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Chez les animaux, les jeunes dépendant des parents durant leur développement sont en compétition pour 
obtenir la nourriture, qu’ils quémandent par des cris et postures ostentatoires et se disputent physiquement. 
Les frères et sœurs n’ont pas la même compétitivité, en particulier s’ils diffèrent en âge, et leur niveau de 
faim fluctue dans le temps. Comme dans tout type de compétition, chacun doit ajuster son investissement 
aux rivaux, c’est à dire aux besoins et comportements de ses frères et sœurs. Dans le contexte de la famille, 
selon la théorie de sélection de parentèle, les jeunes bénéficient de leur survie mutuelle et donc de la 
propagation de la part de gènes qu’ils ont en commun. L’hypothèse de la « négociation frères-sœurs » 
prédit que, sous certaines conditions, les jeunes négocient entre eux la nourriture, ce qui réduit les coûts de 
compétition et permet de favoriser les frères et sœurs les plus affamés. La littérature actuelle se focalise sur 
les signaux de quémande entre enfants et parents et les interactions compétitives frères-sœurs sont étudiées 
principalement au sein de paires, alors que les nichées ou portées en comprennent souvent de nombreux. 
Cette thèse vise à mieux comprendre comment et jusqu’à quel point plusieurs jeunes  ajustent 
mutuellement leurs signaux de besoin. C’est une question importante, étant donné que cela influence la 
répartition de nourriture entre eux, donc la résolution du conflit qui les oppose et à terme leur valeur 
évolutive. Le modèle d’étude est la chouette effraie (Tyto alba), chez laquelle jusqu’à neufs poussins 
émettent des milliers de cris chacun  par nuit. Ils négocieraient entre eux la prochaine proie indivisible 
rapportée au nid avant que les parents ne reviennent : un poussin affamé crie plus qu’un autre moins 
affamé, ce qui dissuade ce dernier de crier en retour et par la suite de quémander la nourriture aux parents. 
L’investissement optimal correspondrait donc à écarter son frère en permanence vu que l’arrivée des 
parents est imprévisible, mais à moindre coût. 
 

Dans un premier axe, nous avons exploré au sein de dyades les mécanismes acoustiques permettant 
aux poussins de doser leur effort vocal durant les heures de compétition où ils sont laissés seuls au nid. 
Nous avons trouvé que les poussins évitent de crier simultanément, ce qui optimiserait la discrimination du 
nombre et de la durée de leurs cris, lesquels reflètent de façon honnête leur niveau de faim et donc leur 
motivation. L’alternance des cris paraît particulièrement adaptée au fait que les poussins se fient à des 
variations temporelles subtiles dans le rythme et la durée de leurs vocalisations pour prendre la parole. En 
particulier, allonger ses cris tout en criant moins dissuade efficacement le rival de répondre, ce qui permet 
de monopoliser la parole dans de longs « monologues ». Ces règles seraient universelles puisqu’elles ne 
dépendent pas de la séniorité, de la faim, ni de la parenté et les poussins répondent à un playback de façon 
similaire à un vrai frère. Tous ces résultats apportent la première preuve expérimentale que les juvéniles 
communiquent de façon honnête sur leurs besoins, ajustent activement le rythme de leurs cris et utilisent 
des composantes multiples de leurs vocalisations d’une façon qui réduit le coût de la compétition. De plus, 
il s’agit de la première démonstration que des règles de conversation régissent de longs échanges vocaux 
chez les animaux de façon comparable aux règles basiques observées chez l’Homme.  

 
Dans un second axe, nous avons exploré les stratégies comportementales que les poussins adoptent 

pour rivaliser avec plusieurs frères et sœurs, par le biais d’expériences de playback. Nous avons trouvé que 
les poussins mémorisent des asymétries de compétitivité entre deux individus qui dialoguent et répondent 
plus agressivement au moins compétitif une fois qu’ils sont confrontés à chacun isolément. Dans la même 
ligne, quand ils entendent un nombre variable d’individus criant à un taux variable, les poussins 
investissent le plus contre des rivaux moins nombreux et moins motivés. En accord avec les prédictions des 
modèles théoriques, les poussins de chouette effraie escaladent donc les conflits pour lesquels leur chance 
de gagner contrebalance le plus l’énergie dépensée. Nous révélons ainsi que 1) les jeunes frères et sœurs 
‘espionnent’ les interactions de leurs rivaux pour évaluer leur compétitivité relative, ce qui est sans doute 
moins coûteux qu’une confrontation directe avec chacun, et 2) dosent leur investissement vocal en fonction 
du nombre de rivaux actuellement en compétition et de leur motivation de façon concomitante. Ces 
résultats montrent que les interactions entre frères et sœurs au nid reposent sur des mécanismes similaires à 
ceux observés, mais encore de façon anecdotique, chez les adultes non apparentés qui se disputent les 
territoires et partenaires sexuels. 

 
 Cette thèse souligne donc combien il est crucial de considérer dorénavant la famille comme un 
réseau de communication à part entière pour mieux comprendre comment les jeunes résolvent les conflits 
autour du partage des ressources parentales. Plus généralement, elle révèle l’importance de la dynamique 
temporelle des vocalisations dans les conflits et la communication des animaux. A la lumière de nos 
résultats, la chouette effraie apparaît comme un modèle clé pour de futures recherches sur la résolution des 
conflits et la communication acoustique.  
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In species with parental care, offspring contest priority access to food by begging through 
conspicuous postures and vocalisations and by physically jockeying. Siblings differ in their 
competitiveness, especially in the case of age and size hierarchies, and their hunger level 
fluctuates in time. As in competition in general, each individual should adjust its investment to 
opponents that is to say to its siblings’ needs and behaviours. In the particular context of family, 
according to kin selection theory, siblings derive extra fitness benefits from their mutual survival 
and hence the spreading of the genes they share. The “sibling negotiation” predicts that, under 
certain conditions, young would negotiate among them priority access to food, which reduces 
competition costs and enables promoting the most hungry siblings. To date, the literature focuses 
on signals of need between parents and offspring and competitive interactions (in particular 
among siblings) are mostly studied within pairwise interactions, yet they commonly involve more 
numerous rivals. This PhD aims at better understanding how and the extent to which several 
young siblings compete through signalling. This is important since this influences how food is 
allocated among them, thus the outcome of sibling rivalry and ultimately their fitness. I use the 
barn owl (Tyto alba) as a model, in which the one to nine nestlings emit a simple noisy call 
thousands of times per night. Thereby, they would negotiate among them priority access to the 
indivisible food next delivered prior to parents’ feeding visits. A hungry nestling emits more calls 
than a less hungry sibling, which deters it to call in return and ultimately beg food at parents. The 
optimal investment thus corresponds to constantly deterring the rival to compete, given that 
parents’ arrival is unpredictable, but at the lowest costs.  

In the first axis of my thesis, we explored within dyads the acoustic mechanisms by which 
owlets dose vocal effort when competing during the hours they are left alone. We found that 
owlets avoid overlapping each other’s calls. This would enhance the discrimination of both call 
number and duration, which honestly reflect individuals’ hunger level and hence motivation to 
compete. Such antiphony seems best adapted to the fact that siblings actually use subtle temporal 
variations in the rhythm and duration of their calls to take or give their turn. Owlets alternate 
monologs, in which lengthening calls efficiently deters the rival to respond while reducing call 
number. Such rules depend neither on seniority, hunger level nor kinship since nestlings 
responded similarly to a live sibling and an unrelated playback individual. Taken together, these 
findings provide the first experimental proof that dependent young honestly communicate about 
their need, actively adjust the timing of their calls and use multicomponent signals in a way that 
reduces vocal costs. Moreover, this is the first demonstration of conversational rules underlying 
animal long-lasting vocal exchanges comparable to the basic turn-taking signals observed in 
humans.  

In the second axis, we focused on the behavioural strategies owlets adopt to compete with 
more than one sibling, using playback experiments. We found that singleton bystanders 
memorised competitive asymmetries between two playback individuals dialoguing and responded 
more aggressively to the submissive one once they later faced each of both alone. Moreover, 
when hearing a varying number of nestlings calling at varying rates, owlets vocally invested the 
most towards fewer and less motivated rivals. In line with predictions from models on conflict 
settlement, barn owls thus escalate contests in which their chance of winning best counterbalances 
the energy spent. These results reveal that young socially eavesdrop on their siblings’ interactions 
to assess their relative competitiveness at likely lower costs than direct confrontation, and dose 
vocal effort relative to both their number and motivation. This shows that young siblings’ 
interactions imply mechanisms similar to those observed, yet still anecdotally, in unrelated adults 
that contest mates and territories. 
 This PhD therefore highlights how crucial it is to further consider family as a 
communication network to better understand how siblings resolve conflicts over the share of 
parental resources. More generally, it provides important insights into the role of the temporal 
dynamics of signalling during animal contests and communication. In the light of our findings, the 
barn owl emerges as a key model for future research on conflict resolution and acoustic 
communication in animals.  
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COMMUNICATION TO RESOLVE CONFLICTS 

In nature, because space, either as territory or mating sites, mates and food are limited, 

conspecifics are often in conflict over the share of resources. Evolutionary theory predicts that 

to maximise their own fitness, i.e. survival and reproduction, individuals should compete so 

as to derive the greatest benefits at the lowest costs (Maynard Smith 1976). While competing 

is easier for the strongest rivals, resources are more valuable for the most needy individuals. 

Whether opponents engage in or retreat from a contest will then depend on their relative 

‘resource holding potential’ (i.e. fighting ability) and motivation (Parker 1974). Direct 

confrontation, despite representing a straightforward means of assessing a rival’s strength and 

motivation to compete, may lead to serious or lethal injuries. Animals thus commonly 

challenge each other over priority access to mates and territories using signals such as 

vocalisations (Schwartz and Freeberg 2008; Todt and Naguib 2000), scent-marking (Peters 

and Mech 1975; Rich and Hurst 1998), body coloration (Dijkstra et al. 2005; Senar 2006) and 

behavioural displays (Hofmann and Schildberger 2001; Mattiangeli et al. 1999; Mercier and 

Dejean 1996). Provided that communication is costly to prevent cheating, signals reliably 

reflect competitors’ dominance and need (Grafen 1990), allowing opponents to optimally 

adjust competing effort to each other. Hence, examining how animals modulate signals to one 

another is central to understanding their evolutionary function and the resolution of conflicts 

over resources. 

To date, the role of communication in agonistic social interactions has been described 

in depth in the context of sexual conflicts and contests for territories. In a wide range of 

species, males and females use various signals that reflect their dominance and physiological 

state to gain access to and defend mates and territories (Maynard-Smith and Harper 2004). 

Despite an extensive theoretical and empirical framework on conflicts among adults, 

knowledge about how communication regulates competition at younger ages is more elusive, 
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even though competition might be intense for space and food among juveniles (Mock and 

Parker 1997) and early survival is crucial to later reproduce. Particularly in species with 

parental care, siblings, who are no more than half related, are assumed to be in conflict over 

the amount of care and food provisioning they receive. Each individual is predicted to 

demand a larger than equal portion of parental resources (Godfray 1995a,b). Yet, because 

relatives share some genes, kin selection theory predicts that they may derive indirect fitness 

benefits from each other’s survival and reproduction (Hamilton 1964). Given that 

communication enables avoiding lethal injuries, it should play an important role in sibling 

competition over parental resources, specifically in altricial species where offspring are reared 

in close proximity. 

 

SIGNALLING IN THE CONTEXT OF SIBLING RIVALRY 

Young animals physically compete to the point of siblicide (Drummond 2006; Mock and 

Parker 1997), but most commonly solicit food from parents through ostentatious begging 

postures and other signals such as loud vocalisations in birds and mammals (Hudson and 

Trillmich 2008; Kilner and Johnstone 1997) or chemicals in insects (Mas and Kolliker 2008). 

Because parents face a trade-off between self-maintenance and investment in reproduction 

(Stearns 1992), begging has historically been considered a reliable signal of need that parents 

use to optimally allocate food among their offspring (Harper 1986; Kilner and Johnstone 

1997). Indeed, empirical works are consistent with the hypothesis that offspring modulate 

begging intensity in relation to their own hunger level and condition (Kitaysky et al. 2001; 

Manser et al. 2008; Sacchi et al. 2002; Smiseth and Moore 2007; Villasenor and Drummond 

2007). However, they further reveal that young modulate the intensity of signals of need also 

to their siblings’ (Marques et al. 2011), as well as their hunger level (Price et al. 1996; Roulin 

et al. 2001; Smith and Montgomerie 1991), condition (appendice 1, Vallarino et al. 2006) size 
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(Price et al. 1996; Roulin 2004a), number (Kacelnik et al. 1995; Price 1996) and physical 

behaviours (Dreiss et a. 2010b) of their siblings. This indicates that offspring not only use 

vocal, postural and physical displays to communicate their need to parents, but also as 

competitive signals to siblings. 

 Broodmates intrinsically differ in need and condition, which fluctuate across feedings, 

and in competitiveness. This last difference is even accrued in the case staggered birth 

establishes age and size hierarchies. Due to such asymmetries, offspring may parasitize 

parental decisions in how food is distributed (Parker et al. 2002). Extensive fieldwork in birds 

showed that stronger and / or older young may be better able to monopolise food than their 

smaller and younger siblings, notably because they physically outcompete them to attract 

parental attention (e.g. Smith et al. 2005). Lower competitive individuals may then 

compensate for their submissiveness by begging at higher levels, which proves useful 

depending on whether parents rely on brood/litter or individual signalling level to distribute 

food (Bonisoli-Alquati et al. 2011; Cotton et al. 1999; Smiseth and Amundsen 2002). Because 

this so-called ‘scramble competition’ determines signalling strategies and interferes with 

parental feeding decisions over the outcome of conflict, i.e. within brood or litter food 

distribution, it is crucial to examine how siblings mutually modulate signalling level to 

compete for food. Though a vast body of theoretical and empirical works has tackled this 

issue, authors usually consider begging signals to be uniquely directed at parents, hence 

disregarding a potential communication among offspring. In consequence, the extent to which 

and how offspring adjust signalling levels to each other is poorly understood. 

Typically, empiricists measure individuals’ behaviours in live siblings, which does not 

allow disentangling their mutual influence of one on another (but see Marques et al. 2011). In 

more, authors consider young behaviours mostly during begging sessions, which they treat as 

one-off encounters although these are interdependent over time. While game theory predicts 
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signalling contests to be iterative (McNamara et al. 1999), little remains known about how 

siblings assess their relative competitiveness and need from signals and cues, and about how 

their physical and vocal behaviours are interconnected across, between and during feeding 

sessions. Notwithstanding, the ‘sibling negotiation hypothesis’ predicts that siblings might 

actively induce each other to withdraw from begging food from parents. By communicating 

their need to each other, young would reduce competition costs while guaranteeing food to 

the most needy and allowing the least hungry to save energy to be reallocated later (Roulin 

2002a). This sib-sib communication is predicted to evolve when the outcome of competition 

is predictable, i.e. when food is indivisible and asymmetries well pronounced among siblings 

(Johnstone and Roulin 2003). To date, it has been shown to occur prior to parents’ arrival 

between feeding visits in the barn owl (Tyto alba; Roulin et al. 2000; Roulin 2002a) and in 

the spotless starling (Sturnus unicolor; Bulmer et al. 2008). To properly understand how and 

to which extent altricial young interact with parents’ provisioning decisions and resolve 

conflicts over the sharing of resources, it is crucial to further consider the family as a whole 

communication network (Horn and Leonard 2005). 

 

THE CASE STUDY OF BARN OWLS’ SIB-SIB NEGOTIATION  

The barn owl is an ideal model to study signalling interactions among altricial young because 

owlets vocally communicate among themselves to negotiate feeding prior to parents’ arrival 

(in fact, this species prompted the ‘sibling negotiation’ hypothesis). Extra-pair copulations 

being rare (Roulin et al. 2004), the two to nine owlets are most often full siblings and have 

common inclusive fitness interests in avoiding costly competition and promoting hungry 

siblings (see also appendix 2). Furthermore, given that siblings hatch asynchronously and 

strongly differ in age and size, and that parents deliver indivisible prey items (micro-

mammals), the outcome of competition is predictable. Between the sporadic parental feeding 
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visits at night, nestlings repeat a single noisy call up to thousands of times each (fig. 2) to 

challenge each other for priority access to the indivisible prey item next delivered.  

                          

Figure 2. Sonograms of negotiation calls from two barn owl nestlings (A and B). 

 

Published correlative results indeed give evidence that:  

1) Siblings communicate with one another, not with their parents. The latter generally 

forage too far from their nest to hear owlets (pers. obs.) and do not adjust provisioning rate to 

the number of calls owlets produce (Roulin et al. 2000).  

2) An owlet modulates its vocal output not only relative to its own needs but also in 

function of the needs and vocal output of a sibling, which ultimately determines which 

obtains food. When food deprived, nestlings emit on average more and longer calls than when 

sated, indicating that both the rate and duration of calls reflect their motivation to compete 

(Roulin et al. 2000a; Roulin 2001; Roulin et al. 2009). Within a pair of siblings, the owlet that 

emits the most and longest calls ultimately begs more intensely to the parents and receives the 

prey item (Dreiss et a. 2010b; Roulin 2001; Roulin et al. 2000). However, owlets do not call 

desperately above the level of a sibling but dose investment in competition proportionally to 

their own chance of succeeding. When facing a hungry sibling, that is to say highly motivated 

to compete, a hungry owlet will call less than when the sibling is sated, that is to say when its 



                                                                                                                                            GENERAL INTRODUCTION 

	
   16 

own chance of compensating the costs incurred by signalling by food obtaining is greater 

(Roulin et al. 2000). Older owlets (‘seniors’), which are better able to physically impose 

themselves, are also less sensitive to their younger siblings’ (‘juniors’) negotiation behaviour 

than the reverse and produce fewer and shorter calls (Roulin 2004a; Roulin et al. 2009). 

Interestingly, recent correlative results suggest that owlets would not, or not only, escalate 

signalling above the level of a sibling, but also - or rather - induce it to withdraw from 

negotiating and ultimately from begging (Dreiss et a. 2010b; fig. 3).  

 

 

 

 

 
Figure 3. Synthesis of the hypothetical role of the different behaviours leading to a 
nestling obtaining prey (taken from Dreiss et a. 2010b). In the absence of parents the 
individual that produces longer negotiation calls (i.e. ‘Call duration difference’ during the 
negotiation phase) and is positioned closer to the nest boy entrance (i.e. ‘Position difference’ 
during the negotiation phase) induces its sibling to negotiate at a lower rate (i.e. ‘Call rate 
difference’ during the negotiation phase). The individual that negotiates more than its sibling 
(i.e. ‘Call rate difference’ during the negotiation phase) induces its sibling to beg at a lower 
rate (i.e. ‘Call rate difference’ during the begging phase), which positively influences the 
likelihood of obtaining a prey item from its parents (i.e. ‘Obtaining prey’).  
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GOAL & OUTLINE OF MY THESIS 

The focus of my PhD is to examine how and to which extent several barn owl young siblings 

resolve conflicts over parental resources through signalling with each other. To this aim, I 

develop my thesis along two main axes. Because results have been correlative until now, I 

first experimentally explore, using correlative and playback procedures, the acoustic rules 

governing sib-sib vocal exchanges within dyads. I examine how individual bystanders 

modulate the timing of their calls (Chapter I) and average call rate and duration (Chapter II) to 

those of a nestmate. Then, I investigate how owlets continuously adjust these acoustic 

parameters during their naturally long lasting vocal exchanges (Chapter III). Second, based on 

the findings within chapters I through III, I test some of the behavioural tactics by which 

owlets compete with more numerous nestmates (Chapters IV & V). 

 

Part 1 - Acoustic rules governing dyadic vocal exchanges 

1) Global adjustment of multiple acoustic components 

In altricial young begging comprises different components, such as postures and calls in birds 

and mammals. Across and within species, different behaviours and different call features (i.e. 

frequencies, duration) encode for various aspects of individual need (Duckworth et al. 2009; 

Gladbach et al. 2009; Leonard and Horn 2006). Siblings might then differentially compete 

over these multi- or uni-sensory components (Glassey and Forbes 2002; Jacob et al. 2011). 

Some studies suggest that the acoustic structure and timing of begging calls might have a 

great influence on the within-brood food allocation. For instance, field works in black-headed 

gulls (Larus ridibundus) reveal that during development, chicks progressively synchronise 

their calls, which cooperatively enhances brood signal and parents’ provisioning rate (Blanc 

et al. 2010). In the meerkat (Suricata suricatta), adult feeders best discriminate and provision 

pups that call alternately compared to synchronously (Madden et al. 2009). To my knowledge, 
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however, a single playback study has experimentally tested how siblings adjust their 

vocalisations to each other (Marques et al. 2011). The authors found that tree swallow chicks 

(Tachycineta bicolor) would deter siblings to beg by increasing call intensity, yet they did not 

examine for other acoustic components such as call number, duration, rhythm or frequencies. 

In the barn owl, both the number and duration of calls are positively correlated with 

nestlings’ level of hunger and relate to their resource holding potential, with juniors producing 

more and longer calls than seniors (Roulin 2004a, Roulin et al. 2009). To impose oneself, one 

could expect owlets to interrupt its siblings by overlapping their calls, a signal linked to 

aggressiveness in some songbirds (Mennill and Ratcliffe 2004; Naguib and Todt 1997). To 

optimally behave, however, each hungry individual should display proportionally to its 

siblings’ motivation and resource holding potential, and hence discriminate the number and 

duration of their calls. Barn owl siblings thus should rather optimise vocal effort by avoiding 

interferences that could jam the information encoded in each other’s vocalisations. If owlets 

vocalise altogether, they could shift individual acoustic features similarly to chorusing males 

of some anuran species (Schwartz and Freeberg 2008). If siblings call alternately, this should 

promote individual recognition while discriminating both call rate and duration. This so-

called ‘antiphony’ is common in competitive or cooperative interactions, especially at long-

range distances or in dark environments where visual signals are barely available, such as in 

songbirds’ contests or duets (Brumm 2006; Luther 2008) or the exchange of contact calls in 

mammals (Carter et al. 2008; Versace et al. 2008; Yosida et al. 2007).  In Chapter I, I thus 

explore owlets’ propensity to avoid overlapping each other’s vocalisations, using both 

playbacks and food-deprivation experiments.  

Now, if owlets mutually adjust the timing of their negotiation calls to distinguish call 

number and duration, what are the respective functions of these two acoustic components in 

sib-sib vocal competition? Multiple-component signalling across or within sensory modalities 



                                                                                                                                            GENERAL INTRODUCTION 

	
   19 

is frequent in animal courtship and territorial displays (Bro-Jørgensen 2010; Partan and 

Marler 2005). Because evolving several signals may seem a priori wasteful if one type 

efficiently repels rivals and predators or attract mates, hypotheses have been proposed to 

explain the maintenance of multiple signalling. Broadly, cheaper ‘back-up’ or ‘redundant’ 

signals may serve to enhance message transmission in environments with visual or acoustic 

interferences (Johnstone 1996; Partan and Marler 1999) or to facilitate learning in receivers 

(‘receiver psychology', Rowe 1999). Alternatively, distinct signal components may convey 

‘multiple messages’. They could reflect different aspects of 1) the signaller’s quality, which 

reinforces signal costs and reliability to rivals and mates about its resource holding potential 

or ‘good genes’, or 2) the message content, if the full meaning relies on the combination of 

several signal types (so-called ‘emergent signal’; Rowe 1999, Bro-Jørgensen 2010).  

Several empirical papers give support to these various hypotheses among taxa, but 

most concentrate on multimodal signals, i.e. from different sensory channels (e.g. Partan et al. 

2009; Smith and Evans 2008). Knowledge on the concomitant function of multiple acoustic 

components in vocal contests remains more elusive (but see Miller and Hauser 2004; 

Richardson and Lengagne 2010; Rivera-Gutierrez et al. 2010). In Chapter II, I investigate 

the mutual roles of call number and duration in barn owls’ sib-sib vocal competition. I 

examine how live siblings respectively modulate these acoustic components according to their 

motivation to compete (i.e. hunger level) and the response of bystander individuals to 

playback calls of varying durations broadcast at different rates. 

 

2) Temporal dynamics of long-lasting dyadic vocal exchanges 

During barn owls’ sib-sib negotiation, nestlings may be left alone several hours in a row 

during which parents can come back with food at any time. Hence, each hungry individual 

should constantly call more than its less hungry siblings so as to induce them to refrain from 
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calling back and ultimately from begging, but at the lowest costs (energy, potential predation). 

In other words, a motivated nestling should emit enough calls that last long enough to 

efficiently induce siblings to withdraw from responding, but not above the level required to 

do so. In more, it should lower its vocal effort once siblings stop calling, unless what it would 

waste energy. Notwithstanding, its hungry siblings might profit from such a decrease in effort 

to monopolise again the acoustic space. The focus of Chapter III is then to unravel how barn 

owl siblings manage to optimally impose themselves during several hours of negotiation. To 

this aim, I examine the acoustic cues on which owlets rely to preferentially give or take their 

turn during these competitive long lasting vocal exchanges. 

 Game-theory models predict that in repeated interactions using one signal type, such 

as owlets’ negotiation calls, the way opponents modulate signalling intensity over time 

depends on how receivers assess it. If the ‘rule of assessment’ of signallers’ resource holding 

potential depends on average signal intensity, signallers should display at fixed levels with the 

fewest repetitions possible (e.g. ‘sequential assessment game’; Enquist and Leimar 1983). 

This is unlikely in barn owls because young modulate call rate and duration with hunger level, 

which fluctuates both among individuals and across feeding sessions. Another possibility is 

that owlets assess each other’s motivation to compete from the calls of highest intensity / 

duration to adjust the next one (so-called ‘best-so-far’ rule; Payne and Pagel 1997). In such 

situation, owlets are predicted to escalate call rate and duration only if lower values are 

inefficient in deterring siblings from competing. Hungry siblings should thus continuously 

escalate the contest until parents come back to the nest with a prey item. Alternatively, if 

owlets assess each other’s motivational states from the cumulative information of their call 

number and call duration, maintaining many long calls over time could reflect vocal 

endurance, as suggested in red deers (Cervus elaphus, Clutton-Brock and Albon 1979). 
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According to the course of the interaction, owlets might then either mutually escalate or de-

escalate in one or both parameters over time (Payne 1998). 

The growing body of empirical literature testing predictions from these three 

‘assessment rules’ in agonistic iterative contests mostly focus on physical interactions (e.g. 

Briffa and Elwood 2009; Domhnall et al. 2005; Morell et al. 2005). In this case, the fitness 

costs of competing strategies are indeed straightforward. Although many authors report the 

role of the number, rhythm and acoustic features of vocalisations in deterring opponents to 

vocally compete across species (see reviews in Arark 1983; Todt and Naguib 2000), they 

usually examine bystanders’ responses to live or playback rivals over short periods of several 

minutes, and more scarcely over long lasting exchanges (e.g. Foote et al. 2008). In all cases 

authors measure average level in bystanders’ response to signal types. To my knowledge, no 

study has addressed the question of how individuals continuously assess and adjust 

concomitant variations in different acoustic call features over long periods of time, yet 

courtship or territorial contests can last long, during which rivals’ motivation to compete and 

condition fluctuate. 

In the barn owl, several nestlings vocalise altogether in parents’ absence. At first 

glance, nestlings’ vocal patterns do not present any obvious temporal organisation of rhythm, 

of call duration and alternation of turns. As revealed by the extensive study of human 

conversations, temporal modulations in the pitch, intonation, frequency and timing of vocal 

output are crucial to allow the smooth course of vocal interactions over time. In humans, both 

parties, with coincident interests or not, usually alternatively take and lead the floor using 

such fluctuations in their speech, which is referred to as basic ‘turn-taking rules’ (Duncan 

1972). In Chapter III, I examine if owlets have evolved turn-taking rules, that is to say 

whether and how pairs of siblings continuously assess and mutually adjust their call rate 

(rhythm) and call duration during long-lasting vocal interactions. I use both food-deprivation 
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and several playback experiments to test whether potential turn-taking rules vary relative to 

hunger level, seniority, familiarity and relatedness.  

 

Part 2 – Vocal competition within a network of several nestmates 

If the current framework of evolutionary game theoretical models predicts animals’ stable 

signalling strategies in detail, they mostly remain based, for practical reasons, on pairwise 

interactions, including models on sibling rivalry. Paradoxically, altricial offspring, as 

chorusing anurans or insects, birds living in flocks and mammals, fish and invertebrates living 

in aggregates or social groups compete with several conspecifics. In what concerns begging 

young, authors have examined so far how bird chicks modulate signalling level toward 

several siblings with respect to the signalling level of the whole brood (e.g. Smith and 

Montgomerie 1991), including barn owls (Roulin 2002a). Young, however, could modulate 

their competitive effort as a function of their several siblings’ individual effort and / or of 

what occurs during their siblings’ interactions.  

Although this issue was formally raised several decades ago about agonistic 

encounters in general, only recently have researchers addressed the question of how animals 

compete within ‘communication networks’ (McGregor 2005). In particular, some studies 

reveal that competitors would not only use ‘interceptive eavesdropping’ to adjust competitive 

effort to a rival’s - whereby they assess their relative resource holding potential from the 

latter’s traits or behaviours - but also ‘social eavesdropping’ (Amy and Leboucher 2007; 

Peake et al. 2005; Valone 2007). Social eavesdropping corresponds to a situation when an 

individual spies on rivals’ interactions to assess their relative strength and motivation without 

engaging in immediate competition. It thereby offers a relatively cost-free means of gathering 

useful information on potential opponents to ultimately dose competitive effort without 

paying the cost of direct confrontation (Peake and McGregor 2004). To date, social 
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eavesdropping has been empirically tested and shown to occur in contests such as the long or 

middle-range agonistic interactions of songbird and teleost fish males (Peake 2005). 

Situations where individuals compete with one another in close proximity as in altricial young 

could have facilitated the evolution of social eavesdropping even more. Therefore, in 

Chapter IV, I examine whether barn owl nestlings acoustically eavesdrop on siblings’ vocal 

interactions to adjust their negotiation effort. Using a playback procedure, I test whether 

bystander individuals assess the relative resource holding potential (seniority and vocal 

dominance) of two nestmates from their vocal exchange and accordingly modulate vocal 

investment in subsequent interactions. 

 Surprisingly, despite their growing interest in examining agonistic interactions within 

social networks, both theoreticians and empiricists neglect whether animals are able to count 

the number of current competitors, intruders or mates. Notwithstanding this shortcoming, 

ability to assess fluctuations in the number of rivals or mates regarding their motivation or 

quality is crucial to optimally allocating competitive effort. A large body of laboratory 

experiments, usually based on pre-training procedures, supports that animal species have 

evolved numerical abilities well beyond humans, including not only highly cognitive species 

such as apes (Boysen and Hallberg 2000), rats (Davis and Hiestand 1992), dogs (West and 

Young 2002), horses (Uller and Lewis 2009), cetaceans (Kilian et al. 2003), but also birds 

(Pepperberg 2006; Rugani et al. 2007), amphibians (Uller et al. 2003), fish (Agrillo et al. 

2009) and insects (Carazo et al. 2009; Dacke and Srinivasan 2008). Evidence for numerical 

assessment of competitors in the field is still restricted to anecdotal, but thereby interesting, 

papers on adult lions (McComb et al. 1994), birds (Seddon and Tobias 2003) and frogs 

(Reichert 2011), which are shown to gauge the number of territory intruders from 

vocalisations or visual cues. In altricial species, young may be able to recognise the vocal 

signature of parents (Jacot et al. 2010). In crowded and dark nests or litters, offspring might 
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also rely on siblings’ calls to discriminate the number of which that are currently competing 

and optimally adjust signalling level towards parents and / or siblings. Accordingly, in 

Chapter V, using a playback procedure, I test whether barn owl nestlings modulate 

negotiation effort not only to the total call rate of a brood, but also to fluctuations in both the 

number of call rates and motivation of nestmates.  
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ABSTRACT 

 

Animals communicate with conspecifics to resolve conflicts over how resources are 

shared. Since signals reflect individuals’ resource holding potential and motivation to 

compete, it is crucial that opponents efficiently transmit and receive information to optimally 

adjust competing effort to each other Acoustic communication is particularly flexible as it can 

be modulated according to background and social feedback. Diverse mechanisms have 

evolved to minimise acoustic signal interference, one being the avoidance of signal overlap by 

adjusting the timing of call production to alternate each others’ calls. Though avoidance of 

interference would be particularly important to resolve competition among relatives, its 

occurrence has been barely studied. Here, we investigated overlap avoidance in barn owl 

young siblings (Tyto alba), who vocally negotiate with each other the share of food provided 

by parents. Using both correlative and playback approaches, we found that owlets overlapped 

their live siblings’ and broadcasted calls at least five times less often than expected at random. 

We conclude that behaviour to reduce signal interference has evolved to optimise 

communication among kin. 

 

Key-words: animal communication, overlap, sibling negotiation, signal interference 



                                                                                                                                                                   CHAPTER I	
  

	
   29 

INTRODUCTION 

Animals are often in conflict over limited resources. In order to reduce the cost of physical 

competition, animals communicate among each other their motivation and their competitive 

ability to contest resources (Maynard Smith 1982; Parker 1974). Provided that 

communication entails costs, and hence reliably reflects signallers’ motivation to compete, the 

individuals that invest more effort in signalling have priority access to resources. Individuals 

facing competitors that display a high motivation are more likely to give up the contest for 

which the outcome is predictable (Parker 1974). This phenomenon is reinforced when 

competitors are kin (Hamilton 1964), since a less motivated individual derives benefits by 

giving up a contest not only because it avoids competing for an unlikely outcome, but also 

because the contested resources are consumed by a genetically related individual. During a 

contest, to advertise their motivation to compete, body condition or social status, conspecifics 

need to efficiently emit signals, but also to perceive the signals of opponents. The avoidance 

of signal interference is thus important component of animal communication. 

 Animals can communicate using different channels. Acoustic communication is 

particularly interesting because animals can modulate vocal signalling rapidly in relation to 

environmental and social cues (e.g. Remage-Healey and Bass 2006), and they have the 

possibility to adopt a large range of signalling strategies (e.g. Todt and Naguib 2000). A very 

important aspect of acoustic communication is that it can be blurred by background noise and 

conspecific interference. In various animal species, mechanisms have evolved to ensure that 

signals of different individuals can be discriminated by conspecifics. For instance, the human 

auditory system has the ability to discriminate between different speakers in a crowd even 

when the sounds are produced simultaneously, the so-called cocktail party problem (Bee and 

Micheyl 2008). Among species of insects, frogs and birds that vocalise in large groups or in 

noisy environment, individuals shift their call features to avoid overlapping in frequency, so 
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that their vocalisations differentiate from others and are thereby distinguishable (Narins and 

Zelick 1988; Römer and Bailey 1998; Slabbekoorn and Peet 2003). Emission of acoustic 

signals in groups can also be set by temporal organisation rules (Ficken et al. 1974; Gerhardt 

1994) and antiphonal calling has been documented groups of bats (Carter et al. 2008) and in 

numerous mated birds (Stokes and Williams 1968). Some primates can even detect and wait 

for silent windows to vocalise (Versace et al. 2008). This temporal organisation leads to an 

alternation of vocal signals reducing the risk of individuals calling simultaneously.  

A particular situation occurs when individuals communicating between each other 

belong to the same family. Although a previous study suggested that siblings would avoid 

overlapping their vocalisations when parents are away (Chaiken 1990), no experimental test 

has been performed. In some altricial species, siblings vocalise in the absence of parents to 

communicate their motivation to compete among each other (Bulmer et al. 2008; Johnstone 

and Roulin 2003; Roulin et al. 2000). This so-called sibling negotiation can be considered as a 

form of cooperation between related individuals, since its primary function is to reduce the 

level of sibling competition. Accordingly, a game-theoretical model showed that sibling 

negotiation is more likely to evolve in species in which nestmates are full- rather than half-

siblings and when the cost of sibling competition increases (Johnstone & Roulin 2003). Such 

vocal exchanges are usually not heard by parents and therefore, cannot be interpreted as a 

form of begging behaviour that evolved to convey honest information to parents (Roulin et al. 

2000). In the barn owl (Tyto alba), the single food item brought by a parent is indivisible and 

only one offspring is fed per parental feeding visit. Therefore, each nestling should invest 

more effort in negotiation when its chance of outcompeting its siblings increases (Johnstone 

and Roulin 2003). Hence, it is essential that each nestling assesses the level of 

competitiveness and motivation of all surrounding siblings, to optimally invest effort into 

sibling competition. Hungrier individuals signal their higher motivation to compete for the 
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next impending food item to nestmates by vocalising at a higher rate with long calls. This 

vocal behaviour induces siblings to reduce their vocalisation and momentarily withdraw from 

the contest over the impending food item (Dreiss et al. 2010b; Roulin 2002a). Thus, in the 

absence of parents, nestlings need to hear and be heard, to optimally adjust investment in 

sibling competition once parents arrive with food. During a single night nestlings can produce 

thousands of calls, implying that this communication system may be costly in terms of energy 

and time invested in calling (Roulin 2002a). Thus, to maximise transmission of vocal signals 

between siblings, we propose that nestlings avoid calling simultaneously otherwise they may 

have to call even more often to transfer the same amount of information. 

Here, we report an experimental test of this hypothesis of overlap avoidance in nestling 

barn owls, by studying free vocal interactions between pairs of nestlings (i.e. dyads). Siblings 

differ in age due to a pronounced hatching asynchrony, which results in asymmetries in the 

competitiveness of nestmates and different vocal behaviours. Given their stronger competitive 

abilities, seniors are usually less prompt to invest in vocalisations and are less sensitive to the 

vocal behaviour of their junior siblings (Roulin 2004a). We thus recorded naturally occurring 

vocal interactions between pairs of siblings that were either both food-deprived or both food-

satiated, each pair comprising one senior and one junior owlet. We tested whether the degree 

to which an individual avoids calling simultaneously as its siblings varies with motivation, i.e. 

their level of hunger, and with competitiveness, i.e. between juniors and seniors, and with 

development stage (i.e. absolute age). 

