier Transform Infrared (FTIR) - Long-wave Infrared (LWIR) sensor is a highly advanced

and widely employed technology for the acquisition of hyperspectral data in the Long-wave Infrared

(LWIR) range. Despite its efficacy, the sensor is relatively heavy and necessitates mounting on an

aircraft or a tripod if used from land, excluding its use with conventional drones that would enhance

the convenience and ease of hyperspectral imaging (HSI) as for other light-weight sensors of other

regions of the electromagnetic spectrum.

When utilizing Fourier Transform Infrared (FTIR) sensors, a significant challenge that arises is

the limited field of view that the technology allows. As a consequence, the resulting data captured

by the sensor is minuscule in size. In order to obtain an accurate representation of the target being

observed, it becomes crucial to fuse and co-register the data captured by the FTIR sensor, especially

with data from other sensors. However, this process can be quite challenging.
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As we will see in the next section, the acquisition of hyperspectral Long-wave Infrared data using

a Fourier-Transform Infrared (FTIR) imaging sensor poses a significant challenge for co-registration

due to multiple factors. The sensor’s low field of view results in the capture of small images, and the

complex 3D sub-vertical target geometry of the objects being imaged makes it difficult to maintain

spatial overlap between consecutive images.

Obtaining accurate sensor coordinates and orientation is not possible due to the absence of

GNSS receivers and an inertial measurement unit (IMU). As a result, determining the position and

orientation of the images to project them onto a geo-referenced point cloud becomes a challenging

computer vision task.

The static position of the sensor also mean that the captured images do not provide any 3D

information, which further complicates co-registration.

Consequently, this prompted the exploration of addressing the issue using computer vision

techniques. The presence of an extra camera, whose images can be matched to those obtained from

the LWIR sensor, provides a possible solution. By using a dataset of matched points, the boresight

and lever arm can be deduced, or the images can be co-aligned directly through the detection and

matching of features.
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Moreover, the scarcity of visual similarities between different ranges of the electromagnetic

spectrum, especially between Long-Wave Infrared and visible ranges, makes working with LWIR

data acquired by an FTIR imaging sensor very challenging. These factors altogether require the

development of innovative techniques to enable accurate co-registration of LWIR images acquired

using an FTIR imaging sensor.

The decision to carry out the integration process in the 3D space rather than in the 2D image

space is beneficial in various ways. Firstly, it helps to minimize problems related to occlusion

and distortion that may arise due to variations in terrain topography. Secondly, it simplifies the

correction of illumination and atmospheric effects that may affect the hyperspectral data. Finally, it

enables accurate interpretation of the geometry of geological structures, providing more detailed

and accurate results.

At first we aimed to determine the lever-arm and boresight between the LWIR sensor and the

integrated camera by using hyperspectral data from the LWIR sensor and low-resolution RGB

images from the integrated camera and a point cloud. This initial approach, which used the

correspondences dataset, was not successful. A second approach was developed, which involved

matching the LWIR hypercube with its corresponding low-resolution RGB image and matching the

low-resolution RGB image with a newly acquired high-resolution RGB image. Finally, a stitching

approach was employed to combine multiple LWIR images taken from a single position to construct

a larger block of LWIR images that can be matched with a single high-resolution RGB image. Figure

3.1 gives an overview.
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Figure 3.1: An overview of the proposed methodology with the different approaches

Prior to delving into the methodology, an overview of the equipment is provided.

3.1 Equipment

The study was performed with the use of the following equipment:Telops Hyper-Cam, Nikon

Coolpix A and Anafi Parrot as sensors, and a 3D printer, station total, GNSS receivers, heat packs

and calibration panels.

The detailed description of each equipment is presented below:
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3.1.1 Telops Hyper-Cam

The Telops Hyper-Cam -as seen in figure 3.2 - is an advanced remote sensing instrument that

uses infrared hyperspectral imaging technology. It has a combination of high spatial, spectral and

temporal resolution, which gives it exceptional performance. It is a versatile tool that can be used

for remote detection, identification, and quantification of various objects.

The Hyper-Cam offers several key benefits, such as:

• High spatial resolution and imaging quality: It has a 320×256-pixel FPA detector that provides

the highest spatial resolution on the market, and also ensures excellent 2D image quality.

• High temporal resolution: The camera can record hyperspectral cubes as a function of time,

which allows the characterization of time-dependent events, such as gas cloud dispersion and

combustion. The measurement time can be adjusted according to the acquisition parameters,

allowing for the fastest recording of dynamic events.

• High spectral resolution: The camera offers the best spectral resolution available, and the

spectral features of the targets can be well resolved, providing good selectivity.

• High sensitivity and accuracy: The camera has a high-sensitivity sensor that is combined

with automated high-efficiency calibration sources, which ensures excellent radiometric

measurements. The device incorporates two internal calibration blackbodies that enable a

comprehensive end-to-end radiometric calibration of the measurements.

The Hyper-Cam also comes with various accessories and options, such as: telescopes: the

camera is compatible with different telescopes with different fields of view (FOV) options, such as

0.25×, 0.5×, 3.5×, a Global Positioning System (GPS)that has the option to include GPS for location

tracking, a motorized polarizer which allows for easy polarimetric measurements, long-range fiber

optic data transfer for secure and high-speed data transfer, and filter holder for easy integration of

custom filters.

Figure 3.2: Telops Hyper-Cam [16]

Technical specifications

The table 3.1 presents the HyperCam specifications:

Output files

After performing the data processing, the results are organized as shown in listing 3.1.
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Table 3.1: Telops Hyper-Cam specifications

Property Value

Spectral resolution 0,25cm−1 to 150

Spatial resolution 320×256 pixels

FPA pixel size 30µm

Field of view 6.4×5.1◦

Typical NESR < 20(nW /cm2.sr cm−1)

Thermal Scientific Measurement 1C ◦ or 1%

Radiometric accuracy < 1K

Bands 92

XXXX_folder

|-- xxxx.ir.bmp # preview of the data (broadband infrared image)

|-- xxxx.jpg # the rgb image from the side camera

|-- xxxx.radiance.hdr # header file

|-- xxxx.radiance.sc # the radiance obtained from raw data

|-- xxxx.raw # the raw data obtained by the sensor

|-- xxxx.report.bmp # the preview with extra info

|-- Scenario.xml # Reveal DI software scenario (with extra info)

Listing 3.1: File structure of processed output data from Telops Hyper-Cam

Working principle

As already seen in subsection 2.2.1, the Hyper-Cam from Telops is a FTIR spectrometer.

3.1.2 Nikon Coolpix A

The Nikon Coolpix A as shown in figure 3.3, is a compact digital camera made by Nikon. It features

a 16.2-megapixel DX-format CMOS sensor, a 28mm wide-angle lens with a maximum aperture of

f/2.8, and a 3-inch LCD monitor. It also has manual exposure controls and a built-in flash. It is

capable of shooting 1080p Full HD video at 60fps and has a maximum ISO of 6400. It also has a

variety of shooting modes such as Programmed Auto, Shutter Priority, Aperture Priority and Manual

Mode. It has a compact and lightweight design making it easy to carry around. Additionally, it also

offers wireless connectivity options such as WiFi and Bluetooth.

The Nikon camera produced images with the following specifications: the output was in the

JPEG file type with a file size of 4.1 MB and dimensions of 4928×3264 pixels.

Figure 3.3: Nikon COOLPIX A
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3.1.3 Anafi Parrot

The Parrot ANAFI drone, a portable, high-performance drone made by Parrot. It has a 4K HDR

camera that can capture 21MP photos and shoot 2.8K videos. It has a 180-degree tilt gimbal and a

3-axis image stabilization. It has a flight time of up to 25 minutes and can fly at a top speed of 33

mph. It also features a 32-minute battery life and can fly up to 2.5 miles away. It has a SmartDronies

feature that allows it to perform pre-programmed flight movements and a Follow Me mode that

allows it to follow and film the user. It also has a FreeFlight 6 app that provides features such as

waypoint navigation, flight planning, and live streaming.

The Anafi Parrot drone have the capability to produce images in the JPEG file format with a size

of 3.9 MB. The dimensions of the images were 4608×3456.

Figure 3.4: Technical specifications of Anafi Parrot

Figure 3.5: Technical specifications of Anafi Parrot - cont’n
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3.1.4 3D Printer

The Original Prusa Mini is a compact, affordable, and easy-to-use 3D printer made by Prusa3D.

It has a build volume of 18×18×18 cm, a filament run-out sensor, and a filament cooling fan. It

is suitable for both beginners and advanced users. It offers a range of features such as a filament

sensor, a power panic feature, a multi-material upgrade, and a filament dryer. The printer also

compatible with various filaments.

Figure 3.6: PRUSA 3D Printer

3.1.5 Other

In addition to the aforementioned equipment, this study employed the use of a station total and

GNSS receivers for georeferencing the products, air-activated heat packs (known as toe warmers)

that are "visible" in the LWIR portion of the EM spectrum, calibration panels for radiometric

correction purposes, and a field notebook to document important observations and details.

3.2 Methodology

The methodology will be presented by detailing each approach individually.

3.2.1 Preliminary approach 1: Boresight and Lever-arm from manual matching

The initial objective of this study was to determine the lever-arm and boresight between the long-

wave infrared (LWIR) sensor and the integrated camera utilizing hyperspectral data from the LWIR

sensor and low-resolution RGB images from the integrated camera.

A dataset comprising 131 points on 10 images was created. These points were utilized to

establish corresponding locations on the LWIR hyperspectral data the low-resolution RGB images

and on a 3D point cloud generated using the Structure from Motion-Multi-View Stereo (SfM-MVS)

workflow on another drone-borne dataset of the same location.

The PnP problem was investigated to find the lever-arm and boresight, however, as demon-

strated in the appendix C.1, the results were found to be nor precise nor logical. This can be mainly

attributed to the complicated picking of the points on the images and particularly on point cloud,

which resulted in huge variations of the searched parameters from image to image. Additionally, the

low resolution of the images from the integrated camera on the Telops sensor made it challenging

to integrate in the SfM workflow with other high-resolution imagery e.g. obtained from drones.
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3.2.2 Preliminary approach 2: Triple matching

To circumvent the limitations imposed by the low resolution of the integrated camera on the Telops

Hyper-cam, we added a high-resolution camera, specifically a Nikon Coolpix A, to the system, and

semi-automate the snapshots taking and saving. The camera mount system can be viewed in the

appendix A.

This proposed method, referred to as triple matching, involves matching the LWIR hypercube

with its correspondent low-resolution RGB image, followed by matching the low-resolution RGB

image with its newly acquired analogous high-resolution RGB image. This ultimately results in the

matching of the LWIR hypercube with the high-resolution RGB image. The HR RGB images then be

easily integrated with other imagery e.g. obtained from drones, in a Structure from Motion (SfM)

workflow to extract the cameras positions and then the matched LWIR data can be projected onto

the resulting 3D point cloud.

Assumptions Crucial assumptions are made to ensure the efficacy of this methodology:

⋄ The sensors are joined together to form one unified system. This results in:

⇒ The system is co-aligned (the focal planes of the sensors are parallel).

⋄ The target should be approximately orthogonal to the sensor

The figure 3.7 illustrates this second workflow. Initially, the matching between a single pair

of low-resolution RGB image and LWIR hypercube was tested, with the relation described by an

affine transformation. This yielded visually satisfactory results when the same affine transform

was applied to the other pairs. However, this was not the case for the matching between the

high-resolution RGB and the LWIR hypercube (even if not initially wanted in our methodology).

Additionally, when attempting to match the high-resolution and low-resolution RGB images

using the Scale-Invariant Feature Transform (SIFT) algorithm, it was unable to match the detected

keypoints in the two images, presumably due to the wide gap between resolutions of the two RGB

types of images.
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High resolution RGB
images (Nikon mounted

on Telops)

High resolution airborne
RGB images (Anafi

Parott Drone)

GNSS observations & 
points survey
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Processing
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LWIR cube projected  
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Raw data

Processing

Result
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Figure 3.7: Workflow #2

3.2.3 Final approach 3: Stitch and transform

The second approach (triple matching) above, led to the development of our suggested method for

LWIR images fusion. The need to construct a larger block of LWIR images arose due to the smaller
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field of view (FOV) of the LWIR hypercubes in comparison to the high-resolution RGB camera.

This approach involves stitching the LWIR hypercubes into 2D panoramic mosaics in batches,

allowing for each batch to be matched to a single high-resolution image. This not only eradicates

the reliance on low-resolution RGB images, but it also requires only a single transformation for each

pair of images, which is much faster and less error-prone. The high-resolution RGB imagery can

then be integrated with supplementary imagery from the Anafi Parrot drone into a Structure from

Motion (SfM) workflow, with incorporating the points that were surveyed using both total station

and GNSS receivers. This then enables the extraction of position and orientation information,

which can be used to back-project the newly matched LWIR hypercube (hypermosaic) onto the 3D

point cloud issued from drone imagery.

The present study employed stitching, also known as mosaicking, to combine multiple images

taken from a single position. The assumptions from paragraph 3.2.2 are also considered here.

The stitching must preserves the projective nature of the sensor. Two main methods for stitching

exist and are: panorama and scan. Panorama mode takes into consideration spherical distortions,

while the scan mode simply juxtaposes the images next to each other. The stitching process was

based on homography, because images were taken from relatively fixed position and therefore 3D

information can not be retrieved. As a consequence it is not possible to extract the orientation

indirectly through methods such as Structure from Motion (SfM).

Figure 3.8 shows the logic behind the choice of the homography transformation for the stitching.