In such a design, each owlet produces calls at variable rhythm and hence the 

observation of siblings not calling simultaneously may simply result from the fact that 

siblings have different time-dependent activity patterns. Hence, to further tackle the 

hypothesis that barn owl siblings actively avoid calling simultaneously, we performed 

additional playback experiments with variable call rate. In natural vocal interactions, owlets 
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produce calls at variable rhythm, from loose clusters of rapid calls to a relatively regular 

rhythm (see for instance Roulin et al. 2009). We thus analysed the vocal response of singleton 

nestlings to two different playback experiments in which we either broadcasted negotiation 

calls at random (unpredictable) time points, and at a constant (predictable) rhythm, within the 

natural ranges. If competing barn owl nestlings minimise acoustic signal interference, we 

expect that individuals call simultaneously as their sibling or the playback less often than 

expected at random, regardless of the rhythm at which calls are emitted. 

 

METHODS 

General procedure 

The study was performed in western Switzerland (46°4’N, 6°5’E) on a population of wild 

barn owls breeding in nest-boxes located in barns. When nestlings were 18- to 45-days old 

(mean ± s.e.: 34.5 ± 0.3), we brought them to the university where they vocally behave as in 

nature (Roulin et al. 2009) and were not physiologically stressed (Dreiss et al. 2010a). We 

always left one or several nestlings in the natural nest to make sure parents did not abandon 

their brood. At that age, owlets are thermo-independent and able to eat prey items without 

maternal help. For these reasons, the mother is not sleeping with her offspring during the 

daylight hours and comes back only at night to deliver food items. Thus, we carried out our 

laboratory experiments on offspring that were used to the mother’s absence during the day.  

 

Recording setup 

Dyadic vocal interactions between pairs of siblings  

In 2008, we recorded 78 pairs of siblings (21-45 days old, 83 males, 71 females, 2 individuals 

of unknown sex) issuing from 41 different broods, implying that more than one pair of 
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siblings was sometimes used per nest. Siblings were hosted during three nights in an 

experimental nest-box similar to the one where they were reared in natural conditions (62 x 

56 x 37 cm), except that the box was divided into two areas by a thin wooden wall pierced 

with five holes at the top (fig. 1A). We placed one nestling on each side of the wall, randomly 

chosen, so that siblings could hear each other without visually or physically interacting. Each 

pair of nestlings comprised a senior individual and a junior sibling, which was on average 5 

days younger (range: 1-15 days). After a first night of acclimation, each pair of siblings was 

recorded over two nights in a row, from the beginning of the night (19h30) until 23h30. One 

night we food-deprived the nestling pair (no food given during the preceding 28 hours) and 

the other night we food-satiated them (from 00h00 to 16h00 on the recording day we offered 

130 g of laboratory mice, i.e. 3-4 mice, which exceeds their daily food requirement of about 

67 g; Durant and Handrich 1998), with the order of the two treatments being randomly 

assigned in time across pairs. Individuals that were starved on the first night were randomly 

chosen, since their mean body mass at the start of the experiment was similar to the mean 

body mass of individuals receiving the ad libitum treatment the first night (Student’s t-test: t = 

0.63, d.f. = 202, P = 0.53). 

As in natural conditions (pers. obs.), it happened that one of the two individuals did not 

vocalise during the 4.5 hours-recording period. Among the 78 pairs of siblings this occurred 

in 10 pairs (12.8%) when food-deprived and 20 pairs (25.6%) when food-satiated. Since our 

goal was to study vocal interactions between two individuals, we excluded these pairs of 

siblings to perform statistical analyses (table 1). 
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Table 1. Summary of the laboratory experiments used to assess the occurrence of call 
overlap in nestling barn owls. For each experiment, we analysed the recordings for which both 
siblings of a pair called, or the singleton nestlings responding to a playback vocalised. 
	
  

Experiment Year 
Total 

number of 
nestlings  

Number of 
recorded 
nestlings  

Number 
of 

broods 

Hours of 
recording  

Number of calls 
recorded per 

nestling  
(mean ± s.e.) 

Natural vocal 
interaction 

between food-
deprived 
siblings 

2008 156 
(78 pairs) 

136 
(68 pairs) 41 19h30-

23h30 1136 ± 70 

Natural vocal 
interaction 

between food-
satiated siblings 

2008 156 
(78 pairs) 

116 
(58 pairs) 41 19h30-

23h30 895 ± 88 

Unpredictable 
playback 2009 54 48 16 21h00-

00h45 59 ± 3 

Predictable 
playback 2010 96 65 26 21h00-

01h30 62 ± 3 
 

 

 

Figure 1.  Experimental nest boxes in which barn owl nestlings were recorded (A) in 
pairs of siblings and (B) individually while responding to playback soundtracks. 
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Playback experiment on singleton nestlings 

In 2009 and 2010, we brought free-living nestlings to the university for the playback 

experiments, in the same rooms as the ones where we recorded dyadic vocal interactions (fig. 

1B). Nestlings were placed alone in one side of the same experimental nest-boxes, with a 

loudspeaker (near05 experience, ESI Audiotechnik GmbH, Leonberg, Germany) in the other 

side to broadcast a pre-recorded playback sequence. In 2009, we broadcasted pre-recorded 

calls at unpredictable time points (hereafter denoted “unpredictable playback”) to 54 nestlings 

(27 to 44 day-old, 20 males, 33 females, 1 individual of unknown sex) from 16 different 

broods. Six of the 54 nestlings (11.1%) did not call during the recording session taking place 

between 21h00 and 00h45. In 2010, we broadcasted calls at a constant rhythm (hereafter 

denoted “predictable playback”) to 96 nestlings (18 to 41 days old, 47 males, 48 females, 1 

individual of unknown sex) from 26 broods. 31 of them (32.3%) did not vocalise during the 

recording session taking place from 21h00 to 01h30. In both the unpredictable and predictable 

playback experiments, nestlings were not fed between the preceding morning 08h00 until the 

start of the experiment at 21h00 as it usually happens in natural conditions. The experiments 

occurred on the third night nestlings were hosted at the laboratory for the unpredictable 

playback (2009) and on the second night for the predictable playback (2010). These 

differences are unlikely to create a difference between years in nestlings’ stress level, as it 

does not differ from baseline level from the second night (Dreiss et al. 2010a). 

 

Playback soundtracks 

In 2009, we broadcasted these calls to 54 single nestlings at three different rates (2, 6 and 10 

calls per minute) and three different durations (0.6, 0.8 and 1 sec). These values of call 

duration and call rate correspond to the mean values and to the lowest and highest 10% of the 

distributions observed in the two-chick broods. These two acoustic variables are the most 
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important parameters used in sibling negotiation (Dreiss et al. 2010b; Roulin et al. 2009). We 

built nine playback sequences lasting 15 minutes each, which were separated from one 

another by 10 min silence. These sequences correspond to the combination of the three 

different call rates, with the three different call durations. We inserted calls randomly and thus 

unpredictably in the soundtracks, except that two successive calls were separated by at least 1 

sec interval. A pause of one sec or less between two successive calls produced by the same 

individual was observed in only 0.03% of the cases (mean ± SD = 15.3 ± 106.4 s, range = 0.7 

– 7259.2 s). 

In 2010, we broadcasted sequences of 20 min each to 96 singleton nestlings at the same 

three different rates (2, 6 and 10 calls per minute), each sequence containing the calls of 1, 2 

or 5 different playback individuals, with the calls of different individuals being allocated 

randomly in the playback sequence (in each sequence all playback individuals produced the 

same number of calls). By broadcasting the calls from one to five playback individuals, we 

tried to mimic the several siblings naturally present in the nest (up to 9; Dreiss and Roulin 

2010). This experiment, thus consisted of nine sequences of 20 minutes each, separated by 10 

min silence, corresponding to the combination of three different call rates by three different 

numbers of playback individuals. Calls were inserted in a random order, but at regular time 

intervals; every 30, 20 or 6 sec to obtain playback sequences that differ in call rate. Detail 

methods for the construction of playback are presented in Supplementary material. 

 

Statistical analyses 

We considered that nestlings overlapped a call of their counterpart (their sibling or the 

playback) when they initiated their calls before the call of their counterpart ended. 

Negotiation calls are simple noisy sounds with unique temporal characteristics (see fig.10 in 

Bühler and Epple 1980). Means are provided ± standard error. 
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Propensity of overlapping siblings’ calls 

We used a randomization procedure to investigate whether nestlings overlap each other 

differently than if they call at random time points. For each vocal exchange between pairs of 

siblings recorded in 2008, we randomised the calls produced by both siblings with respect to 

time of call onset. Duration of the vocal exchange as well as the number and duration of the 

calls were thus kept unchanged. Since barn owl nestlings can naturally produce two 

successive calls with barely any pause between them (we recorded five pauses of 0 to 0.1 sec 

among 10,000 recorded pauses), we did not constrain this randomisation with respect to pause 

duration between two calls of the same individual. The randomisation of the calls of each 

sibling of a pair was repeated 1,000 times to generate a null distribution of call overlaps for 

each pair of siblings. This null distribution was then compared with the observed call overlap 

in the pair of siblings to calculate a P-value. Global probability of overlap across all pairs of 

siblings was determined with a Fisher combined probability test. We analysed junior and 

senior separately in order to have the seniority effect and because they are not independent. 

We corrected for multiple testing with Bonferroni (see Results). We also performed distinct 

analyses for pairs of food-deprived and food-satiated siblings, as each nestling was recorded 

in both states. 

 

Propensity of overlapping broadcasted calls 

We applied a similar randomization procedure to assess whether nestlings avoid overlapping 

the broadcasted calls. For each playback sequence, we randomised the calls produced by the 

focal nestling with respect to time of onset 1000 times and we compared the obtained null 

distribution of call overlap with the playback calls to the observed call overlap in the 

experiment. To analyse independent data in Fisher combined probability tests, so that each 

nestling appears only once per test, we performed separated analyses for each nine 
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combination of playback treatment (call rate and call duration for unpredictable playback; call 

rate and number of individuals for predictable playback). 

 

Influence of age and seniority on the propensity of vocally overlapping others  

We investigated the effect of age on the proportion of nestling calls that overlapped the calls 

produced by a sibling during vocal exchanges between pairs of siblings. For this aim, we ran a 

generalised mixed model with a binary error distribution and a logit link, with as dependent 

term the number of calls produced by the focal nestling that overlapped a call of its 

counterpart, divided by the total number of calls produced by the focal nestling, using SAS 

v.9.1 (SAS Institute Inc., Cary, NC, USA). We included the independent term age and the 

cofactors food treatment and seniority, i.e. whether the nestling was the junior (younger) or 

the senior (older) of the pair. To control for the repeated measurements per broods, pairs of 

siblings and nestlings, we included nestling identity nested in the identity of sibling pair and 

in the broods from which individuals were issued as random factors. 

 

Ethical note 

Removing several nestlings from a nest during two or three nights never induced parents to 

abandon their brood. We always left one or two nestlings in the natural nest and we had 

already observed that parents do not adjust feeding rate to short-term variations in food need 

(Roulin et al. 2000). Nestlings were transported in opaque aerated plastic boxes, with foam 

floor. In the laboratory, nestlings were not physiologically stressed, as shown by the absence 

of a rise in baseline corticosterone level compared to the situation prevailing under natural, 

undisturbed conditions (Dreiss et al. 2010a) and we did not observe behavioural signs of 

stress. Blood samples (around 20 µL) for corticosterone assay were taken by puncturing the 

brachial vein and collecting the blood with heparinised capillary tubes (see methdos and 
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results details in Dreiss et al. 2010a). We feed nestlings with laboratory mice Mus musculus 

euthanized by CO2, bought frozen from an animal house (Reptiles Farm, Servion, 

Switzerland). Barn owls can naturally fasted for one or two nights when the weather is bad 

(personal observations). Keeping owlets at the university did not negatively affect their body 

condition since mean body mass at fledgling and survival up to fledgling did not significantly 

differ between nestlings brought to the university and nestlings left in their nest (Wilcoxon 

test on body mass at fledgling stage of recorded and non-recorded siblings: Z = 1.6, P = 0.11 

[recorded: 358 ± 2 g; non-recorded: 353 ± 3 g] and on mortality: Z = 1.6, P = 0.10 [recorded: 

10 % of mortality; non-recorded: 16 %]). The experiments were approved by the veterinary 

services of Canton de Vaud (Form No 2109.1). 

 

RESULTS 

Siblings avoid vocally overlapping each others’ calls 

Food-deprived and food-satiated nestlings overlapped the calls of their siblings (who were in 

a similar food state) in only 1.04 ± 0.13 % and 0.81 ± 0.04 % of the cases, respectively, which 

is 7.3 and 4.6 times less often than expected at random (fig. 2; Fisher combined probability 

tests: χ2 = 908 and 897 for junior and senior food-deprived siblings respectively; χ2 = 553 and 

594 for junior and senior food-satiated siblings; all P < 0.0001). Food treatment, absolute age 

and seniority (junior or senior) did not have any significant effect on the proportion of 

observed overlapped calls (generalised mixed model, food treatment: F1,95 = 2.12, P = 0.15; 

absolute age: F1,95 = 0.75, P = 0.39; seniority: F1,95 = 2.89, P = 0.09). If we removed the term 

“absolute age” from the model, the variable “seniority” remained not significant (P = 0.08).
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Figure 2. Observed (black) and expected (grey) percentage of overlapped calls (± s.e.) of 
barn owl nestlings. By definition, a nestling produced “overlapped calls” when it starts the emission 
of a call before a call of its sibling or before a broadcasted call has ended. Nestlings either exchanged 
vocalisations with a sibling during free vocal dyadic interactions, in a food-deprived or food-satiated 
state, or responded to pre-recorded playback sequences containing calls inserted at an unpredictable 
random timing or, at a predictable fixed timing. In all situations, observed call overlap was 
significantly lower than expected at random. 
 

Nestlings avoid vocally overlapping playback calls 

The proportion of calls that overlapped playback calls was 1.27 ± 0.15 % and 0.88 ± 0.16 % 

for unpredictable and predictable playbacks respectively, which is 4.7 and 8.8 times less often 

than expected at random (fig. 2; Fisher combined probability tests for the 9 sequences of the 

unpredictable playback: all χ2 > 142; all P < 0.005 [P-value threshold for 9 tests according to 

Bonferroni], except for the sequence that comprised 2 calls/min and calls of 0.6 sec: χ2 > 104; 

P = 0.061; for the 9 sequences of the predictable playback: all χ2 > 199; all P < 0.005, except 

for the 3 sequences that comprised 2 calls/min: χ2 > 111; 0.005 < P < 0.04). At random, the 

proportion of calls that overlapped the playback during the sequences containing 2 calls/min 

was on average 2.4 ± 0.3 %. This very low proportion explains why the difference between 

observed overlap and random overlap was not significant. 
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DISCUSSION 

Here we show that nestling barn owls, which are known to vocally negotiate among each 

other for food resources delivered by parents (Roulin 2002a; Roulin et al. 2000), have 

developed a mechanism to avoid overlap of their vocal signals. Using both correlative and 

playback approaches, we found that nestlings preferentially alternate their calls in time rather 

than overlapping them. This phenomenon of overlap avoidance suggests that accuracy of 

signal transmission is essential in this sibling communication system. 

Our results show that nestlings do not vary in the extent of overlap avoidance according 

to their age, which could reflect dominance status, or hunger level, which reflects motivation 

to compete for food. This absence of variation across individuals and food states suggests that 

overlap is not used as an aggressive signal, to deter competitors from calling, contrary to 

some observations in songbirds (Todt and Naguib 2000). Alternating acoustic signals, 

referred to as antiphonal patterns, enables interacting individuals to avoid signal interference 

and thus the jamming of information contained in signals. In some communication system, 

the end of calls is more variable and thus carries more information than the beginning (Todt 

and Naguib 2000). An individual that overlaps a counterpart vocal signal, may benefit from 

masking its competitor signal, without losing much of its own signal information (Hultsch 

and Todt 1982). This is not the case in the barn owl where calls are simple noisy sounds, thus 

the same information is conveyed at the beginning as at the end of calls (Bühler and Epple 

1980). Overlappers that start calling before their counterpart has terminated its call would thus 

suffer the same signal masking than their overlapped counterpart, and thus hinder similar 

information loss. Call duration is an important features of communication between sibling 

barn owls (Dreiss et al. 2010b; Roulin et al. 2009), and overlap would thus blur this signal. 

In sibling negotiation process, although individuals are in conflicts for the same 

resource, two elements promote the evolution of overlap avoidance: the importance of signal 
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exchange for food sharing and the relatedness between competitors (Johnstone and Roulin 

2003). Genetically related sibling should assess each other motivation to obtain the next 

delivered prey item, thus resolve peacefully the conflict over food sharing. Vocal overlap 

would blur the signal and the negotiation system would be less efficient. Furthermore, the 

avoidance of overlap should be particularly developed in vocal exchanges between kin, 

because kin selection would promote the evolution of altruistic behaviour. Sibling negotiation 

can be considered as a form of altruism between related individuals, since its primary function 

is to reduce the level of sibling competition. In the barn owl where offspring mainly compete 

with full-sibling (Roulin et al. 2004). A game-theoretical model showed that sibling 

negotiation is more likely to evolve in species in which nestmates are full- rather than half-

siblings and when the cost of sibling competition increases (Johnstone & Roulin 2003). By 

avoiding signal overlap, individuals let their needy relatives the opportunity to transmit their 

signals. 

Sibling competition is particularly important in offspring that still depend on their 

parents for food resources (Wright and Leonard 2002) and they often share the same acoustic 

space to signal their motivation to compete. Offspring have to efficiently signal their need 

towards their parents, which allocate food among their progeny based on these signals 

(Godfray 1995b). Social interactions between siblings play an important role on how each 

individual communicates with family members. Accordingly, several studies have shown that 

individuals not only adjust their level of signalling to their own needs, but also to the 

signalling level of their siblings (Blanc et al. 2010; Smith and Montgomerie 1991). These 

adjustments can be interpreted as means to increase individual signal efficiency. For instance 

in meerkats (Suricata suricatta) pups beg one after the other to avoid interference with 

littermates (Madden et al. 2009) and this increases adult provisioning. Alternatively, change 

of signalling behaviour when facing a nestmate can be a form of altruistic behaviour. For 
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instance nestling barn swallows Hirundo rustica moderate their begging when facing related 

rather than unrelated nestmates, suggesting that kin selection modulates sibling competition 

(Boncoraglio et al. 2009). In the barn owl where offspring mainly compete with full-siblings 

(Roulin et al. 2004), nestlings may refrain from calling to let their sibling the opportunity to 

call and/or favour their own signal efficiency. 

The present study highlights an interesting characteristic of the communication system 

of young birds still dependent on their parents. Nestlings favour the accuracy of acoustic 

communication over loud vocal demonstration. Systems in which related individuals 

exchange signals that participate in enhancing fitness would thus favour the development of 

mechanisms to avoid call overlap. 
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Supplementary material 

	
  

Acoustic recordings 

We simultaneously recorded vocal interactions of pairs of siblings using two microphones 

(MC930, Beyerdynamic GmbH & Co KG, Heilbronn, Germany) oriented in opposite 

directions, each facing one bird and connected to a multichannel recording system managed 

by Cubase v.5.2 software (Steinberg Media Technologies GmbH, Hamburg, Germany). The 

two recording soundtracks were analysed with Matlab v.7.7 (MathWorks, Natick, MA, USA.) 

to assign calls to each individual of a pair and to measure precise timing of call onset and call 

duration (see Matlab script below). 

We recorded the vocal response of singleton nestlings responding to playback using a 

single microphone placed in its direction. We again used Matlab v.7.7 to assign calls to the 

singleton nestling and the playback and to measure the timing of call onset as well as the 

duration of each call (see script below). 

 

Construction of playback experiments 

We extracted the calls used to build playback soundtracks from the dialogs of siblings pairs 

recorded in 2008. Calls were selected for their duration and not modified, except for 

magnitude, which was standardized using Audacity v.1.3 Beta freeware 

(http://audacity.sourceforge.net). This manipulation did not affect other acoustic parameters. 

Measuring variation of amplitude necessitate positioning the individual at a constant distant 

from the microphone, which is biologically difficult. Hence, the recorded calls differ in 

amplitude especially because individual were not at the same distance from microphone, as 

they freely move in the box. We have thus corrected for this difference in amplitude.  
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We built playback sequences in both years using an automatic program in Matlab v.7.7 

(MathWorks, Natick, MA, USA.) that inserted the calls at random in the experiment 

performed in 2009 (unpredictable playback) or at constant intervals in the experiment 

performed in 2010 (predictable playback). 

 

Experiment session 2 – Unpredictable playback experiment 

We selected calls from 16 nestlings, with 30 calls each (6 males, 10 females; aged 28 to 45 

days), corresponding to 10 calls of three different categories of call duration. Across the 9 

sequences played-back to each singleton nestling, we used the calls from two different 

individuals out of the 16 possible ones, which we chose randomly, with one sequence of 15 

minutes always containing the calls of one single playback individual. To avoid pseudo-

replication (Kroodsma et al. 2001), The playback soundtracks broadcasted were unique, as 

call order and timing and the order of the nine sequences were randomised for each singleton 

nestling. 

 

Experiment session 2 – Predictable playback experiment 

We selected 10 calls of 0.6 sec from 16 nestlings (6 males, 10 females; aged 29-45 days). We 

built a unique playback soundtrack for each nestling by randomising the order of the nine 

sequences and the order of the calls of playback individuals in each sequence. 
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ABSTRACT 

 

Young animals compete for parental resources by displaying various acoustic signals 

that may differentially affect the outcome of sibling competition. We propose the hypothesis 

that young should primarily compete using the vocal component that is most closely 

associated with hunger level. We tested this hypothesis in the barn owl (Tyto alba) in which 

nestlings vocally compete by producing more calls of longer duration than siblings to 

negotiate priority access to the indivisible prey item their parents will deliver next. Because 

food-deprived nestlings increase call rate proportionally more than call duration compared to 

when sated, an individual should invest more effort in call rate than call duration in order to 

influence sibling behaviour, and therefore call rate should be more sensitive to variations in 

the intensity of sibling competition. To singleton nestlings, we broadcasted calls of varying 

durations at different rates. When hearing calls at higher frequency or of longer duration, 

bystanders reduced vocalisation rate to a larger extent than call duration. Variation in the rate 

at which we broadcasted calls also influenced bystanders’ responses to a greater extent than 

variation in the duration of calls. Young animals thus actively and differentially use multiple 

signalling components to compete with their siblings over parental resources.  

 

Key-words: begging, call rate, call duration, multiple signalling, negotiation, competition 
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INTRODUCTION 

Offspring typically request more resources than parents are willing to provide (Trivers 1974). 

This parent-offspring conflict is thought to have promoted the evolution of honest signals of 

need by offspring allowing parents to optimally adjust provisioning rate and allocate food 

among them (e.g. Teather 1992; Glassey and Forbes 2002; Whittingham et al. 2003; Rosivall 

et. al 2005; Tanner et al. 2008). Social interactions also play a prominent role in how young 

animals adjust solicitation level, since the parental decision to feed a particular young depends 

on the behaviour displayed by the other offspring. In the case where parents feed several 

offspring per visit, scramble competition triggers siblings to escalate begging behaviour 

relative to one another to obtain a larger than equal share of the parental resources (Godfray 

1995). For instance, bird nestlings typically increase begging level when their nestmates 

become hungrier (Smith and Montgomerie 1991, Price and Ydenberg 1995, Leonard and 

Horn 1998). When parents feed only one offspring per visit, the individual that is the most 

motivated to compete will deter its siblings from competing since the outcome of the 

competition is predictable (Johnstone and Roulin 2003).  

Multiple components of begging behaviour may have evolved to convey detailed 

information about fine-tuned variation in competitive interactions. For instance, call rate, 

duration, amplitude and frequency can indicate identity (Saino et al. 2003; Yasukawa et al. 

2008; Quillfeldt et al. 2010; Reer and Jacot 2011), body condition (e.g. Gladbach et al. 2009), 

hunger level (Roulin et al. 2000; Marques et al. 2009; Reer and Jacot 2011), size (e.g. Sacchi 

et al. 2002; Roulin et al. 2009) and health (Saino et al. 2001). Although multiple begging 

components can be correlated to each other (e.g. Leonard et al. 2003), they differentially 

influence how food is shared among the progeny (Royle et al. 2002; Tanner et al. 2008). 

Because each single acoustic feature may not be similarly associated with an individual’s 

need and resource holding potential, young may differentially adjust acoustic features in 
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relation to their siblings’ behaviour. For this reason, animal offspring should differentially 

adjust the various components of begging signals to one another. In systems where the 

primary function of solicitation behaviour is to signal need to parents or siblings, we predict 

that the begging component most closely associated with the need for food is more sensitive 

to the prevailing social environment and also impacts sibling behaviour to a larger extent. 

The barn owl (Tyto alba) is suitable to investigate the relative role played by different 

acoustic features in sibling competition. In this species, young not only beg from their parents 

but also vocally communicate among each other in the prolonged absence of parents to 

resolve the contest over access to the next indivisible food item that parents will deliver. Each 

nestling vocally informs its siblings about the willingness to compete over the impending 

indivisible food item. The hungriest individual is highly vocal, which deters siblings from 

begging conspicuously at the arrival of their parents. Owlets are said to vocally negotiate to 

reduce the level of competition taking place once parents have returned with food (Roulin 

2002a). Published correlative results suggest that both the rate and duration of vocalisations 

play a major role in this sib-sib communication system. By producing longer negotiation calls 

a hungry individual would induce siblings to refrain from vocally negotiating and by emitting 

more negotiation calls it would induce siblings to refrain from begging once parents return 

with food (Dreiss et al. 2010b).  

In the present study, we propose the hypothesis that to be successful in sibling 

negotiation nestlings have to invest more effort in the vocal component that is more finely 

modulated in relation to variation in hunger level. Because this component best signals 

hunger level and hence motivation to outcompete siblings, it should have a stronger influence 

on how sibling contests are resolved. In order to test this, we performed two experiments. 

First, we recorded vocal interactions at night in pairs of live siblings in which we manipulated 

hunger level by alternatively food-depriving them and offering them food ad libitum. This 
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enabled us to investigate whether nestlings naturally increase call number to a larger extent 

than call duration (or the opposite) when in greater need. Secondly, we experimentally tested 

two predictions of the hypothesis that nestlings primarily compete by using the acoustic 

component that is more sensitive to their need. To do so, we recorded the rate and duration of 

vocalisations of singleton nestlings responding to pre-recorded calls of varying durations 

broadcasted at various rates. (1) We expected that bystander nestlings would primarily 

modulate the vocal component that most strongly reflects hunger level in relation to variation 

in the rate and duration of the broadcasted calls. Thus, when listening to more calls and calls 

of longer duration singleton nestlings should reduce the vocal component that is more closely 

associated with hunger level to a larger degree than other vocal components. (2) Variation in 

this playback component, rather than variation in the other component, should have a greater 

influence on vocal behaviour of bystander nestlings. For instance, if call rate is more sensitive 

to hunger level than call duration we would expect that when we broadcasted calls at a greater 

frequency, bystander nestlings should decrease the rate at which they call and the duration of 

their calls to a larger extent than when we broadcasted longer calls.  

 

METHODS 

Study site and animals 

The study was performed in western Switzerland (46°49’N/06°56’E) in a population of wild 

barn owls breeding in nest-boxes. Parents hunt small mammals at night to feed their one to 

nine offspring. Once offspring are thermo-independent at two to three weeks of age, the 

mother begins to hunt in order to provision for the brood. We carried out the experiments 

after this age, when parents were naturally sleeping outside their nest-box in another barn, and 

before nestlings take their first flight at around 55 days. We estimated nestling age shortly 
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after hatching by measuring the length of the left flattened wing from the bird’s wrist to the 

tip of the longest primary (Roulin 2004b).  

 

Experiment 1: differential effect of hunger on call rate and call duration  

To investigate whether call rate or call duration is more sensitive to variation in hunger level, 

we manipulated food supply in 98 nestlings, 51 males, 45 females and two individuals of 

unknown sex, issued from 35 broods in 2008 (c.f. Chap. III). When aged 25 to 45 days (mean 

± SD: 35 ± 5 days) we brought them back to the laboratory in the afternoon to be kept in a 

similar wooden nest-box (100 x 60 x 50 cm) as the one where they were reared in natural 

conditions (fig.1A in Chap.I). Nestlings were not physiologically stressed, as shown by the 

absence of a rise in baseline corticosterone levels compared to the situation prevailing under 

natural, undisturbed conditions (Dreiss et al. 2010a). Nest-boxes were divided in two parts 

with a thin wooden wall pierced with five holes at the top so that two siblings, placed in each 

part of the box, could vocally communicate without interacting physically. We kept nestlings 

in these boxes for two days and three nights before taking them back to their original nest in 

the field. After a first night of acclimation, we analysed the vocal exchange of each pair of 

siblings from 21:00 until 23:40 on the second and third nights. On one of the two nights, 

chosen randomly, we food-deprived the two individuals (no food given during the preceding 

28 hours) or food-satiated them (from midnight to 16:00 on the recording day we offered 130 

g of laboratory mice, which exceeds their daily food requirement of about 67 g). Over 24 

hours food-deprived individuals lost on average 42 ± 1 grams and when fed ad libitum they 

gained 16 ± 2 grams. To avoid superfluous disturbance, we manipulated nestlings only once 

per day at 16:00 and opened nest-boxes again at midnight to add food. 
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Experiment 2: relative role of call rate and call duration on sibling negotiation 

In 2009, we brought 19 male and 35 female nestlings issued from 15 broods to the laboratory 

at 16:00. They were 35 ± 4 days of age (range: 25-44). We hosted them in a similar wooden 

nest-box as in 2008, except that an individual was placed in one side of the box, while we put 

a loudspeaker (near05experience, ESI Audiotechnik GmbH, Leonberg, Germany) in the other 

side behind the wooden separation (fig.1B in Chap.I). At 9:00 on the first morning following 

their arrival, we provided food ad libitum and the second morning at 09:00 we removed the 

remaining mice, so that nestlings were food-deprived until 21:00 when we started the 

playback experiment.  

We broadcasted nine playback sequences in a row, each sequence lasting 15 minutes, 

with periods of 10 minutes of silence between two sequences, as described in fig. 1. The nine 

sequences corresponded to the nine combinations of calls of three different durations (0.6, 0.8 

and 1.0 second) broadcasted at three different rates (2, 6 and 10 calls/min). These values 

correspond to the mean values and to the lowest and highest 10% of the distributions 

observed in the two-chick broods recorded in 2008 (fig. 2). To avoid pseudo-replication, we 

built a unique soundtrack of 9 sequences for each bystander individual. We allocated the nine 

combinations in a random order, except that we limited the possibility that the bystander 

individual heard the same call rate and call duration in two consecutive sequences. We built 

the nine sequences using natural calls from two randomly chosen starved nestlings (donors I1 

and I2 in fig. 1) recorded in 2008, out of 16 possible ones (6 males and 10 females; aged 28-

45 days). We built the first three and last three sequences with the calls of donor I1, and the 

fourth, fifth and sixth sequences with the calls of donor I2. We used 10 possible distinct calls 

of a given duration (0.6, 0.8 or 1.0 sec) of a donor to build each sequence. Each of the nine 

sequences was built with 10 unique calls. We randomly inserted the calls within each 

sequence, with the constraint that two successive calls were separated by an interval of at least 
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one-second. In the two-chick broods recorded in 2008, a pause of one second or less between 

two successive calls produced by the same individual was observed in only 0.03% of the 

cases (mean ± SD = 15.3 ± 106.4 s, range = 0.7 – 7259.2 s). We standardised intensity of 

playback calls using free Audacity software v.1.3 Beta (http://audacity.sourceforge.net), a 

procedure that does not affect other acoustic parameters.  

 

 

 

 
Figure 1. Design of the playback experiment. A unique combination of nine playback 
sequences lasting 15 minutes each and separated by 10 minutes of silence was broadcasted to each 
bystander nestling. These sequences corresponded to the nine combinations of calls of three different 
durations (0.6, 0.8 and 1.0 sec) broadcasted at three different rates (2, 6 and 10 calls/min). We used the 
calls of two pre-recorded individuals: donors I1 and I2, with 10 possible distinct calls from each donor 
in each of the three durations. We used the calls of I1 to build the three first and three last sequences, 
and of I2 to build the sequences 4, 5, and 6. For a given duration, the 10 calls of I1 used in the first 
three sequences were different from the 10 calls of the same duration used in the last three sequences. 
In this example, the 10 calls lasting 1.0 sec in the first sequence were different from the 10 calls of 1.0 
sec used to build the ninth sequence.  
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Figure 2. Distributions of call rate (A and C) and mean call duration per minute (B and 
D) in barn owl siblings interacting in pairs, which were alternatively starved (A and B) 
and satiated (C and D). Recordings were made between 21h00 and 23h40 and the 160-minute long 
soundtrack was divided in one-minute intervals. We then considered only those minutes during which 
nestlings produced at least one call. Sample size is 98 individuals from 49 pairs of siblings in each 
food treatment. In each diagram darker bars correspond, from left to right, to quartiles, i.e. values 
corresponding to 25, 50 and 75 % of the total distributions. 
 
 

Acoustic analyses 

In 2008, we recorded calls using two microphones (MC930, Beyerdynamic GmbH & Co KG, 

Heilbronn, Germany) oriented in opposite directions, each facing one nestling, and in 2009, 

we used a similar microphone oriented towards singleton nestlings. We could thus easily 

assign calls to each individual, or to the singleton nestling and the playback, based on 

intensity differences between paired soundtracks. We used Cubase® software versions 4 and 

5.1 (Steinberg Media Technologies GmbH, Hamburg, Germany), to simultaneously record 

the two siblings placed in the same box in 2008 and to simultaneously broadcast the playback 

and record the vocal response of bystander nestlings in 2009. We measured call duration 

using a semi-automatic program in Matlab v.7.7 (MathWorks, Natick, MA, USA). 
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Statistical analyses 

Experiment 1: differential effect of hunger on call rate and call duration  

We analysed the relative effect of food supply on call rate and call duration in 49 pairs of 

nestlings (n = 98 individuals). For each individual and food treatment we calculated the 

number of calls and the mean call duration (in seconds). Because long periods during which 

an individual does not call will strongly reduce mean call rate but not affect mean call 

duration, considering these periods will blur the results. We thus divided the soundtracks 

recorded between 21h00 and 23h40 in one-minute intervals, and considered only those 

minutes during which nestlings produced at least one call to compute an overall mean call rate 

and mean call duration to be compared. We ran a generalised linear mixed model with 

Poisson error distribution to analyse the effect of food treatment on call rate and a linear 

mixed model to analyse its effect on mean call duration, using the GLIMMIX and MIXED 

procedure in SAS V9.2 (SAS Institute Inc., Cary, NC, USA), respectively. Both models 

included nestling identity nested in the experimental nest-box and in the brood where they 

were raised in the field as random intercept to control for pseudo-replication. As independent 

factors, we included food treatment (starved vs. satiated), the order of the treatment across the 

two nights of experimentation as well as their interaction.  

To investigate whether nestlings differentially increase the rate and duration of their 

calls with hunger level, we computed the percentage of increase in call rate and in mean call 

duration per minute per individual between a starved and satiated state (i.e. difference in call 

rate between the two food states divided by call rate measured when food-satiated; similar 

procedure for call duration). We performed a within-individual pairwise comparison using a 

Student’s t-test.  
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Experiment 2: relative role of call rate and call duration on sibling negotiation  

We first investigated the mutual effects of the rate and duration of broadcasted calls on the 

vocal response of bystander nestlings. To do so, for each of the 54 bystander individuals, we 

computed their call rate for each of the nine 15-minutes long playback soundtracks, i.e. the 

number of calls divided by 15 minutes, and the mean call duration (in seconds). Because in 90 

recorded sequences nestlings did not call, we analysed more call rates (n = 486 sequences) 

than mean call durations (n = 396 sequences). To investigate the carry-over effect of each 

playback sequence, we also measured nestling vocal behaviour during the 10-minutes long 

periods of silence separating playback sequences. For each bystander nestling and for each of 

these 10-minutes long periods, we computed the call rate, i.e. the number of calls divided by 

10 minutes of silence, and mean call duration.  

We ran four separate linear mixed models for the vocal response (call rate and mean call 

duration) measured during the 15-minutes long playbacks and during the following 10-

minutes long period of silence, using the MIXED procedure in SAS V9.2 (SAS Institute Inc., 

Cary, NC, USA), to quantify the immediate and carry-over effect of the playback treatments. 

In each model, we fitted call rate or mean call duration of bystander nestlings as dependent 

variable and included nestling identity nested in brood where they were reared in the field as 

random intercept. We also fitted the identity of the playback individuals used to generate 

sequences as an extra random variable. As independent variables, we included two factors 

(i.e. 3 levels of playback call rate and 3 levels of playback call duration) plus their interaction, 

and three covariates, namely the order at which each of the nine playback sequences were 

broadcasted, and bystander nestling sex and age. We initially included as covariates the age 

and sex of the playback individuals, but since these two covariates proved not significant, we 

removed them from the saturated models for the sake of clarity. To investigate the carry-over 

effect of the playback treatments on bystander call rate during the following silence, we also 
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included as covariate the call rate of this bystander during the playback. Similarly, we 

included bystander mean call duration during the playback as covariate in the model of the 

bystander’s mean call duration during the following silence. For all models, we performed 

backward model selection; final models only contained significant effects (P < 0.05), and 

main effects involved in significant interactions. Residuals were systematically checked for 

normality. 