As seen in the literature review the homography is the best suited for our case where projective

geometry should be considered.

Figure 3.8: Top-view of the sensor capturing images at varying angles of a sub-vertical scene.

The homography is to be calculated using a minimum of four points, which will be automatically

detected through the features detection part of the script.

The next step is to determine an approach for matching the LWIR hypercube (hypermosaic) to

the high-resolution RGB image.

In order to fully automate the co-registration process, the examination of various feature

detection, description, and matching techniques is conducted to identify and match corresponding

points in two images.

We settled for the affine transform, because we already used the homography to get the mosaic,

and the relation between this hyper-mosaic and the HR RGB image can be described by a mix of

translations and scales. For getting the affine transform 4 points will be manually picked on the

LWIR mosaic and the HR RGB image.

The figure 3.9 is the workflow that was adopted for the present work.

3.3 Software

3.3.1 Development environment: conda & python

Using a development environment can help to improve the efficiency and organization of the

software development process. Development environments typically provide a number of tools
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Figure 3.9: Final workflow for co-registering the LWIR data

and resources that can aid in coding, such as code highlighting, debugging, version control, and

testing. Additionally, development environments can help to ensure consistency and compatibility

across different platforms, making it easier to collaborate with others and deploy the final product.

Overall, a development environment can help developers to write better code, faster and reduce

the risk of errors.

A development environment like conda can also be beneficial for managing dependencies

and packages in a software development project. Conda is a package manager and environment

management system that can help to manage multiple versions of software packages and their de-

pendencies. This can be particularly useful when working on projects that have many dependencies

or when working with different versions of a programming language.

With conda, you can create isolated environments for different projects, each with its own

set of dependencies. This can help to avoid conflicts and errors that can arise when different

projects have conflicting dependencies. Additionally, conda can also be used to create reproducible

environments, which can help to ensure that the code runs consistently across different systems.

Overall, conda can help to streamline the software development process by making it easier to

manage dependencies and packages, and by providing a consistent environment for development

and deployment.

Python is a versatile and user-friendly programming language that focuses on code readability

through the use of significant indentation. It is a high-level, general-purpose language that uses

dynamic typing and garbage collection. It can be used for various programming paradigms such as

structured, object-oriented and functional programming. Additionally, it’s known for its extensive

standard library, often referred to as a "batteries included" language.

The main packages used in this work are the following:

hylite

hylite [53] is a free, open-source software package that processes and combines imagery from

different types of hyperspectral sensors with high-resolution point-cloud data to create hyperclouds.

It also includes tools for analyzing the data, such as methods for mapping, reducing dimensions,
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and comparing spectra. Hylite can also use reference spectra from various sources and machine

learning techniques to perform classified analyses. And it is based on most of the subsequent

packages.

OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine

learning software library. OpenCV was built to provide a common infrastructure for computer

vision applications and to accelerate the use of machine perception in the commercial products.

The library has more than 2500 optimized algorithms, which includes a comprehensive set

of both classic and state-of-the-art computer vision and machine learning algorithms. These

algorithms can be used to detect and recognize faces, identify objects, classify human actions in

videos, track camera movements, track moving objects, extract 3D models of objects, produce 3D

point clouds from stereo cameras, stitch images together to produce a high resolution image of an

entire scene, find similar images from an image database, remove red eyes from images taken using

flash, follow eye movements, recognize scenery and establish markers to overlay it with augmented

reality, etc ...

NumPy

NumPy is a library for the Python programming language, adding support for large, multi-dimensional

arrays and matrices, along with a large collection of high-level mathematical functions to operate

on these arrays.

Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations

in Python.

gphoto

gphoto is a set of software applications and libraries for use in digital photography. gPhoto sup-

ports not just retrieving of images from camera devices, but also upload and remote controlled

configuration and capture, depending on whether the camera supports those features.

pyTorch

pyTorch is a machine learning framework based on the Torch library, used for applications such as

computer vision and natural language processing, originally developed by Meta AI and now part of

the Linux Foundation umbrella. It is free and open-source software released under the modified

BSD license. Although the Python interface is more polished and the primary focus of development,

pyTorch also has a C++ interface.

SuperGlue

SuperGlue [54] is a graph neural network that simultaneously performs context aggregation, match-

ing and filtering of local features for wide-baseline pose estimation. It is fast, interpretable, and

extremely robust indoors and outdoors.

PyTorch code and pretrained weights at https://psarlin.com/superglue/ are used for run-

ning the SuperGlue matching network on top of SuperPoint [55] keypoints and descriptors.
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3.3.2 Notebooks & JupyterLab

Notebook documents contains the inputs and outputs of a interactive session as well as additional

text that accompanies the code but is not meant for execution. In this way, notebook files can serve

as a complete computational record of a session, interleaving executable code with explanatory

text, mathematics, and rich representations of resulting objects. These documents are internally

JSON files and are saved with the .ipynb extension. Since JSON is a plain text format, they can be

version-controlled and shared with others.

All the workflow is written in notebooks, because they are convenient for exploration, and they

can be easily modified to python scripts for faster execution and more organisation.

JupyterLab is the latest web-based interactive development environment for notebooks, code,

and data. Its flexible interface allows users to configure and arrange workflows in data science,

scientific computing, computational journalism, and machine learning. A modular design invites

extensions to expand and enrich functionality.

3.3.3 Agisoft

Agisoft PhotoScan is a powerful software solution that enables users to generate professional-

grade 3D models from still images. Utilizing the latest advances in multi-view 3D reconstruction

technology, the software is able to create high-quality 3D content from a wide range of image

sources, regardless of the conditions in which the images were captured. With Agisoft PhotoScan,

users can take pictures of an object from any angle, as long as the object is visible in at least two of

the images. The software then handles the image alignment and 3D model reconstruction processes

automatically, making it easy for users to create accurate and detailed 3D models with minimal

effort.

3.3.4 CloudCompare

CloudCompare is a 3D point cloud (and triangular mesh) processing software. It has been originally

designed to perform comparison between two dense 3D points clouds (such as the ones acquired

with a laser scanner) or between a point cloud and a triangular mesh. It relies on a specific octree

structure dedicated to this task. Afterwards, it has been extended to a more generic point cloud

processing software, including many advanced algorithms (registration, resampling, color/nor-

mal/scalar fields handling, statistics computation, sensor management, interactive or automatic

segmentation, display enhancement, etc.).

3.3.5 Autodesk Inventor

Autodesk Inventor is a 3D mechanical design software that allows for simulation, visualization,

and documentation. It has the ability to integrate 2D and 3D data in a single environment, allowing

users to validate the design before it is built. It also includes parametric, direct edit and free-form

modeling tools, and can read multiple CAD formats.

3.3.6 OS

The operating systems utilized in this study consisted of mainly Manjaro and macOS, with the

exceptions being the MetaShape and Inventor software which was executed on a Windows machine.

Conclusion This chapter presented the methodology, the hardware and software to carry this

work. The following chapter comprises the execution of the methodology utilizing the hardware

and software mentioned earlier, as well as the presentation of the obtained outcomes.
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Chapter 4
IMPLEMENTATION & RESULTS
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4.1 Site location & Setup

The chosen target for this study is a wall of a quarry situated in Naundorf, a location in close

proximity to Freiberg, Sachsen, Germany. Figure 4.1 shows where the Naundorf quarry is located.

Figure 4.1: Map situation of the Naundorf quarry
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Figure 4.2 represents the target wall that was remotely sensed and how the data acquisition

was carried out. The images (the blue squares in the figure) taken by the new system containing

the Telops Hyper-Cam and Nikon camera in a way to follow a snake shape (the white arrow in the

figure) with an overlap greater than 40% between every two consecutive images. That is to smooth

the process of stitching as it will be portrayed in next section.

The drone was flown near the sub-vertical wall of the quarry to capture images with a significant

overlap and from a wide range of angles.

   

Figure 4.2: Target wall and imaging procedure: the images (blue squares) were taken as to make a

snake shape (white arrow)

4.2 Camera mount

As per the methodology, the Nikon camera was mounted onto the Telops Hyper-cam so they make

a solid unit. The design and prototyping of the camera mount was a multi-step process. The initial

stage involved the conceptualization of the mount through sketching a detailed drawing. The design

principle proposed was to utilize a sliding system in combination with gravity, in order to achieve a

simple yet robust and stable design. This was then followed by the collection of measurements from

both sensors, then a digital model of the mounting system is created using the Autodesk Inventor

software. The 3D model was exported in the .stl format, which was then utilized to fabricate the

camera mount prototype using the PURSA 3D printer.

The proposed design and final product of the camera mount prototype can be viewed in figure

4.3. Additional information and images pertaining to the camera mount system and its conception

can be found in appendix A.

A script has been developed to take photos programmatically using the gphoto tool. The code

can be found in appendix C.2.
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Figure 4.3: 3D modeling, printing of the camera mount for the Telops Hyper-Cam

4.3 Camera calibration

In this project, camera calibration was performed on two different sensors using two methods.

The first method involved imaging a checkerboard from different angles, then the distortions are

corrected after being extracted using Zhang’s method. The second method is based on the Structure

from Motion (SfM) workflow, when the distortions coefficients are calculated during the photo

alignment step.

The Nikon camera images were processed using the SfM workflow, resulting in automatic

calibration, the results are shown in listing 4.1.

1 <?xml version=" 1.0 " encoding="UTF−8" ?>

2 < c a l i b r a t i o n >

3 <projection>frame</ projection>

4 <width>4928</width>

5 <height>3264</ height>

6 < f >3823.3577829739975</ f >

7 <cx>13.699199493932149</ cx>

8 <cy>9.4995795493603286</cy>

9 <k1>−0.07547632130169811</k1>

10 <k2>0.086542087371911089</k2>

11 <k3>−0.024902186357503377</k3>

12 <p1>−1.0002076989788903e−05</p1>

13 <p2>−0.00020814400112626738</p2>

14 </ c a l i b r a t i o n >

Listing 4.1: Nikon camera coefficients

On the other hand, the low resolution images from the integrated RGB camera of the Hyper-Cam

could not be processed using the SfM workflow, so manual calibration using Zhang’s method was

implemented.

A practical camera calibration is done as follows:

• Shoot a checkerboard from all angles using the camera (the so-called "calibration dance") as

can be seen in the figure 4.4.

• Extract the corners of the checkerboard in the images

• Establish the mapping relationship between the coordinates of the corner points in the image

and the coordinates of the corner points in the world coordinate system

• Calculate the camera’s internal and external parameters.

The code developed for the calibration procedure is provided in the appendix C.3.
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Figure 4.4: The calibration "dance": shooting a checkerboard from different angles

4.4 Stitching

For the stitching, SIFT algorithm is used to detect correspondent points on every couple of images,

then a homography is calculated and applied to stitch one single image to the obtained previous

block.

The script is developed using OpenCV and have advanced features such as the ability to choose

from a variety of feature detectors, including ORB, SIFT (our choice), BRISK, and AKAZE, as well

as different pairwise image matching methods, such as affine and homography (our choice). The

result of the stitching process was a panorama image that we will call a hypermosaic. The script is

included in appendix C.7.

The stitching is applied on 30 of the broadband infrared images (previews of the LWIR hyper-

cubes), its result can be seen in figure 4.5, and then applied to every band of the hypercubes using

the code in appendix C.4 to get hyper-mosaic as shown in figure 4.6.

Figure 4.5: Stitched broadband infrared image (preview of the LWIR hypercube)

4.5 SfM workflow

The SfM workflow in Agisoft Metashape involves several steps, including image alignment, dense

point cloud generation, and mesh and texture generation. In the image alignment step, the software

analyzes the images and finds common features to align them. This is done automatically, but users
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Figure 4.6: Stitched LWIR hypercubes (one band view)

can adjust the alignment settings and parameters to achieve better results. For example, users can

choose between different alignment modes, such as generic, accurate or high accuracy, depending

on the level of accuracy required for their project.

Once the images are aligned, the software generates a dense point cloud using a depth map

calculation. This step involves estimating the distance between each pixel in the images and the

camera location to create a 3D point cloud. The dense point cloud can be further processed to

remove outliers and refine the geometry. The software offers several point cloud filtering and editing

tools, such as noise filtering, hole filling, and smoothing, to improve the quality of the point cloud.

After the dense point cloud is generated and refined, a mesh can be created using the surface

reconstruction algorithm. The mesh represents the surface of the object or scene, and can be

further edited and optimized using the mesh editing tools available in the software. Users can

choose between different mesh generation methods, such as Delaunay, Poisson or Height Field,

depending on the characteristics of their project.

Finally, a texture can be added to the mesh to create a realistic 3D model. The texture is

generated by projecting the images onto the mesh and blending them together. Users can adjust

the texture settings, such as resolution, quality, and blending mode, to achieve the desired level of

detail and realism.

Overall, Agisoft Metashape provides a powerful and flexible SfM workflow that can be cus-

tomized to fit a wide range of applications and projects. By offering a variety of options and features,

the software enables users to generate accurate and detailed 3D models from photographs with

ease and efficiency.

The comprehensive list of steps can be accessed through the following User Manuals page

https://www.agisoft.com/downloads/user-manuals/.

The two primary outputs of interest from the SfM process are the 3D dense point cloud and the

camera positions. Appendix B is the report generated from Metashape Agisoft software.

4.6 Matching and Transformation

As part of a comprehensive effort towards fully automating the co-registration process, this study

endeavors to examine the feasibility of utilizing feature detection and description techniques such

as Scale-Invariant Feature Transform (SIFT) and Oriented FAST and Rotated BRIEF (ORB) as well as

deep learning-based approaches including SuperPoint and SuperGlue for the identification and

correspondence of keypoints in LWIR hypercube and high-resolution RGB image. And this was

tested on multiple combination of the original dataset and the invert of the LWIR preview and

different grayscale versions of the RGB image using different weights.