Linear mixed models enabled us to investigate the effect of variations in playback call 

rate and in playback call duration on bystander vocal response. In a second step, we compared 

the magnitude to which nestlings modulated call rate (and call duration) in response to 

variations in playback call rate and call duration. Finally, we only considered the extreme 

playback values, i.e. when we broadcasted 2 and 10 calls/min and when we broadcasted calls 

lasting 0.6 and 1.0, leaving out the playbacks of 6 calls/min and 0.8 sec. We adopted this 

procedure because the change in bystander vocal response was linear across the three-levels 

for both call rate and mean call duration. We thus computed the percentage of change in 

bystander response, i.e. call rate or mean call duration, as the average call rate (or average call 

duration) for the playback at 2 calls/min minus the average call rate (or average call duration) 

for the playback at 10 calls/min divided by the average call rate (or average call duration) for 

the playback 10 calls/min. In each case, nestling average call rate was computed over all the 

three possible playback call durations, since interaction between both the playback call rate 

and the playback call duration proved non significant in linear mixed models. A similar 

procedure was applied for playback call durations of 0.6 and 1.0 sec. Then, across all 

individuals we compared the within-individual percentage of change in average call rate and 

in average call duration according to varying playback call rates and according to varying 

playback call durations using a Wilcoxon Signed Rank test. Similarly, we compared the 
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percentages of change in bystander average call rate and in its average call duration according 

to playback call rates and then according to playback call durations. 

 

RESULTS 

Experiment 1: differential effect of hunger on call rate and call duration  

Food-deprived owlets produced more calls than food-satiated ones (mean ± SE = 8.30 ± 0.04 

vs. 7.54 ± 0.05 calls per minute; linear mixed models, food treatment: F1,24651 = 711.5, P < 

0.0001; order of food treatment: F1,24651 = 132.8, P < 0.0001; interaction: F1,24651 = 0.2, P = 

0.63; fig. 2). Owlets also produced longer calls when food-deprived than food-satiated (0.818 

± 0 0.002 sec vs. 0.750 ± 0.002 sec; food treatment: F1,24651 = 2787.2, P < 0.0001; order of 

food treatment: F1,24651 = 505.8, P < 0.0001, interaction: F1,24651 = 0.03, P = 0.83; fig. 2). The 

within-individual percentage of increase in call rate from a food-satiated to a food-deprived 

state was proportionally greater than the percentage of increase in call duration (34 ± 6% vs. 

14 ± 2%; Student’s t-test, t97 = 3.8, P = 0.0003, n = 98 nestlings).  

 

Experiment 2: relative role of call rate and call duration on sibling negotiation  

1. Immediate vocal adjustment by bystanders during the 15-minutes long playbacks  

During the playback both the duration of the broadcasted calls and the rate at which they were 

broadcasted exerted a significant effect on the bystander’s call rate and on its call duration 

(table 1). When we broadcasted calls at a higher rate and for a longer duration, we observed a 

linear reduction in the rate at which nestlings vocalised and in the duration of their calls (table 

1; fig. 3). Owlets produced 0.7 ± 0.2 (estimate ± SE; P = 0.002) and 1.5 ± 0.2 (P < 0.0001) 

fewer calls per minute when hearing 10 compared to six and two calls per minute respectively 

(table 1, effect of ‘PB call rate’, fig. 3A). Similarly, when hearing calls of 1.0 second, 
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nestlings emitted 0.3 ± 0.2 (P = 0.09) and 0.9 ± 0.2 (P < 0.0001) fewer calls per minute than 

when playback calls lasted 0.8 and 0.6 seconds (table 1, effect of  ’PB call duration’, fig. 3C). 

Owlets also produced calls that were shorter by 0.04 ± 0.01 second (P = 0.0004) when 

hearing 10 compared to 2 calls/min (table 1, ‘effect of PB call rate’, 10 vs. 2 calls/min: P = 

.23; fig. 3B), and of 0.02 ± 0.01 (P = 0.07) and 0.03 ± 0.01 second (P = 0.01) when the 

broadcasted calls lasted 1.0 compared to 0.8 and 0.6 second respectively (table 1, ‘effect of 

PB call duration’; fig. 3D). The effects of the rate at which calls were broadcasted and of the 

duration of playback calls on the nestlings’ response were independent from each other, as 

shown by the absence of significant interaction between these two factors (table 1, both P > 

0.09). The sequence order covariate indicates that with time bystanders increased both the rate 

at which they called and the duration of their vocalisations (table 1, both P ≤ 0.007, estimate ± 

SE = 0.1 ± 0.03 calls/min, 0.01 ± 0.02 second).  

To deter a sibling to negotiate an individual could therefore produce many long calls. 

However, a high call rate appears to be more efficient than long calls as suggested by the 

following two arguments. First, variation in the rate at which calls were broadcasted exerted a 

stronger effect on nestling vocal behaviour than variation in the duration of broadcasted calls. 

Accordingly, owlets were more dissuaded to vocalise when hearing higher call rates than 

longer calls (within-individual pairwise comparison between the percentage of decrease in 

nestling mean call rate while hearing calls broadcasted at 2 and 10 calls/min and the decrease 

while hearing broadcasted calls of 0.6 and 1.0 sec, Wilcoxon Signed Rank test, V = 800, P = 

0.03, n = 48 nestlings). Similarly, they shortened their calls much more when hearing calls 

broadcasted at a higher rate than longer calls (similar comparison of the percentage of 

decrease in nestling mean call duration: V = 786, P = 0.04). Second, call rate of singleton 

bystanders was more sensitive to variations in our playbacks than was their call duration. 

Owlets reduced the rate of their vocalisations to a higher magnitude than their duration in 
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response to an increase in both playback call rate and call duration (within-individual pairwise 

comparison between the percentage of decrease in bystander mean call rate and mean call 

duration, while hearing calls broadcasted at 2 and 10 calls/min, V = 987, P < 0.0001; while 

hearing calls of 0.6 and 1.0 sec: V = 932, P = 0.0004).  

 

Table 1. Linear mixed models on call rate and mean call duration of bystander barn owl 
nestlings during the 15-minute long playbacks and the 10-minute long period of silence 
following the playback. Models are based on a total of 486 observations for call rate, 396 and 385 
for mean call duration during playback and silence, respectively. The 54 nestlings were issued from 15 
nests. Nestling identity nested in brood where they were raised in the field was fitted as a random 
intercept, as well as the identity of the playback individual from which we used the calls. Model 
selection was based on a stepwise elimination of non-significant effects, beginning with interactions. 
Estimates are indicated for significant playback effects (P < 0.05).  
 

  nestling call rate 
(calls / min)  nestling call duration 

(sec) 

Fixed effects  F df P-value  F df P-value 
   DURING PLAYBACK 

 
 

Nestling sex   F1,412 = 4.2   0.04  F1,325 = 0.4 0.55 
Nestling age  F1 412 = 9.1   0.003  F1,325 = 1.9 0.17 
Sequence order  F1 412 = 11.6   0.0007  F1,325 = 43.5 <0.0001 
Playback (PB) call rate  F2,412 = 28.5 <0.0001  F2,325 = 6.7 0.001 
PB call duration  F2,412 = 9.3   0.0001  F2,325 = 3.4 0.04 
PB call rate x PB call duration  F4,408 = 0.9   0.44  F4,321 = 2.0 0.09 
       
  DURING SILENCE 
Call rate / duration during playback  F1,414 = 156.8 <0.0001  F1,304 = 56.7 <0.0001 
Nestling sex   F1,411 = 0.0   0.98  F1,300 = 0.0   0.92 
Nestling age  F1,414 = 6.3   0.01  F1,302 = 1.8   0.18 
Sequence order  F1,413 = 1.2   0.27  F1,304 = 12.0   0.0006 
PB call rate  F2,414 = 21.6 <0.0001  F2,302 = 1.4   0.26 
PB call duration  F2,411 = 0.2   0.79  F2,300 = 0.1   0.89 
PB call rate x PB call duration  F4,407 = 0.4   0.84  F4,296 = 0.8   0.56 
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Figure 3. Vocal response of singleton barn owl nestlings exposed to playbacks of pre-
recorded nestlings. Mean call rate during the 15-minute long playback (filled circles) and the 10-
minute long period of silence just after the playback was stopped (open circles) and mean call duration 
(filled and open squares), according to the three broadcasted call rates (black, A and C) and call 
durations (grey, B and D). Interactions in final linear mixed models between playback call rates and 
durations being non significant (table 1), the average for each broadcasted call rate was computed over 
the corresponding three call durations for each individual pooled together. A similar procedure was 
applied for call duration over the corresponding three call rates. Means are given ± SE and were 
computed over 54 nestlings issued from 15 nests.  
 

2. Carry-over effect of the playback on bystander vocal behaviour during the  

10-minutes long periods of silence 

As can be seen in fig. 3, for all but one playback sequence, nestlings increased the rate at 

which they called as well as the mean duration of their calls after the playback ended 

(Wilcoxon Signed Rank tests for within-individual pairwise comparison of nestling’s call rate 
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and mean duration during and after a playback sequence:  P ≤ 0.002). When hearing 2 

calls/min bystander nestlings maintained a similar call rate and duration (both P > 0.14). 

Nestlings that produced many calls of longer duration during playback also emitted longer 

calls at higher frequency during the silence that followed (table 1; effect of nestling call rate 

during playback on the call rate during silence: +0.56 ± 0.04 call/min; effect of call duration 

during playback on the call duration during silence: +0.34 ± 0.04 sec, both P < 0.0001). 

Independently, nestlings still significantly modulated their call rate during the silence 

following the playback in function of the rate at which we had broadcasted calls (table 1, 

effect of ‘PB call rate’). Interestingly, the effect of variation in playback call rates on nestling 

call rate during the silence was the reverse compared to when calls were being broadcasted 

(fig. 3). On average, after having heard 10 calls/min, bystanders emitted 0.8 ± 0.2 (P = 

0.0002) and 1.5 ± 0.2 (P < 0.0001) more calls per minute than after having heard 6 and 2 

calls/min. The increase in call rate between the period when bystanders were listening to the 

playback and the period just after the playback ended was thus proportional to the rate at 

which we broadcasted the pre-recorded calls (linear mixed model with increase in mean call 

rate during each of the nine sequences as dependent variable, i.e. nestling call rate during 

silence minus call rate during playback: nestling identity nested in brood of origin and 

identity of the playback individual as random intercepts; effect of playback call rate: F2,414 = 

93.4, P < 0.0001; effect of nestling call rate during playback as covariate: F1,414 = 22.1, P < 

0.0001; the playback call duration, the order at which each playback sequence was 

broadcasted, nestling sex and age were not significant: all P > 0.10). This was the only carry-

over effect of the playback, since after we stopped broadcasting calls nestlings did not adjust 

the duration of their vocalisations to the rate and duration of the playback calls previously 

heard (table 1; fig. 3B, C and D). 
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DISCUSSION 

We investigated the role of multiple components in vocal signalling, i.e. number and duration 

of calls, in the resolution of sibling competition over the share of parental food resource. In 

the barn owl, nestlings vocally compete with each other in the absence of parents over the 

next indivisible food item to be delivered. Previously published correlative data revealed that 

by producing more calls of longer duration hungrier owlets deter their less needy siblings 

from begging food from parents (Roulin et al. 2001; Roulin et al. 2009; Dreiss et al. 2010b). 

Accordingly, pairs of siblings increased both the rate and duration of their vocalisations when 

they were food-deprived compared to when they were food-satiated, showing that both 

components reflect nestling need and motivation to compete over food resources. 

Furthermore, bystander individuals reduced both the rate and duration of their calls when 

responding to playbacks of longer calls broadcasted at higher rates. To our knowledge, only 

the playback study by Marques and colleagues (2011) in tree swallow chicks (Tachycineta 

bicolor) experimentally demonstrated that young birds actively use the acoustic features of 

their siblings’ begging calls to adjust their own signalling level, yet the authors investigated a 

single vocal component, i.e. call intensity. Here, our findings clearly show that young may 

actively use multiple acoustic components to compete with each other over the sharing of 

parental resources. Our results also indicate that they adjust distinct components in relation to 

the competitive situation, but the component that best reflects variations in the current need 

being more finely adjusted than the other vocal component. 

Experimentally starved, barn owl nestlings increased call rate to a larger extent than call 

duration compared to when sated. This indicates that the number of calls is a more reliable 

signal of food requirements than the duration of calls and thus indicates a greater motivation 

to outcompete siblings. As a consequence, we predicted that call rate should play a more 

important role in the resolution of sibling competition than call duration. Accordingly, our 
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playback experiment revealed that bystander nestlings modulated the number of their 

vocalisations in function of the rate and the duration of broadcasted calls to a larger degree 

than the duration of their vocalisations. Complementarily, the rate at which we broadcasted 

pre-recorded calls exerted a stronger influence on how bystanders vocalised than variation in 

the duration of the broadcasted calls. Our study therefore suggests that in the barn owl, the 

most important vocal component to outcompete siblings is call rate followed by call duration. 

This conclusion is consistent with a previously published correlative study showing that 

producing longer calls deters siblings from vocally negotiating in the absence of parents. In 

contrast, producing more negotiation calls more directly affects the outcome of sibling 

rivalry, since it induces siblings to refrain from begging food from parents, which directly 

influences which offspring is fed first (Dreiss et al. 2010b). Studies performed in other 

species have shown that young nestlings adjust multiple begging components in relation to 

hunger level, but the exact function of each single component is usually not entirely clear (e.g. 

Iacovides and Evans 1998; Villasenor and Drummond 2007; Roulin et al. 2009). Our 

experimental study thus adds new information in this context. Although several components 

of begging behaviour may redundantly signal food needs honestly, they may not necessarily 

be used interchangeably given that they differentially affect the outcome of sibling 

competition. This is likely the case in most animals, since offspring concurrently adjust vocal 

and physical behaviours, such as their position relative to the location where parents 

predictably deliver food in the nest and the intensity of postural and vocal begging (e.g. 

Kacelnik et al. 1995; Leonard et al. 2003). Research should thus focus on the interplay 

between the multiple components of begging within and across sensory modalities to 

understand their relative function. 

 Assuming that the number of vocalisations suffices to deter siblings, why do barn owl 

nestlings modulate call duration even if it is a priori a redundant and apparently weaker signal 
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of need than call rate? This issue is particularly interesting given that we did not detect any 

interactive effect of variations in playback call rate and call duration on the vocal response of 

bystander nestlings, but rather the effect of these two components was additive. A first 

possibility is that if the cost of increasing call number is too high, nestlings may instead 

lengthen the duration of their calls. In this case, call duration might act as a “backup” signal 

allowing nestlings to “spread the load” over these two signal types (Johnstone 1996; Rowe 

and Guilford 1999). Since producing many long calls is likely to be costly (e.g. Clutton-Brock 

and Albon 1979; Vannoni 2009), another possibility is that call duration may act as a 

“reinforcement” signal of endurance (Payne and Pagel 1996; Rowe and Guilford 1999). 

Owlets may jointly adjust call rate and call duration to further signal their motivation to 

outcompete siblings. Because siblings challenge each other for hours, this joint modulation 

may vary through time depending on cues that remain to be identified. It would therefore be 

relevant to consider the dynamics of sib-sib interactions to identify the circumstances when 

call duration may be particularly important. Furthermore, investing in both call rate and call 

duration may be the only possibility for individuals with a low resource holding potential to 

compete with their stronger siblings. This proposition is consistent with the observation that 

the smallest individuals of a brood emit more calls of a longer duration than their older 

siblings, probably in an attempt to compensate for their lower physical ability to monopolise 

food resources (Roulin 2004a; Roulin et al. 2009). The duration of begging calls also appears 

to be an important component in nestling songbirds. Horn and Leonard (2008) showed that 

with time tree swallow nestlings converge towards similar call durations. Apparently, siblings 

do not synchronise their signalling behaviour to cooperatively enhance the total brood signal 

to further induce parents to increase provisioning rate. Thus, this convergence is more likely 

to be the result of siblings escalating begging relative to one another.  
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Interestingly, the present study also reveals that bystanders adjusted their vocal 

behaviour to variations in broadcasted call rates not only while hearing the playback, but also 

after the playback ended. Since this was independent of their own call rate during playback, 

this indicates that barn owls memorise the different features of their siblings’ calls to 

optimally modulate their own vocal behaviour at least a couple of minutes later. Our findings 

are in line with predictions derived from the “sibling negotiation hypothesis”, namely that a 

nestling will refrain from vocally negotiating to a larger extent if its siblings invest more 

effort in vocal sibling negotiation in order to save energy (Roulin et al. 2000; Roulin 2002a). 

Indeed, when listening to more intense playbacks bystander nestlings refrained from 

vocalising to a larger degree, but as soon as the playback ceased, the increase in vocal 

behaviour by these bystanders was proportional to the playback call rate. This suggests that in 

front of a highly competitive sibling, barn owl nestlings reduce their investment in vocal 

negotiation for later investing once the competitive sibling has eaten and hence momentarily 

withdraws from the competition. Previous studies in other systems also suggest that memory 

may be at work to optimise the energetic budget allocated to sibling competition. For 

instance, nestling birds are able to memorise the highest profitability zones where parents 

allocate food (Kölliker et al. 1998) or the competitive level they experience within a brood 

(Lotem 1998). Here, our playback experiments reveal that nestling birds can selectively 

memorise the most important acoustic components previously displayed by siblings, since we 

found that only the broadcasted call rate, but not call duration, still influenced the bystanders’ 

vocal response after the playback ceased.  

To conclude, our study demonstrates that sibling rivalry has promoted the evolution of 

complex multiple acoustic signals. The interesting issue here is that these signals are 

differentially related to food requirements, which raises a number of questions regarding their 

exact functional value. We focused on two components within the same sensory modality, i.e. 
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vocal signalling, but it would be worth analysing other sensory modalities (i.e. non-vocal 

signals). The finding that nestling barn owls listen to siblings and memorise this information 

to adjust their vocal behaviour later on is an original and neglected aspect of interactions 

taking place between family members. In particular, research should focus more deeply on 

how offspring encode information about their need and resource holding potential through 

both vocalisations and other non-vocal behaviours and actually use these signals to 

outcompete siblings.  
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ABSTRACT 

 

Animals compete over limited resources such as food or mates. Natural selection has 

favoured the evolution of behaviours and weapons to outcompete conspecifics or of 

negotiation to find a peaceful agreement about how resources should be shared. The dynamics 

of negotiation processes have received mainly theoretical developments in animals because of 

the difficulty of measuring and analysing the iterative transfer of information to reach a 

compromise. We show here that precise negotiation rules have evolved in the barn owl (Tyto 

alba) to vocally compete for the priority of access to food resources. Using several 

experimental approaches, we show that in the prolonged absence of parents siblings use 

organised rules to interrupt each other and finely adjust their vocal investment in relation to 

the temporal dynamics of their social interactions. These negotiation rules emerge repeatedly 

in barn owl families, are weakly sensitive to hunger and age hierarchy, and are similar in 

owlets interacting with a live sibling or pre-recorded playback sequences. Optimal adjustment 

of investment in a communication network between several negotiators is therefore not solved 

at a single instant but requires a dynamical relationship governed by specific rules.  

 

Key-words: negotiation, dynamics, social interaction, communication network, Tyto alba 
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INTRODUCTION 

Negotiation defines any situation that involves “a discussion or process of treaty with another 

(or others) aimed at reaching an agreement” (Oxford English Dictionary). This terminology is 

usually used for humans who bargain for resources and typically ends up with a compromise 

with each participant obtaining part of the resources (Nash 1950). A negotiation process, 

where each participant tries to obtain the largest portion of the pie as possible, requires 

repeated interactions since the behaviour of an individual at a given time point depends on 

past behaviours of the other participants. Evolutionary ecologists also use this concept to 

define situations where animals communicate to reach an agreement about how a resource 

should be shared or how to invest in a collaborative task (Johnstone and Hinde 2006; 

Johnstone and Roulin 2003; McNamara et al. 1999; Sirot 2012). Animals are faced with 

sequential decisions that can be seen as a negotiation process in many phases of their lives, 

during development when competing for resources with siblings (Johnstone and Roulin 2003) 

and during reproduction in intra-sexual competition (Patricelli et al. 2011), choice of partner 

or adjustment of parental care (McNamara et al. 1999). Each step of the process affects the 

outcome of the next, and the optimal decision at each stage depends on many factors. These 

tactical adjustments during sequential stages can be made via exchange of transient signals 

such as vocalisation or other behavioural cues. Negotiation is thus a dynamic process in 

which individuals have to decide with whom they interact in priority, the level of display and 

when to give up a contest (Patricelli et al. 2011). 

Although scientists reckon the importance of the dynamic nature of communication to 

resolve conflicts, little is known about how animals organise their communication in a social 

network (Dobler and Kolliker 2009). Much remains to be done to identify the cues that 

stimulate an individual to start signalling and to pinpoint the factors that induce an individual 

to increase or decrease investment in signalling. Another neglected aspect is whether animals 
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assess the absolute signalling level of conspecifics or the temporal dynamics of signal 

production to adjust their behaviour (Enquist and Leimar 1983; Payne and Pagel 1996). One 

of the rare studies on fitness consequences of signal dynamics has shown that around one 

third of the variation in male courtship success in satin bowerbirds Ptilonorhynchus violaceus 

was explained by the intensity of male displays, while another one third was explained by the 

male’s ability to adjust its display intensity to female response during courtship (Patricelli et 

al. 2002). Therefore by examining only average signalling, researchers omit a major aspect of 

signal transfer, i.e. the temporal dynamics of signal production that could be seen as a signal 

in itself (Briffa et al. 1998; Van Dyk et al. 2007). Our aim here is to understand how animals 

modulate signals to one another to negotiate how resources are shared among them. More 

specifically, we aim at investigating the temporal dynamics of negotiation, since it is a central 

aspect of game theory (Enquist and Leimar 1983; Payne and Pagel 1996) with each individual 

iteratively adjusting its signalling level in relation to each other’s behaviour. The idea here is 

to investigate how and when an individual decides to interrupt its conspecifics by producing a 

signal or how and when it decides to leave its conspecifics signalling on their own. Although 

game theory has dominated the way evolutionary biologists envision social interactions, the 

exact process leading animals to behave in a certain way at the end of a social interaction has 

hardly been investigated empirically (Briffa et al. 1998; Van Dyk et al. 2007). Studying the 

temporal dynamics of negotiation has therefore the potential to provide key elements about 

social animal behaviour. To this end we considered the barn owl as a model organism. 

Barn owl nestlings compete intensely vocally at the nest during development. Each 

night an individual produces between 1,000 and 5,000 simple and noisy calls towards its 

sibling to negotiate priority access to the next indivisible mouse delivered by a parent (Roulin 

2002a). Experimental and theoretical works have shown that nestling vocalisations during the 

expanded period of parent absence honestly signal hunger level. The hungriest and most vocal 
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individual deters its siblings from responding and ultimately from begging at the parents 

arrival (Johnstone and Roulin 2003; Roulin 2002a). This sibling negotiation process 

adaptively reduces the intensity of sibling competition (Johnstone and Roulin 2003; Roulin 

2002a). The aim of a nestling is thus to dissuade its siblings to vocalise, which maximises its 

chance of being fed at parental return (Johnstone and Roulin 2003). To dominate the vocal 

exchange and outcompete its siblings, an individual calls intensely, but it may be tempted to 

reduce vocal investment once competitor siblings give up the contest. However, as soon as 

this focal individual lowers vocal output, a challenger may start vocalising. The focal 

challenged individual may then resist and enter into confrontation with its challenger to keep 

its position. If resistance declines, the period of vocal confrontation (i.e. rapid vocal 

exchange) will end up with the challenger vocalising alone (i.e. monolog) until it is itself 

tempted to reduce vocal investment. This situation may prevail as long as a parent has not 

come with a food item. These predictions were proposed at the time when the “sibling 

negotiation hypothesis” was formulated (Roulin 2002a) but remain untested. 

 

1. Dynamics of vocal negotiation in pairs of live siblings 

To investigate when a barn owl nestling decides to interrupt its sibling by producing a call or 

decides to stop calling (i.e. turn-taking rules), we studied 68 isolated pairs of siblings that 

were both alternatively food-satiated or food-deprived in random order and which comprised 

an older (the senior) and a younger individual (the junior). Siblings were hosted in the 

laboratory in a nest-box similar to the one where they were reared under natural conditions, 

except that the box was divided into two areas so that they could vocally but not physically or 

visually interact with each other (fig.1A in Chap.I). From 19:00 to 23:40 we recorded their 

dyadic vocal interactions, which were similar to their natural behaviour (Roulin et al. 2009) 

since they were neither physiologically nor behaviourally stressed (Dreiss et al. 2010a). 
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Pairs of barn owl siblings communicated by alternating turns of successive periods of 

monologs where each individual called alone one after the other, or through frequent vocal 

alternation (fig. 1). Most calls (67%) were produced in the form of short to long monologs 

(i.e. more than 10 calls produced in a row without being interrupted by its sibling), which is 

4% more often than would be expected by chance (paired t-test between observed and 

expected proportions of monologs for 68 pairs of siblings: t67 = 3.96, P = 0.0002). The 

alternation of calls between partners (i.e. vocal confrontation) may be necessary to settle the 

contest over which individual should become vocally dominant over its sibling (i.e. monolog). 

 

                     
Figure 1. Two examples of vocal dyadic interactions between pairs of barn owl siblings. 
The symbol l represents the senior nestling and ¡ its younger junior sibling. Each data point stands 
for a call. 
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Table 1. Vocal confrontation in barn owl nestlings. Results of linear mixed models on the 
dynamics of call duration and pause duration between two successive calls in the course of vocal 
confrontation, between two barn owl siblings and between a singleton nestling and a pre-recorded 
playback sequence. Vocal production varies non-linearly, according to the vocal dominance of the 
focal nestling in the dialog, i.e. the proportion of calls this nestling produced in the preceding sequence 
of 10 calls. Food treatment (i.e. food-deprived versus food-satiated) and seniority (i.e. junior versus 
senior sibling) are also related to vocal behaviour in natural vocal interactions. For each analysis we 
indicate the corresponding figure. * P < 0.05, ** P < 0.001. *** P < 0.0001. 

A. Call duration (fig. 2A) 
Natural vocal exchanges 
between pairs of siblings 

Nestling responding 
to playback 

Effects F d.f. F d.f. 

Vocal dominance (V.d.) 174.4*** 1,2215 89.1**
* 1,368

V.d.2 63.9*** 1,2215 43.0**
* 1,368

V.d.3 44.4*** 1,2215 27.5**
* 1,368

Food treatment (Food) 62.2*** 1,2215 - - 
Seniority 11.9*** 1,2215 - - 
V.d. x Food 6.4* 1,2215 - - 
V.d. x Seniority 21.3*** 1,2215 - - 
Food x Seniority 0.8n.s. 1,2215 - - 
V.d. x Food 14.2** 1,2215 - - 
V.d.2 x Seniority 16.9*** 1,2215 - - 
V.d. x Seniority x Food 0.7n.s. 1,2214 - - 

B. Duration of pause following one’s own call (fig. 2B) 

Effects F d.f. F d.f. 

Vocal dominance (V.d.) 22.9*** 1,1914 44.9*
** 1,302 

V.d.2 9.7* 1,1914 0.1n.s. 1,301 
V.d.3 9.9* 1,1914 0.2n.s. 1,300 
Food treatment (Food) 0.1n.s. 1,1914 - - 
Seniority 1.3n.s. 1,1914 - - 
V.d. x Food 13.8** 1,1914 - - 
V.d. x Seniority 5.8* 1,1914 - - 
Food x Seniority 1.9n.s. 1,1914 - - 
V.d.2 x Food 1.7n.s. 1,1912 - - 
V.d.2 x Seniority 1.2n.s. 1,1912 - - 
V.d. x Seniority x Food 6.3* 1,1914 - - 
   C. Duration of pause following sibling’s call (fig. 2C) 
Effects F d.f. F d.f. 
Vocal dominance (V.d.) 33.8*** 1,1876 9.3** 1,317 
V.d.2 22.3*** 1,1876 5.4* 1,317 
V.d.3 22.3*** 1,1876 0.1n.s. 1,316 
Food treatment (Food) 0.1n.s. 1,1876 - - 
Seniority 0.7n.s. 1,1876 - - 
V.d. x Food 0.2n.s. 1,1874 - - 
V.d. x Seniority 1.1n.s. 1,1874 - - 
Food x Seniority 0.1n.s. 1,1874 - - 
V.d.2 x Food 1.9n.s. 1,1871 - - 
V.d.2 x Seniority 0.5n.s. 1,1871 - - 
V.d. x Seniority x Food 2.0n.s. 1,1871 - - 

For the analyses of natural vocal confrontations betw
een tw

o live individuals, the tw
o random

 variables w
ere the order of food treatm

ent 
(siblings w

ere alternatively food-deprived and food-satiated on tw
o successive nights in a random

 order) and focal nestling identity nested 
in both the pair of siblings (a given individual w

as alw
ays tested w

ith the sam
e sibling) and in the brood w

here it w
as raised in the field 

(nestlings w
ere issued from

 41 broods). For the analyses of singleton nestlings responding to playbacks, w
e included as random

 variables 
focal nestling identity nested in both the brood w

here it w
as raised by its parents (w

e tested 52 individuals from
 16 broods) and the 

playback sequence (w
e broadcasted to each individual one of five different playback sequences). Statistical analyses w
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ed w
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m

ean value per nestling and per degree of vocal dom
inance (0 to 100%

, each 10%
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 saturated m

odels are italicised. 



    CHAPTER III

80 

How do individuals succeed in dominating the vocal confrontation before proceeding to 

monopolise the vocal exchange? The very first call of an individual interrupting its sibling’s 

monolog was particularly short and was emitted with a relatively long latency after the end of 

the sibling’s monolog. By contrast, within the course of the exchange, as an individual 

became more vocal than its sibling, it gradually emitted longer calls (fig. 2A; table 1A) and 

replied faster after a sibling’s call (fig. 2C; table 1C); concomitantly it slowed down its own 

rhythm (fig. 2B; table 1B). These patterns were similar in seniors and juniors and weakly 

influenced by hunger level (fig. 2A-C; table 1). 

Once an individual had monopolised the interaction, it vocalised alone in a monolog 

that could last up to 114 minutes and up to 1,591 calls, without being interrupted by its 

sibling. How did an owlet manage to keep vocalising alone over such long monologs? What 

cues did its sibling use to interrupt these monologs? To answer those questions, we analysed 

vocal behaviour from the start to the end of monologs containing more than 10 calls (mean ± 

s.e.m.: 39 ± 1). After having taken its turn an individual progressively produced longer (fig. 

2D; table 2A) but fewer calls per minute (fig. 2E; table 2B) and just before its silent sibling 

vocalised again, calls became shorter (fig. 2D; table 2A). Hence, once an individual has 

monopolised the floor, it first increases and then progressively decreases investment in 

calling, until its sibling challenges it again with rapid vocal alternations. These temporal 

patterns in call duration and rhythm were found in seniors and juniors, and in both food-

satiated and food-deprived siblings (fig. 2D-E, table 2). 

(Figure 2, legend). Through the course of a vocal confrontation, as an individual became more dominant than its 
sibling (measured as the percentage of calls it produced out of the 10 previous calls of the dyadic interaction), it 
emitted longer calls (A), more spaced in time (B) and interrupted its sibling or the playback calls more rapidly 
(C). As an individual vocalised alone in a monolog, call duration (D) and pauses between successive calls (E) 
continued to lengthen. The silent nestling interrupted its vocal sibling or a playback’s monolog once call 
duration started decreasing (D). Call features in a monolog (more than 10 calls produced in a row by a single 
individual without being vocally interrupted) is given in relation to the relative position of the calls between the 
start (0%) and the end of monologs (100%). The patterns were similar for senior (blue symbols) and junior 
siblings (green symbols) during natural vocal confrontations both when food-deprived (dotted lines) and food-
satiated (solid lines), as well as for singleton nestlings interacting with the playback soundtrack (red symbols). 
Lines represent curves of the predicted fits from the mixed models presented in Tables 1 and 2.  
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Figure 2. Negotiation rules in barn owl nestlings. (see legend p. 80) 
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Table 2. Monologs in barn owl nestlings. Results of linear mixed models on the dynamics of call 
and pause durations, between two successive calls, during monologs in barn owl nestlings. A monolog 
is a series of more than 10 calls produced in a row by a single individual without being interrupted by 
its sibling or produced by a pre-recorded playback sequence without being interrupted by the nestling 
listening to it. The duration of calls and time lapse between successive calls were analysed in relation 
to the position of the calls in the monolog (e.g. beginning, middle or end), food treatment (the two 
conversing siblings were both experimentally food-deprived or both food-satiated) and seniority 
(senior versus junior). For each analysis we indicate the corresponding figure. 
  

 Natural vocal exchanges 
between pairs of siblings  Nestling responding 

to playback 
A. Call duration (fig. 2D)  
Effects F d.f.  F d.f. 
Call position in monolog (Position) 220.0*** 1,2280  64.9*** 1,518 
Position2 138.8*** 1,2280  56.4*** 1,518 
Food treatment (Food) 96.3*** 1,2280  - - 
Seniority 5.0* 1,2280  - - 
Position x Food 17.7*** 1,2280  - - 
Position x Seniority 0.2n.s. 1,2280  - - 
Food x Seniority 0.1n.s. 1,2280  - - 
Position2 x Food 11.3** 1,2280  - - 
Position2 x Seniority 0.1n.s. 1,2279  - - 
Position x Food x Seniority 25.4*** 1,2280  - - 

 
B. Pause duration between successive calls (fig. 2E) 
Effects F d.f.  F d.f. 

Call position in monolog (Position) 11.2** 1,2248  25.5
*** 1,518 

Position2 1.5n.s. 1,2248  1.1n.s. 1,517 
Food treatment (Food) 60.2*** 1,2248  - - 
Seniority 3.0n.s. 1,2248  - - 
Position x Food 0.75n.s. 1,2247  - - 
Position x Seniority 4.1* 1,2248  - - 
Food x Seniority 7.8* 1,2248  - - 
Position2 x Food 0.5n.s. 1,2244  - - 
Position2 x Seniority 1.1n.s. 1,2244  - - 
Position x Food x Seniority 0.19n.s. 1,2244  - - 

 

* P < 0.05, ** P < 0.001. *** P < 0.0001. Same model construction as in table 1. Statistical analyses 
were performed with a mean value per nestling and per position of the calls in the monolog across all 
monologs (0%-beginning to 100%-end, each 10%) and for each individual we had 11 mean values. 
Results of final models are written in bold; terms eliminated from initial models are italicised. 
 
 
2. Experimental evidence for vocal negotiation rules  

To experimentally verify that sibling barn owls use these fluctuations of call features as 

negotiation rules to dose their vocal investment and to alternate their vocalisations, we 

performed a first playback test (fig.1B in Chap.I). We used five 84 minute-long recordings of 

vocal interactions between pairs of siblings, from which we erased the calls of one of the two 
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individuals from the soundtrack. Such a playback experiment simulates a situation where a 

live nestling interacts vocally with an unfamiliar individual that does not adjust its vocal 

behaviour to its opponent. As expected, the 52 singleton nestlings to which we broadcasted 

the playbacks behaved in a similar way as individuals interacting with a live sibling (red lines 

in fig. 2A-C; table 1). Moreover, singleton owlets took their turn after the playback-calls 

became shorter again (red line in fig. 2D; table 2). As a consequence, the singleton nestling 

vocalised at similar time points as the individual erased from the playback (adequacy of call 

rate through time between the erased individual and the singleton nestling was significantly 

different from random permutation: Fisher’s combined probability test χ2 = 227, P < 0.0001). 

 Hence the decision about the exact timing when an individual resumes vocal activities 

is associated with both increasing pause duration and decreasing call duration in the sibling’s 

monolog (fig. 2D,E). To disentangle the mutual role of these two vocal cues, we performed a 

second playback experiment. One hundred and eight singleton nestlings could vocally answer 

to four two-minute-long playback sequences characterised by either increasing or decreasing 

call duration (final call duration is the same in the two treatments) combined with increasing 

or decreasing pause duration between successive calls (total number of broadcasted calls is 

the same in the two treatments). We recorded the vocal behaviour of singleton nestlings just 

after the playback ended during six minutes. This playback mimics a situation where an 

individual can produce a monolog after its sibling has stopped vocalising. After the end of the 

playback, singleton nestlings emitted more calls when the duration of the broadcasted calls 

had decreased along the soundtrack sequence compared to when call duration had increased, 

whatever the playback rhythm (table 3A, fig. 3A). Variation in pause duration between two 

successive broadcasted calls did not affect the number of calls produced by singleton 

nestlings following the end of the playback (table 3A, fig. 3A). However, nestlings vocalised 
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sooner after the end of the playback when both duration and rate of the broadcasted calls were 

decreasing along the playback sequence (table 3B, fig. 3B). 

 

                                
Figure 3. Calling decision after an experimental playback of varying call and pause 
duration. Latency (± s.e.) a nestling waited before calling after the end of a playback (A) and number 
of calls (± s.e.) produced by singleton nestlings the minute following playback’s end (B). The two-
minute-long playback sequences were composed of 20 calls of either continuously increasing duration 
or continuously decreasing duration separated by either continuously increasing pauses or 
continuously decreasing pauses. The four playback sequences were broadcasted in a random order and 
separated by a silence of six minutes. 
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Table 3. Calling decision after a playback of varying call and pause duration. Results of mixed 
models on the response of singleton nestlings to experimental two-minute-long sequences of calls of 
either continuously increasing duration or continuously decreasing duration and separated by either 
continuously increasing pauses or continuously decreasing pause.  
 

A. Number of nestling calls following playback’s end (fig. 3A) 
Effects F d.f. 
Order of the four playback sequences 3.8n.s. 1,126 
Number of calls produced by singleton nestling during the last minute of playback 123.5*** 1, 127 
Change in playback’s call durations (increase or decrease) (CD) 8.6** 1,127 
Change in playback’s pause durations (increase or decrease) (PD) 0.3n.s. 1,125 
CD x PD 0.9n.s. 1,124 
    
B. Call latency after playback’s end (s) (fig. 3B) 
Effects F d.f. 
Order of the four playback sequences 72.0*** 1,175 
Change in playback’s call durations (increase or decrease) (CD) 75.2*** 1,175 
Change in playback’s pause durations (increase or decrease) (PD) 2.9 n.s. 1,175 
CD x PD 83.9*** 1,175 
 
* P < 0.05, ** P < 0.001. *** P < 0.0001. The number of calls produced by singleton nestlings the 
minute following playback’s end was analysed using a linear mixed model and the latency singleton 
nestlings waited before calling after the end of a playback using a generalised mixed model with 
Poisson distribution. For both analyses, order of playback sequences was set as cofactor (the four 
sequences were broadcasted in a random order) and we set as random factors the individual used to 
build the playback sequence and the identity of singleton nestling nested in the brood where it was 
raised in the field (we tested 108 individuals from 33 broods). For the analyses of the number of calls, 
the number of calls the singleton nestling produced during the last minute of playback was set as 
covariate. Results of final models are written in bold; terms eliminated from saturated models are 
italicised. 
 
 
CONCLUSION 

In the present study, we have shown that the signalling of two individuals having a conflict of 

interest is not only determined by intrinsic quality (e.g. age) and internal state (e.g. hunger 

level), but also social negotiation rules. Theoreticians studying animal communication are 

debating how individuals settle contest and assess each other competitive ability (Enquist and 

Leimar 1983; Payne and Pagel 1996). In systems where opponents display signals iteratively, 

participants can monitor the behaviour of competitors (Briffa et al. 1998; Van Dyk et al. 

2007) to decide when it is more appropriate to invest more effort in competitive interactions 

or to give up the contest. This decision could be based on the intensity of the most recent 

opponent’s display, on its average level of signalling sustained over a given period of time or 
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on the endurance of competitors in repeatedly producing costly signals (Payne and Pagel 

1997). In the barn owl, where siblings exchange vocal signals over the prolonged absence of 

the parents, we experimentally show that it is rather the temporal dynamics in signal intensity 

that determine how competitors adjust signalling behaviour (fig. 3). The dynamics in the 

intensity of signals can thus be seen as a signal in itself. This is consistent with game theory 

postulating that the behaviour of a given individual at any given time depends on its past 

social interactions (Payne and Pagel 1997).  

We show that barn owl nestlings use precise acoustic cues and rules to smoothly 

coordinate the temporal rotation of their vocal investment in a negotiation process. Because 

parents bring food at unpredictable time points and can be absent several hours (Roulin 

2002b), a nestling has to dominate the vocal interaction for the longest possible period of 

time, to increase its chance of being fed. The nestling vocalising the most at parents’ return 

would most likely receive the prey (Roulin 2002a). Therefore, a nestling that has already 

invested substantial effort to become vocally dominant would lose this investment if vocally 

outcompeted by a sibling just before a parent arrives. This may explain why in the course of 

dominating a vocal confrontation, nestlings sharply interrupt their opponent (fig. 2C). When 

no more challenged, a vocally dominant barn owl nestling decreases pause duration between 

its own calls (fig. 2B, E), but maintains a high call duration (fig. 2A, D) to signal its 

willingness to compete and continue to dominate the vocal interaction. Once its call duration 

decreases, the opponent perceives this sharp decrease as a signal to re-enter the contest (fig. 

2D, fig. 3). This dynamic of signal exchange appears adaptive for both siblings, because 

vocally dominant nestlings do not signal at maximal level and dominated opponents 

repeatedly control the honesty of the signal. We conclude that individuals constantly 

modulate vocal behaviour in order to optimise investment along the competitive process. The 
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vocally dominant individual tries to minimise its investment just above the point where its 

opponent is willing to challenge it. 

Here, we experimentally demonstrate the existence of turn-taking rules based on 

prosody, i.e. variation in rhythm, stress and pitch of vocalisation, in barn owl nestlings (Tyto 

alba). Although existence of rules coordinating vocal exchanges allowing each individual to 

know when to start vocalising could be a priori obvious, it has never been experimentally 

shown in competitive situations during long lasting interactions. This report is particularly 

interesting because it indicates that competition can promote the evolution of turn-taking rules 

in an animal that does not show particularly complex social interactions and in which 

individuals exchange simple noisy calls. In social science, conversation analysts postulate that 

humans adhere to implicit conversational rules that establish when to alternate turns or 

continue speaking (Duncan 1972; Jaffe et al. 2001; Sacks et al. 1974). Because non-human 

animals also exchange vocal signals that are crucial to resolve contests (Parker 1974), various 

species have also evolved mechanisms to maximise the efficiency of signals transfer, such as 

overlap avoidance (Ficken et al. 1974) and shift of frequency (Slabbekoorn and Peet 2003). 

Turn-taking rules, that allow each individual to know when and how to start signalling, have 

only been described in the particular context of duetting birds (Logue et al. 2008) and contact 

calls in some monkeys (Biben et al. 1986; Hauser and Fowler 1992), during exchange of very 

rapid phrase. As in human conversation (Stivers et al. 2009), the basic turn-taking negotiation 

rules demonstrated here do not depend on family, context of the interaction, age hierarchy or 

hunger level. As in human speech, the duration of one nestling utterance can be very long. It 

follows that, without turn-taking rules, competitors cannot presuppose when a monolog will 

end and whether and when they should interrupt it. Alternating vocalisation in competitive 

interactions can evolve because it increases signal efficiency (Madden et al. 2009), limits 

interference (Roy et al. 2011) and because individuals need to mutually and constantly assess 
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their motivation level (Johnstone and Roulin 2003). Turn-taking rules, which predict when 

opponent will stop vocalising and leave an opportunity to vocalise, should thus be more 

widespread than previously thought in non-human animals. Such basic turn-taking negotiation 

rules may similarly coordinate communication in many animal species and help synchronise 

and alternate vocal signals. 
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Supplementary material 

 

METHODS 

Study organism 

We studied a wild population of barn owls breeding in nest-boxes located on barn walls 

located in Switzerland (46°4’N, 6°5’E). In 2008 clutches of 4 to 8 eggs were laid between 23 

April and 6 August, in 2009, 2 to 10 eggs between 12 May and 16 August and in 2011, 4 to 9 

eggs between 14 March and 22 July. Eggs are laid on average every 2.5 days and incubation 

starts after the first egg has been laid generating a pronounced age hierarchy among siblings. 

From 3 weeks of age onwards, nestlings are thermo-independent and able to eat prey items 

without maternal help. For these reasons, the mother usually stops sleeping with her offspring 

during the daylight hours and comes back only at night to the nest to deliver food items. We 

carried out our laboratory experiments on offspring that were used to their mother’s absence. 

Barn owls are mostly monogamous with very little extra-pair paternity: in a previous study 

one out of 211 offspring was not sired by the male that was feeding it (Roulin et al. 2004). 

 

Recording of vocal interactions between pairs of food-satiated (versus food- 

deprived) siblings  

In 2008, when nestlings were 22- to 45-day-old (mean ± s.e.: 35 ± 5), we brought 156 

nestlings from 41 nests to the university; we always left one or several nestlings in the natural 

nest to make sure that parents did not abandon their brood. In the laboratory, we randomly 

matched siblings in pairs and housed each pair in a soundproof wooden nest-box, similar to 

the ones where they were reared under natural conditions. The box was divided into two equal 

parts by a thin wooden wall pierced with five holes at the top, so that siblings could hear each 

other without visually or physically interacting. Each pair of siblings comprised a senior 
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individual and a 5-day younger junior sibling (range in age difference: 1-15 days). Nestlings 

were kept in these boxes during two days and three nights before being brought back to their 

original nest in the field. After a first night of acclimation, each pair of siblings was recorded 

twice from the beginning of the night until midnight, one night in a food-deprived state (no 

food given during the preceding 28 hours) and another night in a food-satiated (from 00:00 to 

16:00 on the recording day we offered 130 g of laboratory mice, which exceeds their daily 

food requirement of about 67 g), with the order of the two treatments being randomly 

assigned across pairs. Food-deprived individuals lost on average 42 ± 1 grams over 24 hours, 

whereas they gained 16 ± 2 grams over 24 hours when fed ad libitum. Individuals that were 

starved on the first night were randomly chosen, since their mean body mass at the start of the 

experiment was similar as the mean body mass of individuals receiving the ad libitum 

treatment the first night (Student’s t-test: t202 = 0.63, P = 0.53). As in natural conditions (pers. 

obs.), it happened that one of the two individuals did not vocalise during the 4.5 hours-

recording period. This was the case in 10 of the food-deprived pairs and 24 pairs of the food-

satiated pairs. Since our aim was to study vocal interactions between two individuals, we 

performed statistical analyses of the remaining 68 pairs of food-deprived siblings and 54 pairs 

of food-satiated siblings.  

In a preliminary experiment with different nestlings, we recorded pairs where each 

sibling had an opposing treatment (food-deprived versus food-satiated). However, we found 

that in 10 out of 12 pairs, food-deprived nestlings hardly ever vocalised, because they faced a 

much more motivated sibling. As we are interested here in communication dynamics, we 

modified our experimental settings and did not cross the food treatment in each pair. 

We recorded vocal interactions from the beginning of the night at 19:00 until 23:40 

using two microphones (MC930, Beyerdynamic GmbH & Co KG, Heilbronn, Germany) 

oriented in opposite directions, each facing one nestling. The two recording soundtracks were 
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analysed with Matlab v.7.7 (MathWorks, Natick, MA, U.S.A.) to assign calls to each 

individual and to measure call duration and pause duration between successive calls (see 

script below). To avoid superfluous disturbance we manipulated nestlings only once per day 

at 16:00 and opened nest-boxes again at midnight to add food. To study negotiation rules, for 

each call we analysed the effect of the preceding series of 10 calls. We only consider series 

for which pause duration between two successive calls did not exceed 20 seconds, which 

corresponds to 2% of all 251,047 recorded pauses. To study how nestlings initiate and finish a 

monolog, we analysed the series of more than 10 calls produced by a single individual 

without being vocally interrupted by its sibling. We chose 10 calls because it corresponds to 

the minimal number of calls produced in a row that was more frequent than expected by 

chance. Using this definition of 10 calls, 67% of the recorded calls are produced during 

monologs. 

 

Playback experiments 

Playback of natural half-vocal exchange 

In 2009, we broadcasted natural sequences of calls produced by a single nestling, which we 

extracted from the vocal exchanges of sibling pairs recorded in 2008. We selected five 

sequences of 84 min (range 73-93) from 5 different vocal dyadic interactions, with the 

criterion that the more voluble nestling did not stop calling during 3 or more minutes. From 

these 5 soundtracks, we silenced the calls of the less voluble individual and kept intact the 

calls of its sibling. In these call sequences, the call rate was not related to time (number of 

playback-calls per minute was not significantly associated with time in a mixed model with 

playback identity as a random factor: F1,413 = 0.11, P = 0.74). In 2009, 52 nestlings of 25 to 

40 days of age (mean ± s.e.: 34 ± 1), coming from 16 nests, were placed on one side of the 

same wooden nest-boxes as those used in 2008, while a loudspeaker was placed on the other 
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side broadcasting one of the five sequences. Siblings were food-deprived from the morning 

preceding the experiment, at 08:00. The experiment started at 01:00 the following day. 

 

Experimental playback with varying pause and call duration 

In 2011, we broadcasted four two-minute-long sequences of calls to 108 singleton nestlings 

from 33 nests (age: 20-42 days, mean ± s.e.: 33 ± 1) placed in the same experimental boxes as 

those used in 2008 and 2009. Playback sequences were composed of 20 calls of either 

continuously increasing duration (0.60 to 0.78 s changing by 0.02 s every two calls) or 

continuously decreasing duration (1.00 to 0.82 s changing by 0.02 s every two calls) separated 

by either continuously increasing or decreasing pause (time lapse between two calls starts 

from 3.05 to 9.94 s, changing by 0.76 s every two pauses). The four playback sequences were 

broadcasted in a random order and separated by a silence of six minutes. Siblings were fed 

with 50 g of laboratory mice the morning preceding the experiment, at 08:00. The experiment 

started at 01:30. 

We extracted the calls used to build playback soundtracks from the vocal interactions of 

five food-deprived individuals recorded in 2008, issued from five broods different from those 

used for the other playback experiment. For each individual, we selected 20 calls according to 

their duration and not modified, except for magnitude, which was standardised using 

Audacity v.1.3 Beta freeware (http://audacity.sourceforge.net). This manipulation did not 

affect other acoustic parameters. The four playback sequences broadcasted to a singleton 

nestling were built with the 20 calls of only one individual. 

 

Ethical note 

We brought barn owl nestlings at an age when they were able to consume food and 

thermoregulate without maternal help. This was convenient because to feed them at the 
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university we deposited laboratory mice on the floor of their new experimental nest-box so 

that they could eat as many mice as they wanted and at any time without disturbing them. We 

had already observed that parents do not adjust feeding rate to short-term variations in food 

need (Roulin et al. 2000). Therefore, temporally removing several nestlings from a nest never 

induced parents to abandon their nest. Additionally, keeping owlets at the university did not 

negatively affect their body condition since mean body mass and survival at fledgling did not 

significantly differ between the recorded and non-recorded siblings (paired signed rank test on 

mean body mass of recorded and non-recorded siblings per brood: S = 13.5, P = 0.69 and on 

mean survival: S = 8, P = 0.22). Also, nestlings brought to the laboratory were not 

significantly different in body mass before the experiment, from nestlings left in the nest 

(Wilcoxon paired Signed Rank test on mean body mass of recorded and non-recorded siblings 

per brood: S = 38.5, P = 0.48). We already showed that in the laboratory, nestlings behave 

vocally in a similar way as in natural conditions (Roulin et al. 2009) and were not 

physiologically stressed, as shown by the absence of a rise in baseline corticosterone level 

compared to the situation prevailing under natural, undisturbed conditions (Dreiss et al. 

2010a). 

 

Statistical analyses 

Statistical analyses were performed with SAS v.9.1 (SAS Institute Inc., Cary, NC, USA). All 

tests are two-tailed. Assumptions of homoscedasticity and normal distributions of variables 

were verified in each test (using Kolmogorov-Smirnov tests). In the following, we give more 

information on specific analyses. 
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Preferential production of monologs over rapid vocal exchanges.  

For each nestling, we calculated a random distribution of the length of call-series using a 

geometric distribution. The probability of producing x calls in a row without being interrupted 

by the sibling is given by Pr(x) = (p)x-1(1-p), where p is the probability of calls by focal 

nestlings, i.e. number of calls produced by the nestling, divided by the total number of calls of 

the pair. Mean values per pair of nestlings were considered in order to correct for non-

independencies of nestlings within pairs. All observed distributions of length of call series 

were significantly different from random expectation in a Kolmogorov test. 

 

Dynamic negotiation rules.  

Dynamics of call and pause durations were analysed with linear mixed models using residual 

maximum likelihood method. Model selection was performed by backward elimination of the 

non-significant (P > 0.05) terms beginning with the highest order interaction terms. 

Elimination of non-significant terms did not significantly modify the Akaike Information 

Criterion (AIC). Final models only contained significant effects and when a two-way 

interaction term was significant, the main effects involved in the interaction were retained 

even if non-significant. In the analysis of vocal confrontation, the term “vocal dominance” 

indicates the proportion of calls produced by the focal nestling during the sequence of the 10 

last calls emitted by its sibling or the playback. For each focal individual and each call, we 

counted the number of calls the focal individual produced in the series of the last 10 preceding 

calls exchanged by this individual with its sibling or the playback. Then, we computed mean 

values over all the calls for which the last 10 calls were all produced by its sibling (category 

0%). Similarly, we computed mean values over all the calls for which only one of the 10 last 

calls was produced by the focal individual (category 10%) and so on, until the category 100%. 

Statistical analyses were performed with these mean values, and for each individual we had a 
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maximum of 10 mean values, explaining why each individual was introduced as a random 

variable to control for pseudo-replication. We processed the same for the analysis of 

monologs (sequence of more than 10 calls produced in a row by a nestling or the playback 

without being interrupted). In the course of monologs, the term “call position” indicates the 

location (e.g. beginning, middle or end) of a given call in the course of a monolog. For each 

individual and each monolog, we averaged the values of a given position of calls of the 

monolog (e.g. first 10% of the monolog) and then averaged the values found in all monologs 

from this specific individual. 

 

Experimental playback with varying pause and call duration.  

The latency (in seconds) a nestling waited before calling after the end of a playback was 

analysed in relation to (i) the change in duration of the broadcasted calls (increase or decrease 

duration) and (ii) the change in the rate at which calls were broadcasted (increase or decrease 

rate). This was done using a generalised mixed model with Poisson distribution considering 

the 90 nestlings which called at least once during the six-minute-long period of silence 

following a playback sequence. Similarly, the number of calls produced by singleton nestlings 

the minute following playback’s end was analysed using linear mixed model, for the 77 

nestlings which called during this interval. The number of calls produced by singleton 

nestlings during the last minute of playback was set as covariate. For both analyses, the order 

of playback sequences was set as cofactor and we incorporated as random factors the 

individual used to build the playback sequence and the nestling identity nested in the brood 

where it was raised in the field. 
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Acoustic analysis 

The script bellow can be run under Matlab (MathWorks, Natick, MA, U.S.A.) with a sample 

of two soundtracks from the two microphones oriented in opposite directions, each facing one 

barn owl (BarnOwlSenior.wav, BarnOwlJunior.wav) as input file. It assigns calls to junior or 

senior siblings and estimates call timing and call duration. Call magnitude (dB) was also 

assessed and it was highly correlated with call duration (Pearson correlation on average 

values per nestling: r135 = 0.41, P < 0.0001), but, as it is influenced by distance to the 

microphone, which was not controlled for, we did not analyse this acoustic variable. 

 

Matlab script 
 
Input: Two wav files: BarnOwlSenior.wav, BarnOwlJunior.wav 
 
% call detection parameters 
  
ds        = 20;          % decimation factor for time analysis (for 
faster execution) 
minlen    = 0.3;         % minimum length of call [s] 
tc_env    = 20;          % smoothing time constant for temporal 
envelope [ms] 
max_env   = 2;           % max increase of envelope [lin] 
tc_noise  = 2000;        % smoothing time constant for noise floor 
estimate [ms] 
min_noise = 0.02;        % noise estimation is never smaller than 
min_noise times signal 
  
% call detail analysis 
  
idstartoffset = 0.03; % negative offset given to detected start [s] 
idstopoffset  = 0.03; % positive offset given to detected stop [s] 
startstopthr  = 3.5;  % sensitivity for start/stop detection 
counterlen    = 0.1;  % counter to ignore short zeros within call 
[s] 
  
% read audio files 
  
mic1audio = 'BarnOwlJunior.wav'; 
mic2audio = 'BarnOwlSenior.wav'; 
[in1,fs,BITS]=wavread(mic1audio); 
[in2,fs,BITS]=wavread(mic2audio); 
  
% filter and decimate the signal to get less samples 
% and faster time analysis 
  
[b a] = butter(2, [8000]./fs*2,'high'); 
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in1ds = decimate(filter(b,a,in1), ds); 
in2ds = decimate(filter(b,a,in2), ds); 
N = length(in1ds); 
fsds = fs/ds; 
  
% time and axis info 
  
time = (0:(N-1)) / fsds; 
mx = max(max(abs(in1ds)),max(abs(in2ds))); 
in1ds = in1ds ./ mx ./ 1.1; 
in2ds = in2ds ./ mx ./ 1.1; 
mx = 1/1.1; 
ax = [0 max(time) -1.1*mx 1.1*mx]; 
  
% compute indicator function (call on/off) 
  
alpha1   = 1-1/(tc_env*fsds/1000); 
alpha2   = 1+1/(tc_noise*fsds/1000); 
  
in1abs  = abs(in1ds); 
in1std  = mean(in1abs); 
in2abs  = abs(in2ds); 
in2std  = mean(in2abs); 
  
i = 1; 
env1(i)   = in1abs(i,1); 
env2(i)   = in2abs(i,1); 
noise1(i) = in1abs(i,1); 
noise2(i) = in2abs(i,1); 
  
env1    = zeros(size(in1ds)); 
env2    = zeros(size(in2ds)); 
noise1  = zeros(size(in2ds)); 
noise2  = zeros(size(in2ds)); 
  
i = 2; 
counter = -1; 
while i <= N, 
% envelope estimate 
a = env1(i-1); 
env1(i) = min(max(a*alpha1, in1abs(i,1)), max_env*a+1e-10); 
a = env2(i-1); 
env2(i) = min(max(a*alpha1, in2abs(i,1)), max_env*a+1e-10); 
% noise floor estimate 
noise1(i) = min(noise1(i-1)*alpha2, env1(i)); 
noise1(i) = max(noise1(i), min_noise*env1(i)); 
noise2(i) = min(noise2(i-1)*alpha2, env2(i)); 
noise2(i) = max(noise2(i), min_noise*env2(i)); 
i = i + 1; 
end 
% compute call indicator function for both microphone signals 
ind1 = (env1 > 8*noise1) & (env1 > mean(env1)); 
ind2 = (env2 > 8*noise2) & (env2 > mean(env2)); 
% combine both indicator functions 
ind = (ind1 > 0) | (ind2 > 0); 
  
% refine call detection 
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offset1  = round(idstartoffset * fsds); 
offset2  = round(idstopoffset * fsds); 
counter0 = round(counterlen * fsds); 
ind1     = zeros(size(ind)); 
ind2     = zeros(size(ind)); 
  
callcount = 0; 
call_id  = []; 
i = 1; 
counter = -1; 
while i < N, 
if ind(i) == 1 
  start = max(i-offset1, 1); 
  ind(start:i) = 1; % extend indicator at start 
  while (ind(i) == 1) & (i < N), 
    i = i + 1; 
    if ind(i) == 0 
      counter = counter - 1; 
      if counter > 0 
        ind(i) = 1; % extend indicator at end 
      end 
    else 
      counter = offset2; 
    end 
  end 
  % if call too short, don't consider it 
  if (i-1-start)*ds/fs < minlen 
      counter = offset2; 
  end 
  % detail analysis of call 
  if counter == 0 
    stop = i - 1; % end of call 
    % compute info about call 
    callcount = callcount + 1; % increase counter for bird calls 
    call_start(callcount) = start * ds; 
    call_stop(callcount) = stop * ds; 
    % decide if bird 1 or bird 2 
    if mean(env1(start:stop)) > mean(env2(start:stop)) 
      call_id(callcount,1) = 1; % bird 1 
      ind1(start:stop) = 0.8*mx; 
    else 
      call_id(callcount,1) = 2; % bird 2 
      ind2(start:stop) = 0.8*mx; 
    end 
  end 
end 
i = i + 1; 
end 
  
% plot time data 
  
figure; 
subplot(2,1,1); 
plot(time,in1ds,'k:') 
hold on 
plot(time,env1,'k') 
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%plot(time,noise1,'g','linewidth',2) 
plot(time,ind1,'k--') 
hold off 
axis(ax) 
title('Microphone 1 (Junior)') 
%xlabel('time [s]') 
ylabel('amplitude') 
subplot(2,1,2); 
plot(time,in2ds,'k:') 
hold on 
plot(time,env2,'k') 
%plot(time,noise2,'g','linewidth',2) 
plot(time,ind2,'k--') 
hold off 
axis(ax) 
title('Microphone 2 (Senior)') 
xlabel('time [s]') 
ylabel('amplitude') 
legend('Waveform','Temporal Envelope','Call Detection') 
  
 
% display data 
  
disp('Detected Calls:'); 
for i = 1:callcount, 
    disp(['ID = ' int2str(call_id(i)) '    Start = ' 
num2str(call_start(i)/fs,'%5.2f') ' s    Stop = ' 
num2str(call_stop(i)/fs,'%5.2f') ' s']); 
end 
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ABSTRACT 

 

Adult animals can eavesdrop on behavioural interactions between potential opponents 

to assess their competitive ability and motivation to contest resources without interacting 

directly with them. Surprisingly, eavesdropping is not yet considered as an important factor 

used to resolve conflicts between family members. Here, we show that nestling barn owls 

(Tyto alba) competing for food eavesdrop on nestmates’ vocal interactions to assess the 

dominance status and food needs of opponents. During a first training playback session, we 

broadcasted to singleton bystander nestlings a simulated vocal interaction between two pre-

recorded individuals, one relatively old (i.e. senior) and one younger nestling (i.e. junior). 

One playback individual, the ‘responder’, called systematically just after the ‘initiator’ 

playback individual, hence displaying a higher hunger level. To test whether nestlings have 

eavesdropped on this interaction, we broadcasted the same pre-recorded individuals 

separately in a subsequent playback test session. Nestlings vocalised more rapidly after 

former initiators’ than responders’ calls and they produced more calls when the broadcasted 

individual was formerly a junior initiator. They chiefly challenged vocally juniors and 

initiators against whom the likelihood of winning a vocal contest is higher. Owlets therefore 

identified the age hierarchy between two competitors based on their vocalizations. They also 

memorised the dynamics of competitors’ previous vocal interactions, and used this 

information to optimally adjust signalling level once interacting with only one of the 

competitor. We conclude that siblings eavesdrop on one another to resolve conflicts over 

parental resources. 

 

Key words: acoustic, communication, competition, memory, negotiation, sibling 
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INTRODUCTION 

When animals are in conflict over limited resources such as food, territories or mates, they 

assess each other’s resource-holding potential and motivation to compete. This is crucial to 

optimally adjust investment in competition (Parker 1974). A relatively cheap way to assess a 

competitor is to eavesdrop on its behavioural interactions with other individuals since animals 

can gain information about the state of their surrounding competitors without paying the costs 

of taking part into those interactions (McGregor 1993; Whitfield 2002). Eavesdropping occurs 

in a broad range of animals in many communication channels and different competitive 

situations (Aquiloni and Gherardi 2010; Oliveira et al. 1998). Surprisingly, the potential role 

of eavesdropping in resolving contests between family members has been disregarded so far 

in the literature.  

A family can be viewed as a communication network (Horn and Leonard 2005), where 

the offspring signal their need to parents (Kilner and Johnstone 1997; Mas and Kolliker 2008) 

and siblings (Bulmer et al. 2008; Madden et al. 2009; Roulin et al. 2000) and where parents 

signal their willingness to provide food (Magrath et al. 2007). Staggered births often establish 

an age hierarchy among the siblings and parental feeding events spread over long periods of 

time induce pronounced asymmetry in food requirements. Before competing over limited 

parental resources, each offspring should therefore assess the short-term variations in hunger 

level of their dominant and subordinate siblings. Evolutionary biologists implicitly assume 

that only direct confrontation between juvenile siblings allow them to optimally modulate 

their behaviour to a prevailing competitive situation (Godfray 1995b; Leonard and Horn 

1998; Leonard and Horn 2001; Madden et al. 2009). Provided that young animals have the 

cognitive ability to recognise the identity of competitor siblings and then integrate and 

memorise the outcome of previous interactions between them, they could assess hunger level 
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and position in the within-brood age hierarchy by eavesdropping on their competitive 

interactions. 

The barn owl (Tyto alba) is suitable species in which to test whether nestlings 

eavesdrop on competitor siblings’ vocal interactions to adjust the level of vocal signalling. 

Between the staggered parental feeding visits, siblings vocally negotiate which of them will 

have priority access to the next delivered indivisible food item (Dreiss et al. 2010b; Johnstone 

and Roulin 2003; Roulin et al. 2000). Typically, hungry individuals vocalise more intensely 

than their siblings to induce the less hungry individuals to retreat from negotiating and 

ultimately from begging on the parents’ arrival (Dreiss et al. 2010b). Thus, vocal negotiation 

while parents are away increases the likelihood of being fed (Roulin et al. 2000). Broods 

comprise up to nine offspring that might differ in age by three weeks. As a consequence, an 

individual is expected to reduce the level of vocal negotiation when facing a highly motivated 

and dominant senior sibling for whom the probability of obtaining the next food item is 

higher (Roulin 2004a). 

To study eavesdropping between siblings that vocally interact, we performed playback 

experiments to examine whether barn owl nestlings listen to competing siblings and use this 

information to adjust vocalization levels when they subsequently interact with each of them 

separately. Preliminary experiments on vocal exchanges between siblings found that hungry 

individuals produce more calls and produce them more rapidly after their opponent (see 

Methods). In this experiment, we first played a pre-recorded vocal exchange between two 

unfamiliar individuals, one senior (the oldest) and one junior (the youngest), to singleton 

nestlings alone in a nest. In this simulated vocal exchange (so-called training playback), one 

playback individual, the ‘responder’, vocalised systematically just after the ‘initiator’, hence 

displaying a higher motivation to compete for food resource than the initiator. After having 

broadcasted this vocal exchange, we tested the vocal response of singleton nestlings when 
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listening only to the calls of the initiator or only of the responder. Initiators being less 

motivated to compete than responders and juniors being less competitive than their senior 

siblings, the theoretical likelihood of obtaining the impending prey item is higher for nestlings 

competing with junior or with initiators than with other individuals. If owlets eavesdrop on 

vocal dyadic interactions, we thus expect that they invest more in vocalization when listening 

only to a former initiator than former responder, and when facing a junior competitor rather 

than a senior competitor. 

 

METHODS 

General procedure 

We performed the study in 2009 between June 21 and September 23 in western Switzerland 

(46°4’N, 6°5’E) on a population of wild barn owls breeding in nest boxes. Fifty-four owlets, 

including 19 males and 35 females, from 16 broods were brought to the laboratory at around 

13h00. They were aged between 26 and 45 days (mean ± s.e.: 36 ± 1), and were on average 

19 days pre-fledging age (which takes place at ca. 55 days). Individuals were brought back to 

their nest after three nights of captivity. The owlets were already thermo-independent and 

their parents were naturally sleeping outside their nest box. In the barn owl, incubation starts 

as soon as the first egg has been laid and since eggs are laid every 2.5 days, the two to nine 

siblings can significantly differ in age. Nestling age was estimated shortly after hatching by 

measuring the length of the left flattened wing from a bird’s wrist to the tip of the longest 

primary (Roulin 2004b). Nestling sex was determined using molecular markers (Py et al. 

2006).  

Nestlings were housed individually in an experimental nest box similar to the one in 

which they were reared in naturally (62 x 56 x 37 cm3), but separated into two equal parts by 

a thin wooden wall pierced with holes (fig.1B in Chap. I). In these conditions they behave as 



                                                                                                                                                               CHAPTER IV 
 

 108 

in nature (Roulin et al. 2009) and are not physiologically stressed (Dreiss et al. 2010a). One 

owlet was placed at one side of a box, while the other side contained a loudspeaker (near05 

experience, ESI Audiotechnik GmbH, Leonberg, Germany). We recorded each individual 

with a microphone (MC930, Beyerdynamic GmbH & Co KG, Heilbronn, Germany) oriented 

towards it and fixed on the inside roof of the box. The playback experiment was carried out 

on the third and last night of captivity starting at midnight. By that time, all nestlings had been 

food-deprived from the preceding morning at 8h00.  

The playback experiment was based on an experiment carried out in 2008, in which we 

found that calling rapidly after a sibling can signal hunger level and hence the motivation to 

compete over parental food resources (see Chap. III). In the 2008 experiment, we recorded 

naturally occurring vocal interactions in 78 pairs of siblings from 41 nests. Nestlings were 

taken from the wild and put into similar nest-boxes as those used in 2009, but with one 

nestling placed in each part of the boxes. We recorded their vocal interactions from 19h00 to 

23h30 on one night when both individuals were experimentally food-deprived, and on another 

night when both individuals were experimentally food-satiated (order of recordings was 

reversed for half the birds). The latency for a chick to call after its sibling ended a call was 

shorter for hungry individuals, after controlling for seniority (oldest or youngest sibling of the 

pair) and number of calls per minute which increases with hunger level (mean calling latency 

per minute was shorter in food-deprived than food-satiated individuals [8.20 ± 0.07 s vs. 8.46 

± 0.16 s]; effect of food-treatment: F1,17659 = 14.50, P = 0.0001 in a mixed model with 

individual nested in sibling pair as random factors, seniority and number of call per minute as 

independent terms). 
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Playback experiments 

In 2009, we first broadcasted a training playback of a vocal exchange between two pre-

recorded individuals to 54 singleton nestlings. The aim of this training playback is to allow 

singleton nestlings to eavesdrop on two nestlings that interact vocally. The two broadcasted 

individuals differed in age, the mean age difference being 10.3 ± 0.6 days (range: 2 - 19). A 

training playback lasted ca. 26 minutes and comprised 144 pairs of two calls from an 

‘initiator’ individual always calling 1.40 ± 0.01 s before the other individual, denoted 

‘responder’. Pairs of two calls were separated by a silence of 7.00 ± 0.01 s (fig. 1). The 144 

pairs of calls consisted in four blocks of the same 36 pairs of calls. In this way, in each 

training playback the two individuals had different roles - being either the initiator or the 

responder - but also in seniority - being either a junior or a senior individual. 

After having broadcasted one of these training playback sequences to a singleton 

nestling, we sequentially broadcasted the initiator’s and the responder’s calls to each owlet in 

a random order. These two testing soundtracks lasted ca. 6 minutes and comprised the same 

36 different calls from each playback individual that were placed at intervals of 10.03 ± 0.02 s 

in a random order, with each call played only once along the soundtrack (fig. 1). 

Each of the 54 experimental nestlings heard a unique combination of playback 

sequences, i.e. either different initiator-responder pairs or the broadcasted individuals were 

played back in a different order in the 1st and 2nd testing playbacks (fig. 1). The experimental 

nestlings that listened to the four categories of playbacks as listed in the fig. 1 showed no 

significant difference in age and sex (ANOVA: F3,50 =  2.55, P = 0.07 and F3,50 = 0.64, P = 

0.59).  
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Figure 1. Design of the four possible playback combinations broadcasted to singleton 
nestlings and number of singleton nestlings for each combination. J stands for junior and S 
for senior barn owl nestlings. In the initiator-responder training playback sequence, the initiator 
systematically called before the responder during ca. 26 minutes. In the 1st and 2nd testing playback 
sequences, only the initiator or the responder individuals were broadcasted during 6 minutes each. N 
stands for the number of lively nestlings that heard each type of combination of sequence.  

 

Construction of playback soundtracks 

To build the playback soundtracks, we used natural calls we had recorded in 2008 from pairs 

of siblings starved for the preceding 24 hours and that could vocally interact. We selected 

calls from seven 26 to 45 days old individuals (five males and two females) collected from 

seven different broods. Each playback individual was assigned an equal number of times to 

the role of “initiator” and of “responder” during playbacks. The two youngest individuals 

used to generate playbacks were only assigned the role of junior in playbacks, the two oldest 

only the role of senior and the three other individuals were alternatively assigned to the 

“junior” and “senior” roles. We isolated 36 calls of about 0.8 s (mean ± s.e.: 0.796 ± 0.001 s) 

from each nestling, which corresponded to the average call duration computed from the 

experimentally food-deprived pairs of nestlings recorded in 2008 (mean ± s.e.: 0.81 ± 0.01 s, 

based on 154,503 recorded calls). We standardised the maximum amplitude of all calls using 

the Audacity software (http://audacity.sourceforge.net); this manipulation does not affect the 

other acoustic features of the calls. The chosen call latency between initiator and responder 

for the playback corresponds to the 1st percentile of calling latency of the food-deprived pairs 

of nestlings recorded in 2008. The chosen call rate corresponds to the mean call rate of two 
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food-deprived siblings that freely interact vocally (mean ± se: 11.96 ± 0.05 calls/min, n = 68 

pairs of siblings recorded in 2008). 

 

Acoustic analyses 

We used Matlab v.7.7 (MathWorks, Natick, MA, U.S.A.) to assign calls to playback or 

nestlings and to measure the timing and duration of the calls. In particular, we measured the 

latency of the responses by the nestlings to playback calls, i.e. the time taken for each owlet to 

start to call following a playback call. The calling latency could be negative when an owlet’s 

call overlapped the broadcasted call. The analysed calling latency is the average of the owlet 

calls’ latency. 

 

Statistical analyses 

Statistical analyses were performed with the software SAS v.9.1 (SAS Institute Inc., Cary, 

NC, USA). We performed two mixed models to analyse the vocal response of nestlings when 

hearing the initiator and the responder during the 1st and 2nd testing playback sequences. One 

mixed model included owlet’s calling latency as dependent variable and the other model 

included the number of calls. As independent factors, we fitted: (1) the role of the broadcasted 

individual (i.e. initiator or responder) in the training playback sequence; (2) the seniority of 

the broadcasted individual (the older individual of the two broadcasted owlets was denoted 

‘senior’ and the younger individual ‘junior’); and, (3) the order in which the playback was 

received (i.e. whether it was played back 1st or 2nd).  

Because the same playback individual was broadcasted to more than one nestling, for 

all models we controlled for the identity of the two broadcasted individuals as a random 

factor. We included as random factor the brood identity of nestlings, since we often used 

more than one nestling per brood. Because absolute age of the broadcasted individuals did not 
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explain variation in calling behaviour of the focal live nestlings, we removed this fourth 

independent variable from the analyses. In all analyses, absolute age, age rank in their natural 

nest and sex of the 54 focal nestlings did not affect the way they behaved vocally when 

hearing the playbacks. Therefore, for clarity we did not include these variables in the models 

presented in the paper. Assumptions for the models used (homoscedastic and normal 

distributions of variables and residuals) were verified in each test. We performed backward 

model selection. Final models only contained significant effects (P < 0.05), and main effects 

involved in significant interactions. We verified that final models selected always presented 

the smallest Akaike Information Criterion (AIC) compared to initial and intermediate models. 

 

Ethical note 

The experiments were approved by the veterinary services of Canton de Vaud (Form No 

2109.1). We always left one or two nestlings in the natural nest and we had already observed 

that parents do not adjust feeding rate to short-term variations in food need (Roulin et al. 

2000). Therefore, temporally removing several nestlings from a nest never induced parents to 

abandon their nest. Keeping owlets at the university did not negatively affect their body 

condition since mean body mass and survival at fledgling did not significantly differ between 

nestlings brought to the university and nestlings left in their nest (Wilcoxon test on body mass 

at fledgling stage of recorded and non-recorded siblings in 2009: Z = 1.9, P = 0.051 

[recorded: 350±5g; non-recorded: 329±6g] and on mortality: Z = 1.7, P = 0.08 [recorded: 2%; 

non-recorded: 10%]), while body mass at capture did not differ between the two groups (Z = 

1.2, P = 0.22). In the laboratory, nestlings were not physiologically stressed, as shown by the 

absence of a rise in baseline corticosterone level compared to the situation prevailing under 

natural, undisturbed conditions (Dreiss et al. 2010a).  
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RESULTS 

As expected, nestlings vocalised more rapidly just after the initiator produced a call compared 

to the responder, regardless of seniority (F1,34 = 5.27, P = 0.027, table 1, fig. 2). No other 

main effects or interactions were significantly related to nestling's calling latency. 