The thorough evaluation of these methods did not produce satisfactory results, the detailed

attempts can consulted on these slides at https://tinyurl.com/autoSuperPG, and appendix

C.5 code for automating the prediction and plotting of the results of the network of different input

parameters.
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The affine transform was employed, which requires a minimum of three corresponding points

in both images to calculate. To investigate the optimal number and distribution of points needed,

we conducted experiments using 4 points and 8 points from the 16 available points in a spatially

distributed manner e.g avoiding clustering of points in one side or middle of the target. The results

obtained from these experiments were found to be approximately the same. Equation 4.1 presents

the obtained affine transform.

Ma f f =





1.34 3.62e−2 5.53e2

−3.31e−2 1.36 1.99e3

0 0 1



 (4.1)

Manual selection of these points is carried on using the napari GUI and affinder extension. With

a subsequent calculation of the mathematical matrix describing the transformation utilizing the

coordinates of the selected points.

Once we have this affine transformation, the LWIR hypercube is now transformed to the size of

the RGB image, in exact alignment as portrayed in figure 4.7.

Figure 4.7: Transformed stitched LWIR hypercube and overlaid on the RGB image.

See appendix C.6 for the code proposed to extract the affine transformation.

4.7 Back-projection

The cameras positions and orientations were exported from the software where the SfM workflow

took place, for convenience the best format is OPK (Omega, Phi, Kappa). A sample line from the

exported file can be seen in listing 4.2.

With position and orientation of the camera issued from the SfM workflow of the RGB frame, it

is possible to perform re-projection of the recently transformed LWIR hypercube via the use of the

hylite. The code to achieve that is shown in listing 4.3.

The resulting partial hypercloud is depicted in figure 4.8.
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# Cameras (...)

# PhotoID , X, Y, Z, Omega , Phi , Kappa , r11 , r12 , r13 , r21 , r22 , r23 , r31 , r32

, r33

DSC_5418 13.42 50.92 408.40 79.26 67.34 -80.12 0.06 -0.027 -0.99 0.37

0.92 -0.00 0.92 -0.37 0.07

Listing 4.2: File structure of exported OPK of the cameras

1 # Import needed libraries

2 import numpy as np

3 import hylite

4 from hylite import io

5

6 # Load point cloud data from a .ply file

7 cloud = io.load(’data/sfm/pointCloud -utm32633 -2cm.ply’)

8

9 # Load camera data from a .cam file

10 cam = io.load(’camera.cam’)

11

12 # Load image data from a .hdr file

13 hycb = io.load(’result/hypermosaic.hdr’)

14

15 # Replace values of 0 in the image data with NaN

16 hycb.set_as_nan (0)

17

18 # Project the image onto the point cloud data using the camera position and

orientation

19 cloud2 = cloud.copy(data=False)

20 cloud2.project(hycb , cam , trim=False)

21

22 # Save the result as a .ply file

23 io.save(’result/hypercloudLwir -posSfM -f.ply’, cloud2)

Listing 4.3: Code developed to back-project an image onto a point cloud
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Figure 4.8: The resulting hypercloud as seen from different angles.
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Chapter 5
DISCUSSION

The structure of the discussion is primarily driven by the methodology used in the study. Each

component will be examined individually.

Site The selection of the site location was favorable because of the sub-vertical wall in the quarry,

although optimal conditions would have been better if the sun illumination was direct to the

wall, and higher temperature. The data collection for this study was conducted in the month of

November, characterized by low temperatures and overcast sky conditions. The late hour of data

collection is evidenced by the shadows present on the quarry wall.

The weather conditions and limited sun exposure may impact the quality of the collected data

especially for the LWIR range of the EM spectrum. It was the case for this study as we could not

produce useful temperature and emissivity map using the Temperature and Emissivity Sepatation

(TES) algorithm.

Nonetheless, the collected data still provides a good value of the main goal of this study the

"geometric" co-registration and co-alignment.

The distance between the sensors and the target was approximately 30 meters, which posed a

significant challenge for achieving co-registration due to the small field of view (FOV) of the Telops

Hyper-Cam. The movement of the sensor and co-registration becomes even more challenging as

the target gets closer. Conversely, if the target is positioned farther away to a certain degree, it may

be possible to capture a viable part of the scene that can be used for matching, but also limited by

the FOV.

Mounting system Despite the nature of the mounting system, it was found to be somewhat shaky,

likely due to the thin arm of the system. However, this issue can be easily addressed by adding some

thickness to the arm in the 3D model and subsequently reprinting it.

Also, the stability and the ease of use of the mounting system can be ensured with the utilization

of a secure cable and a picture-taking script.

Stitching The smaller field of view of Telops Hyper-Cam compared to the HR RGB camera made it

necessary to create a larger block of LWIR images. Having a mosaic of hypercubes to be matched to

a single HR image made it much easier and less error-prone than finding a transformation between

every hypercube and its correspondent HR RGB image.

The usefulness of stitching can be shown in the following paragraph, which discusses matching

and transformation. To confirm the accuracy of the stitching process, the selected points were

re-projected.

The results of another experiment on another dataset indicate the importance of the order

of the pictures that should follow a snake shape to make the stitching as smooth as possible and

ensuring sufficient overlap. That’s can be also done with rearranging the images order when feeding
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them to the stitching algorithm.

Matching and Transformation The inefficacy of the classical feature detection and matching

algorithms as well as the ones based on deep learning in our experiment can be attributed to the

disparities in the manner in which features are perceived within the visible and Long-Wave Infrared

segments of the electromagnetic spectrum. Furthermore, it is important to note that the deep

learning networks were trained using a dataset consisting solely of RGB images.

The decision was made to utilize an affine transform, as the homography had already been

utilized to create the mosaic. Thus the connection between the hyper-mosaic and the HR RGB

image can be described as a combination of translations and scales. The affine transform was

obtained by manual selection of four points on both the LWIR mosaic and HR RGB image.

To validate the approach, keypoints in both the hyper-mosaic and the HR RGB image were

chosen, which included the heat packs and the corners of the calibration panels. The calculated

affine matrix from 4 manually selected points was utilized to transform the remaining of 16 points,

and the resulting differences were compared. This comparison is shown in table 5.1.

Table 5.1: Validation of the affine transform (using 4 points) in pixels

id x y trans_x trans_y dif_x (px) dif_y (px)

0 2006 869 2012 867 6 2

2 2277 1049 2274 1049 3 0

3 2044 1351 2046 1349 2 2

4 2183 1403 2179 1399 4 4

5 2278 1569 2274 1566 4 3

7 2247 1861 2243 1859 4 2

8 2368 1401 2372 1400 4 1

9 2392 1459 2391 1458 1 1

10 2423 1377 2423 1375 0 2

11 2443 1437 2445 1436 2 1

13 2378 1536 2375 1535 3 1

14 2449 1488 2450 1487 1 1

min 0 0

max 6 4

std 1.70 1.07

mean 2.83 1.67

RMSE 3.27 1.96

The average re-projection errors for the selected points were found to be relatively small with a

mean of d x = 3 pixels and d y = 2 pixels. It is worth noting that the Telops Hyper-Cam is equipped

with an FPA detector that has a resolution of 320 x 256 pixels, which makes these errors insignificant

compared to the overall image and the distance to the target being 30 meters.

At such distance this results in roughly an error of 6 mm in the scene. Which is very usable in

the context of geological mapping.

SfM In the realm of data processing, the achievement of high-quality results often comes at the

expense of both computational and storage costs. In other words, the greater the desire for optimal

results, the more time and resources are typically required to process and store the data. This

challenge presents a fundamental dilemma that necessitates careful consideration of the desired

output before beginning the processing stage. It is imperative to balance the need for high-quality

results with the availability of computational resources and storage capacity, to ensure that the

processing is feasible and efficient.

A recommended approach is to start small with low quality results and scale out and up as

needed, this will also allow for rapid exploration of different parameters faster. That said, the

Photo alignment step should always be conducted at the highest setting possible (considering
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computational power available).

The execution of the Structure from Motion (SfM) workflow is performed using the Metashape

software. To export the resultant 3D point cloud, it is crucial to employ a projected reference system,

such as the Universal Transverse Mercator (UTM) family. This is because, if a geographic coordinate

system is used, the 3D point cloud will be exported as a long stripe of points, which is an erroneous

result. The proper selection of the reference system is essential for ensuring the quality and validity

of the generated results.

It was not attempted to cover all possible permutations of SFM workflow. The specific SFM

workflow used was designed for the imagery collected for a quarry wall. Various factors, such as the

nature of the imagery and the desired resolution of the outputs, can influence the choices made

during the workflow.

In our workflow, the primary outputs are the point cloud that serves as the foundation for our

hypercloud and the camera positions and orientations that are employed in the back-projection.

While we utilized "high" for the different parameters (but not ultra-high), we can confirm that these

outcomes are appropriate for our objectives based on the report’s findings.

Back-projection The most important output from the SfM workflow is the cameras positions and

orientations, which will be needed in the back-projection. As the quality of the back-projection

depends on the quality of the transformation between the hyper-mosaic and the HR RGB image

from one side, and the camera position and orientation from the other side.

The heat packs and the corners of the calibration panels will serve as a the main elements

for our validation method, we picked these points on the RGB 3D point cloud, and on the newly

projected hyper-mosaic in the same point cloud; we only changed which bands to view. Then

we calculated the difference in the 3 axis: x, y and z and then we proceeded to calculate the 3D

euclidean distance using this formula: d(P1,P2) =
√

(x2
1 −x2

2)2
+ (y2

1 − y2
2)2

+ (z2
1 − z2

2)2.

Table 5.2 presents the calculated quantities and the coordinates of the points.

Table 5.2: Validation of hypercube back-projection onto the point cloud. The table contains the

differences in the x, y, and z coordinates of selected points and the calculated 3D Euclidean distance

id x y z x_LWIR y_LWIR z_LWIR dx (cm) dy (cm) dz (cm) euc3d (cm)

0 389.271,80 5.642.927,15 409,67 389.271,81 5.642.927,15 409,65 0,88 0,28 2,13 2,32

1 389.272,50 5.642.928,07 408,65 389.272,51 5.642.928,05 408,61 1,25 2,45 3,66 4,58

2 389.272,76 5.642.928,13 407,73 389.272,76 5.642.928,14 407,73 0,32 1,60 0,01 1,63

3 389.272,01 5.642.931,04 409,48 389.272,01 5.642.931,05 409,51 0,31 1,52 2,27 2,75

4 389.272,48 5.642.931,22 408,42 389.272,48 5.642.931,19 408,40 0,34 3,18 1,83 3,69

5 389.273,12 5.642.932,34 407,70 389.273,14 5.642.932,37 407,70 1,50 2,84 0,15 3,22

6 389.272,54 5.642.934,63 409,42 389.272,56 5.642.934,70 409,45 1,82 7,10 3,02 7,93

7 389.273,27 5.642.930,77 407,01 389.273,23 5.642.930,76 407,01 4,15 0,73 0,11 4,22

8 389.273,51 5.642.931,10 406,87 389.273,52 5.642.931,11 406,84 0,69 1,55 2,84 3,31

9 389.273,38 5.642.930,47 406,63 389.273,37 5.642.930,51 406,64 1,01 3,83 1,09 4,11

10 389.273,69 5.642.930,82 406,52 389.273,67 5.642.930,82 406,52 1,88 0,74 0,70 2,14

11 389.273,60 5.642.931,20 406,86 389.273,59 5.642.931,19 406,85 0,69 1,08 0,71 1,47

12 389.273,78 5.642.931,60 406,94 389.273,76 5.642.931,61 406,95 1,31 1,52 1,41 2,45

13 389.273,91 5.642.931,11 406,45 389.273,97 5.642.931,11 406,44 6,58 0,13 1,71 6,80

14 389.274,08 5.642.931,56 406,56 389.274,10 5.642.931,58 406,56 1,89 2,00 0,11 2,75

min 0,31 0,13 0,01 1,47

max 6,58 7,10 3,66 7,93

std 1,67 1,75 1,17 1,81

mean 1,64 2,04 1,45 3,56

The average discrepancy between the original points and the projected ones is determined to

be 3.56cm, with a standard deviation of 1.81cm. While this margin of error may be substantial for a

surveyor, it is considered to be within acceptable tolerance levels in the field of geology. This is due

to the fact that geological studies typically involve working on large scales, and the focus is on the
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overall picture. And even if the location is off by a dozen of centimeters, it does not have deadly

consequences.

Incorporating LWIR data into hyperclouds also has the potential to improve the accuracy of

geological mapping. By combining LWIR data with SWIR and structural information, it may be

possible to differentiate between different types of mineral deposits and accurately map their

boundaries. This could significantly improve the efficiency and effectiveness of mineral exploration

programs by providing more accurate and detailed information about the subsurface.
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Chapter 6
CONCLUSIONS & RECOMMENDATIONS

Hypercloud are the future of hyperspectral data as combination of visualization and processing are

made easy. However, a significant challenge in the construction of hyperclouds lies in the process

of co-registration and data fusion.

In this research, a semi-automatic co-registration workflow was developed, which only requires

minimal human interaction in the selection of four points on two images. The methodology was

applied to the fusion of data acquired in the Long-Wave Infrared portion of the electromagnetic

spectrum from a Telops Hyper-cam to a point cloud data, but it could also be extended to a wide

range of other sensors with similar constraints as in our case.

The methodology commences with a process of Camera Calibration to eliminate initial geo-

metric distortions. Subsequently, the stitching of small Long-Wave Infrared (LWIR) hypercubes

obtained from the Hyper-cam device is performed to obtain a hyper-mosaic. The next step involves

Matching and Transformation to establish an affine transformation between the hyper-mosaic

and a selected RGB image. The Structure-from-Motion (SfM) workflow is then executed using

images acquired from a drone and the mounted RGB camera on the Hyper-cam to generate the

Point Cloud, as well as the camera position and orientation of each frame. Upon determination of

the RGB frame’s camera position and orientation, which was matched with the hyper-mosaic, a

back-projection is performed onto the Point Cloud to generate the partial hypercloud. The gener-

ated hypercloud can then be populated with data from additional regions of the Electromagnetic

spectrum, subject to analysis and subsequently utilized to produce various products, including

mineral maps.

The successful semi-automatic co-registration of hyperspectral LWIR data to the Hypercloud

has added value to the mining industry by making it easier to combine it to other sources, resulting

in a more comprehensive understanding of geological features and processes can be obtained,

which in turn can lead to more informed decision-making.

In light of the findings and results obtained throughout the course of this thesis, it is essential to

offer several recommendations aimed at enhancing future research. The following suggestions are

proposed to enhance the use of the developed solution:

• Further investigation into alternative feature detection and matching techniques, particularly

those between the LWIR and RGB data and other deep networks for co-registration

• Investigation into the potential integration of additional sensors and data sources to increase

the overall accuracy and precision of the co-registration process

• Study of the scalability and robustness of the semi-automatic co-registration workflow pre-

sented in this thesis, with a focus on its application to large-scale datasets

• Development of a graphical user interface (GUI) to facilitate the triggering of image acquisi-
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tion from the Nikon camera through a dedicated button

These aspects have the potential to guide future research:

• Constructing a dataset of matched points in LWIR and high-resolution (HR) RGB images.

• Implementation of transfer learning to utilize the pre-trained weights of the first layers of

deep networks and further fine-tune the model on the new dataset
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Appendix A
Camera Mounting System

Figure A.1: First sketch of the camera mount conception

Figure A.2: Nikon camera mounted to the Telops Hyper-Cam

47



Camera 

mounting

system

1 : 1

1 : 2



Conceived

Drawn

Date

3
0
,0
0

6
,2
5
 T

H
R
U

2
0
,0
0

4
0
,0
0

30,00

40,00
5
,0
0

10
,0
08
,5
0

6
,5
0

20,00

Camera mounting partAyoub Fatihi

08/08/2022

Ayoub Fatihi



Conceived

Drawn

Date

Telops mounting part

50,00

20,57

30,40

40,00

Ayoub Fatihi

Ayoub Fatihi

08/08/2022

60,00

4
0
,0
0

4
5
,0
0

2
5
,0
0



Appendix B
Agisoft Metashape – Processing Report
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Survey Data

1

2
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> 9

10 m

Fig. 1. Camera locations and image overlap.

Number of images: 145

Flying altitude: 18.2 m

Ground resolution: 6.4 mm/pix

Coverage area: 2.53e+03 m²

Camera stations: 141

Tie points: 30,502

Projections: 321,149

Reprojection error: 0.646 pix

Camera Model Resolution Focal Length Pixel Size Precalibrated

COOLPIX A (18.5mm) 4928 x 3264 18.5 mm 4.84 x 4.84 ¿m No

Anafi (4mm) 4608 x 3456 4 mm 1.34 x 1.34 ¿m No

Anafi (4mm) 4608 x 3456 4 mm 1.34 x 1.34 ¿m No

Table 1. Cameras.

Page 2



Camera Calibration

1 pix

Fig. 2. Image residuals for COOLPIX A (18.5mm).

COOLPIX A (18.5mm)

34 images

Type Resolution Focal Length Pixel Size

Frame 4928 x 3264 18.5 mm 4.84 x 4.84 ¿m

Value Error F Cx Cy K1 K2 K3 P1 P2

F 3847.71 0.22 1.00 -0.06 -0.08 -0.01 0.24 -0.19 0.20 -0.06

Cx 1.41494 0.34 1.00 0.07 -0.11 -0.08 0.11 0.83 -0.00

Cy 10.786 0.45 1.00 -0.18 0.10 -0.06 -0.05 0.96

K1 -0.0725665 0.00014 1.00 -0.90 0.84 0.00 -0.16

K2 0.0801742 0.0005 1.00 -0.98 -0.04 0.09

K3 -0.0183036 0.00055 1.00 0.07 -0.05

P1 -0.00041456 2.3e-05 1.00 -0.10

P2 -0.000143972 3.2e-05 1.00

Table 2. Calibration coefficients and correlation matrix.

Page 3



Camera Calibration

1 pix

Fig. 3. Image residuals for Anafi (4mm).

Anafi (4mm)

105 images

Type Resolution Focal Length Pixel Size

Frame 4608 x 3456 4 mm 1.34 x 1.34 ¿m

Value Error F Cx Cy B2 K1 K2 K3 P1 P2

F 2992.69 0.088 1.00 0.06 -0.26 0.10 -0.22 0.27 -0.24 0.01 -0.08

Cx 8.8713 0.18 1.00 -0.26 0.32 0.02 -0.00 0.01 0.96 -0.24

Cy 12.8877 0.14 1.00 -0.01 -0.04 -0.01 0.00 -0.21 0.91

B2 -0.562464 0.034 1.00 0.00 0.01 -0.01 0.15 -0.00

K1 -0.00275943 9.1e-05 1.00 -0.96 0.91 0.02 -0.06

K2 0.0136324 0.00025 1.00 -0.98 -0.01 0.01

K3 -0.0103758 0.00021 1.00 0.02 -0.00

P1 0.00122726 1.7e-05 1.00 -0.22

P2 0.00265353 1.2e-05 1.00

Table 3. Calibration coefficients and correlation matrix.
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Camera Calibration

1 pix

Fig. 4. Image residuals for Anafi (4mm).

Anafi (4mm)

6 images

Type Resolution Focal Length Pixel Size

Frame 4608 x 3456 4 mm 1.34 x 1.34 ¿m

Value Error F Cx Cy K1 K2 K3 P1 P2

F 2990.12 0.56 1.00 0.27 -0.62 -0.28 0.28 -0.25 -0.03 0.10

Cx 9.44161 0.38 1.00 -0.22 -0.02 0.03 -0.04 0.85 0.01

Cy 12.98 0.35 1.00 -0.00 -0.03 0.04 0.02 0.42

K1 -0.000497537 0.0004 1.00 -0.96 0.91 -0.01 0.06

K2 0.00789889 0.0011 1.00 -0.98 0.02 -0.05

K3 -0.0065996 0.00093 1.00 -0.03 0.04

P1 0.00130701 4.2e-05 1.00 -0.00

P2 0.00259583 2.9e-05 1.00

Table 4. Calibration coefficients and correlation matrix.

Page 5



Camera Locations

10 m

-50 m

-40 m

-30 m

-20 cm

-10 cm

0 cm

10 cm

20 cm

30 cm

40 cm

50 cm

x 5

Fig. 5. Camera locations and error estimates.

Z error is represented by ellipse color. X,Y errors are represented by ellipse shape.

Estimated camera locations are marked with a black dot.

X error (cm) Y error (cm) Z error (cm) XY error (cm) Total error (cm)

1.76509 2.92222 43.0987 3.41393 43.2337

Table 5. Average camera location error.

X - Longitude, Y - Latitude, Z - Altitude.
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Ground Control Points

point 1
point 2point 3

point 4point 5
point 6

point 7point 8

point 9
point 10
point 11point 12

-12 cm

-9.6 cm

-7.2 cm

-4.8 cm

-2.4 cm

0 cm

2.4 cm

4.8 cm

7.2 cm

9.6 cm

12 cm

x 7

Control points Check points
10 m

Fig. 6. GCP locations and error estimates.

Z error is represented by ellipse color. X,Y errors are represented by ellipse shape.

Estimated GCP locations are marked with a dot or crossing.

Count X error (cm) Y error (cm) Z error (cm) XY error (cm) Total (cm)

12 12.4503 17.2857 6.69627 21.3027 22.3304

Table 6. Control points RMSE.

X - Longitude, Y - Latitude, Z - Altitude.
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Label X error (cm) Y error (cm) Z error (cm) Total (cm) Image (pix)

point 1 6.33297 18.4947 10.5669 22.2221 0.232 (101)

point 2 2.86277 0.585809 4.40858 5.28906 1.125 (18)

point 3 -27.2287 3.63068 -0.409702 27.4727 8.341 (5)

point 4 -4.72419 -24.427 10.3435 26.9441 6.941 (4)

point 5 -8.28902 -15.2631 1.13033 17.4054 2.201 (4)

point 6 -11.9251 -17.1877 -2.57175 21.077 2.965 (3)

point 7 -7.73296 -9.60561 5.46915 13.4899 1.878 (4)

point 8 12.6394 15.0278 -0.960379 19.6599 2.767 (4)

point 9 18.7793 36.4363 -3.76092 41.1632 5.548 (3)

point 10 8.25328 -14.6236 -10.7694 19.9486 8.614 (5)

point 11 13.7615 -7.05825 -11.1979 19.0943 8.003 (5)

point 12 -2.73354 13.9831 -2.36314 14.4424 6.129 (5)

Total 12.4503 17.2857 6.69627 22.3304 3.183

Table 7. Control points.

X - Longitude, Y - Latitude, Z - Altitude.
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Digital Elevation Model

404 m

430 m

10 m

Fig. 7. Reconstructed digital elevation model.

Resolution: unknown

Point density: unknown
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Processing Parameters

General

 Cameras 145

 Aligned cameras 141

 Markers 12

 Coordinate system WGS 84 (EPSG::4326)

 Rotation angles Yaw, Pitch, Roll

Point Cloud

 Points 30,502 of 87,978

 RMS reprojection error 0.158149 (0.645612 pix)

 Max reprojection error 1.38695 (16.0408 pix)

 Mean key point size 3.55571 pix

 Point colors 3 bands, uint8

 Key points No

 Average tie point multiplicity 9.61158

 Alignment parameters

  Accuracy High

  Generic preselection Yes

  Reference preselection Source

  Key point limit 40,000

  Tie point limit 4,000

  Guided image matching No

  Adaptive camera model fitt ing No

  Matching time 59 seconds

  Matching memory usage 454.54 MB

  Alignment time 1 minutes 49 seconds

  Alignment memory usage 61.03 MB

 Optimization parameters

  Parameters f, cx, cy, k1-k3, p1, p2

  Adaptive camera model fitt ing Yes

  Optimization time 5 seconds

 Software version 1.6.3.10732

Depth Maps

 Count 140

 Depth maps generation parameters

  Quality High

  Filtering mode Aggressive

  Processing time 42 minutes 49 seconds

 Software version 1.6.3.10732

Dense Point Cloud

 Points 35,347,780

 Point colors 3 bands, uint8

 Depth maps generation parameters

  Quality High

  Filtering mode Aggressive

  Processing time 42 minutes 49 seconds

 Dense cloud generation parameters

  Processing time 29 minutes 33 seconds

 Software version 1.6.3.10732

System

 Software name Agisoft Metashape Professional
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 Software version 1.6.3 build 10732

 OS Windows 64 bit

 RAM 127.68 GB

 CPU Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz

 GPU(s) NVIDIA GeForce GTX 1080 Ti

 NVIDIA GeForce GTX 1080 Ti
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Appendix C
Code

62



1 leverarm and boresight

[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pickle
import cv2 as cv
import hylite
from hylite import io
from hylite.project.align import align_to_cloud_manual, align_to_cloud

[2]: # open dict
with open("2-dict-path-root.pkl", 'rb') as f:

dict_paths = pickle.load(f)

# loading camera positions of LWIR and lRGB
cams_lwir = []
cams_lrgb = []
indices = []

for i in dict_paths.keys():
if i == 4 or i == 8:

continue

indices.append(i)

camfile_lwir = f"7-cam_files/cam_file_lwir_{i}.txt"
camfile_lrgb = f"7-cam_files/cam_file_lrgb_{i}.txt"

cam_lwir = io.loadCameraTXT(camfile_lwir)
cam_lrgb = io.loadCameraTXT(camfile_lrgb)

cams_lwir.append(cam_lwir)
cams_lrgb.append(cam_lrgb)

• “boresight (angular misalignment between the mounting axes of the IMU and onboard
sensor)”

• “lever-arm (physical offset from the GNSS antenna to the onboard sensor)”

1

C.1 Calculations of leverarms and boresights (Uis Dataset)
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(Gautam et al., 2019, p. 25)

1.0.1 Lever arm for lwir

[4]: for i in range(len(cams_lwir)):
print(cams_lwir[i].pos - cams_lwir[0].pos)

[0. 0. 0.]
[5.917 2.2 1.235]
[-2.893 -2.873 -0.038]
[-160.192 89.116 -26.822]
[ 13.975 -26.413 2.812]
[-27.35 -17.546 6.939]
[0.384 0.747 0.112]
[-259.66 176.396 -23.44 ]

1.0.2 Lever arm for rgb

[5]: for i in range(len(cams_lrgb)):
print(cams_lrgb[i].pos - cams_lrgb[0].pos)

[0. 0. 0.]
[-0.614 0.519 -0.616]
[-0.548 0.413 -0.994]
[-0.253 0.401 -0.182]
[-0.361 0.537 0.245]
[-1.042 1.13 -0.619]
[-0.132 0.547 -0.356]
[-0.379 0.663 -0.425]

1.0.3 Lever arm between lwir and lrgb

[6]: leverarms = []

for i in range(len(cams_lwir)):

leverarm = cams_lwir[i].pos - cams_lrgb[i].pos

leverarms.append(leverarm)

leverarms

[6]: [array([-0.626, 0.261, -0.904]),
array([5.905, 1.942, 0.947]),
array([-2.971, -3.025, 0.052]),
array([-160.565, 88.976, -27.544]),
array([ 13.71 , -26.689, 1.663]),
array([-26.934, -18.415, 6.654]),

2
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3

array([-0.11 , 0.461, -0.436]),
array([-259.907, 175.994, -23.919])]

?? �� Should not these lever-ars be similar �� ??