Furthermore, the number of calls produced by singleton nestlings was significantly related to 

the statistical interaction between competitor individuals’ role in training playback and their 

seniority (F1,82 = 8.58, P = 0.004, table 1). To investigate this interaction, we have conducted 

additional analyses. When responding to an initiator alone, nestlings produced twice as many 

calls when listening to a junior, as opposed to a senior (4.0 ± 0.7 calls per minute vs. 1.9 ± 

0.5, F1,51 = 4.92, P = 0.031 in a mixed model with brood identity of nestlings and identity of 

the playback individual as random factor, fig. 3), but were similarly vocal when listening only 

to a junior as a senior responder (similar mixed model: F1,51 = 2.92, P = 0.10, fig. 2; see table 

1 for the full initial model including initiators and responders). Therefore, owlets vocalise 

differently according to the challenger role (“initiator” vs. “responder” hypothetically 

reflecting competitive effort) and seniority (“junior” vs. “senior” hypothetically reflecting 

competitive ability) previously witnessed during the training playback, even in our 

experimental situation where the broadcasted competitors were unfamiliar to the nestlings. 

 

Table 1. Vocal response of bystander barn owl nestlings listening to a playback of an 
individual (during the so-called test session, fig. 1) that was previously heard interacting 
with another individual (during the so-called training session, fig. 1). Results of final 
models are written in bold and non-significant results eliminated from the initial full models in plain. 
 
 Nestling's calling latency  Nestling's call number 
 F d.f. P  F d.f. P 
Testing playback order (1st vs. 2nd) 0.91 1, 37 0.35  0.61 1, 81 0.44 
Role in training playback (initiator vs. responder) 5.27 1, 34 0.027  0.06 1, 82 0.81 
Seniority (junior vs. senior) 0.63 1, 37 0.43  0.06 1, 82 0.81 
Playback order x Role in training playback 0.01 1, 34 0.94  3.26 1, 79 0.07 
Playback order x Seniority 0.01 1, 34 0.91  2.38 1, 79 0.13 
Role in training playback x Seniority 1.94 1, 34 0.17  8.58 1, 82 0.004 



                                                                                                                                                               CHAPTER IV 
 

 114 

                                           
 
Figure 2. Nestlings’ latency (s ± s.e.) to call after the calls of initiator and responder barn 
owl nestlings separately broadcasted during the 1st and 2nd testing playbacks. Nestlings 
called more rapidly after individuals that were the initiator rather the responder during the training 
playback sequence. The symbol * is for P < 0.05 in a mixed model (see table 1). 
 

                                       

Figure 3. Eavesdropping behaviour of barn owl nestlings. After nestlings heard a vocal 
dyadic interaction between an initiator and a responder nestling during training playback, we tested the 
number of calls (± s.e.) they produced when listening only to the same initiator or responder. Nestlings 
produced significantly more calls when listening to a junior initiator than to a senior initiator or to a 
junior responder during testing playbacks. The symbol * is for P < 0.05 in a mixed model (see table 1). 
 

 



                                                                                                                                                               CHAPTER IV 
 

 115 

DISCUSSION 

Our results show that owlets do eavesdrop on competitive interactions between other owlets. 

We found that owlets adjusted their vocal behaviour according to the perceived motivation 

and competitiveness of nest mates in a previous interaction. This suggests that owlets are able 

to: (1) gather information on the competitive role played by two vocally interacting nestmates 

(i.e. which of the two brood mates was calling before the other) as well as their relative 

seniority (i.e. which of the two brood mates is the older); and, (2) remember this information 

for at least a few minutes before using it to adjust their vocal behaviour. To our knowledge, 

this is the first evidence that bird nestlings have such cognitive abilities, which could be used 

to resolve conflicts over the share of resources. 

In many species, individual acoustic features underlie distinct signatures about its 

identity, such as sex, familiarity, sexual maturity, or dominance status (Blumstein and Munos 

2005; Davies and Halliday 1978; Tomaszycki et al. 2001), and some studies show that 

receivers can discriminate individuals on the basis of these signals (Gherardi et al. 2005; 

Godard 1991; Hare 1998). Young animals have also shown to have the capacity to distinguish 

each other’s familiarity and relatedness (Beecher and Beecher 1983; Maletinska et al. 2002; 

Palestis and Burger 1999). However, to our knowledge, the capacity for young non-humans 

animals to discriminate individual siblings from one another has only been experimentally 

demonstrated in Greylag Geese (Anser anser) (Scheiber et al. 2011). The adjustment of owlet 

behaviour following a vocal interaction supposes that they discriminate among callers using 

acoustic cues. This discrimination may be the result of individual recognition or of the ability 

to classify callers according to their relative age. We showed indeed that nestlings behaved 

differently according to the seniority of the two playback individuals. Interestingly, owlets 

adjusted their calling behaviour in relation to the age hierarchy of the two witnessed 

individuals (i.e. which individual is the junior vs. senior) but not in relation to their absolute 
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age. This is probably adaptive given that age hierarchy between siblings persists throughout 

the 55 day-long rearing period. In the dark nocturnal conditions of a relatively closed nest, 

barn owl siblings appear to mainly communicate vocally (Dreiss et al. 2010b), visual cues 

being faint. Calls of barn owl nestlings probably provide an age-specific signature that 

enables nestlings to discriminate their opponent according to their age, even when facing 

unfamiliar and hardly visible individuals. Age hierarchy is an important factor of sibling 

competition in many altricial species (Drummond 2006; Roulin 2004a). In a crowded nest, 

estimating the position of hungry vocal competitors in the within-brood age hierarchy would 

allow a focal individual to estimate its chance to win the contest for the next delivered prey. 

Individual discrimination in the context of sibling negotiation would thus allow 

bystander nestlings to adjust their investment in sibling competition for food according to the 

level of competitiveness and motivation of their vocal siblings. The relative hunger state of 

siblings is worthwhile remembering if it does not fluctuate rapidly over time. Here, we have 

shown that barn owl nestlings remember the state of two competitors for at least a few 

minutes. Two ecological factors that might influence the evolution of the social and cognitive 

ability to remember siblings’ hunger state are parental feeding rate and the size of food items. 

In the barn owl, parents feed their brood on average every hour (Roulin 2002b) with relatively 

large food items. Thus, siblings’ hunger level does not oscillate quickly, as fed individuals are 

satiated for a while and hungry individuals can wait several minutes up to a few hours before 

being fed. Eavesdropping on the communicative network within a brood can thus reinforce 

the efficiency of exchange of valuable information during the vocal negotiation process 

among siblings.  

Because barn owl nestlings have up to eight competitors and because of relative low 

parental provisioning rate, it is possible that they could remember interactions between 

multiple individuals for longer periods of time. Furthermore, nestlings showed here that they 
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discriminated between two individuals that only varied in their calling latency. In nature, 

hungry and satiated individuals show more contrasted vocal behaviours, as they also vary 

with respect to call duration and call rate (Roulin et al. 2009) and probably intensity of calls. 

Gaining information by eavesdropping a vocal interaction between individuals varying in 

hunger level must thus be easier in nature than in our experimental design. It is hence likely 

that barn owl nestling largely use eavesdropping in natural conditions. 

To conclude, barn owl nestlings eavesdrop on each other’s competitive interactions and 

are able to identify and remember the role of each opponent even before directly interacting 

with them. This ability enables them to adjust their vocal investment once interacting with 

these opponents. Therefore, young animals competing over parental resources can remember 

which of the two interacting siblings is highly motivated to compete (in this case responders) 

and has the higher resource holding potential (ergo seniors) and use this information to adjust 

investment in sibling competition. Eavesdropping relatives’ interactions therefore allows 

young animals to reduce the costs involved by the resolution of intra-familial conflicts over 

parental resource.  
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ABSTRACT 

 

 Assessing the number of rivals is crucial to optimally adjust investment into a contest. If 

laboratory animals show numerical abilities, little is known about the ecological and 

evolutionary implications of the ability of counting, particularly in young animals. Barn owl 

siblings (Tyto alba) vocally compete the priority access to food resources before parents 

actually deliver them. The individual that vocalises at the highest rate in the absence of 

parents deters its siblings from calling and ultimately from begging once parents are back 

with food. Here, we tested the novel hypothesis that to optimally adjust vocal investment barn 

owl nestlings count siblings that are currently competing. To singleton owlets we broadcasted 

a fixed number of calls (at three possible rates) emitted by one, two or four pre-recorded 

unfamiliar nestlings. As predicted singleton nestlings adjusted call rate and call duration in 

relation to the number of playback individuals. When we broadcasted calls at a low rate, 

nestlings vocalised at a higher rate when one rather than two or four individuals emitted the 

calls. When we broadcasted calls at higher rates, nestlings refrained from vocalising by 

producing fewer and shorter calls when hearing four individuals rather than two or one. Barn 

owl nestlings assess variations in the number of siblings currently competing based on 

vocalisations, they process and use this information to adjust vocal behaviour. We conclude 

that sibling competition can promote the evolution of numeric ability in young animals. 

 

Key-words: numerical ability, count, vocal, begging, sibling competition, Tyto alba



                                                                                                                                                                  CHAPTER V 
 

 123 

INTRODUCTION 

Animals compete for limited resources such as mates, territories or food. As the likelihood of 

winning a contest decreases with the motivation and the number of rivals, animals are 

predicted not only to assess rivals’ resource holding potential (Enquist and Leimar 1983; 

Parker 1974), but also to count them in order to optimally adjust investment in competition. 

Surprisingly, despite the straightforward benefits individuals should derive from counting 

competitors, little is known about the extent to which wild animals use numerical 

competences in socio-ecologically relevant contexts. Literature on non-human animals’ 

numerical competences shows that animals as various as insects (Dacke and Srinivasan 2008; 

Gross et al. 2009), fish (Agrillo et al. 2011), amphibians (Uller et al. 2003), birds (Rayburn-

Reeves et al. 2010) and mammals (Brannon and Terrace 1998; Kilian et al. 2003) can 

sequentially distinguish between small numerosities – often up to four. However, these 

studies are performed in the laboratory with individuals trained to discriminate among 

artificial objects, lights or sounds. Only a few experiments such as choice procedures in some 

fish and insects (Agrillo et al. 2009; Carazo et al. 2009; Gomez-Laplaza and Gerlai 2011) and 

playback experiments in wild birds and mammals (e.g. Kitchen 2004; McComb et al. 1994; 

Seddon and Tobias 2003) report that they perceive a change in the number of conspecifics 

based on visual or vocal cues and accordingly dose effort in mating or competing decisions. 

To our knowledge, the ecological importance of numeric ability has not been evaluated 

in the context of family interactions and sibling competition. In altricial species, offspring 

commonly compete to attract parental attention and obtain a larger than equal share of 

parental resources (MacNair and Parker 1979). The intensity of scramble competition among 

the progeny and of begging solicitations signal offspring need and determine how food 

resources is shared among the progeny (Kilner and Johnstone 1997; McRae et al. 1993). 

Studies in animals typically show that nestlings adjust begging behaviour not only in relation 
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to their own need but also to the competitive ability (Cotton et al. 1999; Price et al. 1996; 

Roulin 2004), postural or vocal signals (Leonard and Horn 1998; Madden et al. 2009; 

Marques et al. 2011; Smith and Montgomerie 1991) and location of their siblings in the nest 

(Kolliker et al. 1998; Ostreiher 2001). In contrast, nothing is known about whether young 

animals are able to assess the number of siblings that are currently competing to adjust their 

investment into the competition over parental resources. Given that some nestlings can be 

momentarily sated, only part of the progeny is expected to compete over food. This raises the 

possibility that young animals that are still dependent on their parents may be selected to 

assess siblings’ signalling level not only to evaluate their motivation to compete, but also to 

count how many of them are currently competing. The competitive environment experienced 

by an individual is certainly different if begging solicitations are produced by one sibling that 

is very motivated to compete for parental resources or by several mildly motivated siblings.  

In the present study, we investigated whether barn owl nestlings (Tyto alba) adjust 

effort invested in the contest for parental resources to the number of nestmates that are 

momentarily vocally competing. In this nocturnal species, the two to nine young not only beg 

towards parents to solicit food, but also vocally communicate with their siblings in the 

prolonged absence of parents between feeding events. The function of this sib-sib 

communication system is to inform each other about their willingness to compete once 

parents are back with an indivisible small mammal. Because a single offspring is fed per 

parental visit, only one individual will be paid back for the effort invested in sibling 

competition. This sib-sib communication system, referred to as “negotiation”, therefore 

allows each individual to optimally adjust investment into each specific contest (Roulin 

2002a). Typically, the hungriest individual of a brood vocalises intensely in the absence of 

parents, which deters its siblings from negotiating and later from begging for the prey item 

delivered once parents are back. Negotiating at a high level therefore gives priority access to 
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the impending food resource at lower costs compared to a situation where negotiation would 

not take place (Johnstone and Roulin 2003; Roulin 2002a).  

We repeatedly showed that barn owl nestlings invest in vocal negotiation according to 

the level at which their siblings vocalise (Dreiss et al. 2010b; Roulin 2002a). It is however 

unclear whether owlets also assess the number of nestmates that are currently negotiating, 

although this behaviour would certainly be adaptive. The number of siblings that take part 

into negotiation, and thus the ambient competitive level, varies across feedings events along 

with the hunger level and the motivation to compete of each nestling. From a cognitive point 

of view, this is a priori plausible because nestlings can identify which of two vocalising 

siblings is the oldest and which is negotiating at the highest level and use this information to 

optimally adjust signalling level (Chapter IV). Assuming that a given number of negotiation 

calls are emitted by an increasing proportion of siblings, a nestling will face more, but less 

motivated competitors. We thus propose the novel hypothesis that nestlings determine how 

many siblings are currently vocalising and adjust vocal investment accordingly. 

Here, we report a test of this hypothesis. To singleton nestlings we broadcasted pre-

recorded negotiation calls of one, two or four unfamiliar nestlings at different rates. We 

predict that singleton owlets adjust their vocalisation behaviour in relation to both the rate at 

which negotiation calls are broadcasted per se and to the number of individuals contributing 

to the overall signal. Even if we test this hypothesis in the context of sibling negotiation, our 

study is of general applicability. Indeed, negotiation calls honestly signal need and they are 

directed to family members. Therefore, the barn owl can be considered as a prime model 

system to study social interactions taking place between young individuals, parents and 

offspring but also between mature individuals. 
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METHODS 

Data collection 

The study was performed in western Switzerland (46°49’N/06°56’E) on a population of wild 

barn owls. We carried out the experiment once nestlings were old enough to be thermo-

independent and could consume food without maternal help. We estimated nestlings’ age 

shortly after hatching by measuring the length of the left flattened wing from the bird’s wrist 

to the tip of the longest primary (Roulin 2004)  

Between May and September 2011 at ca. 12h00, we brought to the laboratory 57 male 

and 64 female nestlings aged 33 ± 4 days (mean ± SD), issued from 31 broods (mean brood 

sise in the field ± SD = 6 ± 1 nestlings). We hosted them during two nights, before bringing 

them back to their original nest at ca. 12h00. We kept each individual in a wooden nest-box 

similar to the one in which it was reared in the field (fig.1B in Chap.I). Each nest-box was 

separated into two equal parts, with one nestling on the left side and a loudspeaker 

(near05experience, ESI Audiotechnik GmbH, Leonberg, Germany) on the right side. Nest-

boxes were acoustically isolated with mineral foam on the sides and the roof, and at the time 

of recordings they were closed. To facilitate ventilation we connected nest-boxes to the 

outside with a plastic pipe. The acoustic isolation was efficient since calls were not audible by 

a human observer standing in the room. 

Owlets were acclimated to the laboratory conditions during the first 24 hours and 

nestlings were not physiologically stressed, as shown by the absence of a rise in baseline 

corticosterone level compared to the situation prevailing under natural, undisturbed conditions 

(Dreiss et al. 2010a). On their arrival, we offered laboratory mice to the owlets as well as on 

each morning at ca. 9h00 a.m. with ca. 50 g of laboratory mice, which is slightly inferior to 

their daily food requirement of about 67 g, in order to stimulate them to vocally compete at 

night during our playback experiments which started at 11h45 p.m. on the second night. We 



                                                                                                                                                                  CHAPTER V 
 

 127 

used Cubase software version 5.1 (Steinberg Media Technologies GmbH, Hamburg, 

Germany), set at 44.1 KHz sampling rate and 16-bit resolution, to simultaneously broadcast 

the playback sequences and record nestlings’ vocalisations. 

 

Design of playback sequences 

To build playback sequences, we selected 24 natural calls per individual in 21 barn owl 

nestlings (13 males and 8 females aged 32 ± 6 days (SD)) issued from 19 broods. These 

individuals were recorded during free vocal dyadic interactions between pairs of starved 

siblings in 2008 hosted in the same laboratory conditions as in 2011, except that the sibling 

replaced the loudspeaker. All calls lasted ca. 0.8 sec, which corresponds to the mean and 

median length of calls observed in the free dyadic interactions recorded in 2008 (mean ± SEM 

= 0.811 ± 0.0007 sec, median = 0.800 sec, range: 0.220 - 2.310 sec, n = 61’332 calls from 98 

owlets). We standardised call intensity using free Audacity software v.1.3 Beta 

(http://audacity.sourceforge.net), a procedure that does not affect call frequencies and 

duration. Based on these standardised calls, individuals could be statistically discriminated, 

which supported potential for individual recognition by experimental nestlings to which we 

broadcasted them (see Supplementary material). 

To each of the 121 singleton nestlings we broadcasted 9 playback sequences lasting 4 

minutes each and separated by 6 minutes of silence. We chose these timings because previous 

studies showed that owlets adjust their vocal behaviour mostly according to the 2 preceding 

minutes of a vocal exchange with a counterpart (unpublished results). The 9 sequences 

corresponded to the combinations of three different call rates: 6, 12 or 24 calls per minute, 

emitted by one, two or four individuals. These three call rates correspond to the natural range 

we observed in free vocal interactions that took place between starved owlets in 2008, during 

minutes when owlets produced at least one call (mean ± SEM = 7.86 ± 0.06 calls/min, median 
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= 7.00, range: 1-34, n = 61’332 calls from 98 owlets). In the sequences where we broadcasted 

two or four playback individuals, we allocated the same number of pre-recorded calls for each 

playback individual. For example, for playbacks of four individuals for which call rate was set 

to 24 calls/min, we inserted 24 calls of each of the four playback individuals in the 4 minute-

long playback sequence (table 1).  

To avoid pseudo-replication, we broadcasted to each singleton nestling a unique 

combination of calls (Kroodsma et al. 2001). Using an automatic Matlab program (version 

R2008b MathWorks, Natick, MA, U.S.A.), we inserted calls in a random order along the 

four-minute-long playback sequences and separated these calls with randomly chosen time 

intervals. Nevertheless, we set the minimal pause between two consecutive calls to 1 second; 

intervals of less than 1 second between two consecutive calls emitted by two individuals 

corresponded to only 0.08 % of all individual pauses (n = 250’924 pauses from 98 owlets) 

observed in the recordings of free dyadic interactions in 2008. We randomised the order of the 

9 sequences across the 121 nestlings. In each sequence, we also randomly inserted the calls 

and identity of each playback individual. 

 
Table 1. Experimental playback design to study whether barn owl nestlings are able to 
count how many siblings are currently vocalising.  
 

 

 

 

 
Acoustic analyses 

We placed a microphone (MC930, Beyerdynamic GmbH & Co KG, Heilbronn, Germany) 

inside nest-boxes against the roof underside and in direction to the nestling. By comparing 

broadcasted soundtracks to recorded soundtracks we could easily discriminate calls produced 

Number of  broadcasted  
donor nestlings  

Call rate from each donor nestling 
(calls/min) 

1 nestling 6 12 24 
2 nestlings 3 6 12 
4 nestlings 1.5 3 6 
Overall playback call rate (calls/min) 6 12 24 
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by the owlet from those emitted by the loudspeaker using a semi-automatic program in 

Matlab v. R2008b. For each of the nine four-minute-long sequences, the Matlab program 

recorded the number of calls produced by the nestling and calculated the mean duration of its 

calls in seconds. Among the 121 tested nestlings, 36 of them did not vocalise at all throughout 

the nine playback sequences, a frequently observed situation in the wild (pers. obs.). We 

analysed the response of the 83 nestlings that produced at least one call (mean ± SEM = 70 ± 

11 calls, range: 1-412 produced by 38 males and 45 females aged 33 ± 4 days (SD)). Results 

(not shown) were qualitatively similar when we restricted analyses to the 57 nestlings that 

produced a minimum of 10 calls.  

 

Statistical procedure 

For each of the nine four-minute-long playback sequences, we computed the number of calls 

and mean call duration of nestlings. We ran a generalised linear mixed model with Poisson 

error distribution to analyse the number of calls produced by nestlings and a linear mixed 

model to analyse the mean call duration. We fitted the identity of nestlings nested in brood of 

origin as a random intercept to control for the 9 repeated measurements per individual and the 

fact that several tested nestlings came from the same nest. Fixed effects comprised the 

number of broadcasted calls (6, 12 or 24 calls/min) and the number of playback individuals 

that emitted these calls (one, two or four). We also added the order at which we broadcasted 

the playback sequence (1 to 9) as a continuous covariate to control for the effect of time-

dependent vocal behaviour (e.g. owlets become more motivated to call with time as they 

become hungrier). In a preliminary analysis, we included sex and age of nestlings as 

covariates, but they proved to have non-significant effect on vocal output and were hence 

removed from the final analyses. In the case of significant interaction between the terms 

“playback call rate” and “number of playback individuals”, for each of the three call rates we 
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ran similar mixed models to examine the influence of the number of individuals broadcasted 

on the vocal behaviour of nestlings. 

Analyses were performed with SAS V9.2 (SAS Institute Inc., Cary, NC, USA). 

Residuals of linear mixed models were checked for normality. 

 

RESULTS 

Experimental nestlings vocalised less when calls were broadcasted at a higher rate (term 

“Playback (PB) call rate” in table 2 and fig. 1A). They also modulated the number of calls 

they produced in relation to the number of playback individuals used to generate the playback 

sequences (term ”Number of PB individuals”), but in a way that depended on the rate at 

which calls were broadcasted (interaction ”PB call rate x Number of PB individuals”). 

Nestlings vocalised significantly more when we broadcasted a single individual compared to 

multiple individuals, i.e. two and four, both when we played back 6 calls/min (fig. 1A; similar 

GLMM as in table 2, F1,163 = 7.8, P = 0.0006) and 12 calls/min (similar model: F1,163 = 4.0, P 

= 0.02). When we broadcasted 24 calls/min, nestlings vocalised more when hearing calls 

produced by two rather than one or four playback individuals (fig. 1A; similar model: F1,163 = 

11.7, P < 0.0001). 

Independently of the rate at which we broadcasted calls, nestlings emitted shorter 

vocalisations when they heard four rather one or two playback individuals (fig. 1B and table 

2). 

The significant effect of the variable “sequence order” indicates that with time nestlings 

produced more and longer calls (table 2). 
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Table 2. Number and mean duration of calls produced by barn owl nestlings hearing 
one, two or four playback individuals calling at various rates (i.e. 6, 12 or 24 calls/min). 
A generalised linear mixed model with Poisson error distribution was used to test variation in the 
number of calls singletons emitted in response to the playbacks and a linear mixed model to test 
variation in the mean duration of bystanders’ calls. Both models comprised the identity of nestlings 
nested in brood where they were raised in the field as random intercept. The analyses were based on 
83 nestlings issued from 33 broods. For each nestling and acoustic variable, we had a maximum of 
nine data points corresponding to the total number of calls and to the mean call duration computed 
over the 9 four-minute-long playback sequences corresponding to the 9 combinations of call rates (i.e. 
6, 12 or 24 calls/min) and number of playback individuals (i.e. one, two or four). Because not all 
nestlings called when hearing a given playback sequence, we had a larger number of observations to 
test variation in nestling’s call number (n = 747) than in nestling’s call duration (n = 417). Because 
each owlet experienced nine playbacks broadcasted in a random order, we controlled statistically for 
the order at which each playback was broadcasted (term ‘Sequence order’).  
 
 

Dependent variable  Call number  Call Duration 
Fixed effects  Fdf P-value  Fdf P-value 

Sequence order  F1,655 = 29.6 <0.0001  F1,331 = 19.0 <0.0001 

Playback (PB) call rate  F2,655 = 237.6 <0.0001  F2,329 = 0.2 0.80 
Number of PB individuals  F2,655 = 8.3 0.0003  F2,331 = 6.6 0.002 
PB call rate X Number of PB 
individuals  F4,655 = 9.2 <0.0001  F2,325 = 1.3 0.28 
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Figure 1. Number (A) and mean duration (B) of calls (± SEM) of barn owl nestlings 
hearing one, two or four playback individuals calling at various rates (i.e. 6, 12 or 24 
calls/min). Averages are computed over the raw data of 83 nestlings from 33 broods. Levels of 
significance (* P < 0.05, ** P < 0.01, *** P < 0.001) reported above the bars are derived from mixed 
models examining the effect of the number of broadcasted nestlings on the nestling’s call number and 
mean duration. Separate analyses were performed to examine the effect of the number of playback 
individuals for each playback call rate. The order at which calls of one, two or four individuals were 
broadcasted to each nestling was entered in the model as factor and nestling identity nested in brood 
was included as random intercept to control for the repeated measurements per nestling and per brood. 
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DISCUSSION  

In the present paper, we experimentally tested the hypothesis that young animals still 

dependent on their parents evolved the ability to count the siblings that are currently 

competing over the same pool of parental resources, so as to dose effort invested in sibling 

competition. As a model system, we considered the barn owl in which nestlings vocally 

negotiate among them priority access to the impending indivisible food item next delivered by 

a parent. The individual that produces many and long calls deters siblings from vocally 

negotiating and ultimately begging food from parents (Dreiss et al. 2010b; Johnstone and 

Roulin 2003; Roulin 2002a). An individual will escalate vocal negotiation when its chance of 

winning the contest is higher, that is when it faces a less motivated sibling that emits few and 

/ or short calls (Dreiss et al. 2010b). We thus predicted that owlets assess both the number and 

motivation of siblings that are currently competing from their calls. Accordingly, we found 

that owlets refrained from vocalising when hearing more calls per se, i.e. broadcasted at 6, 12 

and 24 calls per minute. In each case they also differentially modulated the number and / or 

duration of their vocalisations according to whether the broadcasted calls were emitted by 

one, two or four playback individuals. Since we broadcasted the different playback sequences 

in a random order with several minutes of silence separating two sequences, owlets most 

likely assessed the absolute number of calls and individuals broadcasted in each sequence 

rather than compared the relative numbers of two adjacent sequences. Hence, we can interpret 

our results with confidence as experimental evidence that barn owl nestlings are able to assess 

variation in the number of nestmates that are competing at different levels and use this 

information to adjust their vocal behaviour. 

Laboratory choice experiments in newborn domestic chicks previously demonstrated 

that even at very young stages, chicks can sequentially discriminate numbers of artificial 

objects (Rugani et al. 2009). Together with their study, we provide here evidence for 
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rudimentary numerical abilities in young animals, from multiple visual and vocal cues. 

Without a game-theoretical approach, however, it is difficult to propose a priori predictions 

regarding how offspring should adjust effort in sibling competition according to variations in 

both the number and motivation of competitors. Here, we found that nestlings vocalised more 

often when hearing one rather than two or four broadcasted nestlings calling at a rate of 6 and 

12 calls/min, whereas when the playback call rate was set to 24 calls/min nestlings emitted 

more calls when listening to two rather one or four nestlings. Furthermore, independently of 

the rate of broadcasted calls, nestlings produced longer calls when we broadcasted fewer 

individuals than four. Owlets thus globally invested more vocal effort when hearing fewer 

calls and fewer rivals. Assuming that producing many and long calls is costly (Roulin et al. 

2009), by doing so, they save energy when the level of competition is too high. This energy 

could be reallocated once siblings are fed and hence once their own chance of obtaining the 

next delivered food item is higher (Roulin 2002a). This is consistent with the “sibling 

negotiation hypothesis”, which posits that when food is indivisible, young animals inform 

their siblings about their willingness to compete only if the expected chance of obtaining the 

impending indivisible food item is relatively high (Johnstone and Roulin 2003; Roulin 

2002a).  

When we broadcasted calls from two or four individuals, we took care to allocate the 

same number of calls per individual in each playback sequence (table 1). As a consequence, 

when we broadcasted calls from several individuals, each emitted in total very few calls 

indicating a low motivation to compete over the next delivered food item. When hearing 24 

calls per minute produced by a single individual, owlets refrained from calling probably 

because the playback individual signalled a very high motivation to compete. Hence there 

may be a threshold in opponents’ motivation at which it becomes worth investing against 
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more – but not too many – nestmates that are mildly motivated than against a single highly 

motivated sibling. 

Our study mirrors works performed in territorial songbirds and mammals showing that 

individuals retreat from vocalising when facing two or three intruders compared to one 

(Kitchen 2004; McComb et al. 1994; Seddon and Tobias 2003). However, in these playback 

experiments, authors measured the response of groups of individuals (Seddon and Tobias 

2003) or did not control for auditory cues that co-vary with number like call duration and 

intensity (McComb et al. 1994), which prevents disentangling the exact effect of the number 

of competitors from the total intensity of vocal stimuli on how individual nestlings adjust 

effort in competitive social interactions. In this respect, our design is conservative, since the 

number of playback individuals varied independently of the number of broadcasted calls and 

of their duration and intensity, which were fixed, and calls did not overlap. This experimental 

approach enables us to prove that barn owl nestlings can assess the number of competitors 

based on vocal signatures rather than on variation in call intensity, call rate or any other 

possible cues such as siblings’ position in the nest. Indeed, in a single playback sequence the 

broadcasted individuals all emitted the same number of calls and, from a single loudspeaker 

mimicking the situation where all siblings are positioned at the same location. Our design 

therefore mimics a very difficult situation for nestling barn owls to count the number of 

competitors, but for three reasons, in natural conditions it may be even easier for them to 

assess the number and motivation of each sibling. First, in the field owlets emit calls of 

different durations at different rates, which may help nestlings to recognise siblings. Second, 

nestlings stand at different locations in their nest during relatively long periods of time 

implying that calls of each individual are always emitted from the same direction. This later 

factor is probably very important, since we already showed that an individual induces siblings 

to refrain from negotiating by being located close to the nest-box entrance where parents 
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predictably deliver food (Dreiss et al. 2010b). Third, we played back calls from unfamiliar 

nestlings. Nestlings thus appeared to distinguish vocal characteristics of several unknown 

individuals.  

 To conclude, we propose that competition over limited resources, in particular in the 

case of sibling rivalry, can promote the evolution of numerical competences that help 

revolving conflicts. More generally, our findings reveal that to adjust optimally effort in 

competition animals should not only assess the overall level of competition from a group but 

also how many individuals are currently competing and also likely their individual 

competitiveness. This raises very interesting issues regarding the possibility that some 

individuals may form coalitions to outcompete the most motivated opponents of a group. In 

the case of barn owls, some nestlings may indeed vocalise not for their own benefit but to 

favour some particular siblings by inducing a highly vocal competitor to retreat from the 

contest. Historically, theoretical models of signalling to resolve conflicts are developed based 

on simplistic assumptions as dyadic interactions (Enquist and Leimar 1983; Parker 1974). 

Research should thus envisage animal communication as a complex network so as to better 

understand the plasticity of competing tactics and the evolution of signals. This is of 

particular importance while studying competitive interactions within relatively large groups of 

individuals who share a limited space such as begging offspring, chorusing anurans and 

insects, and colonial species (Horn and Leonard 2005; Schwartz and Freeberg 2008).  
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Supplementary material 
 

Vocal signature of playback individuals 
 
 
 To verify that the pre-recorded calls we used to build playback sequences conveyed 

potential for individual signatures, we measured the several acoustic parameters described 

hereafter with Matlab v. R2008b (MathWorks, Natick, MA, U.S.A.). The signal segment 

containing one bird call is denoted x(t), where t is time in seconds. The length of a bird’s call 

is T seconds. The spectrum of x(t) is denoted X(f), where f is frequency in Hz. The bandwidth 

of the signal is F Hz. The temporal envelope of x(t) is denoted e(t). The considered acoustic 

features were the following variables (see fig. S1): 

 

(1) Centre of Power in Time [s] (CPT). This point divide the call in two parts in the time axis; 

the parts before and after this CPT represent half of call magnitude. 

 

(2) Centre of Power in Frequency [Hz] (CPF). Frequencies above and below this CPF 

represent half of call magnitude. 

 

(3) Standard Deviation of Centre of Power in Frequency [Hz]:  is computed on short-time 

spectra and the standard deviation of it with respect to time is computed. 
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(4) Low Weighted Centre of Power in Frequency [Hz] (CPFL). Frequencies above this CPFL 

represent 75% of call magnitude. 

 

(5) High Weighted Centre of Power in Frequency [Hz] (CPFH). Frequencies above this 

CPFL represent 25% of call magnitude. 

 

(6) Fluctuation of Temporal Envelope [1: no fluctuation, >1: fluctuation] (FTE). 

            

(7) Absolute magnitude level [dB] (AML). 

 

(8) Level ratio (LR50): ratio of magnitude of the first half of the call (in time) divided by the 

second half of the call. 

 

 We first conducted a Principal Component Analysis (PCA) over the seven acoustic 

parameters to disentangle the ones potentially encoding for distinct components of vocal 

signature. To do this, we computed a mean value for each call feature and for each call donor. 

According to this PCA, we identified 5 out of the 7 considered acoustic features along the two 

first principal components axes, which accounted for 70% of the total variance (43.0 and 27.0 

% respectively), as potentially distinct components of a vocal signature. These were CPF, 

FTE, CPFsd, LR50 and AML.  
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We further ran a Discriminant Function Analysis (DFA) to verify that playback 

individuals could be statistically discriminated from their calls. We performed the DFA based 

on the CPF, FTE, CPFsd, LR50 and AML, of the 504 playback calls (i.e. 24 calls for each of 

the 21 playback individuals). The DFA revealed that 19 out of the 21 owlets could be 

statistically discriminated based on these five parameters. The mean correct assignment rate 

was 36.1% (± s.d. = 23.7%, range 0-75%) across individuals, which was well above chance 

level (4.8%). Except for two owlets, for which assignment rate was 0 %, on average, 39.9 % 

of the calls were correctly assigned to all of the other 19 owlets (range = 8.3 to 75.0 %). 

Last, we confirmed that acoustic features of playback individuals’ calls did convey a 

potential for individual coding (PIC), following Reers and Jacot (2011). We computed the 

individual coefficient of variations (CVi) for CPF, FTE, CPFsd, LR50 and AML for each 

playback individual, as well as the global coefficient of variation of each acoustic feature 

(CVb) across all calls and all individuals, following the formula: CV = 100 x SD / mean, with 

SD = standard deviation. For each of these five acoustic features, we then computed the 

potential for individual coding (PIC) following the formula PIC = CVi / CVb. We found the 

five PIC ratios to be greater than 1 (1.3 to 1.7), which indicated that all acoustic features were 

more variable across than within individuals. Hence, the individuals from which we used the 

calls to build our playback sequences could possibly be biologically discriminated from a 

vocal signature based on their acoustic features. 

 

We used the library MASS in R freeware version 2.12.2 (R Foundation for Statistical 

Computing, Vienna, Austria) to run principal component and discriminant function analyses.  
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            A. 

 

 

 

 

 

          B.  

 

 

 

 

 

 
 
Figure S1. Frequency distribution (A) and sonogram (B) of a typical negotiation call of a 
barn owl nestling. The seven acoustic features first considered corresponded to the central power of 
frequency (CPF), its deviation (CPFsd), its lower and upper ranges (CPFL, CPFH), the spectral 
envelop (FTE) 
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In species with parental care, young solicit care and food from their parents. Because of 

scramble competition, siblings not only modulate begging behaviours in function of their 

parents but also of each other. To date, knowledge about how and the extent to which young 

mutually adjust signals of need remains scant. In my thesis, I tackled this issue using the barn 

owl. In this species, the one to nine nestlings vocally contest priority access to indivisible 

food prior to parents’ visits at night, by repeating a simple noisy call (fig. 2 of General 

Introduction), a process referred to as ‘sibling negotiation’ (Roulin 2002a). Using both 

correlative and playback procedures within dyads, I first examined how individuals mutually 

adjust the timing (Chap. I) and the average number and duration of their calls (Chap. II). 

Next, I described the acoustic rules underlying the continuous sib-sib negotiation process 

(Chap. III). Finally, using playbacks, I tested whether owlets socially eavesdrop on their 

nestmates’ vocal interactions (Chap. IV) and assess their number and motivation (Chap. V) to 

dose competitive effort within the brood communication network.  

 

BARN OWL SIB-SIB NEGOTIATION RULES: A SYNTHESIS 

In barn owl nestlings, calling more than a sibling in parents’ absence dissuades it to 

subsequently beg for the next indivisible prey item delivered (Roulin 2002a, Roulin et al. 

2000). Correlative studies suggested that owlets also compete through call duration (Roulin et 

al. 2009, Dreiss et al. 2010b). Because parents’ arrival is unpredictable during the hours they 

are left alone, we expected hungry nestlings to seek at dominating siblings constantly so as to 

ensure monopolising food, but at the lowest possible costs. In an iterative contest such as this 

sib-sib negotiation, this should translate into the use of less costly signals first to end up with 

more costly ones if the previous prove inefficient in deterring rivals to compete (Enquist and 

Leimar 1983). Models on conflict settlement also predict owlets to invest in calls (number and 

duration) proportionally to their own chance of winning the contest, and hence preferentially 
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call when they face less motivated and fewer rivals (Maynard Smith 1976). Results from our 

playback procedures in all five chapters therefore concord with these expectations and 

experimentally corroborate previous correlative findings. 