2 Boresight

[8]: from scipy import spatial

[9]: boresights = []

for i in range(len(cams_lwir)):

alwir = cams_lwir[i].ori
alrgb = cams_lrgb[i].ori

Rlwir = spatial.transform.Rotation.from_euler('XYZ', -alwir, degrees=True).↪as_matrix()
Rlrgb = spatial.transform.Rotation.from_euler('XYZ', -alrgb, degrees=True).↪as_matrix()
Vlwir = Rlwir[2] # or [:, 2]
Vlrgb = Rlrgb[2]

boresight = np.cos(np.dot(Vlwir, Vlrgb)) * np.cross(Vlwir, Vlrgb)
boresights.append(boresight)

boresights

[9]: [array([ 0.00325245, -0.00452947, 0.03242266]),
array([-0.00385923, -0.00076063, 0.00442202]),
array([-0.00117166, -0.0047706 , 0.03802393]),
array([-0.1680691 , -0.00522243, -0.01629946]),
array([ 0.00848612, -0.00868461, 0.06671003]),
array([-0.02795909, -0.00468419, 0.04492768]),
array([ 0.00088996, -0.00209409, 0.01971254]),
array([-0.08116191, -0.00350109, -0.00697786])]

?? �� Should not these boresights be similar �� ??
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1 gphoto workflow to take photos programmatically

[11]: import gphoto2 as gp
import os

[12]: cameras = gp.Camera.autodetect()
for n, (name, value) in enumerate(cameras):

print('camera number', n+1)
print('===============')
print(name)
print(value)

camera number 1
===============
Nikon Coolpix A (PTP mode)
usb:001,011

[13]: camera = gp.Camera()
camera.init()
cam_summary = camera.get_summary()
print('Summary')
print('=======')
print(str(cam_summary))

Summary
=======
Manufacturer: Nikon Corporation
Model: COOLPIX A

Version: V1.00
Serial Number: 40004720000000000000000000000000

Vendor Extension ID: 0xa (1.0)
Vendor Extension Description: microsoft.com: 1.0

Capture Formats:
Display Formats: JPEG, Undefined Type, Association/Directory, DPOF, Script,
Apple Quicktime

Device Capabilities:

1

C.2 Nikon camera shooting script
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File Download, File Deletion, File Upload
No Image Capture, No Open Capture, Nikon Capture 3

Storage Devices Summary:
store_00010001:

StorageDescription:
VolumeLabel: [Slot 1]
Storage Type: Removable RAM (memory card)
Filesystemtype: Digital Camera Layout (DCIM)
Access Capability: Read Only with Object deletion
Maximum Capability: 63831015424 (60874 MB)
Free Space (Bytes): 3608936448 (3441 MB)
Free Space (Images): 724

Device Property Summary:
Battery Level(0x5001):(read only) (type=0x2) Range [0 - 100, step 1] value: 35%
(35)
Image Size(0x5003):(readwrite) (type=0xffff) Enumeration [

'4928x3264',
'3696x2448',
'2464x1632'
] value: '4928x3264'

Compression Setting(0x5004):(readwrite) (type=0x2) Enumeration [0,1,2,4,5,6,7]
value: JPEG Norm (1)
White Balance(0x5005):(readwrite) (type=0x4) Enumeration
[2,4,5,6,7,32784,32785,32787] value: Automatic (2)
F-Number(0x5007):(read only) (type=0x4) Enumeration [280,320,350,400,450,500,560
,630,710,800,900,1000,1100,1300,1400,1600,1800,2000,2200] value: f/4 (400)
Focal Length(0x5008):(read only) (type=0x6) Range [1800 - 1800, step 1] value:
18 mm (1800)
Focus Mode(0x500a):(read only) (type=0x4) Enumeration [1,32784,32787] value:
Manual Focus (1)
Exposure Metering Mode(0x500b):(read only) (type=0x4) Enumeration [2,3,4] value:
Multi-spot (3)
Flash Mode(0x500c):(readwrite) (type=0x4) Enumeration [2,4,32784] value: Auto
(32784)
Exposure Time(0x500d):(read only) (type=0x6) Enumeration [5,6,8,10,12,15,20,25,3
1,40,50,62,80,100,125,166,200,250,333,400,500,666,769,1000,1250,1666,2000,2500,3
333,4000,5000,6250,7692,10000,13000,16000,20000,25000,30000,40000,50000,60000,80
000,100000,130000,150000,200000,250000,300000] value: 0.0025 sec (250)
Exposure Program Mode(0x500e):(read only) (type=0x4) Enumeration
[1,2,3,4,32784,32792,32848,32849] value: Auto (32784)
Exposure Index (film speed ISO)(0x500f):(readwrite) (type=0x4) Enumeration [100,
125,160,200,250,320,400,500,640,800,1000,1250,1600,2000,2500,3200,4000,5000,6400
,8000,10000,12800,25600] value: ISO 100 (100)
Exposure Bias Compensation(0x5010):(readwrite) (type=0x3) Enumeration [-5000,-46
66,-4333,-4000,-3666,-3333,-3000,-2666,-2333,-2000,-1666,-1333,-1000,-666,-333,0
,333,666,1000,1333,1666,2000,2333,2666,3000,3333,3666,4000,4333,4666,5000]
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value: 2.0 stops (2000)
Date & Time(0x5011):(readwrite) (type=0xffff) '20221024T165403'
Still Capture Mode(0x5013):(readwrite) (type=0x4) Enumeration
[1,2,32785,32788,32789,32792] value: Single Shot (1)
Burst Number(0x5018):(readwrite) (type=0x4) Range [1 - 100, step 1] value: 1
UseDeviceStageFlag(0xd303):(read only) (type=0x2) 1
Property 0xd406:(readwrite) (type=0xffff) 'Windows/6.0.5330.0
MTPClassDriver/6.0.5330.0'
Property 0xd407:(read only) (type=0x6) 1

Camera Language(0xf018): error 2005 on query.
Release without SD card(0xf019): error 2005 on query.
Property 0xf01a: error 2005 on query.
Property 0xf01b: error 2005 on query.
Movie Quality(0xf01c): error 2005 on query.
Nikon Exposure Time(0xd100):(read only) (type=0x6) Enumeration [67536,67136,6678
6,66536,66336,66176,66036,65936,65856,65786,65736,65696,65661,65636,65616,65596,
65586,65576,65566,65561,65556,65551,65549,65546,65544,65542,65541,65540,65539,65
5385,65538,655376,655373,65537,851978,1048586,131073,1638410,196609,262145,32768
1,393217,524289,655361,851969,983041,1310721,1638401,1966081] value: 65576
Live View Prohibit Condition(0xd1a4):(read only) (type=0x6) 0
Live View Status(0xd1a2):(read only) (type=0x2) Range [0 - 1, step 1] value: No
(0)

3

[14]: file = camera.capture(gp.GP_CAPTURE_IMAGE)
print(f"Camera file path: {file.folder}{file.name}")

Camera file path: /capt0000.jpg

[15]: name = "yaay77799"
target = os.path.join('.', f"{name}.jpg")
print('Copying image to', target)
# Local file
lfile = camera.file_get(file.folder, file.name, gp.GP_FILE_TYPE_NORMAL)
lfile.save(target)

Copying image to ./yaay77799.jpg

[16]: camera.exit()
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1 Camera calibration of the RGB integrated TELOPS Camera

1.1 Field tasks:
1. Print chessboards
2. Get the TELOPS ready (thank’s Erik)
3. Take multiple shots of the chessboard in different orientations

From OpenCV docs for better results 10 test patterns is preferred when trying to resolve distortion
coefficients, we took 8.

1

C.3 Camera Calibration
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1.2 The calibration
Camera calibration is removing the distortions introduced by the camera.

The pinhole camera (simplest model) come with 2 major distortions : radial (mostly) and tangential
(slightly).

1.3 The CODE
Original: https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html

[1]: # impoting needed libraries
import numpy as np
import cv2 as cv
import glob
import hylite
from hylite import io
import matplotlib.pyplot as plt

1.3.1 FINDING CHESSBOARD CORNERS - OBJECT POINTS AND IMAGE
POINTS

For calibration we need 3D real world points object points and the corresponding 2D coordinates
of these points in the image image points.

• First we need to know (𝑋, 𝑌 , 𝑍) values;

– we assume the chessboard is kept stationary at 𝑋𝑌 plane (𝑍 = 0); and the camera was
moving

– to find 𝑋 and 𝑌 we pass the location of the points as (0, 0), (1, 0), (2, 0)... [the scale
being the size of chessboard size] we could possibly work with square size.

– so the object points we will be using are like this: (0,0,0), (1,0,0), (2,0,0)

• Finding the pattern in the chessboard (finding corners and adding them to image points)

– cv.findChessboardCorners() outputs: retval: Boolean (return value, True if corners
obtained), corners: the actual corners

– Increase accuracy of corners using cv.cornerSubPix()

[2]: # chessboaf parameters
chessboardSize = (10,7)
frameSize = (658,492)

[3]: # termination criteria when increasing accuracy of found corners later on
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)

# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((chessboardSize[0] * chessboardSize[1], 3), np.float32)
objp[:,:2] = np.mgrid[0:chessboardSize[0],0:chessboardSize[1]].T.reshape(-1,2)
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# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.

images = glob.glob('1-imgCamCalib/2/*.jpg')

for image in images:

img = cv.imread(image)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

# Find the chess board corners
# _retval_: Boolean (return value, True if corners obtained), _corners_:␣↪the actual corners
ret, corners = cv.findChessboardCorners(gray, chessboardSize, None)

# If found, add object points, image points (after refining them)
if ret == True:

objpoints.append(objp)
# Increase accuracy of corners
corners2 = cv.cornerSubPix(gray, corners, (11,11), (-1,-1), criteria)
imgpoints.append(corners)

# Draw and display the corners
# cv.drawChessboardCorners(img, chessboardSize, corners2, ret)
# cv.imshow('img', img)
# cv.waitKey(700)
# filename = f"chessCorners/{image[7:]}"
# cv.imwrite(filename, img)

# cv.destroyAllWindows()

1.3.2 CALIBRATION

Now for calibration we use cv.calibrateCamera() which returns :

• camera matrix: camera intrinsic matrix 𝐴 = ⎛⎜⎝ 𝑓𝑥 0 𝑐𝑥0 𝑓𝑦 𝑐𝑦0 0 1 ⎞⎟⎠
• distortions coefficients: vector of distortion coefficients (𝑘1, 𝑘2, 𝑝1, 𝑝2[, 𝑘3[, 𝑘4….]])
• rotation vector
• translation vector

[4]: ret, cameraMatrix, dist, rvecs, tvecs = cv.calibrateCamera(objpoints,
imgpoints, frameSize, None,␣↪None)

3
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Optimizing camera matrix We can refine the camera matrix based on a free scaling parameter
using cv.getOptimalNewCameraMatrix() having the parameter alpha that is free scaling param-
eter between 0 (when all the pixels in the undistorted image are valid) and 1 (when all the source
image pixels are retained in the undistorted image).

Need to know more about alpha !

We will be using 0 for alpha.

[19]: img = io.load('1-imgCamCalib/2/3.jpg')
h, w = img.ydim(), img.xdim()

# input params : cameraMatrix, distCoeffs,
# imageSize, alpha[,newImgSize[,centerPrincipalPoint]])
newCameraMatrix, roi = cv.getOptimalNewCameraMatrix(cameraMatrix, dist, (w,h),␣↪0, (w,h))

# fix the focal length
# newCameraMatrix[0,0] = newCameraMatrix[1,1] = 1.1e3

1.3.3 UNDISTORTION

[23]: # Undistort with Remapping
mapx, mapy = cv.initUndistortRectifyMap(cameraMatrix, dist, None,␣↪newCameraMatrix, (w,h), 5)
dst = cv.remap(np.transpose(img.data, (1,0,2)), mapx, mapy, cv.INTER_LINEAR)

imgr = hylite.HyImage(np.transpose(dst, (1,0,2)))

1.4 Reprojection Error
For estimating the accuracy of the found parameters we use the re-projection error. We trans-
form the object points to image points and we calculate the absolute norm between what we got
with our transformation and the corner finding algorithm.

Need to search more about how exactly this is done !

[21]: # Reprojection Error
mean_error = 0

for i in range(len(objpoints)):
imgpoints2, _ = cv.projectPoints(objpoints[i], rvecs[i], tvecs[i],␣↪cameraMatrix, dist)
error = cv.norm(imgpoints[i], imgpoints2, cv.NORM_L2)/len(imgpoints2)
mean_error += error

print( "total error: {}".format(mean_error/len(objpoints)) )

total error: 0.07324389291486763
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1.5 Saving the params for later use

[22]: # saving

np.savez("1-camCalibParams", newCameraMatrix=newCameraMatrix,
cameraMatrix=cameraMatrix, dist=dist, rvecs=rvecs, tvecs=tvecs,␣↪mapx=mapx, mapy=mapy)
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1 Organize stitched bands

[1]: # Importing necessary modules
import glob
import os
import cv2 as cv
import matplotlib.pyplot as plt
from hylite import io
import numpy as np

[2]: # Creating an empty list to store the roots
roots = []

# Adding the roots of the images to the list
for f in glob.glob('data/telops/**/*.jpg'):

roots.append(f[:-4])

# Sorting the roots and limiting the number to 30
roots.sort()
roots = roots[:30]

[3]: # Creating a list of roots in .ir.bmp format
rootsBMP = [f'{r}.ir.bmp' for r in roots]

[4]: # Writing the names of the roots in a file
with open(r'roots_.txt', 'w') as f:

f.write(' '.join(rootsBMP))

[5]: # Loading the header of the first image for sanity check
img = io.load(f'{roots[0]}.radiance.hdr')
img.header

[5]: {'file type': 'ENVI Standard',
'path':

'data/telops/20090101_002054491_Scenario_1/20090101_002048062_1.radiance.hdr',
'description': 'TEL-4415',
'samples': '320',

1

C.4 Arranging stitched bands
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'lines': '256',
'bands': '44',
'acquisition time': '2008-12-31T23:20:48',
'header offset': '657120',
'data type': '4',
'interleave': 'bip',
'sensor type': 'Telops Hyper-Cam',
'byte order': '0',
'x start': '0',
'y start': '0',
'wavelength units': 'nm',
'z plot titles': 'Wavenumber (cm-1), Radiance (W/m2 sr cm-1)',
'band names': '1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44',
'wavelength': array([ 879561., 889334., 899107., 908880., 918653.,

928426.,
938199., 947971., 957744., 967517., 977290., 987063.,
996836., 1006610., 1016380., 1026150., 1035930., 1045700.,
1055470., 1065250., 1075020., 1084790., 1094560., 1104340.,
1114110., 1123880., 1133660., 1143430., 1153200., 1162980.,
1172750., 1182520., 1192290., 1202070., 1211840., 1221610.,
1231390., 1241160., 1250930., 1260700., 1270480., 1280250.,
1290020., 1299800.])}

[56]: # Creating a list of bands
bands = list(range(44))
# Dividing the bands into groups of 3
trio_bands = [bands[i:i+3] for i in range(0, len(bands), 3)]
# Removing the last band
trio_bands.pop()
trio_bands

[56]: [[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[12, 13, 14],
[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29],
[30, 31, 32],
[33, 34, 35],
[36, 37, 38],
[39, 40, 41]]
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[57]: # Creating a directory for each group of bands
for c in trio_bands:

p = f'data2/{c[0]:02}{c[1]:02}{c[2]:02}'
if not os.path.exists(p): os.mkdir(p)

1.1 Exporting 3 bands at a time

[58]: # Exporting the bands in groups of 3
for c in trio_bands:

for f in roots:
nm = f.split('/')[-1]
img = io.load(f'{f}.radiance.hdr')
img0 = img.export_bands(c)
img1 = img0.data.transpose(1, 0, 2)[:, ::-1]
imgnp = np.multiply(img1, 255).astype(np.uint8)
cv.imwrite(f'data2/{c[0]:02}{c[1]:02}{c[2]:02}/{nm}.jpg', imgnp)

1.2 Executing the script

[ ]: # Executing the script for each group of bands
for c in trio_bands:

s = 'sift'
b = f'{c[0]:02}{c[1]:02}{c[2]:02}'
o = f'data3/stitched_{b}.jpg'
!python stitching_detailed.py $(cat roots.txt) --features $s --output $o␣↪--bands $b

2 Wrap affine

[62]: # Applying the affine transform
imgjn1 = cv.imread('data/nikon/DSC_5421.JPG')
M1 = np.fromfile('temp/imgb1-affine-transform-nikon.txt').reshape((3,3))
dims = np.array(imgjn1.shape[:2][::-1])

[64]: dims

[64]: array([3264, 4928])

[77]: for c in trio_bands:
p = f'data-mosaics3-wrap/{c[0]:02}{c[1]:02}{c[2]:02}'
if not os.path.exists(p): os.mkdir(p)

[85]: for f in glob.glob('data3/*.jpg'):
img = cv.imread(f)
dst = cv.warpAffine(img, M1[:2], dims)
cv.imwrite(f'data-mosaics3-wrap/{f[6:-4]}.jpg', dst)
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[74]: plt.imshow(dst)

[74]: <matplotlib.image.AxesImage at 0x7fc61c7666d0>

4
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1 Automate params checking & plotting different combinationa
1.1 Automate input different params to the script

[1]: import itertools

[2]: # 12-dec
dict_params = {

'keypoint_threshold': [0.001, 0.01],
'nms_radius': [2, 6],
'sinkhorn_iterations': [10, 30],
'match_threshold': [0.1, 0.5]

}

[7]: # 12-dec-01
dict_params = {

'keypoint_threshold': [0.004, 0.006],
'nms_radius': [3, 5],
'sinkhorn_iterations': [19, 21],
'match_threshold': [0.19, 0.21]

}

[8]: keys, values = zip(*dict_params.items())
permutations_dicts = [dict(zip(keys, v)) for v in itertools.product(*values)]

[9]: len(permutations_dicts)

[9]: 16

[10]: permutations_dicts[0]

[10]: {'keypoint_threshold': 0.004,
'nms_radius': 3,
'sinkhorn_iterations': 19,
'match_threshold': 0.19}

[ ]: for i in range(len(permutations_dicts)):
!./match_pairs.py --input_dir img \

1

C.5 Automate and plot different combinations of params (SuperGlue)
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--input_pairs pairs.txt \
--resize -1 \
--keypoint_threshold '{permutations_dicts[i]['keypoint_threshold']}'\
--nms_radius '{permutations_dicts[i]['nms_radius']}'\
--sinkhorn_iterations '{permutations_dicts[i]['sinkhorn_iterations']}'\
--match_threshold '{permutations_dicts[i]['match_threshold']}'\
--viz \
--output result-12-dec-01/comb{i}

1.2 Plotting the tested combinations

[1]: import matplotlib.pyplot as plt
import cv2 as cv
import glob

[24]: imgs = []
for i in glob.glob('result2/**/*.png'):

imgs.append(cv.imread(i))

[27]: fig, axs = plt.subplots(4, 4, figsize=(25, 12))
axs = axs.flatten()
i = 0
for img, ax in zip(imgs, axs):

ax.imshow(img)
ax.set_title(f'Combination #{i}')
ax.set_axis_off()
i+=1

# fig.tight_layout(pad=-1)
fig.show()
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C.7 Stitching

1 """

2 St i tching sample ( advanced )

3 ===========================

4

5 Show how to use S t i t c h e r API from python .

6 Credits : https : / / github .com/opencv/opencv/blob/master/samples/python/ s t i t c h i n g _ d e t a i l e d . py

7 """

8

9 # Python 2/3 compatibil i ty

10 from __future__ import print_function

11

12 import argparse

13 from c o l l e c t i o n s import OrderedDict

14

15 import cv2 as cv

16 import numpy as np

17

18 EXPOS_COMP_CHOICES = OrderedDict ( )

19 EXPOS_COMP_CHOICES[ ’ gain_blocks ’ ] = cv . d e t a i l . ExposureCompensator_GAIN_BLOCKS

20 EXPOS_COMP_CHOICES[ ’ gain ’ ] = cv . d e t a i l . ExposureCompensator_GAIN

21 EXPOS_COMP_CHOICES[ ’ channel ’ ] = cv . d e t a i l . ExposureCompensator_CHANNELS

22 EXPOS_COMP_CHOICES[ ’ channel_blocks ’ ] = cv . d e t a i l . ExposureCompensator_CHANNELS_BLOCKS

23 EXPOS_COMP_CHOICES[ ’no ’ ] = cv . d e t a i l . ExposureCompensator_NO

24

25 BA_COST_CHOICES = OrderedDict ( )

26 BA_COST_CHOICES[ ’ ray ’ ] = cv . detail_BundleAdjusterRay

27 BA_COST_CHOICES[ ’ reproj ’ ] = cv . detail_BundleAdjusterReproj

28 BA_COST_CHOICES[ ’ a f f i n e ’ ] = cv . detai l_BundleAdjusterAff inePart ia l

29 BA_COST_CHOICES[ ’no ’ ] = cv . detail_NoBundleAdjuster

30

31 FEATURES_FIND_CHOICES = OrderedDict ( )

32 t r y :

33 cv . xfeatures2d_SURF . create ( ) # check i f the function can be cal led

34 FEATURES_FIND_CHOICES[ ’ surf ’ ] = cv . xfeatures2d_SURF . create

35 except ( AttributeError , cv . error ) as e :

36 print ( "SURF not a v a i l a b l e " )

37 # i f SURF not avai lable , ORB i s default

38 FEATURES_FIND_CHOICES[ ’ orb ’ ] = cv .ORB. create

39 t r y :

40 FEATURES_FIND_CHOICES[ ’ s i f t ’ ] = cv . SIFT_create

41 except Attr ibuteError :

42 print ( "SIFT not a v a i l a b l e " )

43 t r y :

44 FEATURES_FIND_CHOICES[ ’ brisk ’ ] = cv . BRISK_create

45 except Attr ibuteError :

46 print ( "BRISK not a v a i l a b l e " )

47 t r y :

48 FEATURES_FIND_CHOICES[ ’ akaze ’ ] = cv . AKAZE_create

49 except Attr ibuteError :

50 print ( "AKAZE not a v a i l a b l e " )

51

52 SEAM_FIND_CHOICES = OrderedDict ( )

53 SEAM_FIND_CHOICES[ ’ dp_color ’ ] = cv . detail_DpSeamFinder ( ’COLOR’ )

54 SEAM_FIND_CHOICES[ ’ dp_colorgrad ’ ] = cv . detail_DpSeamFinder ( ’COLOR_GRAD’ )

55 SEAM_FIND_CHOICES[ ’ voronoi ’ ] = cv . d e t a i l . SeamFinder_createDefault (

56 cv . d e t a i l . SeamFinder_VORONOI_SEAM)

57 SEAM_FIND_CHOICES[ ’no ’ ] = cv . d e t a i l . SeamFinder_createDefault (

58 cv . d e t a i l . SeamFinder_NO)

59

60 ESTIMATOR_CHOICES = OrderedDict ( )

61 ESTIMATOR_CHOICES[ ’homography ’ ] = cv . detail_HomographyBasedEstimator

62 ESTIMATOR_CHOICES[ ’ a f f i n e ’ ] = cv . detail_AffineBasedEstimator

63

64 WARP_CHOICES = (

65 ’ spherical ’ ,

66 ’ plane ’ ,

67 ’ a f f i n e ’ ,

68 ’ c y l i n d r i c a l ’ ,

69 ’ f isheye ’ ,

70 ’ stereographic ’ ,

71 ’ compressedPlaneA2B1 ’ ,

72 ’ compressedPlaneA1 . 5B1 ’ ,

73 ’ compressedPlanePortraitA2B1 ’ ,

74 ’ compressedPlanePortraitA1 . 5B1 ’ ,

75 ’ paniniA2B1 ’ ,

76 ’ paniniA1 . 5B1 ’ ,

77 ’ paniniPortraitA2B1 ’ ,

78 ’ paniniPortraitA1 . 5B1 ’ ,

79 ’ mercator ’ ,

80 ’ transverseMercator ’ ,

81 )

82

83 WAVE_CORRECT_CHOICES = OrderedDict ( )

84 WAVE_CORRECT_CHOICES[ ’ horiz ’ ] = cv . d e t a i l .WAVE_CORRECT_HORIZ

85 WAVE_CORRECT_CHOICES[ ’no ’ ] = None

86 WAVE_CORRECT_CHOICES[ ’ vert ’ ] = cv . d e t a i l .WAVE_CORRECT_VERT

87

88 BLEND_CHOICES = ( ’ multiband ’ , ’ feather ’ , ’no ’ , )

89

90 parser = argparse . ArgumentParser (

91 prog=" s t i t c h i n g _ d e t a i l e d . py" , description=" Rotation model images s t i t c h e r "

92 )

93 parser . add_argument (

94 ’img_names ’ , nargs= ’+ ’ ,

95 help=" F i l e s to s t i t c h " , type= s t r

96 )
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97 parser . add_argument (

98 ’−−try_cuda ’ ,

99 action= ’ store ’ ,

100 default=False ,

101 help="Try to use CUDA. The default value i s no . A l l default values are for CPU mode. " ,

102 type=bool , dest= ’ try_cuda ’

103 )

104 parser . add_argument (

105 ’−−work_megapix ’ , action= ’ store ’ , default =0.6 ,

106 help=" Resolution for image r e g i s t r a t i o n step . The default i s 0.6 Mpx" ,

107 type= f l o a t , dest= ’ work_megapix ’

108 )

109 parser . add_argument (

110 ’−−features ’ , action= ’ store ’ , default= l i s t (FEATURES_FIND_CHOICES . keys ( ) ) [ 0 ] ,

111 help="Type of features used for images matching . The default i s ’%s ’ . " % l i s t (

112 FEATURES_FIND_CHOICES . keys ( ) ) [ 0 ] ,

113 choices=FEATURES_FIND_CHOICES . keys ( ) ,

114 type=str , dest= ’ features ’

115 )

116 parser . add_argument (

117 ’−−matcher ’ , action= ’ store ’ , default= ’homography ’ ,

118 help="Matcher used for pairwise image matching . The default i s ’homography ’ . " ,