 First, consistent with published studies (Roulin et al. 2009, Dreiss et al. 2010b), we 

demonstrate that owlets deter a rival to compete by emitting both more and longer calls 

(Chap. II & III). Moreover, we show that they enhance call discrimination by vocalising 

alternately, regardless of the number and rhythm of calls, their age, seniority and motivation 

to compete (i.e. hunger level) (Chap. I). Such antiphony seems well adapted to the fact that 

owlets dose vocal effort relative to subtle variations in the duration and rhythm of siblings’ 

calls, which we referred to as ‘turn-taking’ cues (Chap. III). Along free dyadic exchanges, 

owlets alternately impose themselves through periods of “ monologs”, in which progressively 

lengthening calls dissuades a sibling to compete while reducing ones’ own call rate. As 

previously suggested (Dreiss et al. 2010b), owlets adopt the most economic option of 

inducing each other to withdraw from the contest rather than desperately calling. Our findings 

are also in agreement with owlets minimising vocal costs, using cheaper signals first (i.e. 

short calls). Yet this seems tricky to experimentally test, lengthening calls could also be 

cheaper than emitting more calls since we found that it is less tightly linked to hunger level 

(Chap. II). 

 Second, our results verify the prediction that individuals invest in competition 

proportionally to their chance of winning a contest, when facing both a single and several 

opponents. Notably, owlets linearly reduced vocal effort in response to longer calls 

broadcasted at higher rates, which mimicked increased motivation from the playback (Chap. 

II). When interrupted by a sibling, owlets responded all the quicker with all the longer calls 

than they had previously vocalised much, likely so as not to waste the energy already spent 

(Chap. III). Also as predicted, in Chapter IV, singleton bystanders memorised which of two 



                                                                                                                                               GENERAL CONCLUSION 

	
   145 

playback rivals dominated a vocal exchange (leader-follower) and was more competitive (i.e. 

senior) and behaved less aggressively once they faced it alone a few minutes later. In Chapter 

V, when hearing one, two or four broadcasted nestlings, bystanders preferentially vocalised 

towards fewer, generally – and likely individually - less motivated competitors.  

To sum up, despite an apparent lack of social organisation, the several barn owl siblings 

communicate according to well-structured acoustic and behavioural rules that seem adaptive 

in that they reduce competition costs. This is strongly supported by the fact that the acoustic 

rules are universal regardless to owlets’ hunger level, seniority, relatedness and familiarity 

(Chap. III). Across chapters, individuals responded to playback nestmates with which they 

were not born or raised as expected and similarly to when paired with a live sibling. Indeed, 

extra-pair copulations being rare (Roulin et al. 2004), owlets should not have had the need to 

evolve or use kin recognition mechanisms during development. 

 

INSIGHTS INTO SIBLING RIVALRY OVER PARENTAL RESOURCES 

Dependent young not only modulate solicitation signals as a function of their own level of 

need, but also of siblings’ needs and resource holding potentials (e.g. Price et al. 1996). 

Although this so-called “scramble competition” partly determines within-brood food 

allocation (Royle et al. 2002), how and to what extent siblings process this information and 

accordingly compete is barely known. In particular, although some studies in mammals and 

birds suggest that young mutually adjust the timing (Blanc et al. 2010; Chaiken 1990; 

Madden et al. 2009), and acoustic features (Horn and Leonard 2008) of their vocalisations, 

only one playback experiment had been conducted to date in tree swallows (Marques et al. 

2011). Taken together, our repeated playback procedures thus provide the first and solid 

experimental proof that, in multiple-offspring broods, young siblings can 1) mutually adjust 

the timing and multiple components of their calls and 2) honestly signal their need to each 
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other. Sib-sib negotiation requires specific conditions such as indivisible food and 

pronounced competitive asymmetries in siblings (Johnstone and Roulin 2003). However, it is 

not unique to barn owls, as shown in the spotless starling (Bulmer et al. 2008), and may be 

more widespread, possibly occurring also in parents’ presence, provided that feedings last 

long enough for siblings to communicate with each other (Horn and Leonard 2005). In 

synchronous broods, when food is divisible, or when vocalisations are only directed at 

parents, our results at least demonstrate that siblings can mutually process information on 

their need and strength from their calls to compete (i.e. so-called ‘bystanding’ or ‘interceptive 

eavesdropping’, Peake and McGregor 2004). 

 Moreover, we provide the novel findings that young modulate signalling of need as a 

function of the relative asymmetries in strength and motivation between two siblings (Chap. 

IV) and of slight variations in their number (Chap. V). Given that multiple-offspring broods 

are common, this should be integrated in the theoretical framework of scramble competition, 

which mostly focuses on pairwise sib-sib interactions. Social eavesdropping notably implies 

that young retain information on asymmetries between siblings. Here, owlets also memorised 

a rival’s vocal output (call duration, rhythm) for a few minutes (c.f. playback after-effects, 

Chap. II & III) and anticipated the rhythm of a playback’s calls (c.f. predictable vs. 

unpredictable playbacks, Chap. I). All this extends previous findings that bird chicks 

modulate signalling level with respect to past experience in their brood size (Kacelnik et al. 

1995) and with parents, rewarding begging postures or level (Grodzinski et al. 2007; Kedar et 

al. 2000) and locations in the nest (Kolliker et al. 1998). Since family members continuously 

interact throughout the rearing period, their behaviours are interconnected over time. The 

ability to memorise siblings’ and parents’ behaviours and adequately adjust competing tactics 

should therefore be taken into account (Dobler and Kolliker 2009). Depending on the system 

and number of siblings, offspring should face a trade-off between the cognitive costs imposed 
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by memorisation and the fitness benefits it confers in monopolising of resources (Dukas 

1999). 

 

IMPLICATIONS ON THE STUDY OF ANIMAL COMMUNICATION 

More generally, the facts that owlets socially eavesdrop each other (Chap. IV) and assess 

siblings’ number (Chap. V) to compete support the still quite anecdotal examples of long- or 

middle range natural contests in unrelated adult animals (McComb et al. 1994; Peake 2005; 

Seddon and Tobias 2003). Our findings thus extend these phenomena to close-range agonistic 

interactions among family members and at early life stages. This reinforces recent claims that 

theoretical models should depict more complex than pairwise social interactions as our 

empirical knowledge on communication networks is growing (Johnstone 2001; McGregor 

2005; Mesterton-Gibbons and Sherratt 2009). Indeed, as shown across my chapters, 

opponents may concomitantly dose competitive effort as a function of their relative 

motivation and strength, of such asymmetries in their rivals, as well as the number and likely 

the individual motivation of rivals, parameters that are usually separately tested. 

 It is also worth highlighting the discrepancy between our findings from Chapters II and 

III about the role of call duration in sib-sib negotiation. In Chapter II, measuring average 

responses to playbacks led us first to conclude that long calls corresponded to a 

“reinforcement” or “back-up signal” in more to call number. In Chapter III, we actually found 

that the signal conveyed by call duration was encoded through its temporal variations. In 

contrast to usual expectations, this signal is independent of owlets’ resource holding potential 

(i.e. seniority) and motivation to compete (i.e. hunger level), but instead serves to regulate 

turn-taking in long-lasting vocal exchanges. Furthermore, unlike predictions from classical 

models on repeated signals owlets use temporal variations in their call duration and rhythm 

(i.e. number) to escalate or retreat and not the averages, cumulative sums or highest values 
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previously heard (Payne and Pagel 1996; Payne and Pagel 1997). Because, as for begging, 

behavioural ecologists traditionally focus on the immediate economic results that opponents 

draw from their interactions, they neglect these important continuous temporal signal 

modulations during contests. Taken together, our findings here reveal that the usual approach 

consisting in measuring average values can mislead our interpretation of the function of 

certain signals and of competing strategies.  

 Interestingly, when examining how individuals continuously interact at the scale of each 

call, we observed conversational rules from the rhythm and length of nestlings’ utterances 

comparable to the basic rules underlying human conversations (Duncan 1972; Sacks et al. 

1974). Despite extensive literature on the evolution of language, especially in primates (Locke 

2001) and songbirds (Doupe and Kuhl 1999), to my knowledge, this is the first demonstration 

in an animal where multiple components govern the vocal exchanges through turn-taking 

rules. These rules appear in early life, in a species a priori cognitively limited and with no 

particular social organisation. Moreover, call number, rhythm and call duration are common 

acoustic parameters vertebrates use to compete and communicate as shown in birds (Todt and 

Naguib 2000), frogs (Arark 1983) or non-human primates (Ey et al. 2007). Hence, the 

acoustic rules observed in barn owls might be broadly shared, yet in species with complex 

social organisations and vocal repertoires turn-taking signals may consist of additional 

components such as frequencies and call types (Kondo et al. 2010; Miller and Hauser 2004). 

Our findings therefore open an interesting window for trans-disciplinary research on animal 

vocal communication across a large spectrum of cooperative and competitive situations.   

 

CONCLUSION 

To conclude, the sib-sib communication of barn owls emerges through the different chapters 

of my thesis as a powerful model to study family conflicts and animal communication. 
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Negotiation “can be thought of as any interaction or behavioural process by which animals 

with conflicting interests can reach a compromise settlement” (Cant and Johnstone 2009). It is 

an iterative process by which opponents that have no a priori knowledge on their mutual 

strength and intention challenge each other. It can occur in a wider range of contests than just 

among kin, since individuals with opposed interests usually have a common goal that may 

differ from sharing genes. These can be mates that seek at reproducing (Patricelli et al. 2011), 

parents that optimise offspring survival through mutual provisioning (Johnstone and Hinde 

2006) and cooperative breeders (Johnstone 2011) or territorial rivals that at least should avoid 

lethal injuries (Pereira et al. 2003). However, only recently have such theoretical models been 

published and empirical works are still lacking. With regard to acoustic signals, our 

successful playback experiments thus should stimulate empiricists working on sibling rivalry 

and conflict settlement in general to resort to such procedures. 

 

PERSPECTIVES 

On the roles of non-vocal acoustic signals 

In my thesis I focused on vocalisations, yet animals may compete through visual or other 

acoustic signals. In altricial young, for instance, wing-flapping correlates with chicks’ need 

and is used as competitive begging in many bird species (Grim 2008). If coupled with reduced 

loudness of calling, such signals, possibly acoustic, would serve indicating ones’ willingness 

to compete at lower predation costs (Magrath et al. 2010). Noises from body movements 

might also help locating siblings that occupy preferential positions when the visibility is 

restrained in dark or crowded nests. However, whether and how both parents and siblings 

differentially rely on vocal and such non-vocal signals or cues to allocate food and compete, 

respectively, has not yet been tested. 
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In support to this ‘non-vocal acoustic signalling’ hypothesis, detailed observation of 

turn-taking patterns in free dialogs (Chap. III) show that owlets happen to make noises such 

as leg-tapping or scratching and wing-flapping instead of vocalising at the end of a sibling’s 

monolog (pers. obs.). The sibling, which hears the owlet without seeing it, in turn resumes 

calling similarly to what it would have done if the owlet had vocalised. This leads to the 

exciting possibility that owlets combine both vocal and non-vocal acoustic turn-taking signals 

to communicate. In human conversations, gestures and noises can reflect speakers’ emotions 

and be also used as turn-taking cues (Duncan 1972; Wang 2009). Vertebrates, such as 

mammals (Randall 2001) and frogs (Lewis et al. 2001), and invertebrates, including arachnids 

(Gibson and Uetz 2008) and insects (Hill 2001) use non-vocal acoustic signals such as 

vibrations or tapping to communicate. Whether the role of such signals in communication is 

similar to that of humans remains, to my knowledge, remains unexplored. Hence, there is 

obvious opportunity for fruitful research using the barn owl, hence broadening its framework 

from that of sibling rivalry. Food-deprivation and playback experiments should notably help 

determining 1) whether, how and which of the non-vocal behaviours reflect owlets’ 

motivation to compete and 2) whether and how owlets indeed both vocally and non-vocally 

negotiate parental food resource with each other. 

 

Negotiating within a network of several live nestmates 

The second straightforward follow-up of my thesis is to examine how owlets behave among 

several live siblings (i.e. by contrast to playbacks used in Chap. IV & V). To this aim, based 

on advanced technology (i.e. triangulation, voice recognition), I already recorded in the lab 

the vocal interactions of (almost) complete broods during the field seasons 2009 and 2011, as 

described in box 1 p. 152.  Upcoming data analyses will notably allow us to 1) verify how 

several live owlets actually use turn-taking rules (including non-vocal sounds), social 
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eavesdropping and counting in a more natural context; 2) test the influence of brood size on 

those behaviours; 3) explore inter-individual differences along the dominance hierarchy, 

potentially in personality traits such as aggressiveness (Van den Brink et al. 2012) or vocal 

activity (i.e. variation in latency to negotiate, unpublished results), which can affect the 

outcome of sibling competition, but are still barely explored (Roulin et al. 2010); and 4) 

verify the consistency of individual differences in behaviours across ages. Besides, in the barn 

owl, young may cooperate frankly, with seniors offering extra-food to their youngest, more 

needy, siblings (appendix 2). This provides the opportunity to explore potential coalitions, 

which are known to occur in social groups (Johnstone and Dugatkin 2000), but remain an 

outstanding question in the context of sibling rivalry.  
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Box 1. Negotiation among several live siblings 

In the breeding seasons 2009 and 2011, we performed two experiments in which we recorded all night long the 
vocal interactions of several (≥ 2) owlets raised in the same nest in the field. In both years, we recorded them on 
the first night of their arrival at the laboratory, all together in a circular plastic box. In 2009, we used one 
microphone placed at the centre of the box and at the height of nestlings and based on a triangulation process 
(fig. a). In 2011, we used eight microphones regularly spaced, fixed at the ceiling of the box and directed 
towards the inside (fig. b). To prevent siblings to stand too close and complicate call assignment to each, we 
hosted them in equal areas separated by a double layer of wire netting around a central tube also made of wire 
netting. Nestlings thus vocally and visually freely interacted with each other, but not physically. Except when we 
manipulated them, we closed the box with a wooden cover to limit light entrance. The box was regularly pierced 
with wholes for ventilation and covered inside with carpet to avoid sound reverberation.  
 
 

(a) Variable natural brood size & 
repeatability within individual and age  

In 2009, at ca. 12 h, we brought to the 
laboratory all nestlings from each brood but 
one or two that we left in the field to 
prevent parents to abandon the nest (n = 16 
recorded broods, brood-size in the lab = [2 
– 5]). We recorded the same broodmates 
twice, from 18h00 to 8h00, when the first-
born was aged ca. 32 days and then a week 
later. In between we brought back nestlings 
in the field.  

 
 
(b) Three-chick broods: coalitions and exploratory playback 

In 2011, we recorded only three nestlings (a senior, a middle-
born and a junior) per natural brood and only once, when the 
first-born was aged ca. 37 days (n = 32 broods). We took care 
of assigning the junior, middle-born and senior nestlings to the 
areas A, B, C of the box in a random order across broods. From 
18 to 00:30 h, we recorded free acoustic interactions among 
nestlings and then, using a loudspeaker placed in the centre of 
the box at the height of nestlings, we broadcasted a playback 
soundtrack. It was made of nine 4 -minute sequences, separated 
by 10 minutes of silence. These corresponded to the nine 
combinations of the pre-recorded calls of one individual (out of 
7 possible ones) of ca. 0.8 sec standardised at three possible 
intensities (-8, -16 and -24 dB) and broadcasted at three 
different rates (2, 6, 10 calls / min). We randomised the order 
at which we broadcasted sequences across broods and at which 
we inserted calls within sequences. 
 
Science & trade-offs… Our aim being to investigate individuals’ vocal behaviours, we must assign the calls 
recorded to each brood-mate.  To date, we are still developing the analysis tools required (in collaboration with 
C. Faller (LCAV, EPFL), H. Lissek, X. Falourd, P. Marmarolli (LEMA, EPFL)). 
 
Perspectives 
These experiments will enable us to:  
- examine vocal and non-vocal acoustic behaviours among several nestlings (including turn-taking rules) 
- examine (correlative data) the potential signalling role non-vocal components in acoustic interactions  
- disentangle the effects of relative and absolute age on signalling strategies and examine within individual 

repeatability in the level and in the variations in both vocal and (presumed) non-vocal acoustic signalling 
- disentangle the effect of brood size from the number of nestlings currently competing 
- investigate whether call intensity is another acoustic component of vocal negotiation and its role 
- investigate possible preferential interactions among nestlings that differ in age and seniority 
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Abstract In species with parental care, siblings compete

for access to food resources. Typically, they vocally signal

their level of need to each other and to parents, and jostle

for the position in the nest where parents deliver food.

Although food shortage and social interactions are stress-

ful, little is known about the effect of stress on the way

siblings resolve the conflict over how food is shared among

them. Because glucocorticoid hormones mediate physio-

logical and behavioral responses to stressors, we tested

whether corticosterone, the main glucocorticoid in birds,

modulates physical and vocal signaling used by barn owl

siblings (Tyto alba) to compete for food. Although corti-

costerone-implanted (cort-) nestlings and placebo-nestlings

were similarly successful to monopolize food, they

employed different behavioral strategies. Compared to

placebo-nestlings, cort-individuals reduced the rate of

vocally communicating with their siblings (but not with

their parents) but were positioned closer to the nest-box

entrance where parents predictably deliver food. Therefore,

corticosterone induced nestlings to increase their effort in

physical competition for the best nest position at the

expense of investment in sib–sib communication without

modifying vocal begging signals directed to parents. This

suggests that in the barn owl stress alters nestlings’

behavior and corticosterone could mediate the trade-off

between scramble competition and vocal sib–sib commu-

nication. We conclude that stressful environments may

prevent the evolution of sib–sib communication as a way to

resolve family conflicts peacefully.

Keywords Begging � Corticosterone � Vocal signaling �
Family conflict � Sib–sib communication �
Physical competition � Tyto alba

Introduction

Parents and offspring are in conflict over the amount and

duration of parental care (Trivers 1974), each offspring

demanding more resources than parents and siblings are

willing to concede (Godfray 1995a). In altricial birds,

nestlings commonly display conspicuous visual and vocal

signals to solicit food from their parents (Leonard et al.

2003; Bulmer et al. 2008; Grim 2008) and compete phys-

ically by jockeying for the nest location where parents

predictably deliver food resources (Teather 1992; Kacelnik

et al. 1995; Nunez-de la Mora et al. 1996; Johnstone 2004;

Drummond 2006; Tanner et al. 2008). As the pattern of
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within-brood food allocation depends on the complex

interplay between the parental provisioning rules, offspring

solicitation and sib–sib competition (Cotton et al. 1999;

Roulin 2004; Smith et al. 2005), information about how

siblings adjust their vocal and physical behaviors to one

another is required (Smith and Montgomerie 1991; Roulin

et al. 2000).

Siblings generally differ in physiological condition and

body size. At a given feeding event, the expected payoff of

obtaining food varies among siblings not only according to

their level of need but also in relation to their resource

holding potential. The benefit of consuming a prey item is

greater for the neediest offspring, while the cost of food

monopolization is lower for the individuals that are

intrinsically more competitive (Godfray and Parker 1991;

Godfray 1995b). Although food-deprived offspring com-

monly increase their investment in visual and vocal beg-

ging behaviors and/or physical competition (Smith and

Montgomerie 1991; Cotton et al. 1996; Leonard et al.

2003; Smiseth et al. 2003; Porkert and Spinka 2006;

Williams et al. 2008), the effectiveness of these behaviors

in monopolizing food depends on their own competitive

ability (Kacelnik et al. 1995; Price 1996). For instance, in

bird species where eggs hatch asynchronously, which

generates a pronounced within-brood age hierarchy among

siblings, elder and thus stronger nestlings typically reduce

effort invested in begging signals in favor of scramble

competition (Kilner 1995; Lichtenstein and Sealy 1998;

Ostreiher 2001; Rodriguez-Girones et al. 2001a; Leonard

et al. 2003; Ploger and Medeiros 2004; but see Whitting-

ham et al. 2003; Roulin 2004). This appears to be adaptive

because to monopolize food resources physical competi-

tion can be more efficient than vocal begging (McRae et al.

1993; Kacelnik et al. 1995; Budden and Wright 2005;

Tanner et al. 2008). Poorly competitive nestlings (e.g.

juniors) that are barely able to get access to the best nest

position may compensate by producing more intense beg-

ging calls to attract the attention of their parents and

thereby influence within-brood parental food allocation and

induce an increase in parental feeding rate (Cotton et al.

1999; Smiseth and Amundsen 2002; Roulin 2004).

Because siblings experience different cost-benefit ratios in

investing in signaling and scramble competition, they are

likely to employ different behavioral strategies to monop-

olize food resources (Smiseth and Amundsen 2002).

The behaviors each single nestling uses to get access to

food resources depends on nestlings’ resource holding

potential, hunger level and body condition, which are all

tightly linked to their physiological state. In particular,

glucocorticoids may help nestlings to regulate their

behavior in relation to their own need (Schwabl and Lipar

2002). When experiencing a temporary stressful situation,

for instance due to food shortages or immune challenges,

nestling birds release corticosterone into the blood to adopt

adequate behavioral and physiological responses (Nunez-

de la Mora et al. 1996; Kitaysky et al. 1999; Sockman and

Schwabl 2001). Siblings often differ in their adrenocortical

stress response, higher levels of baseline and stress-induced

circulating corticosterone often being found in older/dom-

inant nestlings (Schwabl 1999; Creel 2001; Love et al.

2003; Blas et al. 2006; Müller et al. 2010). Interestingly, an

experimental manipulation of circulating corticosterone

levels induced more intense begging behaviors in the

presence of parents in both the black-legged kittiwake

(Rissa tridactyla; Kitaysky et al. 2001) and house sparrow

(Passer domesticus; Loiseau et al. 2008). While in kit-

tiwakes experimental elevation of corticosterone levels did

not modify the rate of sib–sib agonistic interaction, in blue-

footed boobies (Sula nebouxii) it induced subordinate

nestlings to increase spontaneous submissiveness towards

their non-implanted dominant brood mates, though the

authors could not disentangle the exact mutual influence of

siblings on each other (Vallarino et al. 2006). The main

stress hormone, corticosterone, thus appears to play a

major role in how nestling birds adjust the level of vocal

signaling and physical competitive behaviors. Studying this

role is likely to provide key insights into how environ-

mental and social stressful factors influence sib–sib and

parent-offspring interactions.

In the present study, we investigated whether cortico-

sterone modulates investment in vocal signaling and

physical competition. To this end, we experimentally

manipulated corticosterone levels in barn owl nestlings

(Tyto alba). In the prolonged absence of parents, siblings

communicate vocally among each other to indicate their

motivation to compete for the indivisible food item next

delivered by a parent, a process referred to as ‘sibling

negotiation’, and they barely show physical aggressiveness.

The hungriest individual vocalizes at a high rate, which

deters its siblings from begging and competing once par-

ents are back at the nest with a food item (Roulin 2004). In

a free-living barn owl population, we created 34 two-chick

broods by temporarily removing nestlings from nests

except two randomly chosen individuals. Two or five days

earlier we implanted them with either a corticosterone-

releasing pellet or a placebo-pellet, a manipulation that

modifies the level of circulating corticosterone within the

natural range (Müller et al. 2009). We recorded the vocal

behavior of the two individuals both in the absence of the

parents (i.e. negotiation), during the 15 min preceding their

arrival with the first prey item of the night, and in their

presence (i.e. begging). We also recorded the position of

the two siblings relative to the nest-box entrance where

parents predictably deliver food, and which of the two

individual obtained the prey item. As shown in a previous

study, an experimental increase in corticosterone levels
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impairs humoral immunity, resistance to oxidative stress

and growth rate (Stier et al. 2009). Assuming that jostling

for position, vocal negotiation and begging entail sub-

stantial costs (Leech and Leonard 1996; Rodriguez-Girones

et al. 2001b; Roulin 2001b; Bize and Roulin 2006;

Moreno-Rueda 2010; but see Moreno-Rueda 2007), the

manipulation of corticosterone levels may differentially

affect these behaviors.

Methods

Study Species

The study was carried out in 2004 and 2005 using free-

living barn owls breeding in nest-boxes (100 9 60 9

50 cm) located in western Switzerland (46�490N/06�560E).

The two to eleven eggs hatch every 2.5 days since incu-

bation starts as soon as the first egg has been laid. A pro-

nounced within-brood age hierarchy is thus established

among the siblings. Until nestlings are 3 weeks old, the

female stays at the nest to provision offspring with small

mammals brought by the father. Afterwards, the mother

delivers one-third of the prey items to the offspring, each

item being consumed by a single offspring. We thus carried

out the experiments when nestlings were old enough to be

thermo-independent so that when we manipulated nestlings

during the daylight hours, parents were naturally sleeping

outside their nest-box in another barn as our observations

demonstrated. Until fledging, occurring at ca. 55 days of

age, siblings compete for food vocally and physically

without, however, being overly aggressive. Previous stud-

ies showed that in broods of two nestlings the individual

that obtains the first prey item of the night produces on

average 7.7 calls/min before a parent arrives at the nest and

45.8 in its presence; its sibling produces 3.9 calls/min in the

absence and 30.4 in the presence of parents (Roulin 2001a).

Nestling age was estimated shortly after hatching by

measuring the length of the left flattened wing from the

bird’s wrist to the tip of the longest primary (Roulin 2004).

Nestling sex was determined using molecular markers

(Py et al. 2006).

Experimental Manipulation of Corticosterone Level

To study the effect of corticosterone on nestlings’ behavior,

we considered 19 nests in 2004 and 15 nests in 2005. In

each nest in 2004 we implanted two individuals with a

15 mg self-degradable corticosterone-releasing pellet (cat

# G-111, Innovative Research of America (Sarasota, FL,

USA)) and two siblings with a placebo pellet. The pellets

were placed under the skin of the flank above the knee

through a small incision (see Müller et al. (2009) for

further details on the implantation procedure). In 2005 we

implanted one individual per nest with a similar cortico-

sterone-releasing pellet and one sibling with a placebo

pellet. In both years, at the day of implantation owlets

implanted with a corticosterone-releasing pellet (hereafter

‘cort-nestlings’) and owlets implanted with a placebo-

pellet (hereafter ‘placebo-nestlings’) were similarly aged

(2004: 30.0 ± 0.7 days vs. 31.0 ± 0.9 days; paired t test,

P = 0.30; 2005: 31.0 ± 0.9 days vs. 30.0 ± 1.4 days;

P = 0.70) and had a similar weight (2004: 342 ± 10 g vs.

356 ± 9 g; P = 0.30; 2005: 318 ± 6 g vs. 327 ± 15 g;

P = 0.40) on average. We did not implant younger nest-

mates (aged 26.0 ± 2.3 days) because the corticosterone-

releasing pellets were designed for older individuals. We

recorded the behavior of one cort- and one placebo-

implanted nestling in each nest. To do so, we removed all

owlets from their nest-box except one cort- and one pla-

cebo-individual among the four implanted individuals in

each nest in 2004, and all but the two implanted individuals

in 2005. Using an infrared camera with a microphone we

recorded the two siblings ringed on a different leg for

individual recognition from 19:00 to 24:00. At 24:00 we

brought back the removed individuals that were previously

placed in a large ventilated plastic box at some distance

from their nest-box. This experimental design was already

successfully used in a previous study (Roulin et al. 2000;

Roulin 2004). We video-recorded implanted nestlings five-

days post-implantation in 2004, with placebo nestlings

being significantly heavier than their cort-sibling (359 ± 8

vs. 325 ± 9, P = 0.02) but similarly aged (paired t test,

P value = 0.71). We chose to record five-days post

implantation since the pellets were designed by Innovative

Research of America to release corticosterone during

6 days. To confirm this statement, we collected blood and

analyzed it in the autumn 2004. It appeared that a mea-

surable increase in corticosterone occurred only during the

first 3 days post-implantation (Müller et al. 2009). For this

reason, we changed the experimental design in 2005 and

recorded nestlings’ behavior 2 days post-implantation and

not 5 days as in 2004. In total, we implanted with a cor-

ticosterone-releasing pellet as often the younger individual,

so-called junior, as the older, so-called senior (n = 18 vs.

16), and as often males as females (each time 17). In 2005,

Cort- and placebo-siblings did not differ in age and body

mass on the day when we recorded their behavior (paired

t tests, both P [ 0.19).

We measured baseline total corticosterone levels in

implanted nestlings by collecting blood samples at the day

of implantation, 2, 6 and 20 days after implantation in

2004, and at the day of implantation, 3 and 20 days after

implantation in 2005. To determine baseline corticosterone

levels we collected blood samples within 3 min after

having opened the nest box (Romero and Reed 2005).
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Stress-induced corticosterone levels were monitored 2 or

3 days post-implantation by collecting a blood sample on

average 27 ± 0.75 min after opening the nest-box. The

time until we collected the stress-induced corticosterone

samples did not differ between the two treatments (paired

t test: P [ 0.40). Total plasma corticosterone concentration

was measured with an enzyme immunoassay (Munro and

Stabenfeldt 1984; Almasi et al. 2009). Before implantation,

there was no difference in baseline corticosterone between

placebo- and cort-nestlings in both years (Table 1). Two

days after implantation cort-nestlings had significantly

higher baseline corticosterone levels than placebo-nestlings

(Table 1). Three, six and twenty days after implantation

baseline corticosterone levels did not differ anymore

between the two treatment groups (Table 1). Two and three

days post-implantation the stress-induced corticosterone

level of cort-nestlings was significantly lower compared to

placebo-nestlings (Table 1). Thus, when we video-recor-

ded nestlings during the second night after implantation in

2005, our experimental corticosterone treatment was likely

to still have an effect on the hypothalamic–pituitary–

adrenal (HPA)-axis. It was also likely the case during the

fifth night after implantation in 2004 since cort-nestlings

were heavier than their placebo siblings and lasting detri-

mental effects on body conditions were still observed

several weeks later (Almasi et al. submitted).

Assessment of Nestling Behaviors

On the video footage we analyzed nestling behavior in the

absence of parents (i.e. during the so-called negotiation

period) during the first 14 min of the 15 min preceding the

first parental visit of the night; they always brought a prey

item at this visit. During this period we determined the

mean negotiation call rate per individual (number of calls

per minute) by counting negotiation calls produced by the

placebo- and cort-siblings blindly with respect to treatment.

The relative position of each owlet in the nest-box during

the 14 min of observation (hereafter referred to as ‘Position

in parents’ absence’ was defined as the amount of time it

stood closer (but not at a similar distance) to the nest-box

entrance than its sibling over the total amount of time

during which one individual was closer (but not at a similar

distance) to the nest-box entrance than its sibling. We

analyzed 28 broods for this variable because in 6 of the 34

broods the two siblings stood at the same distance to the

entrance during the 15 min preceding the arrival of a

parent.

We determined the mean begging call rate per individ-

ual (number of calls per minute) in the presence of parents

by counting calls between the time when nestlings detected

the incoming parent and the time when this parent gave its

prey item to one of the two nestlings; as soon as a parent is

detected the offspring change their behavior by being more

vocal and approaching the nest entrance. Because the time

span during which calls were counted varied from one nest

to another (mean ± SE: 14.1 ± 3.7 s), we considered only

calls produced during the first 5 s after the parent was

detected. We analyzed 19 broods out of 34 for this variable

because in 15 broods the prey item was consumed within

these 5 s. Calls were correctly assigned to one of the two

siblings because nestlings open their bill while calling, and

calls of different individuals are easily distinguishable by

the human ear (pers. obs.). Finally, we determined the

relative position of the two siblings at the exact moment

when the incoming parent was detected (hereafter referred

to as ‘Position in parents’ presence’). We assigned score 1

to the cort-individual when it was closer to the nest-box

entrance than its placebo-sibling, score 0 when it was at the

same distance, and score -1 when it was further away from

Table 1 Baseline and stress-induced corticosterone levels and body mass in corticosterone- and placebo-implanted barn owl nestlings in 2004

and 2005

Year Day Baseline corticosterone (ng/ml) Welch

t test

Stress-induced corticosterone (ng/ml) Welch t test Body mass (g) Welch

t test
Cort Placebo Cort Placebo Cort Placebo

2004 0 8.8 ± 1.3 (6) 10.9 ± 2.3 (9) 0.4 344 ± 6 (19) 349 ± 10 (19) 0.7

2 26.0 ± 3.1 (10) 9.5 ± 1.6 (8) \0.001 28.1 ± 3.2 (14) 50.1 ± 5.8 (14) \0.001 320 ± 6 (19) 341 ± 7 (19) 0.03

3

6 12.6 ± 3.0 (11) 14.9 ± 2.9 (9) 0.6 327 ± 6 (19) 357 ± 8 (19) 0.02

20 12.8 ± 2.1 (9) 11.4 ± 1.8 (8) 0.6 55.2 ± 6.6 (11) 69.5 ± 5.0 (11) 0.1 353 ± 6 (19) 356 ± 4 (19) 0.6

2005 0 8.5 ± 1.4 (14) 8.5 ± 0.9 (13) 0.1 58.1 ± 9.0 (10) 68.6 ± 14.3 (10) 0.5 313 ± 8 (15) 327 ± 14 (15) 0.4

2

3 9.2 ± 1.4 (15) 11.5 ± 2.0 (9) 0.4 39.8 ± 12.1 (12) 65.7 ± 8.7 (12) 0.02 321 ± 4 (15) 333 ± 6 (15) 0.1

6

20 7.8 ± 0.9 (15) 8.3 ± 2.6 (10) 0.8 334 ± 10 (15) 381 ± 9 (15) 0.002

Data were collected on the day of implantation (day 0) and 2, 3, 6 and 20 days post implantation. P values for two-tailed Welch t tests are presented. Sample sizes

are given in brackets
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the nest-box entrance than its placebo-sibling. We also

noted the identity of the nestling that obtained the first food

item of the night, and in 31 broods we could determine the

identity of the individual that ingested it. In all cases, the

individual that ate the prey item was also the one that

obtained it from its parent.

Statistical Procedure

In all our analyses we pooled the data collected in 2004 and

2005 because cort- and placebo-nestlings displayed the

same trends in all behaviors in both years despite that they

were recorded at different times after implantation. None-

theless, we controlled for potential biases due to the year at

which we implanted them by including the variable ‘year’

in our analyses (see further). In a first step, we investigated

how often the placebo- and the cort-nestlings monopolized

the first delivered prey item of the night. We also examined

whether call rates and relative positions both in the absence

of parents and at their arrival were associated with the

probability that the individuals monopolized the prey item,

by performing a nested generalized binomial mixed effect

model (GLMM) with prey monopolization (1 if the indi-

vidual got the prey, 0 if it did not get the prey item) as

response variable. Since we had fewer data on behaviors

recorded in the presence than in the absence of parents, we

performed two separate analyses for the situation when

nestlings were negotiating and when they were begging

food from their parents. In both models, we included site

identity as random intercept to control for the dependency

of the data collected in the two siblings per nest. Fixed

effects comprised year, nestlings’ sex, treatment (placebo-

vs. cort-), negotiation (or begging) call rate and relative

position in the nest in the absence (or at the arrival) of

parents (i.e. position in parents’ absence/presence). We

accounted for nestlings’ seniority (junior or senior) only in

the model on negotiation behaviors since the model on

begging behaviors did not converge when we included it

and seniors and juniors displayed similar trends anyway. In

both models, we also included the interaction between the

corticosterone treatment and year, and the interactions

between treatment and negotiation (or begging) call rate,

and between treatment and relative position in the nest

while negotiating (or begging). These interactions were

implemented to examine whether the effect of treatment

varied across the 2 years and whether the influence of

nestlings’ behaviors on the success in prey monopolization

depended on treatment. All fixed effects were tested using

a ‘Monte Carlo simulation’ approach after Faraway (2006).

Thereby, the distribution of the likelihood ratio for com-

paring an alternative model (containing a given term) with

a null model (model without this term) was approximated

using Monte Carlo simulation. We simulated 200 times a

set of response values from the null model and calculated

the likelihood ratio between the alternative and the null

model for each set of simulated response values. From

these 200 likelihood ratios an approximation of the distri-

bution of the likelihood ratio was obtained and used instead

of a Chi-square distribution to obtain the P value (Faraway

2006). Non-significant interactions were removed from the

model before testing main effects independently from one

another.

In a second step, we investigated whether negotiation

and begging call rates, as well as the relative position in the

nest in the absence of parents and at their arrival, were

affected by treatment. For negotiation and begging call

rates and the relative position in the absence of parents, we

ran a nested linear mixed-effect model with normal dis-

tribution for each behavior with nestlings’ behavior as the

response variable and site identity as random intercept to

control for the dependency of the data collected in the two

siblings per nest. We included year, nestlings’ seniority and

sex, treatment and the interaction between treatment and

year as covariates. The model with the negotiation call rate

as dependent variable also comprised the relative position

in the absence of parents and its interaction with treatment,

and vice versa for the model of relative position in the

absence of parents; the model of begging call rate com-

prised both negotiation call rate and relative position in the

absence of parents plus their interaction with treatment. All

fixed effects were tested using a similar approach as

described above except that we could run 500 simulations

since it was less time consuming than to simulate in a

binomial-model. Since position in parents’ absence varied

between 0 and 100% of time spent in front of the sibling

relative to the nest entrance, and hence corresponded to a

proportion, we arcsine-root transformed this variable to

obtain normally distributed residuals.

Because of the way we measured the relative position of

cort-individuals at the arrival of parents (position in rela-

tion to the nest entrance and to the location of their pla-

cebo-sibling), we did not run mixed effects models on this

variable. We tested the effect of treatment on the position

of cort-nestlings with a Wilcoxon signed rank test; we did

not perform a paired test because there was only one value

per nest (either the cort-individual was in front, behind or

at the same distance to the nest entrance as its placebo

sibling).

All statistical tests were done using the software pack-

age R version 2.12.1 (R Development Core Team 2010),

with libraries lme4 for mixed-effect models and arm for the

simulations. P values and estimates obtained from simu-

lations were consistent with those of non-reduced models,

indicating that our results were not biased by an inflated

type-I error due to multiple testing on our small sample

sizes. Means and estimates are quoted ± SE if not
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indicated otherwise. P values B 0.05 were considered as

significant.

Ethical Note

The study was carried out with the agreement of the

‘Service Vétérinaire du canton de Vaud’ (authorization

no1736). The manipulation of corticosterone as well as

implanting a pellet (corticosterone-releasing or placebo)

did not alter nestlings’ fledging success since 94% of all

implanted nestlings in 2004 and 2005 survived until

fledging (unpubl. data).

Results

Effects of Corticosterone and Nestlings’ Behaviors

on Prey Monopolization

Binomial mixed effect models tested the effects of the

corticosterone treatment and nestlings’ behaviors in the

absence of parents (Table 2a) and at their arrival

(Table 2b) on the success in prey monopolization. Nes-

tlings’ success in obtaining the first prey item of the night

brought by the parents did not depend on treatment, year,

or their interaction, and neither on sex and seniority.

Indeed, a similar number of cort- and placebo-nestlings (18

vs.16), females and males (16 vs. 18), and juniors and

seniors (20 vs. 14) monopolized the first prey item of the

night, (all P C 0.1, Table 2a, b). Prey obtaining was

associated with nestling behaviors in the absence of parents

in a similar way in placebo- and cort-individuals because

both interactions between behaviors and treatment were not

significant (both P C 0.8, Table 2a); higher negotiation

call rate (estimate: 0.20 ± 0.08) and proportion of time

spent in front of their sibling relative to the nest hole before

parents’ arrival (estimate for ‘Position in parents’ absence’:

2.2 ± 0.9) were associated with a higher probability of

obtaining the prey item (Table 2a, Fig. 1). The probability

that a nestling monopolized the prey item was 60% if it

stayed always closer to the nest-box entrance than its sib-

ling and 14% if it stayed always behind its sibling.

By contrast to behaviors in the absence of parents,

nestlings’ call rate and relative position in the presence of

parents did not significantly affect their chance of being fed

(both P = 0.1, Table 2b). However, the non-significance

of begging call rate on the success in prey monopolization

may be due to a lack of statistical power, since both pla-

cebo- and cort-nestlings begged at a higher rate just before

monopolizing the first prey item than when the item was

monopolized by their sibling (Student’s t tests, both

P \ 0.05, Fig. 1).

All these findings were robust despite the dependency of

behaviors on treatment. Indeed, fitting treatment and

behaviors as independent variables in separated analyses

gave similar results (GLMM with prey monopolization as

dependent variable and with treatment as fixed effect:

df = 1, LR = 0.9, Pboot = 0.4; GLMM with negotiation

behaviors as fixed effects: negotiation call rate: df = 1,

LR = 7.3, Pboot = 0.03, position in parents’ absence:

df = 1, LR = 10.5, Pboot = 0.02; GLMM with begging

behaviors as fixed effects: begging call rate: df = 1,

LR = 4.4, Pboot = 0.06; position in parents’ presence:

df = 2, LR = 6.5, Pboot = 0.06).

Effect of Corticosterone on Behaviors and Mutual

Influences Between Behaviors

Linear mixed-effect models tested whether negotiation call

rate, relative position in the nest before the arrival of par-

ents, and begging call rate were affected by treatment and

how these behaviors influenced each other (Table 3).

Nestlings’ negotiation and begging call rates and relative

position in the absence of parents were not affected by the

Table 2 Binomial mixed-effect models on prey monopolization in

the barn owl with nestlings’ call rate and relative position (A) in the

absence of parents and (B) in the presence of parents, as covariates

Prey monopolization

Fixed effects df LR Pboot

A: behaviors in parents’ absence

Year 1 0.0 0.9

Nestling seniority 1 0.6 0.5

Nestling sex 1 0.4 0.6

Cort treatment 1 3.0 0.1

Negotiation call rate 1 10.2 0.005

Position in parents’ absence 1 7.4 0.02

Cort treatment 9 year 1 0.8 0.4

Cort treatment 9 negotiation call rate 1 0.0 0.9

Cort treatment 9 position in parents’ absence 1 0.1 0.8

B: behaviors in parents’ presence

Year 1 0.0 0.9

Nestling seniority – – –

Nestling sex 1 1.4 0.3

Cort treatment 1 0.9 0.4

Begging call rate 1 4.4 0.1

Position in parents’ presence 2 5.9 0.1

Cort treatment 9 year 1 0.0 0.9

Cort treatment 9 begging call rate 1 0.1 0.7

Cort treatment 9 position in parents’ presence 2 3.6 0.2

Site identity was included as a random intercept. Analyses are based

on (A) 56 individuals from 28 sites and (B) 38 individuals from 19

sites
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year of experiment or by seniority (all P C 0.6). Sex did

not influence the behaviors either, except for begging call

rate (males produced 13.3 ± 5.6 more calls/min in pres-

ence of parents than females, P = 0.05).

In the absence of parents, treatment had a significant

effect on both negotiation call rate and relative position

(Table 3), which was consistent across the 2 years of

experimentation (interactions ‘Cort treatment 9 Year’,

both P C 0.4). In both placebo- and cort-nestlings, the

level of negotiation and the relative amount of time spent

in front of their sibling were positively correlated (nego-

tiation call rate as the response variable, estimate for

position: 4.2 ± 1.8 calls/min; relative position in the

absence of parents as the response variable, estimate for

negotiation call rate: 3.3 ± 1.3, interactions ‘Cort treat-

ment 9 Position in parents’ absence’ and ‘Cort treat-

ment 9 Negotiation call rate’: both P C 0.3), as illustrated

in Fig. 2. Additionally, placebo-individuals produced sig-

nificantly more calls on average than their cort-sibling

(negotiation call rate as the response variable, estimate for

treatment (placebo vs. cort): 5.6 ± 1.5 calls/min), whereas

cort-individuals spent significantly more time, ca. 18%

(7–33%), close to the nest-box entrance than placebo-

nestlings (Table 3, relative position in the absence of

parents as the response variable, estimate for treatment

(placebo vs. cort): -0.4 ± 0.2).

Nestlings that spent more time close to the nest entrance

in the absence of parents begged at a higher rate at the

arrival of a parent (Table 3, begging call rate as the

response variable, estimate for ‘Position in parents’

absence’: 19.5 ± 7.5 calls/min). In addition, the more

nestlings had negotiated the more they tended to beg at the

parents, but this relationship remained marginal (begging

call rate as the response variable, estimate for negotiation

Fig. 1 Mean negotiation and

begging call rates (left) of barn

owl nestlings and proportion of

time they spent closer to the

nest entrance than their siblings

in the absence of parents (right)
according to whether they

obtained the next prey item

delivered by their parent or not.

Above and below the dotted
line, nestlings spent respectively

more time in front of or behind

their sibling. Bars represent

means ± standard errors

Table 3 Mixed-effect models on negotiation call rate, relative amount of time spent closer to the nest entrance (position) in the absence of

parents (arcsine-root transformed) and begging call rate

Negotiation call rate Position in parents’ absence Begging call rate

Fixed effects df LR Pboot df LR Pboot df LR Pboot

Year 1 0.3 0.6 1 0.1 0.8 1 0.05 0.8

Seniority 1 0.1 0.8 1 0.2 0.7 1 0.1 0.8

Sex 1 1.4 0.3 1 1.1 0.4 1 5.2 0.05

Cort treatment 1 12.0 0.002 1 6.5 0.02 1 0.01 0.9

Negotiation call rate – – 1 5.8 0.04 1 4.7 0.07

Position in parents’ absence 1 5.1 0.04 – – 1 6.2 0.04

Cort treatment 9 year 1 0.5 0.5 1 0.8 0.4 1 0.02 0.9

Cort treatment 9 negotiation call rate – – 1 0.04 0.9 1 0.5 0.6

Cort treatment 9 position in parents’ absence 1 1.4 0.3 – – 1 0.5 0.6

In each model, site identity was included as a random intercept. Analyses are based on 56 individuals from 28 sites for negotiation call rate and

position in parents’ absence and on 32 individuals from 16 sites for begging call rate. Dashes correspond to the fixed effects that were not

included in the models
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call rate: 1.1 ± 0.5 calls/min, P = 0.07). These trends did

not differ between placebo- and cort-individuals (‘Cort

treatment 9 Position in parents’ absence’ and ‘Cort treat-

ment 9 Negotiation call rate’, both P = 0.6). However,

treatment had no effect on nestlings’ begging call rate at the

parents’ visit, whatever the year of experimentation (‘Cort

treatment’ and ‘Cort treatment 9 Year’, both P = 0.9).

Cort-nestlings stood as often closer to the nest entrance as

placebo-nestlings during parents’ presence (relative posi-

tion of the cort-individual as dependent variable, Wilcoxon

signed rank test: n = 32, V = 0.56, P = 0.43).

Discussion

In nestling barn owls, we investigated whether the hormone

that mediates physiological and behavioral responses to

stressors, i.e. corticosterone, regulates investment in the

level of vocal signaling to both siblings (i.e. negotiation)

and parents (i.e. begging), and the frequency with which

siblings stand close to the nest-box entrance where parents

predictably arrive. We also examined whether this hor-

mone influences the probability of monopolizing food. Our

main finding is that nestlings implanted with a corticoste-

rone-releasing pellet, despite monopolizing the first prey

item of the night as often as their placebo-siblings and

maintaining an equal begging effort at the parent’s arrival,

reduced investment in the level of sib–sib communication

(i.e. they vocalized at a lower rate in the absence of par-

ents) and spent more time closer to the nest entrance where

parents predictably deliver food before the parent’s visit

(Fig. 1). Thus, corticosterone induced nestlings to modify

their strategies to compete over food resources delivered by

their parents. Indeed, prey monopolization was enhanced

by higher effort both in negotiating with siblings, in beg-

ging towards the parents, and in standing closer to the nest

entrance before parents’ visit. Apparently, the strategies

employed by cort- and placebo-nestlings were equally

successful, since they monopolized food as often. Our

results suggest that corticosterone induces nestlings to

switch from vocal to physical competition in the absence of

parents but not in their presence. This is in line with pre-

vious theoretical and empirical work showing that food

supply (i.e. a potential cause of stress) affects sibling

negotiation to a larger extent than begging behavior

(Roulin 2001a; Johnstone and Roulin 2003).

Effect of Corticosterone on Sib–Sib Interactions

Barn owl nestlings implanted with a corticosterone-

releasing pellet showed an impaired body mass gain

(Table 1) and reduced humoral immunity and resistance to

oxidative stress (Stier et al. 2009). Thus, cort-nestlings

were in a stressful state implying that the benefit of

monopolizing a food item was probably higher for them

than for placebo-nestlings, while the costs per unit of

investment in signaling and sibling competition were

probably more detrimental to cort- than placebo-nestlings.

Because cort-nestlings consumed the first prey item

delivered of the night as often as placebo-nestlings, we

conclude that corticosterone prevented nestlings to invest

extra effort in sibling competition to an extent that would

have allowed them to compensate for the negative effects

of corticosterone by eating more food. Indeed, they did not

beg more frequently than their sibling and they refrained

from negotiating.

In the barn owl, the nestling that begs at the highest rate

in the presence of parents has a higher probability of

monopolizing the delivered food item, and the effort an

individual invests in begging depends on complex sib–sib

interactions taking place in the absence of parents. A

nestling positioned close to the nest entrance will induce its

siblings to reduce investment in sibling negotiation.

Additionally, an individual that negotiates at a higher level

than its sibling deters them to beg intensely for food from

their parents (Dreiss et al. 2010). Therefore, a nestling can

employ two non-mutually exclusive strategies to influence

its siblings to refrain from begging: (1) it stands close to the

Fig. 2 Amount of time that barn owl nestlings spent closer to the nest

entrance than their siblings (position in the absence of parents) in

relation to negotiation call rate before the first feeding of the night.

Dots and curves represent back-transformed predicted values and

curves from linear mixed model of Table 3 for position in the absence

of parents in relation to negotiation call rate in cort-implanted (black
dots, plain line) and placebo nestlings (white dots, dashed line)

respectively (n = 28 broods). Above and below the dotted line,

nestlings spent respectively more time in front of or behind their

sibling
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nest entrance to induce its siblings to refrain from negoti-

ating or (2) it negotiates at a high level to induce its sib-

lings to refrain from begging (Dreiss et al. 2010). By

reducing investment in vocalizing in the absence of parents

cort-individuals probably entailed the cost of not inducing

their sibling to refrain from begging once parents are back

at the nest. However, by behaving in this way cort-nes-

tlings probably saved energy (Leech and Leonard 1996;

Moreno-Rueda 2010; but see Bachman and Chappell 1998)

to be reallocated into begging calls directed to the parents

and to be able to spend more time closer to the nest-box

entrance where parents delivered food in order to induce

their siblings to refrain from negotiating.

Our findings differ from similar experiments carried out

in nestling house sparrows (Loiseau et al. 2008). Sparrows

treated with corticosterone increased their begging rate

towards the parents but were unable to obtain as much food

as their control siblings. Thus, in contrast to barn owl

nestlings, house sparrows treated with corticosterone

apparently behaved mal-adaptively because the increase in

investment in sibling competition did not lead to a higher

success in food obtaining. The discrepancy between our

respective studies might be due to methodological differ-

ences. While we administrated corticosterone in barn owls

within the natural physiological range (Müller et al. 2009),

the dose used in sparrows was pharmacological. Kitaysky

et al. (2001) also found that an experimental transient

elevation of corticosterone induced black legged kittiwake

(Rissa tridactyla) nestlings to exaggerate begging, which,

in that case, resulted in an increase in food monopolization

by 13%. This means that in kittiwakes the higher costs

of sibling competition induced by corticosterone were

compensated by larger benefits. By contrast, in Nuttall’s

white-crowned sparrow (Zonotrichia leucophrys nuttalli)

nestlings facing an acute transient elevation in corticoste-

rone increased their latency to beg, hence potentially

decreasing their feeding success (Wada and Breuner 2008).

Clearly, more data are required in a larger range of species

to evaluate the dose-dependent effect of corticosterone on

sib–sib and parent-offspring interactions. This is necessary

to determine under which situation and in which species

corticosterone induces or reduces the costs and benefits of

sibling competition.

Implications on the Evolution of Parent-Offspring

and Sib–Sib Interactions

Our study was designed to investigate the role of cortico-

sterone on sib–sib interactions and in turn on how food is

shared among the progeny. Begging behavior can influence

not only the within-brood food allocation (Smith and

Montgomerie 1991; Whittingham et al. 2003; Rosivall

et al. 2005; Porkert and Spinka 2006) but also parental

overall feeding rates (e.g. Ottosson et al. 1997; Burford

et al. 1998; Glassey and Forbes 2002). Unfortunately, our

within-brood design did not allow us to examine whether

an experimental increase in nestling corticosterone levels

also influenced parental feeding rates. To examine this

issue, all siblings should be implanted either with corti-

costerone- or placebo-pellets. This is important to consider

because begging could be cooperative with siblings sharing

investment in begging to a given threshold in order to

ensure that parents quickly come back at the nest with food

(Johnstone 2004). Hence, the question is whether cortico-

sterone promotes or refrains siblings to behave coopera-

tively. Our observations on sibling negotiation, a form of

cooperative behavior, suggest that corticosterone would

rather refrain siblings to behave cooperatively even in

species in which sibling negotiation does not occur. Thus,

if only part of the nestlings are treated with corticosterone

within a brood of several nestlings, these individuals

may reduce investment in begging if solicitations by the

placebo-siblings are sufficient to ensure higher parental

feeding rate.

Our results may appear paradoxical since in spite of

producing fewer negotiation calls cort-individuals reached

the same success in monopolizing food as placebo-indi-

viduals. If the alternative strategy of cort-nestlings to stand

closer to the nest entrance proved efficient in prey

obtaining, why did placebo-individuals not behave in a

similar way? A potential explanation is that standing close

to the nest hole represents the most costly option with the

non-negligible risk of falling out of the nest (Bize and

Roulin 2006) a frequent outcome in the barn owl (pers.

obs.). Additionally, reducing negotiation effort as in cort-

individuals, may not be as rewarding as negotiating and

may not be stable in the long-term. The primary function of

sibling negotiation is to reduce the level of sibling com-

petition, and thus reducing the level of negotiating would

induce nestlings to become more aggressive among each

other and to beg to higher levels; these costs may be higher

than those induced by negotiation (Roulin 2002).

In conclusion, our results suggest that stressful factors

that induce a transient rise in corticosterone levels may

mainly promote the evolution of scramble competition

rather than sibling negotiation and other forms of cooper-

ation. Further experimental studies focusing on the adap-

tiveness of switching to physical competition in stressful

situations would nonetheless be helpful to properly test this

hypothesis. Manipulating corticosterone here rather than

food need, as usually done in begging studies, thus dem-

onstrates that diverse source of stress beyond food supply

may have potent effects on the evolution of sib–sib vocal

and physical interactions, and more generally on parent-

offspring conflict.
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When competing over parental resources, young animals may be typically selfish to the point of siblicide.
This suggests that limited parental resources promote the evolution of sibling competition rather than
altruistic or cooperative behaviours. In striking contrast, we show here that in 71% of experimental three-
chick broods, nestling barn owls, Tyto alba, gave food to their siblings on average twice per night. This
behaviour prevailed in the first-born dominant nestlings rather than the last-born subordinate nestlings.
It was also more prevalent in individuals displaying a heritable dark phaeomelanin-based coloration,
a typical female-specific plumage trait (owls vary from dark reddish to white, females being on average
darker reddish than males). Stealing food items from siblings, which occurred in 81% of the nests, was
more frequent in light than dark phaeomelanic dominant nestlings. We suggest that food sharing has
evolved in the barn owl because parents store prey items in their nest that can be used by the offspring to
feed their nestmates to derive indirect (kin selection) or direct benefits (pseudoreciprocity or by-product
mutualism). The cost of feeding siblings may be relatively low for dominant individuals while the
indirect genetic benefits could be high given that extrapair paternity is infrequent in this species. Thus, in
situations in which young animals have access to more food resources than they currently need, they can
altruistically share them with their siblings.
� 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

The evolution of helping where an individual increases the
direct fitness of another individual is a fascinating topic. Two
categories of evolutionary pathways can account for the emergence
of helping behaviour. When individuals gain direct material bene-
fits from helping they are said to behave cooperatively and when
they derive indirect genetic benefits the helping behaviour is
referred to as altruistic (Lehmann & Keller 2006; Bshary &
Bergmüller 2007). The typical situation in which individuals
derive indirect fitness benefits is when the genetic benefits of
helping related individuals outweigh the cost of helping (Hamilton
1964; Hatchwell 2010). An individual may also help a conspecific
(related or not) in the hope that it will reciprocate on another
occasion (Trivers 1971); even if reciprocation does not occur the
helper may still derive material benefits if increasing the survival of
surrounding individuals is beneficial (pseudoreciprocity or by-
product mutualism hypotheses, Leimar & Hammerstein 2010). For
instance, helping may increase group size, which can decrease the

risk of predation (Kokko et al. 2001) or induce parents to provide
more food resources at the nest (Kilner et al. 2004). Helping
behaviour among family members has been studied in depth in the
context of so-called cooperative breeding where mature offspring
help raise their parents’ new offspring (Clutton-Brock 2002;
Bergmüller et al. 2007). In contrast, interactions between siblings
still dependent on their parents are considered as conflictual rather
than harmonious (Trivers 1974).

Conflicts between siblings take their root in the mismatch
between parental food supply and offspring food demand leading
to intense sibling competition to monopolize the limited resources.
Parents do not provide all the food requested by their offspring
because reproductive activities are costly, they face a trade-off
between offspring number and quality, and they often produce
more offspring than they can rear to independence (Mock & Parker
1997). The evolutionary outcome of limited parental resources is
therefore predicted to be sibling rivalry rather than sibling coop-
eration or altruism. This led biologists interested in the evolu-
tionary implications of parental care to consider Hamilton’s rule
useful not only to specify the conditions promoting altruism but
also the conditions that promote selfish behaviour. This so-called
‘inverse Hamilton’s rule’ states that an allele coding for
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selfishness will spread if the benefits of being selfish exceed the
costs to the victim multiplied by the coefficient of relatedness
between the selfish individual and the victim (Mock & Parker 1997).

In line with the view that interactions between siblings are
conflictual rather than harmonious, altricial offspring have only
been anecdotally reported to help their siblings obtain parental
resources (Marti 1989). Frequent observations of aggressive
competition between siblings over parental attention to the point
of siblicide suggest that conflicts of interests between young
siblings indeed promote the evolution of selfish rather than altru-
istic or cooperative behaviours (Mock & Parker 1997). Sibling rivalry
over parental resources may hamper the evolution of helping
relatives if the indirect genetic benefits gained from helping kin are
inferior to their costs (West et al. 2002). For instance, dominant
offspring may behave more selfishly with their siblings to impose
their physical superiority (Drummond et al. 2003). Since altruistic
or cooperative interactions between young siblings that are still
dependent on their parents appear to be infrequent (with the
exception of humans; Kramer 2011), little is known about the
factors that could induce helping behaviours among them. As
sharing the same family unit is an individual’s first social experi-
ence, family interactions may have facilitated the evolutionary
transition from selfishness to helping, while helping behaviours
may reinforce family bonds (von Bayern et al. 2007).

Sharing parental food resources with siblings may occur in
species in which parents store food in their nest. If some indi-
viduals have privileged access to stored resources and are unable
to utilize all of them, they may be selected to share them with
hungry siblings that have less access to these resources. Such
helping behaviour can evolve if individuals that help their siblings
obtain parental resources derive direct or indirect fitness benefits
(Lehmann & Keller 2006; Bshary & Bergmüller 2007; West et al.
2007). Reciprocity would be the most likely type of direct bene-
fits. An individual may share food with a sibling in expectation of
a future return from it that will compensate for the costs of the
initial cooperative investment (e.g. Wilkinson 1992). In other
words, a helper individual shares surplus parental resources with
their hungry siblings in the hope that they will reciprocate once
the helper is hungry. Another category of direct benefits, so-called
pseudoreciprocity or by-product mutualism, is if, by feeding
siblings, helper offspring release their parents from spending
time distributing food among the progeny, which would allow
them to invest more time in foraging and increase the total
amount of food brought to the progeny. Alternatively, helping
siblings may enhance their survival and thereby reduce the
helper’s risk of being killed by a predator or increase the total
begging solicitation levels produced by progeny to stimulate
parents to come back rapidly with food. Indirect genetic benefits
may occur through kin selection, if the costs entailed by food
sharing are compensated for by the increased survival of related
individuals.

Species such as raptors, in which food is often stored in the nest
(e.g. Korpimäki 1987; Bakaloudis et al. 2012), are prime candidates
to examine the evolution of helping behaviour between young
siblings that are still dependent on their parents. We performed
a study in the barn owl, Tyto alba, in which sharing food between
siblings has been observed in both Europe (Epple 1979; Bühler
1981; Kniprath & Stier-Kniprath 2010) and North America (Marti
1989). Parents usually bring prey items more rapidly than their
offspring can consume them (Baudvin 1980; Roulin 2001, 2004a). If
food-satiated nestlings do not relinquish the accumulated prey
remains, they can defend access to the prey for later consumption,
for instance, by sitting on them to reduce the risk of being robbed,
which is relatively frequent in barn owls (Roulin et al. 2008a).
Alternatively, nestlings may feed their siblings if the latter did not

notice the presence of surplus prey remains in their dark nest. The
barn owl is particularly interesting also because pronounced
hatching asynchrony gives an edge to the first-born individuals,
which have easier access to parental food resources than later-born
siblings. The 2e10 eggs hatch on average every 2e3 days, which
generates a pronounced age and size hierarchy between siblings.
The first-born dominant individuals may face a choice between
monopolizing stored food for later consumption or feeding their
subordinate siblings. Furthermore, barn owl plumage varies
strongly from dark reddish (phaeomelanic) to white (non-
phaeomelanic) and from immaculate (noneumelanic) to heavily
marked with large black spots (eumelanic), traits for which the
expression is under strong genetic control and not, or weakly,
sensitive to environmental factors (Roulin & Dijkstra 2003). Appe-
tite is higher in lightly eumelanic and darker phaeomelanic indi-
viduals (Dreiss et al. 2010a), and darker phaeomelanic individuals
increase their body mass more rapidly than lighter coloured ones
when food is available in large quantities (Roulin et al. 2008b).
Plumage traits might thus advertise the propensity to share food
with siblings.

We examined whether barn owl nestlings are more likely to
derive direct or indirect fitness benefits by sharing food with
siblings. Under the reciprocity hypothesis, helpers share food with
their siblings in the hope that they will reciprocate at a later time.
If this is the case, we predicted that an individual that received
a food item from a sibling would feed it on another occasion.
Alternatively, dominant nestlings may feed their younger siblings
to release their parents from taking care of offspring that still need
assistance in the nest, thereby inducing their parents to spend
more time foraging. In this case, we expected parental feeding rate
to be higher in broods in which food sharing occurred. Because
higher parental feeding rates will be more beneficial to hungry
than satiated individuals, we also predicted food sharing would
prevail mainly in nests in which nestlings were in poorer condi-
tion. Under the kin selection hypothesis (but also the pseudor-
eciprocity and by-product mutualism hypotheses), we expected
that food sharing would be expressed by individuals for which the
costs of being generous were low while the potential benefits
were high. Thus, in contrast to the reciprocity hypothesis, only
nestlings with privileged access to food resources would share
them with the siblings that were so needy that they were unlikely
to reciprocate at a later time. In the barn owl, since the first-born
nestlings (so-called seniors) are better able to obtain food than
their younger siblings (i.e. juniors; Roulin 2004b), sharing food
with siblings should be less costly for seniors while the benefit of
being fed by nestmates should be greater for juniors. Therefore, if
nestling barn owls share food with siblings because they derive
indirect genetic benefits (or direct benefits as predicted by the
pseudoreciprocity and by-product mutualism hypotheses), we
predicted that seniors would feed their junior siblings more
frequently than the opposite.

To test these predictions, we recorded interactions between
nestlings in the field in experimentally reduced broods of three
individuals: a senior, a junior and a middle-born sibling. Obser-
vations were carried out for one night from 1900 to 0700 hours
the following morning. Since short-term experimental brood
reduction does not alter parental feeding rate (Roulin et al. 2000),
our design ensured that food was available in large enough
quantities to induce food sharing. Therefore, intrinsically altruistic
individuals were expected to have the opportunity to feed siblings
with prey items that accumulated in the nest. Since barn owl
nestlings frequently steal food from each other (Roulin et al.
2008a), we also investigated whether the degree of generosity
(i.e. food sharing) was inversely related to the degree of selfishness
(i.e. food stealing).
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METHODS

The study was carried out in 2007 in western Switzerland on
a wild population of barn owls breeding in nestboxes located on
barn walls. The age of each nestling was determined soon after
hatching by frequent nest visits during this period. We recognized
each chick by clipping different combinations of toenails before
ringing them with one or two aluminium numbered rings. Each
individual was thus easily recognizable on the video footage
because one individual was ringed on the left leg, another on the
right leg and the third on both legs. Also, size differences between
siblings are so pronounced that we could verify that our data
scoring was reliable. At 1900 hours we reduced brood sizes
(mean � SE ¼ 5.8 � 0.2) to three individuals by removing all
nestlings except the first (mean � SE ¼ 42 � 1 days of age), middle
(38 � 2) and last-born individuals (34 � 2); the mean age differ-
ence between junior and senior nestmates was 9 � 1 days. During
recording nights from 1900 to 0700 hours, we placed the extra
nestmates in a ventilated box located at some distance from the
nest. One day before the experiment, we installed an infrared-
sensitive camera in the nestboxes, and we recorded the three
siblings from 1900 to 0700 hours the next morning. We never
observed any sign of distress in adults and nestlings.

We scored phaeomelanin-based colorationwhen nestlings were
50 days of age by comparing their colour with eight chips ranging
from 1 for dark reddish to 8 for white, a highly repeatable method
(Roulin 1999). We measured the size of black spots with a calliper
to the nearest mm, also a reliable method (Roulin 1999). We could
measure plumage traits in 38 of the 43 nestlings, explaining
disparities in sample size between analyses. Sex of nestlings was
determined using molecular markers (Py et al. 2006). A body
condition indexwas given by the residuals of the regression of body
mass on wing length (F1,52 ¼ 18.63, P < 0.0001).

When the offspring are more than 3 weeks of age, parents
typically feed them by transferring food items from bill to bill.
Parents appear to give priority to the offspring that begs at a high
level (Dreiss et al. 2010b), and before resuming hunting activities
the mother and father stay in the nest alongside their offspring for
on average 29 and 15 s, respectively (Roulin & Bersier 2007). During
this period themother is frequently looking for stored prey items in
order to transfer them to the offspring that continues to beg loudly
(A. Roulin, A. Da Silva & C. Ruppli, personal observations).

Food sharing between siblings was defined as the transfer of
a prey item from bill to bill, either actively (with the donor going
towards the recipient to give its item) or passively (it was unclear
whether the donor was giving the item or whether the recipient
took it). Passive transfer of food was considered to be food sharing
because the donor showed hardly any sign of avoiding the transfer.
Food stealingwas defined as any successful or unsuccessful attempt
to take a food item (with the bill) from a sibling that was consuming
it. Food-stealing events are easy to identify because the two siblings
drag the prey in opposite directions.

Statistical Procedure

Before reporting the tests of predictions, we first describe
parental feeding behaviour and nestling food consumption in order
to have a better picture of family interactions taking place when
nestlings handle prey items. First, to investigate whether seniors,
middle-born nestlings and juniors had equal opportunities to
redistribute food to their siblings, we examined differences in the
number of prey items each individual received from the parents,
how many items they consumed, how many items they did not
entirely consume and how fast they ate. We analysed all variables
using linear mixed models (LMM) when the data were normally

distributed and if this was not the case we performed generalized
linear mixed models (GLMM) with Poisson error distribution. To
investigate the effect of the within-brood age hierarchy (i.e. senior,
middle-born, junior), we fitted age rank as an independent variable.
We also accounted for the effects of nestling sex, colour and
‘absolute age’ (in number of days) as covariates.

To test whether food sharing varied between and within broods
according to variations in food supply, we examined whether food
sharing was related to hunger level, that is, whether its occurrence
varied during the night andwas associatedwith the number of prey
items available in the nest. To test whether nestlings differed in
their propensity to share food with siblings according to age rank
(seniors, middle-born nestlings and juniors), absolute age, sex and
coloration, we used similar linear mixed models as described
above. Similarly, we tested interbrood and interindividual varia-
tions in food stealing.

Because all statistical analyses including the size of black
eumelanic spots were not significant, we present only analyses
carried out on phaeomelanin-based reddish coloration. Also, the
initial size of the brood out of which we created the experimental
three-chick broods was not associated with the number of prey
items that were shared between three isolated siblings (Spearman
correlation: rS ¼ �0.13, N ¼ 21 broods, P ¼ 0.58) or stolen from
siblings (rS ¼ 0.26, N ¼ 21 broods, P ¼ 0.25). For this reason, we do
not consider brood size in subsequent analyses.

All (G)LMM included nest identity as random intercept because
nestmates could not be considered as independent statistical units.
We ran all statistical analyses using SAS v 9.2 (SAS Institute inc.,
Cary, NC, U.S.A.). We used the REML method for GLMM, and MIXED
or GLIMMIX procedures for LMM. We performed backward model
selection with final models only containing significant effects, and
main effects involved in significant interactions. Residuals from
linear mixed models were checked for normality. Statistical anal-
yses are two tailed and P values lower than 0.05 are considered
significant. Means are quoted � SE.

Ethical Note

This experiment was carried out under the legal authorization of
the ‘Service vétérinaire du Canton de Vaud’ (1508.3). A similar
procedure was used as previously explained in other papers (see
ethical note in Roulin & Bersier 2007). As in previous studies
(Roulin et al. 2000; Dreiss et al. 2010b), we offered dead laboratory
mice to nestlings that remained in the ventilated box from 1900 to
0700 hours. At 0700 hours we put them back in their nest. These
individuals were old enough to consume two to three mice by
themselves whenever they wanted. Our study was not detrimental
to the birds because parents never abandoned broods and tempo-
rarily reducing brood size does not reduce parental feeding rate
(Roulin et al. 2000). All experimental individuals fledged success-
fully. As also shown in another study (Dreiss et al. 2010a) keeping
birds outside the nest is not stressful as measured by blood-
circulating corticosterone.

RESULTS

Parental Feeding Behaviour

At 1900 hours 1.1 � 2.6 prey remains were present per nest and
overnight parents brought 16.5 � 5.2 voles. Thus, in the 21 nests we
observed in total 346 parental feeding visits and an additional 56
cases where parents transferred to an offspring the remains of prey
that were already lying on the nestbox floor before their arrival.

Per night, seniors and middle-born nestlings received twice as
many prey items from parents as did their juniors (LMM: age rank:
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F1,27¼ 7.04, P ¼ 0.013; Table 1; nestling sex, absolute age and colour
were not significant: all P > 0.63). As a consequence, first- and
middle-born owlets consumed more prey items per night than
their junior nestmates (LMM: age rank: F1,27 ¼4.30, P ¼ 0.04;
Table 1; nestling sex, absolute age and colour were not significant:
all P > 0.10). This indicates that first- and middle-born owlets had
probably more opportunities to redistribute food to their subordi-
nate siblings (see below).

Nestling Food Consumption

In total we observed 404 cases in which nestlings started to
consume a prey itemwithout finishing it; in 235 cases this itemwas
recently given by a parent and in 169 cases this was surplus prey.
We observed this behaviour more often in seniors than middle-
born individuals and juniors (LMM: age rank: F1,35 ¼ 4.26,
P ¼ 0.047; Table 1; nestling sex, absolute age and coloration were
not significant: all P > 0.57). This indicates that older nestlings have
easier access to food and can perhaps consume the best parts of
each prey item. Juniors took on average more time to eat an entire
item than did seniors and middle-born nestlings (LMM: age rank:
F2,34.92 ¼ 3.49, P ¼ 0.04; Table 1).

Description of Food-sharing Events

In 71% (15 of 21) of the three-chick broods, owlets fed nestmates
from bill to bill on 46 occasions in total, representing one food-
sharing event every 4 h 53 min or for every 7.5 prey items. On 23
occasions (50%), food sharing was an active process with the donor
clearly going towards a sibling to give it an item; in the 23 other
cases the process was more passive with the donor and recipient
being close to each other and it was not possible to determine
whether the donor gave the prey item or simply did not react when
the recipient took it. For subsequent analyses we pooled active and
passive food-sharing events, as separate analyses gave qualitatively
similar results. The donor transferred an item that it just obtained
from a parent in 31 cases (67.4%) and in the other 15 cases (32.6%) it
transferred prey remains.

Food Sharing in Relation to Food Supply

Food-sharing events occurred mainly when nestlings were
hungry, that is at the beginning of the night rather than the end
(Spearman correlation between the proportion of times prey items
were shared and the order inwhich theywere delivered by parents,
i.e. first item of the night, the second item, and so on: rS ¼ �0.54,
N ¼ 28, P ¼ 0.003; Fig. 1a). However, the very first prey items of the
night delivered by parents were usually not shared with siblings
but rather quickly consumed (Fig. 1a). Indeed, at that time indi-
viduals were probably all hungry, as indicated by the fact that
nestlings swallowed prey items instead of consuming them piece
by piece more frequently at the beginning of the night than at the
end (logistic regression for the probability that a prey item was

swallowed in relation to time: c2 ¼ 16.58, P < 0.0001), probably
because of the risk of being robbed (Roulin et al. 2008a).

If siblings share food to allow their parents to spend more time
in foraging activities, we predicted parental feeding rate would be
positively associated with the number of prey items shared
between siblings. However, the total number of items transferred
between nestmates in one night was not associated with the
number of prey items available, that is, already present in the nests
as prey remains at 1900 hours and delivered by parents during the
night (GLM: number of prey remains: F1,18 ¼ 0.02, P ¼ 0.90; number
of items brought by parents: F1,18 ¼ 0.03, P ¼ 0.87). Furthermore,
the number of prey items that nestlings gave to their siblings was
not associated with the number of items that the donors consumed
throughout the night (GLMM: F1,27¼ 1.98, P ¼ 0.17). Therefore,
variation in food sharing between and within broods was not
determined by variation in food supply. Since nests with and
without food sharing did not differ in mean nestlings’ absolute age,
body condition and mean phaeomelanin-based colour (logistic
regression: all P > 0.11), we considered only the nests inwhich food
sharing occurred to examine whether siblings differentially
expressed this helping behaviour.

Food Sharing, Hatching Ranks and Coloration

Seniors and middle-born nestlings fed their siblings more
frequently than did juniors (Tables 1, 2), as did darker compared to

Table 1
Feeding behaviour in senior, middle-born and junior barn owl nestlings

Senior Middle-born Junior

Prey items received from parents per night 9.2�1.3 7.7�0.8 3.69�0.6
Prey items entirely consumed per night 3.9�0.4 3.6�0.4 2.9�0.4
Prey items not entirely consumed per night 7.7 6.7 4.8
Mean time taken to consume an entire

prey item (s)
36�6 37�3 59�9

Prey items shared with siblings per night 1.10 0.95 0.14
Prey items stolen from siblings per night 0.57 0.42 0.62

Behaviours were recorded from 1900 to 0700 hours in 21 three-chick broods. Means
are quoted � SE.
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Figure 1. Probability that a food item was (a) shared with siblings or (b) stolen from
a sibling in relation to the order in which this item was brought by a parent barn owl.
The first item delivered during the night is represented by 1 on the X axis, the second
delivered item by 2, and so on. For example, across the 21 nests, the nestling that
obtained the fifth prey item delivered by a parent did not eat it but offered it to one of
its siblings in 5% of cases. In 20% of cases, a nestling stole or tried to steal this fifth item
that its sibling had just obtained from its parent. Data are from 21 nests.
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light reddish phaeomelanic individuals (GLMM: age rank:
F2,25 ¼ 12.05, P ¼ 0.002; colour: F1,25 ¼ 9.21, P ¼ 0.006; Fig. 2aec;
nestling sex, absolute age and the interaction between age rank and
coloration were not significant: all P > 0.09). In fact, juniors only
very rarely fed their siblings (Table 1) suggesting that they do not
reciprocate.