119 choices =( ’homography ’ , ’ a f f i n e ’ ) ,

120 type=str , dest= ’ matcher ’

121 )

122 parser . add_argument (

123 ’−−estimator ’ , action= ’ store ’ , default= l i s t (ESTIMATOR_CHOICES. keys ( ) ) [ 0 ] ,

124 help="Type of estimator used for transformation estimation . The default i s ’%s ’ . " % l i s t (

125 ESTIMATOR_CHOICES. keys ( ) ) [ 0 ] ,

126 choices=ESTIMATOR_CHOICES. keys ( ) ,

127 type=str , dest= ’ estimator ’

128 )

129 parser . add_argument (

130 ’−−match_conf ’ , action= ’ store ’ ,

131 help="Confidence for feature matching step . The default i s 0.3 for ORB and 0.65 for other feature types . " ,

132 type= f l o a t , dest= ’ match_conf ’

133 )

134 parser . add_argument (

135 ’−−conf_thresh ’ , action= ’ store ’ , default =1.0 ,

136 help="Threshold for two images are from the same panorama confidence . The default i s 1 . 0 . " ,

137 type= f l o a t , dest= ’ conf_thresh ’

138 )

139 parser . add_argument (

140 ’−−ba ’ , action= ’ store ’ , default= l i s t (BA_COST_CHOICES. keys ( ) ) [ 0 ] ,

141 help="Bundle adjustment cost function . The default i s ’%s ’ . " % l i s t (

142 BA_COST_CHOICES. keys ( ) ) [ 0 ] ,

143 choices=BA_COST_CHOICES. keys ( ) ,

144 type=str , dest= ’ba ’

145 )

146 parser . add_argument (

147 ’−−ba_refine_mask ’ , action= ’ store ’ , default= ’ xxxxx ’ ,

148 help=" Set refinement mask for bundle adjustment . I t looks l i k e ’ x_xxx ’ , "

149 "where ’ x ’ means r e f i n e respective parameter and ’ _ ’ means don ’ t refine , "

150 "and has the following format : < fx ><skew><ppx><aspect ><ppy>. "

151 "The default mask i s ’ xxxxx ’ . "

152 " I f bundle adjustment doesn ’ t support estimation of selected parameter then "

153 " the respective f l a g i s ignored . " ,

154 type=str , dest= ’ ba_refine_mask ’

155 )

156 parser . add_argument (

157 ’−−wave_correct ’ , action= ’ store ’ , default= l i s t (WAVE_CORRECT_CHOICES. keys ( ) ) [ 0 ] ,

158 help="Perform wave e f f e c t correction . The default i s ’%s ’ " % l i s t (

159 WAVE_CORRECT_CHOICES. keys ( ) ) [ 0 ] ,

160 choices=WAVE_CORRECT_CHOICES. keys ( ) ,

161 type=str , dest= ’ wave_correct ’

162 )

163 parser . add_argument (

164 ’−−save_graph ’ , action= ’ store ’ , default=None,

165 help="Save matches graph represented in DOT language to <file_name > f i l e . " ,

166 type=str , dest= ’ save_graph ’

167 )

168 parser . add_argument (

169 ’−−warp ’ , action= ’ store ’ , default=WARP_CHOICES[ 0 ] ,

170 help="Warp surface type . The default i s ’%s ’ . " % WARP_CHOICES[ 0 ] ,

171 choices=WARP_CHOICES,

172 type=str , dest= ’warp ’

173 )

174 parser . add_argument (

175 ’−−seam_megapix ’ , action= ’ store ’ , default =0.1 ,

176 help=" Resolution for seam estimation step . The default i s 0.1 Mpx. " ,

177 type= f l o a t , dest= ’seam_megapix ’

178 )

179 parser . add_argument (

180 ’−−seam ’ , action= ’ store ’ , default= l i s t (SEAM_FIND_CHOICES. keys ( ) ) [ 0 ] ,

181 help="Seam estimation method . The default i s ’%s ’ . " % l i s t (

182 SEAM_FIND_CHOICES. keys ( ) ) [ 0 ] ,

183 choices=SEAM_FIND_CHOICES. keys ( ) ,

184 type=str , dest= ’seam ’

185 )

186 parser . add_argument (

187 ’−−compose_megapix ’ , action= ’ store ’ , default =−1,

188 help=" Resolution for compositing step . Use −1 for o r i g i n a l resolution . The default i s −1" ,

189 type= f l o a t , dest= ’compose_megapix ’

190 )

191 parser . add_argument (

192 ’−−expos_comp ’ , action= ’ store ’ , default= l i s t (EXPOS_COMP_CHOICES. keys ( ) ) [ 0 ] ,

193 help="Exposure compensation method . The default i s ’%s ’ . " % l i s t (

194 EXPOS_COMP_CHOICES. keys ( ) ) [ 0 ] ,

195 choices=EXPOS_COMP_CHOICES. keys ( ) ,
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196 type=str , dest= ’expos_comp ’

197 )

198 parser . add_argument (

199 ’−−expos_comp_nr_feeds ’ , action= ’ store ’ , default =1 ,

200 help="Number of exposure compensation feed . " ,

201 type=np . int32 , dest= ’ expos_comp_nr_feeds ’

202 )

203 parser . add_argument (

204 ’−−expos_comp_nr_filtering ’ , action= ’ store ’ , default =2 ,

205 help="Number of f i l t e r i n g i t e r a t i o n s of the exposure compensation gains . " ,

206 type= f l o a t , dest= ’ expos_comp_nr_filtering ’

207 )

208 parser . add_argument (

209 ’−−expos_comp_block_size ’ , action= ’ store ’ , default =32 ,

210 help="BLock s i z e in p i x e l s used by the exposure compensator . The default i s 32. " ,

211 type=np . int32 , dest= ’ expos_comp_block_size ’

212 )

213 parser . add_argument (

214 ’−−blend ’ , action= ’ store ’ , default=BLEND_CHOICES[ 0 ] ,

215 help=" Blending method . The default i s ’%s ’ . " % BLEND_CHOICES[ 0 ] ,

216 choices=BLEND_CHOICES,

217 type=str , dest= ’ blend ’

218 )

219 parser . add_argument (

220 ’−−blend_strength ’ , action= ’ store ’ , default =5 ,

221 help=" Blending strength from [0 ,100] range . The default i s 5" ,

222 type=np . int32 , dest= ’ blend_strength ’

223 )

224 parser . add_argument (

225 ’−−output ’ , action= ’ store ’ , default= ’ r e s u l t . jpg ’ ,

226 help="The default i s ’ r e s u l t . jpg ’ " ,

227 type=str , dest= ’ output ’

228 )

229 parser . add_argument (

230 ’−−timelapse ’ , action= ’ store ’ , default=None,

231 help="Output warped images separately as frames of a time lapse movie , "

232 " with ’ f ixed_ ’ prepended to input f i l e names . " ,

233 type=str , dest= ’ timelapse ’

234 )

235 parser . add_argument (

236 ’−−rangewidth ’ , action= ’ store ’ , default =−1,

237 help=" uses range_width to l i m i t number of images to match with . " ,

238 type=int , dest= ’ rangewidth ’

239 )

240

241 __doc__ += ’ \n ’ + parser . format_help ( )

242

243

244 def get_matcher ( args ) :

245 try_cuda = args . try_cuda

246 matcher_type = args . matcher

247 i f args . match_conf i s None :

248 i f args . features == ’ orb ’ :

249 match_conf = 0.3

250 else :

251 match_conf = 0.65

252 else :

253 match_conf = args . match_conf

254 range_width = args . rangewidth

255 i f matcher_type == " a f f i n e " :

256 matcher = cv . detail_AffineBestOf2NearestMatcher (

257 False , try_cuda , match_conf )

258 e l i f range_width == −1:

259 matcher = cv . detail_BestOf2NearestMatcher ( try_cuda , match_conf )

260 else :

261 matcher = cv . detail_BestOf2NearestRangeMatcher (

262 range_width , try_cuda , match_conf )

263 return matcher

264

265

266 def get_compensator ( args ) :

267 expos_comp_type = EXPOS_COMP_CHOICES[ args . expos_comp ]

268 expos_comp_nr_feeds = args . expos_comp_nr_feeds

269 expos_comp_block_size = args . expos_comp_block_size

270 # expos_comp_nr_filtering = args . expos_comp_nr_filtering

271 i f expos_comp_type == cv . d e t a i l . ExposureCompensator_CHANNELS :

272 compensator = cv . detail_ChannelsCompensator ( expos_comp_nr_feeds )

273 # compensator . s etNr GainsFi l te r ingIterat i ons ( expos_comp_nr_filtering )

274 e l i f expos_comp_type == cv . d e t a i l . ExposureCompensator_CHANNELS_BLOCKS :

275 compensator = cv . detail_BlocksChannelsCompensator (

276 expos_comp_block_size , expos_comp_block_size ,

277 expos_comp_nr_feeds

278 )

279 # compensator . s etNr GainsFi l te r ingIterat i ons ( expos_comp_nr_filtering )

280 else :

281 compensator = cv . d e t a i l . ExposureCompensator_createDefault (

282 expos_comp_type )

283 return compensator

284

285

286 def main ( ) :

287 args = parser . parse_args ( )

288 img_names = args . img_names

289 print ( img_names)

290 work_megapix = args . work_megapix

291 seam_megapix = args . seam_megapix

292 compose_megapix = args . compose_megapix

293 conf_thresh = args . conf_thresh

294 ba_refine_mask = args . ba_refine_mask
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295 wave_correct = WAVE_CORRECT_CHOICES[ args . wave_correct ]

296 i f args . save_graph i s None :

297 save_graph = False

298 else :

299 save_graph = True

300 warp_type = args . warp

301 blend_type = args . blend

302 blend_strength = args . blend_strength

303 result_name = args . output

304 i f args . timelapse i s not None :

305 timelapse = True

306 i f args . timelapse == " a s _ i s " :

307 timelapse_type = cv . d e t a i l . Timelapser_AS_IS

308 e l i f args . timelapse == "crop" :

309 timelapse_type = cv . d e t a i l . Timelapser_CROP

310 else :

311 print ( "Bad timelapse method" )

312 e x i t ( )

313 else :

314 timelapse = False

315 finder = FEATURES_FIND_CHOICES[ args . features ] ( )

316 seam_work_aspect = 1

317 ful l_ img_sizes = [ ]

318 features = [ ]

319 images = [ ]

320 is_work_scale_set = False

321 is_seam_scale_set = False

322 is_compose_scale_set = False

323 for name in img_names :

324 full_img = cv . imread ( cv . samples . f i n d F i l e (name) )

325 i f full_img i s None :

326 print ( "Cannot read image " , name)

327 e x i t ( )

328 ful l_ img_sizes . append ( ( full_img . shape [ 1 ] , ful l_img . shape [ 0 ] ) )

329 i f work_megapix < 0 :

330 img = full_img

331 work_scale = 1

332 is_work_scale_set = True

333 else :

334 i f is_work_scale_set i s False :

335 work_scale = min( 1 . 0 , np . sqrt (

336 work_megapix * 1e6 / ( full_img . shape [ 0 ] * full_img . shape [ 1 ] ) ) )

337 is_work_scale_set = True

338 img = cv . r e s i z e ( src=full_img , dsize=None, f x =work_scale ,

339 fy=work_scale , interpolat ion=cv . INTER_LINEAR_EXACT)

340 i f is_seam_scale_set i s False :

341 i f seam_megapix > 0 :

342 seam_scale = min( 1 . 0 , np . sqrt (

343 seam_megapix * 1e6 / ( full_img . shape [ 0 ] * full_img . shape [ 1 ] ) ) )

344 else :

345 seam_scale = 1.0

346 seam_work_aspect = seam_scale / work_scale

347 is_seam_scale_set = True

348 img_feat = cv . d e t a i l . computeImageFeatures2 ( finder , img)

349 features . append( img_feat )

350 img = cv . r e s i z e ( src=full_img , dsize=None, f x =seam_scale ,

351 fy=seam_scale , interpolat ion=cv . INTER_LINEAR_EXACT)

352 images . append(img)

353

354 matcher = get_matcher ( args )

355 p = matcher . apply2 ( features )

356 matcher . collectGarbage ( )

357

358 i f save_graph :

359 with open( args . save_graph , ’w’ ) as fh :

360 fh . write ( cv . d e t a i l . matchesGraphAsString (img_names , p , conf_thresh ) )

361

362 indices = cv . d e t a i l . leaveBiggestComponent ( features , p , conf_thresh )

363 img_subset = [ ]

364 img_names_subset = [ ]

365 ful l_img_sizes_subset = [ ]

366 for i in range ( len ( indices ) ) :

367 img_names_subset . append(img_names [ indices [ i ] ] )

368 img_subset . append( images [ indices [ i ] ] )

369 ful l_img_sizes_subset . append( ful l_ img_sizes [ indices [ i ] ] )

370 images = img_subset

371 img_names = img_names_subset

372 ful l_ img_sizes = ful l_img_sizes_subset

373 num_images = len (img_names)

374 print ( ’ image 0 shape i s : ’ , images [ 0 ] . shape )

375 i f num_images < 2 :

376 print ( "Need more images" )

377 e x i t ( )

378

379 estimator = ESTIMATOR_CHOICES[ args . estimator ] ( )

380 b , cameras = estimator . apply ( features , p , None)

381 i f not b :

382 print ( "Homography estimation f a i l e d . " )

383 e x i t ( )

384 for cam in cameras :

385 cam. R = cam. R . astype (np . f l o a t 3 2 )

386

387 adjuster = BA_COST_CHOICES[ args . ba ] ( )