In the present study, dark and light melanic owls consumed
a similar number of prey items per night (see above). The fact that
darker birds shared food more often than lighter phaeomelanic
siblings therefore suggests that dark phaeomelanic nestlings are
more willing to feed siblings at the potential expense of eating less.
If this is the case, we should expect that darker birds would
consume fewer prey items before starting to feed nestmates. To
examine this proposition, we considered only nestlings that fed at
least one sibling and counted the prey items they consumed before
sharing food. Among 19 individuals that fed siblings, they
consumed between zero and four items (1.6 � 0.2) before sharing
food. Compared to light melanic nestlings, darker reddish individ-
uals consumed fewer prey items before starting to feed nestmates
(mixed model ANCOVA: colour: F1,18 ¼ 4.43, P ¼ 0.04; Fig. 2d;
nestling sex: F1,18 ¼ 11.15, P ¼ 0.004; age rank was not significant:
P ¼ 0.60). The factor sex was significant because nestling females
started to feed nestmates earlier than nestling males.

Food Stealing

Nestlings stole (N ¼ 16) or triedwithout success (N ¼ 18) to steal
a prey item from siblings on 34 occasions in 17 of the 21 nests (81%).
The total number of prey items shared between siblings and stolen
from siblings was not correlated within nests (Spearman correla-
tion: rS ¼ 0.07, N ¼ 21, P ¼ 0.76). Stealing events primarily con-
cerned prey items that a nestling recently received from the bill of
a parent (27 cases, 79.4%); in seven cases (20.6%) it concerned prey
remains that a nestling was consuming. When considering only the
prey items brought by parents, stealing events happened mainly at
the beginning of the night (Spearman correlation between the
proportion of times items had been stolen and the order in which
they were delivered: rS ¼ �0.61, N ¼ 28, P ¼ 0.0005; Fig. 1b). This is
again consistent with the hypothesis that sibling competition is
more intense at the beginning than at the end of the night.

The number of prey items stolen from siblings was related to the
interaction between rank in the within-brood age hierarchy and
coloration (GLMM: age rank: F2,32 ¼ 3.86, P ¼ 0.03; colour:
F1,32 ¼ 0.02, P ¼ 0.88; interaction: F2,32 ¼ 4.30, P ¼ 0.022; the factor
sex was not significant either alone or in interaction; Table 2). This

interaction is explained by the fact that lighter-coloured seniors
were more likely to steal a food item (Fig. 3a), whereas in juniors
and middle-born nestlings the opposite significant relationship
was found, with darker reddish birds beingmore likely to steal food
(Fig. 3b, c).

DISCUSSION

Our correlative results suggest that by sharing food with
siblings, nestling barn owls may derive indirect genetic benefits
rather than direct material benefits. We are nevertheless aware that
we cannot exclude the possibility that helping behaviour is also
driven by pseudoreciprocity or by-product mutualism. Our obser-
vations also show how complex interactions between barn owl
siblings can be. At the beginning of the night, competition over food
items delivered by parents is high with most food-stealing events
taking place at that time while very few food-sharing events occur.
This leads nestlings to adopt specific begging behaviours to obtain
food from parents (Dreiss et al. 2010b) and to avoid being robbed
(Roulin et al. 2008a). This includes rapid food consumption by
swallowing entire items more often at the beginning than at the
end of the night. Once nestlings have consumed a few items, they
start to be more generous by sharing food with siblings. This
altruistic behaviour is observed mainly in the oldest dominant
nestlings, particularly those displaying a female-specific plumage
trait in the form of dark reddish phaeomelanin coloration. This
suggests that female-like individuals of either sex behave more
peacefully as further shown in female-like seniors that avoid
stealing food from siblings. The opposite pattern is observed in
middle-born nestlings and juniors displaying a female-specific
coloration (i.e. dark reddish) since they aremore likely to steal food.

The finding that barn owl nestlings frequently feed nestmates
contradicts the view that, in vertebrates, competition over parental
resources leads only to conflictual solutions, with siblicide as an
extreme (Mock & Parker 1997). It has been suggested that coop-
eration between siblings is used to attract the parents’ attention
(Johnstone 2004), although empirical evidence remains elusive
(Smale et al. 1995; Roulin & Dreiss 2012). Notwithstanding the
evidence, although food sharing may not be widespread in young
animals that compete over parental resources, it appears to be
frequent in the barn owl. Although we observed food sharing in
experimentally reduced broods, this behaviour has already been
reported on several occasions in natural conditions (see Introduc-
tion). This shows that our observations are not artefacts of exper-
imentally reducing brood size to three chicks, but is a general
phenomenon in barn owl populations.

Evolution of Food Sharing

Our study raises the possibility that helping behaviour between
young siblings does exist as predicted by kin selection theory
(extrapair paternity is rare and hence nestmates are full-sibs;
Roulin et al. 2004). A first reason why altruism between young
siblings has rarely been observed in vertebrates is that altruistic
behaviours may be difficult to detect. These instances may be rare
(such as food sharing) requiring observations of behavioural
interactions between siblings for many hours. Furthermore, if
altruism involves begging behaviours as suggested by Johnstone
(2004), it might not be easy to demonstrate that siblings adjust
their begging level in a cooperative way (e.g. Blanc et al. 2010).
Since food sharing may prevail in situations in which young
offspring have access to stored food resources that can be used by
offspring to feed their siblings, food sharing may be restricted to
some particular groups of animals such as raptors (Baudvin 1980;
Roulin 2004a). When nestlings are about 3 weeks of age, they

Table 2
Food sharing and food stealing in relation to the position in the within-brood age
hierarchy of nestling barn owls

Food recipient/Individual from which food was stolen

Senior Middle-born Junior

Food donor
Senior e 0.43 0.67
Middle-born 0.38 e 0.57
Junior 0.05 0.10 e

Food stealer
Senior e 0.33 0.24
Middle-born 0.29 e 0.14
Junior 0.33 0.29 e

Behaviours were recorded from 1900 to 0700 hours in 21 three-chick broods. Food
donors refer to individuals that gave a food item to a sibling; food recipients refer to
individuals that were fed by a sibling. The oldest individual of three-chick broods is
denoted ‘senior’, the youngest individual ‘junior’ and the intermediate individual
‘middle-born’. Numbers indicate the mean number of items per night shared with
a sibling or stolen from siblings.
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become able to consume food by swallowing entire items or by
tearing apart flesh. Once a stored item is found, nestlings do not
need assistance anymore, probably explaining why we did not
observe nestlings feeding their siblings by tearing apart flesh but
simply by transferring items from bill to bill. Our observations
should stimulate researchers who have access to species with
parents also delivering a surplus of food, as is the case in many owls
and raptors, to investigate whether helping behaviour in the form
of food sharing occurs in other species.

Fitness Benefits of Sharing Food

Two lines of arguments plead against the hypothesis that reci-
procity helpsmaintain the occurrence of food sharing in the barn owl.
First, senior andmiddle-bornnestlings shared foodwith their siblings
in contrast to juniors,which rarely feed their nestmates. This suggests
that individualsmay not feed siblings in expectation of a future return
once they are hungry. Second, provisioning siblings may be a case of
pseudoreciprocity or by-product mutualism. For instance, sharing
food with siblings may be a form of sibesib and parenteoffspring
altruistic behaviour (Kramer 2011). In large families, parents face
a trade-off between the time spent looking for foodand the timespent
distributing it between their progeny. Barn owls can produce very
large families with up to 10 young. Staggered births imply that when
thefirst-born offspring begin to consume foodwithoutmaternal help,
their younger siblings still need assistance. The feeding of younger
chicks by those older may therefore allow their parents to increase
hunting activities. This possibility, however, is unlikely because
feeding rate was not higher in broods in which we observed food
sharing compared to broods without food sharing. Furthermore, the
propensity to share food with siblings was not associated with
offspring body condition. Another possibility is that nestlings feed
their siblings to enhance their survival in order to increase the total
level of begging solicitations that would induce parents to increase
their feeding rate, allowing some nestlings (i.e. the dominant and
darker reddish ones) to monopolize more food resources. This possi-
bility, however, is unlikely because parents seem to allocate a fixed
budget to feeding offspring and to be weakly sensitive to begging
solicitations (Roulin et al. 2000). A last possibility is thatnestlings help
their siblings to reduce their own risk of being killed by a predator,
a possibility that we cannot discuss further owing to the lack of data.

We therefore conclude that kin selection is likely to be a valid
explanation to account for the evolutionary stability of food sharing
among barn owl siblings. Accordingly, the costs paid by senior
chicks to feed nestmates are probably low, whereas the derived
inclusive fitness benefits may be considerable given that nestmates
in barn owls are usually full siblings (Roulin et al. 2004).

Food Sharing, Food Stealing and Coloration

The propensity to feed siblings was associated with the degree
of reddish phaeomelanin coloration, a strongly heritable trait
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Figure 2. (aec) Food sharing in relation to within-brood age hierarchy and
phaeomelanin-based coloration in nestling barn owls. (a) Senior nestlings, (b) middle-
born nestlings and (c) junior nestlings. (d) Number of prey items consumed by
a nestling before it gave another item to a nestmate, in relation to nestling

phaeomelanin-based coloration. We considered only 13 nests in which at least one
prey item was exchanged between nestmates. The number of prey items given to
nestmates was standardized, i.e. for each individual nestling we applied the following
formula ([number of prey items this individual gave to siblings �mean number of
items shared with siblings by the three siblings]/standard deviation of the number of
items shared with siblings by the three siblings). We removed variation in
phaeomelanin-based coloration explained by sex by extracting residuals from a one-
way ANOVA (F1,36 ¼ 5.64, P ¼ 0.023; although the two sexes can express any colora-
tion, females are on average darker reddish than males). Then, for each nestling we
standardized the residual values by applying the following formula ([residual colour
score of the focal individual �mean residual coloration of the three siblings]/standard
deviation of residual coloration of the three siblings). Pearson correlations: (a)
r11 ¼ �0.70, P ¼ 0.007; (b) r11 ¼ �0.66, P ¼ 0.014; (c) r10 ¼ �0.40, P ¼ 0.20. Regression
lines are drawn for illustrative purposes.
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(h2 � SE ¼ 0.81 � 0.09; Roulin & Dijkstra 2003). Because the
expression of coloration is not or only weakly condition dependent
(Roulin & Dijkstra 2003), this indicates that food sharing may not
only be determined by the resource-holding potential of each
individual (i.e. seniority), but also be partly genetically controlled
(Keller 2009). Explaining why darker reddish owlsweremore likely

to share food with siblings and why in seniors darker individuals
were also less likely to steal food from siblings is still a matter of
speculation. We can propose two nonmutually exclusive
mechanisms.

First, individuals displaying a female-like reddish coloration are
more likely to share food, and in seniors (but not in middle-born
and junior siblings) less likely to steal it. A female-like plumage is
therefore associated with helping behaviour in dominant individ-
uals, whereas a male-like plumage (i.e. light reddish to white) is
linked with agonistic behaviour. Because in animals males are
commonly more aggressive than females (Lindenfors & Tullberg
2011; Senar & Domenech 2011), we propose that a dark reddish
coloration could be related to female-specific behaviour. This is
consistent with the observation that the motivation to feed siblings
(measured in number of prey items consumed before sharing food
with siblings) was not only related to phaeomelanin-based color-
ation but also higher in females than males. This raises the exciting
possibility not only that females are more altruistic than males but
also that feminine plumage traits are associated with the propen-
sity to be generous. Second, our results could be explained by the
fact that when food is available in large quantities, darker phaeo-
melanic individuals increase their body mass more rapidly than
lighter-coloured ones (Roulin et al. 2008b). Under this scenario,
dark reddish individuals need less food and hence can share it with
their siblings to derive at least indirect genetic benefits.

Conclusion

Two pieces of evidence suggest that sharing food with siblings
entails some fitness costs. First, food sharing occurs mainly at the
beginning of the night (when nestlings are hungry) but only after
food donors consumed a couple of prey items. Second, sharing food
prevails in dominant individuals but not in subordinate nestlings
probably because dominant nestlings have privileged access to food
resources that they can redistribute among siblings. Given the
potential costs of food sharing, this helping behaviour should
confer some fitness advantages if it is to persist. As discussed above,
nestlings may derive indirect benefits through kin selection (and
eventually direct benefits through pseudoreciprocity or by-product
mutualism). Our study therefore adds a new element to the
potential role played by kin selection in the evolution of altruism,
namely among young vertebrates that are still dependent on their
parents. This system in which related individuals are confined in
a limited space, and hence can develop iterative altruistic interac-
tions, mirrors the case of cooperative breeding among mature
related individuals (West et al. 2007; Cornwallis et al. 2009).
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Abstract The intensity of selection exerted on ornaments

typically varies between environments. Reaction norms

may help to identify the conditions under which orna-

mented individuals have a selective advantage over drab

conspecifics. It has been recently hypothesized that in

vertebrates eumelanin-based coloration reflects the ability

to regulate the balance between energy intake and expen-

diture. We tested two predictions of this hypothesis in barn

owl nestlings, namely that darker eumelanic individuals

have a lower appetite and lose less weight when food-

deprived. We found that individuals fed ad libitum during

24 h consumed less food when their plumage was marked

with larger black spots. When food-deprived for 24 h

nestlings displaying larger black spots lost less weight.

Thus, in the barn owl the degree of eumelanin-based col-

oration reflects the ability to withstand periods of food

depletion through lower appetite and resistance to food

restriction. Eumelanic coloration may therefore be associ-

ated with adaptations to environments where the risk of

food depletion is high.

Keywords Appetite � Food depletion �
Energy homeostasis � Melanin � Melanocortin

Introduction

Identifying the conditions under which body condition

covaries with an ornament should bring useful information

to an understanding of how selection is exerted on con-

spicuous ornamental traits. A positive relationship between

the degree of ornamental exuberance and body condition

can indicate that poor-quality individuals cannot invest

resources to develop a conspicuous ornament at the

expanse of body maintenance (Andersson 1994). In this

case, an ornament can be considered as an honest signal of

absolute quality because its expression is condition

dependent. As the magnitude of a covariation between an

ornament and body mass can vary, selection will favor

ornamented individuals mainly in environments where

selection is most intense. In cases where the sign of

covariation varies between environments, we can conclude

that differently ornamented individuals are adapted to

alternate habitats, potentially indicating that different ver-

sions of an ornament reflect adaptations to local conditions

(Bussière et al. 2008; Piault et al. 2009). This situation

could occur if the expression of the ornament is condition

dependent (van Doorn et al. 2009) but also if it is under

strong genetic control.

Studying variation in the magnitude of a covariation

between body condition and an ornament is particularly

convenient in species displaying melanin-based color traits.

In such species, inter-individual variation in coloration is

often mainly assigned to genetic factors (e.g., Roulin

2004a; but see Fargallo et al. 2007) because the expression

of melanic colorations can be insensitive to variation in the

environment, a phenomenon referred to as ‘‘environmental

canalization’’ (Flatt 2005; van Buskirk and Steiner 2009).

While variation in the environment will affect body con-

dition, each genotype will still produce a single color
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phenotype, implying that a change in the magnitude of

covariation between body condition and coloration is dri-

ven by variation in body condition. Assessing environ-

mentally mediated variation in such a covariation is of

interest when identifying under which conditions some

genotypes outperform others, genotypes being identified

with the degree of melanin-based coloration.

In vertebrates, darker individuals have been proposed to

be more resistant to various sources of stress and to more

efficiently regulate the balance between energy intake and

expenditure (Ducrest et al. 2008). Empirical studies indeed

showed that the degree of melanic colorations is associated

with energetic processes. For example, in the great tit

(Parus major) and pied flycatcher (Ficedula hypoleuca) the

degree of plumage darkness is positively correlated with

oxygen consumption (Røskaft et al. 1986). We would thus

predict that dark individuals better regulate body mass than

paler conspecifics mainly in stressful environments. This

would indicate that dark melanic individuals or species are

particularly well adapted to harsh conditions. Accordingly,

an observational study in the barn owl (Tyto alba) showed

that dark breeding females are heavier than pale conspe-

cifics in the evening but not in the morning (Roulin 2009).

As owls consume food at night and fast during daylight

hours, this observation suggests that some aspects of

metabolism differ between dark and pale individuals.

In the present study, we carried out two experiments to

test the hypothesis that darker eumelanic barn owls better

regulate body mass than pale conspecifics. First, we food-

deprived nestlings for 24 h and measured body mass loss

over this period of time. Second, we fed nestlings ad libi-

tum and quantified the amount of mice consumed over

24 h. Based on properties of the melanocortin system,

which is involved in melanogenesis and energy homeo-

stasis, we predict darker eumelanic owls to lose less weight

when experimentally food-deprived and to have a lower

appetite (Ducrest et al. 2008). Support for these predictions

would indicate that a dark melanic coloration reveals the

ability to withstand periods of food depletion through low

appetite and resistance to food deprivation.

Materials and methods

Model organism

The barn owl is medium sized with adult females weighing

between 264 and 515 g (mean ± SD 367 ± 1.5 g) and

adult males between 241 and 380 g (295 ± 1.6 g). Two to

11 eggs per clutch are incubated for 32 days and hatch

asynchronously every 2–3 days. Maximal growth occurs

between 17 and 40 days of age, and before fledging at

56 days nestlings spontaneously lose weight. The species is

particularly convenient for the manipulation of hunger

levels because from 2 to 3 weeks of age onwards nestlings

consume small mammals without maternal help not only at

night but also during daylight hours as parents frequently

store food (Roulin 2004b). Previous studies showed that in

natural conditions 36-day-old nestlings eat on average

3.4 voles per 24 h (Roulin 2001) and in laboratory condi-

tions mean ± SD daily food intake was 67 ± 17 g between

20 and 60 days of age (Durant and Handrich 1998). Barn

owls are mostly monogamous with very little extra-pair

paternity (one out of 211 offspring was not sired by the

male that was feeding it, Roulin et al. 2004). Food depri-

vation over 24 h is not rare in natural conditions as during

rainy nights parents have difficulty hunting.

Assessment of melanin-based plumage traits

Nestling and adult barn owls vary in both number and size

of eumelanic black spots but also in pheomelanin-based

coloration from dark reddish–brown to white. These traits

are genetically correlated with darker reddish owls dis-

playing on average more and larger eumelanic spots. The

expression of melanin-based traits is strongly heritable and

only weakly sensitive to environmental factors (h2 = 0.82;

Roulin and Dijkstra 2003; Roulin et al. 2010). We mea-

sured plumage traits in 208 nestlings and in their parents

(56 mothers and 52 fathers). A. Roulin compared pheo-

melanin-based coloration on the breast, belly, one flank and

the underside of one wing with eight color chips ranging

from I for reddish to VIII for white. As on each body part

feathers are all similarly colored, we calculated a mean

value to be used in the statistical analyses. Within a

60 9 40-mm frame placed on the same four body parts,

eumelanic spots were counted and their diameter measured

to the nearest 0.1 mm. Mean number of spots and mean

spot diameter were calculated and used in the statistical

analyses. Assessing plumage traits is reliable with repeat-

ability values varying between 0.84 and 0.93 (Roulin 1999,

2004c). We did not consider the intensity of spot darkness

because spots are lighter colored when feathers are older

implying that this parameter depends on the degree of

feather abrasion, which is not the case with respect to

number and size of spots.

Experimental design

The study was carried out in 2008 in western Switzerland

in a free-ranging population of barn owls breeding in nest-

boxes. We cross-fostered approximately half of the

hatchlings between pairs of nests to allocate genotypes

randomly among the environments. The same number of

nestlings was swapped between nests and hence brood size

was left unchanged. Nestling position in the within-brood
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age hierarchy in the nests of origin and of rearing was not

associated with nestling plumage traits (mixed-models,

P [ 0.10). Within pairs of nests biological and foster

parents did not resemble each other with respect to plum-

age traits (Pearson’s correlations, all P [ 0.15), except that

the number of spots displayed by biological and foster

mothers were negatively correlated (r = -0.33, n = 47,

P = 0.022). Among the 57 experimental nests hatching

date was not correlated with plumage traits of biological

parents (r \ 0.20, P [ 0.14) except for males displaying

small black spots that bred earlier in the season than males

with larger spots (r = 0.34, n = 53, P = 0.012).

To record body mass change in nestlings under con-

trolled conditions, from 12 June to 1 October we brought

208 nestlings from 57 origins to the laboratory for 3 nights.

Nestling age (mean ± SE 34 ± 6 days; range 18–51 days)

was not correlated with plumage traits measured in their

biological parents (Pearson’s correlations on mean sibling

values, P [ 0.09). Nestlings were brought to the laboratory

in the afternoon at 1610 hours (± 2 h 32 min; SE) and

their body mass measured to the nearest gram. Nestling

body mass before the experiment was not significantly

correlated with plumage traits measured in the nestlings

themselves or in their biological parents (mixed-model

analysis of covariance with nest of origin as random vari-

able, controlling for nestling sex and age, P [ 0.09)

but with nestling age (Pearson’s correlation r = 0.62,

P \ 0.0001). At their arrival nestlings were assigned to a

food treatment for the night: they were either starved or

offered food ad libitum, i.e., 130 g of laboratory mice

which exceeds their daily food requirement. Remaining

food was removed the next afternoon at 1600 hours and

nestling body mass change over 24 h was determined. The

food treatment was inverted the second night at 0000 hours

(i.e., starved nestlings were fed ad libitum). Remaining

food was also removed the following afternoon at

1600 hours and body mass change determined. On the first

night we food-deprived 98 nestlings and fed the 110 other

nestlings ad libitum. Plumage traits of nestlings that were

food-deprived or fed ad libitum on the first night

were similar (Student’s t test: color t184 = 0.76, P = 0.45;

spot diameter t184 = 0.46, P = 0.65; number of spots

t184 = 0.26, P = 0.80). At the end of the experiment (i.e.,

the morning following the third night), we brought nes-

tlings back to their original nest-boxes, after having fed

them ad libitum the third night. In the laboratory, nestlings

were placed in a similar nest-box to the one where they

were reared in natural conditions, but which was divided

into two parts by a thin wooden wall pierced with five holes

at the top. Each nestling was alone in one part of a nest-box

while the other part was either empty (n = 20), occupied

by a sibling (n = 84) or an unrelated individual raised in

the same nest (n = 104).

Detailed observations on vocalizations produced by

these nestlings (Roulin et al. 2009) showed that individuals

behave as in natural conditions, indicating that conditions

met in the laboratory were not too stressful. To further

investigate the impact of keeping individuals in the labo-

ratory, we measured baseline corticosterone levels (see

Almasi et al. 2009 for details on the methods) in 20 nes-

tlings just before bringing them in the laboratory and on

average 2 days later in the laboratory just after the

ad libitum food treatment was finished. This hormone is

sensitive to various sources of stress (e.g., Jenni-Eiermann

et al. 2008) and hence if nestlings are stressed to higher

levels in the lab compared to the situation prevailing in

their natural nest, baseline corticosterone levels are

expected to be significantly higher in the lab. This was

not the case (mean ± SD baseline corticosterone level

in the field was 5.57 ± 4.2 ng/ml and in the laboratory

7.58 ± 4.4 ng/ml; paired t test on log-transformed values

t19 = 1.24, P = 0.23).

Statistical procedure

To assess the relationship between the degree of melanin-

based coloration and body mass under contrasting feeding

conditions (i.e., fed ad libitum vs. food-deprived during

24 h) we performed a mixed-model ANOVA with body

mass change over 24 h as the dependent variable. We

included as random variables the nest of origin and the

identity of each nestling nested in the nest of origin (since

each individual appeared twice in the analysis, a first time

when food-deprived and a second time when fed ad libi-

tum). Covariates were nestling age, the three melanin-

based plumage traits (pheomelanin-based coloration, spot

diameter and spot number) measured in nestlings and in

their two biological parents. We also introduced as cofac-

tors nestling sex, food treatment, order of the food

manipulation across the two experimental nights (i.e.,

starting with food-depriving individuals or by feeding them

ad libitum) and nestling neighborhood in the laboratory

nest-box (alone, in the presence of a sibling or of an

unrelated but familiar individual raised in the same nest in

the field). In a separate mixed-model ANOVA we intro-

duced amount of mice consumed during 24 h in nestlings

fed ad libitum. Nestling status (raised by the biological or

foster parents), alone or in interaction did not account for

any variation in body mass change and appetite. We thus

removed this factor from the final models, which contained

only significant effects and main effects involved in sig-

nificant interactions. If we replace nestling age by initial

body mass (the two variables are highly correlated,

r = 0.62), we obtain qualitatively similar results. Final

models always presented a smaller Akaike information

criterion than previous models containing non-significant
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terms. Assumptions for using parametric tests (homosce-

dastic and normal distributions of variables or residuals)

were verified for each test. P values smaller than 0.05 are

considered significant.

Results

The final model testing whether nestling body mass change

over 24 h is associated with spot diameter is given in

Table 1. There were three major results from this analysis.

First, nestlings lost less mass when their mother displayed

larger black spots independently of the food treatment

(Fig. 1). Second, the spot diameter of the father, alone or in

interaction with other variables, did not explain any sig-

nificant part of the variation. Third, there was a significant

interaction between food treatment and nestling spot

diameter. Nestlings displaying large eumelanic spots lost

less body mass than those exhibiting smaller spots when

food-deprived (mixed-model ANOVA with nest of origin

as a random variable, F1,126 = 6.31, P = 0.013; Fig. 2) but

not when fed ad libitum (similar model F1,127 = 1.66,

P = 0.20). The lack of relationship between nestling spot

diameter and nestling body mass could be due to differ-

ential appetite. Accordingly, when nestlings were fed

ad libitum, individuals displaying large black spots con-

sumed fewer mice than individuals displaying smaller

spots (Table 2; Fig. 3a). Whitish individuals had less

appetite than reddish ones, but the relationship was rela-

tively weak (Table 2; Fig. 3b).

Discussion

Under laboratory conditions food-deprived nestling barn

owls that displayed larger black spots lost less weight and

had a lower appetite. These results shed new light on the

Table 1 Final mixed-model ANOVA testing whether body mass

change over 24 h in nestling barn owls is associated with the size of

eumelanic spots measured in nestlings and in their biological parents

Source of variation df F P

Nestling pheomelanic coloration 1,171 0.85 0.36

Nestling spot number 1,171 0.01 0.97

Nestling spot diameter 1,180 0.81 0.37

Mother pheomelanic coloration 1,180 2.00 0.16

Mother spot number 1,171 0.64 0.42

Mother spot diameter 1,180 6.82 0.0098

Father pheomelanic coloration 1,171 1.95 0.16

Father spot number 1,171 0.61 0.44

Father spot diameter 1,171 0.01 0.96

Nestling sex 1,171 0.24 0.62

Nestling age 1,180 5.06 0.026

Food manipulation 1,180 176.36 <0.0001

Order of food manipulation 1,180 233.11 <0.0001

Food manipulation 3 order of food

manipulation

1,180 91.49 <0.0001

Food manipulation 3 nestling spot

diameter

1,180 6.95 0.0091

Nest of origin was incorporated as a random variable as well as

nestling identity nested within the nest of origin. Independent vari-

ables were food manipulation (over 24 h individuals were either fed

ad libitum or food-deprived), and the order of this manipulation (in

approximately half of the cases individuals were first fed ad libitum

and others were first food-deprived). Non-significant interactions

were removed one after the other starting with the least significant

ones

P values of the final model are in bold and non-significant P values of

initial models in plain

Fig. 1 Mean body mass change (in g) in nestling barn owls over 24 h

in relation to the size of eumelanic spots measured in their biological

mother. A mean sibling value was calculated so that each mother

appears only once in this figure (Pearson’s correlation is r = 0.38,

n = 43, P = 0.01). The regression line is shown

Fig. 2 Body mass change (in g) in nestling barn owls that were food-

deprived over 24 h in relation to the size of their eumelanic spots. The

regression line is shown
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physiological adaptations associated with melanin-based

color traits. A number of recent studies have indeed pro-

posed that such colorful traits could indicate various

physiological properties including for instance resistance to

oxidative stress and parasites as well as energy homeostasis

(Ducrest et al. 2008). These studies were based on

knowledge of the physico-chemical effects of melanin

pigments (Mackintosh 2001; McGraw 2005) or of physi-

ological effects of biochemical molecules involved in

melanogenesis. Interestingly, our results are consistent with

pleiotropic effects of the melanocortin system suggesting

that mutations located in the proopiomelanocortin gene or

differential expression of this gene are responsible for

the link between melanin-based coloration and energy

homeostasis (Ducrest et al. 2008).

Our study has several implications for an understanding

of the potential adaptive function of melanin-based color

traits. Several studies suggest that darker eumelanic indi-

viduals are adapted to stressful conditions. For example,

darker feral pigeons (Columba livia) better survived after

the Chernobyl catastrophe (Johnston and Janiga 1995),

offspring of darker melanic Alpine swift (Apus melba)

fathers grew more rapidly when brood size was experi-

mentally enlarged but not when experimentally reduced

(Roulin et al. 2008), in siskins (Carduelis spinus) darker

individuals were less susceptible to stressful laboratory

conditions as measured by metabolic rate (Senar et al.

2000), and in nestling common buzzards (Buteo buteo)

intensity of infection with Leucocytozoon endoparasites

decreased with melanization (Chakarov et al. 2008). In the

barn owl, females displaying larger eumelanic spots gave

birth to offspring that were more resistant to ectoparasites,

produced more antibodies towards a vaccine and were

developmentally more stable (Roulin 2004c), male barn

owls displaying larger black spots were less sensitive to an

experimental increase in corticosterone level (Almasi et al.

2008) and offspring born from heavily spotted mothers

were better able to cope with a rise in corticosterone levels

due to stressful situations (Almasi et al. 2010). The present

study provides further information on the ability to cope

with food depletion. Darker eumelanic individuals better

dealt with experimental food deprivation and had a lower

appetite suggesting that they need less food to sustain

metabolism. Our experiment should be repeated under

natural conditions to determine whether the relationships

between melanin-based coloration and energetic processes

are not specific to stressful conditions such as those prob-

ably met under laboratory conditions. The observation

that melanin-based coloration co-varied significantly with

aspects of body condition only after we manipulated food

supply is consistent with the claim that the degree of pig-

mentation signals quality only under specific conditions

Table 2 Final mixed-model ANOVA testing whether appetite

(expressed in g mice eaten over 24 h) in nestling barn owls fed

ad libitum is associated with the size of eumelanic spots measured in

nestlings and in their biological parents

Source of variation df F P

Nestling pheomelanic coloration 1,126 5.29 0.023

Nestling spot number 1,117 1.46 0.23

Nestling spot diameter 1,126 7.52 0.007

Mother pheomelanic coloration 1,117 0.90 0.34

Mother spot number 1,117 0.18 0.67

Mother spot diameter 1,117 0.49 0.49

Father pheomelanic coloration 1,117 0.62 0.43

Father spot number 1,117 0.03 0.87

Father spot diameter 1,117 0.86 0.35

Nestling sex 1,117 0.27 0.61

Nestling age 1,117 0.01 0.99

Nestling body mass before feeding 1,126 4.69 0.032

Order of food manipulation 1,126 35.80 <0.0001

Nest of origin was incorporated as a random variable. Independent

variables were melanin-based plumage traits of nestling and their

biological parents, nestling age, body mass before the feeding treat-

ment was applied, sex and the order of food manipulation (in

approximately half of the cases individuals were first fed ad libitum

and others were first food-deprived). Non-significant interactions

were removed one after the other starting with the least significant

ones

P values of the final model are in bold and non-significant results of

initial model in plain

Fig. 3 Amount of mice (in g)

nestling barn owls consumed in

24 h in relation to the size of

their eumelanic spots (a) and

pheomelanin-based

coloration (b)
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(Roulin 2009). Therefore, selection on melanin-based color

traits is context dependent [see also Gonzales et al. (1999)

for another example].

In the present experimental study and the previous

observational study carried out in barn owls (Roulin 2009),

the balance between energy intake and expenditure was

mainly associated with the degree of eumelanin- and to a

low extent with pheomelanin-based coloration. This con-

trasts with a similar experimental study we recently carried

out in the tawny owl (Strix aluco), a species that varies in

the degree of pheomelanin-based coloration. In the labo-

ratory, food-deprived tawny owl nestlings lost less mass

when their biological mother was pale rather than dark

reddish-brown (Piault et al. 2009). This result is interesting

because the intensity of melanin pigmentation is positively

correlated with the ability to cope with food depletion with

respect to eumelanic coloration in the barn owl but nega-

tively with respect to pheomelanic coloration in the tawny

owl. From a proximate point of view, this suggests that a

molecule that triggers the production of eumelanic pig-

ments binds to other receptors responsible for energy

homeostasis which are also sensitive to an antagonistic

molecule that triggers the production of pheomelanic pig-

ments (Ducrest et al. 2008). From an ultimate point of

view, this may indicate that pheomelanic and eumelanic

colorations may signal similar phenotypic attributes but in

opposite directions.

To conclude, if the degree of melanin-based coloration

is associated with the ability to deal with poor food con-

ditions, we could predict that dark eumelanic color traits

are more prevalent in populations or in species that face a

higher risk of food shortage. This is a stimulating avenue of

research, which has not yet been considered.
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Chakarov N, Boerner M, Krüger O (2008) Fitness in common

buzzards at the cross-point of opposite melanin-parasite interac-

tions. Funct Ecol 22:1062–1069. doi:10.1111/j.1365-2435.2008.

01460.x

Ducrest A-L, Keller L, Roulin A (2008) Pleiotropy in the melano-

cortin system coloration and behavioural syndromes. Trends

Ecol Evol 23:502–510. doi:10.1016/j.tree.2008.06.001

Durant JM, Handrich Y (1998) Growth and food requirement flexibility

in captive chicks of the European barn owl (Tyto alba). J Zool

245:137–145. doi:10.1111/j.1469-7998.1998.tb00083.x

Fargallo JA, Laaksonen T, Korpimaki E, Wakamatsu K (2007)

A melanin-based trait reflects environmental growth conditions

of nestling male Eurasian kestrels. Evol Ecol 21:157–171. doi:

10.1007/s10682-006-0020-1

Flatt T (2005) The evolutionary genetics of canalization. Q Rev Biol

80:287–316. doi:10.1086/432265

Gonzales G, Sorci G, de Lope F (1999) Seasonal variation in the

relationship between cellular immune response and badge size in

male house sparrows (Passer domesticus). Behav Ecol Sociobiol

46:117–122. doi:10.1007/s002650050600

Jenni-Eiermann S, Glaus E, Gruebler M, Schwabl H, Jenni L (2008)

Glucocorticoid response to food availability in breeding barn

swallows (Hirundo rustica). Gen Comp Endocrinol 155:558–

565. doi:10.1016/j.ygcen.2007.08.011

Johnston RF, Janiga M (1995) Feral pigeon. Oxford University Press,

Oxford

Mackintosh JA (2001) The antimicrobial properties of melanocytes

melanosomes and melanin and the evolution of black skin.

J Theor Biol 211:101–113. doi:10.1006/jtbi.2001.2331

McGraw KJ (2005) The antioxidant function of many animal

pigments: are there consistent health benefits of sexually selected

colorants? Anim Behav 69:757–764. doi:10.1016/j.anbehav.

2004.06.022

Piault R, Gasparini J, Bize P, Jenni-Eiermann S, Roulin A (2009)

Pheomelanin-based coloration and the ability to cope with

variation in food supply and parasitism. Am Nat 174:548–556.

doi:10.1086/605374

Røskaft E, Järvi T, Bakken M, Bech C, Reinertsen RE (1986) The

relationship between social status and resting metabolic rate in

great tits (Parus major) and pied flycatchers (Ficedula hypol-
euca). Anim Behav 34:838–842. doi:10.1016/S0003-3472(86)

80069-0

Roulin A (1999) Nonrandom pairing by male barn owls Tyto alba
with respect to a female plumage trait. Behav Ecol 10:688–695.

doi:10.1093/beheco/10.6.688

Roulin A (2001) Food supply differentially affects sibling negotiation

and competition in the barn owl (Tyto alba). Behav Ecol

Sociobiol 49:514–519. doi:10.1007/s002650100322

Roulin A (2004a) The evolution maintenance and adaptive function

of genetic color polymorphism in birds. Biol Rev 79:815–848.

doi:10.1017/S1464793104006487

Roulin A (2004b) Function of food stores in bird nests: observations

and experiments in the barn owl Tyto alba. Ardea 92:69–78

Roulin A (2004c) Proximate basis of the covariation between a

melanin-based female ornament and offspring quality. Oecologia

140:668–675. doi:10.1007/s00442-004-1636-x
Roulin A (2009) Covariation between eumelanic pigmentation and

body mass only under specific conditions. Naturwissenschaften

96:375–382. doi:10.1007/s00114-008-0489-2

Roulin A, Dijkstra C (2003) Genetic, environmental components of

variation in eumelanin and phaeomelanin sex-traits in the barn

owl. Heredity 90:359–364. doi:10.1038/sj.hdy.6800260

70 Oecologia (2010) 164:65–71

123

http://dx.doi.org/10.1016/j.yhbeh.2008.02.021
http://dx.doi.org/10.1016/j.ygcen.2009.05.011
http://dx.doi.org/10.1111/j.1420-9101.2010.01969.x
http://dx.doi.org/10.1111/j.1420-9101.2010.01969.x
http://dx.doi.org/10.1007/s10709-007-9220-z
http://dx.doi.org/10.1111/j.1365-2435.2008.01460.x
http://dx.doi.org/10.1111/j.1365-2435.2008.01460.x
http://dx.doi.org/10.1016/j.tree.2008.06.001
http://dx.doi.org/10.1111/j.1469-7998.1998.tb00083.x
http://dx.doi.org/10.1007/s10682-006-0020-1
http://dx.doi.org/10.1086/432265
http://dx.doi.org/10.1007/s002650050600
http://dx.doi.org/10.1016/j.ygcen.2007.08.011
http://dx.doi.org/10.1006/jtbi.2001.2331
http://dx.doi.org/10.1016/j.anbehav.2004.06.022
http://dx.doi.org/10.1016/j.anbehav.2004.06.022
http://dx.doi.org/10.1086/605374
http://dx.doi.org/10.1016/S0003-3472(86)80069-0
http://dx.doi.org/10.1016/S0003-3472(86)80069-0
http://dx.doi.org/10.1093/beheco/10.6.688
http://dx.doi.org/10.1007/s002650100322
http://dx.doi.org/10.1017/S1464793104006487
http://dx.doi.org/10.1007/s00442-004-1636-x
http://dx.doi.org/10.1007/s00114-008-0489-2
http://dx.doi.org/10.1038/sj.hdy.6800260
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