388 adjuster . setConfThresh ( conf_thresh )

389 refine_mask = np . zeros ( ( 3 , 3) , np . uint8 )

390 i f ba_refine_mask [ 0 ] == ’ x ’ :

391 refine_mask [ 0 , 0] = 1

392 i f ba_refine_mask [ 1 ] == ’ x ’ :

393 refine_mask [ 0 , 1] = 1
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394 i f ba_refine_mask [ 2 ] == ’ x ’ :

395 refine_mask [ 0 , 2] = 1

396 i f ba_refine_mask [ 3 ] == ’ x ’ :

397 refine_mask [ 1 , 1] = 1

398 i f ba_refine_mask [ 4 ] == ’ x ’ :

399 refine_mask [ 1 , 2] = 1

400 adjuster . setRefinementMask ( refine_mask )

401 b , cameras = adjuster . apply ( features , p , cameras )

402 i f not b :

403 print ( "Camera parameters adjusting f a i l e d . " )

404 e x i t ( )

405 f o c a l s = [ ]

406 for cam in cameras :

407 f o c a l s . append(cam. fo cal )

408 f o c a l s . sort ( )

409 i f len ( f o c a l s ) % 2 == 1 :

410 warped_image_scale = f o c a l s [ len ( f o c a l s ) // 2]

411 else :

412 warped_image_scale = (

413 f o c a l s [ len ( f o c a l s ) // 2] + f o c a l s [ len ( f o c a l s ) // 2 − 1 ] ) / 2

414 i f wave_correct i s not None :

415 rmats = [ ]

416 for cam in cameras :

417 rmats . append(np . copy (cam. R) )

418 rmats = cv . d e t a i l . waveCorrect ( rmats , wave_correct )

419 for idx , cam in enumerate ( cameras ) :

420 cam. R = rmats [ idx ]

421 corners = [ ]

422 masks_warped = [ ]

423 images_warped = [ ]

424 s i z e s = [ ]

425 masks = [ ]

426 for i in range ( 0 , num_images) :

427 um = cv .UMat(

428 255 * np . ones ( ( images [ i ] . shape [ 0 ] , images [ i ] . shape [ 1 ] ) , np . uint8 ) )

429 masks . append(um)

430

431 # warper could be nul lptr ?

432 warper = cv . PyRotationWarper (

433 warp_type , warped_image_scale * seam_work_aspect )

434 for idx in range ( 0 , num_images) :

435 K = cameras [ idx ] . K( ) . astype (np . f l o a t 3 2 )

436 swa = seam_work_aspect

437 K[ 0 , 0] *= swa

438 K[ 0 , 2] *= swa

439 K[ 1 , 1] *= swa

440 K[ 1 , 2] *= swa

441 corner , image_wp = warper . warp (

442 images [ idx ] , K, cameras [ idx ] . R, cv . INTER_LINEAR , cv .BORDER_REFLECT)

443 corners . append( corner )

444 s i z e s . append ( ( image_wp . shape [ 1 ] , image_wp . shape [ 0 ] ) )

445 images_warped . append(image_wp)

446 p , mask_wp = warper . warp (

447 masks [ idx ] , K, cameras [ idx ] . R, cv . INTER_NEAREST, cv .BORDER_CONSTANT)

448 masks_warped . append(mask_wp . get ( ) )

449

450 images_warped_f = [ ]

451 for img in images_warped :

452 imgf = img . astype (np . f l o a t 3 2 )

453 images_warped_f . append( imgf )

454

455 compensator = get_compensator ( args )

456 compensator . feed ( corners=corners , images=images_warped , masks=masks_warped )

457

458 seam_finder = SEAM_FIND_CHOICES[ args . seam]

459 masks_warped = seam_finder . find ( images_warped_f , corners , masks_warped )

460 compose_scale = 1

461 corners = [ ]

462 s i z e s = [ ]

463 blender = None

464 timelapser = None

465 # https : / / github .com/opencv/opencv/blob / 4 . x/samples/cpp/ s t i t c h i n g _ d e t a i l e d . cpp#L725 ?

466 for idx , name in enumerate (img_names) :

467 # # t h i s i s me

468 # name = name. s p l i t ( ’ / ’ ) [ − 1 ] [ : − 7 ]

469 # print (name)

470 # # full_img = cv . imread ( f ’ . . / i t k /img3 / {name} −b012 . jpg ’ )

471 # full_img = cv . imread ( f ’ data2 /012/{nm} . jpg ’ )

472

473 full_img = cv . imread (name)

474

475 i f not is_compose_scale_set :

476 i f compose_megapix > 0 :

477 compose_scale = min( 1 . 0 , np . sqrt (

478 compose_megapix * 1e6 / ( full_img . shape [ 0 ] * full_img . shape [ 1 ] ) ) )

479 is_compose_scale_set = True

480 compose_work_aspect = compose_scale / work_scale

481 warped_image_scale *= compose_work_aspect

482 warper = cv . PyRotationWarper ( warp_type , warped_image_scale )

483 for i in range ( 0 , len (img_names) ) :

484 cameras [ i ] . fo cal *= compose_work_aspect

485 cameras [ i ] . ppx *= compose_work_aspect

486 cameras [ i ] . ppy *= compose_work_aspect

487 sz = ( i n t ( round ( ful l_ img_sizes [ i ] [ 0 ] * compose_scale ) ) ,

488 i n t ( round ( ful l_ img_sizes [ i ] [ 1 ] * compose_scale ) ) )

489 K = cameras [ i ] . K( ) . astype (np . f l o a t 3 2 )

490 r o i = warper . warpRoi ( sz , K, cameras [ i ] . R)

491 corners . append( r o i [ 0 : 2 ] )

492 s i z e s . append( r o i [ 2 : 4 ] )
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493 i f abs ( compose_scale − 1) > 1e −1:

494 img = cv . r e s i z e ( src=full_img , dsize=None, f x =compose_scale , fy=compose_scale ,

495 interpolat ion=cv . INTER_LINEAR_EXACT)

496 else :

497 img = full_img

498 _img_size = (img . shape [ 1 ] , img . shape [ 0 ] )

499 K = cameras [ idx ] . K( ) . astype (np . f l o a t 3 2 )

500 corner , image_warped = warper . warp (

501 img , K, cameras [ idx ] . R, cv . INTER_LINEAR , cv .BORDER_REFLECT)

502 mask = 255 * np . ones ( ( img . shape [ 0 ] , img . shape [ 1 ] ) , np . uint8 )

503 p , mask_warped = warper . warp (

504 mask , K, cameras [ idx ] . R, cv . INTER_NEAREST, cv .BORDER_CONSTANT)

505 compensator . apply ( idx , corners [ idx ] , image_warped , mask_warped)

506 image_warped_s = image_warped . astype (np . int16 )

507 dilated_mask = cv . d i l a t e ( masks_warped [ idx ] , None)

508 seam_mask = cv . r e s i z e (

509 dilated_mask , (mask_warped . shape [ 1 ] , mask_warped . shape [ 0 ] ) , 0 , 0 , cv . INTER_LINEAR_EXACT)

510 mask_warped = cv . bitwise_and (seam_mask , mask_warped)

511 i f blender i s None and not timelapse :

512 blender = cv . d e t a i l . Blender_createDefault ( cv . d e t a i l . Blender_NO )

513 dst_sz = cv . d e t a i l . resultRoi ( corners=corners , s i z e s = s i z e s )

514 blend_width = np . sqrt ( dst_sz [ 2 ] * dst_sz [ 3 ] ) * blend_strength / 100

515 i f blend_width < 1 :

516 blender = cv . d e t a i l . Blender_createDefault ( cv . d e t a i l . Blender_NO )

517 e l i f blend_type == "multiband" :

518 blender = cv . detail_MultiBandBlender ( )

519 blender . setNumBands(

520 (np . log ( blend_width ) / np . log ( 2 . ) − 1 . ) . astype (np . int32 ) )

521 e l i f blend_type == " feather " :

522 blender = cv . detail_FeatherBlender ( )

523 blender . setSharpness ( 1 . / blend_width )

524 blender . prepare ( dst_sz )

525 e l i f timelapser i s None and timelapse :

526 timelapser = cv . d e t a i l . Timelapser_createDefault ( timelapse_type )

527 timelapser . i n i t i a l i z e ( corners , s i z e s )

528 i f timelapse :

529 ma_tones = np . ones (

530 ( image_warped_s . shape [ 0 ] , image_warped_s . shape [ 1 ] ) , np . uint8 )

531 timelapser . process ( image_warped_s , ma_tones , corners [ idx ] )

532 pos_s = img_names [ idx ] . r f ind ( " / " )

533 i f pos_s == −1:

534 fixed_file_name = " fixed_ " + img_names [ idx ]

535 else :

536 fixed_file_name = img_names [ idx ] [ : pos_s +

537 1] + " f ixed_ " + img_names [ idx ] [ pos_s + 1 : ]

538 cv . imwrite ( fixed_file_name , timelapser . getDst ( ) )

539 else :

540 blender . feed ( cv .UMat( image_warped_s ) , mask_warped , corners [ idx ] )

541 i f not timelapse :

542 r e s u l t = None

543 result_mask = None

544 result , result_mask = blender . blend ( result , result_mask )

545 cv . imwrite ( result_name , r e s u l t )

546 zoom_x = 600.0 / r e s u l t . shape [ 1 ]

547 dst = cv . normalize ( src=result , dst=None, alpha =255. ,

548 norm_type=cv .NORM_MINMAX, dtype=cv .CV_8U)

549 dst = cv . r e s i z e ( dst , dsize=None, f x =zoom_x , fy=zoom_x)

550 # cv . imshow( result_name , dst )

551 # cv . waitKey ( )

552

553 print ( "Done" )

554

555

556 i f __name__ == ’ __main__ ’ :

557 main ( )

558 # cv . destroyAllWindows ( )

Listing C.1: Stitching algorithm
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 :ملخص 

� تم الحصول عليها من المنصات الأرض�ة أو الج��ة إجراء   ي�يح استخدام الصور والب�انات عال�ة الدقة ال��
ات الموجودة ع� سطح الأرض ، مثل الرواسب المعدن�ة والتك��نات   � فحص مفصل للم��

تحت السطح ، الجيومورفولوج�ة واله�ا�ل الجيولوج�ة. ُ�ستخدم هذە المعلومات لتخط�ط ودراسة ما 
. �ستخدم الاس�شعار عن �عد فائق الط�ف الط�ف   � وفهم العمل�ات الجيودينام�ك�ة ، وتقي�م الأثر البي��

� تطب�قات مختلفة ، 
ال�هرومغناط��� المنعكس أو المن�عث من الأجسام الموجودة ع� سطح الأرض ��

� ذلك تحد�د المعادن وتحل�ل توز�ــــع وخصائص المواد
فإن تحقيق تمث�ل دقيق للهدف ومع ذلك ،  .�ما ��

� تم الحصول عليها من أجهزة اس�شعار مختلفة  ك للب�انات ال�� المرصود يتطلب اندماج و�سج�ل مش��
 .�س�ب طرق الاستحواذ المختلفة ل�ل جزء من الط�ف ال�هرومغناط��� 

 

� لدمج ب�انات الاس�شعار عن 
ك ش�ه التلقا�� �عد الجيولوج�ة  تقدم هذە الدراسة س�� عمل ال�سج�ل المش��

الق���ة المدى. تم تصم�م هذە الط��قة للتغلب ع� تحد�ات تك��ن السحاب الفائق ، ح�ث يتم جمع 
� مساحة ثلاث�ة الأ�عاد. تتضمن المنهج�ة عمل�ة  

مصادر متعددة من الب�انات الفائقة الط�ف�ة ودمجها ��
ا للتخلص من ال�شوهات الأول�ة ، تليها خ�اطة ال ة ذات الموجات الط��لة معايرة ال�ام�� مكع�ات الصغ��

� تم الحصول عليها من جهاز مفرطة. تتضمن  mosaicل�شك�ل   Hyper-cam �الأشعة تحت الحمراء ال��
� الفس�فساء الفائقة وصورة � ب�� ، وتم تقي�م   RGB الخطوة التال�ة المطا�قة والتح��ل لإ�شاء تحول أفي��

� إح داث�ات النقاط المحددة والتحولات المقا�لة لها. �عد ذلك ،  جودتها من خلال مقارنة الاختلافات ب��
ا إطار Structure-from-Motion يتم تنف�ذ س�� عمل  RGB لإ�شاء سحا�ة نقط�ة وتحد�د موضع �ام��

� ع� سحا�ة النقطة لتول�د سحا�ة مفرطة 
واتجاهها. �سمح هذا �عد ذلك ب�م�ان�ة إجراء الإسقاط الخل��

� النقاط المحددة  جزئ�ة. تم تقي�م عمل� � من خلال حساب المسافة ثلاث�ة الأ�عاد ب��
ة الإسقاط الخل��

ب��انات من   hypercloud   �مكن ملء. سم 3.56و�سقاط �ل منها. تم تحقيق تفاوت متوسط قدرە 
مناطق أخرى من الط�ف ال�هرومغناط��� و � أو استخدامها لإنتاج خرائط معدن�ة ومنتجات جيولوج�ة  

 .ة أخرى ذات صل

 

ك ، الأشعة تحت الحمراء ط��لة الموجة ، الكلمات الرئيسية  ،  Hypercloud: ال�سج�ل المش��
Telops Hyper-Cam  اله��ل من الحركة ،(SfM) �  ، التماثل ، التح��ل الأفي��
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توطين ، إسقاط خلفي ، ودمج بيانات الأشعة تحت الحمراء الفائقة   
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