Variability of ¹³C-¹⁴C in soil CO₂: Impact on ¹⁴C groundwater ages

Marina Gillon^{1,2*}, Florent Barbecot², Elisabeth Gibert², Caroline Plain³, José Antonio Corcho Alvarado⁴, and Marc Massault²

 ¹UMR UAPV-INRA 1114 EMMAH, Avignon, France, <u>marina.gillon@univ-avignon.fr</u> (*presenting author)
²UMR CNRS-UPS 8148 IDES, Orsay, France, <u>florent.barbecot@upsud.fr</u>, <u>elisabeth.gibert@u-psud.fr</u>, <u>marc.massault@u-psud.fr</u>
³UMR UL-INRA 1137 EEF, Nancy, France, <u>plain@nancy.inra.fr</u>
⁴Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland, <u>Jose.Corcho@chuv.ch</u>

The ¹⁴C age correction models for groundwater use generally an input function that depends on the carbon isotopic composition (¹³C and ¹⁴C) of the soil CO₂. However, in most cases the activity (A¹⁴C) of atmospheric CO₂ is directly used as input function without considering processes occurring in soil and leading to significant isotopic changes between the composition of atmospheric CO₂ and of soil CO₂ [1][2]. We present here the role of these processes as well as the associated isotopic changes and their impact on the calculation of the age of groundwater. Our approach is based on the use of experimental data from two sites (Fontainebleau sands and Astian sands, France) and its interpretation by a distributed model [3].

Figure 1: Calculated mean ages of groundwater with respect to different input function; case of a theoretical sampling in 1980.

Since 1950, the evolution of the $A^{14}C$ in soil CO₂ reflects the competition between the fluxes of root derived-CO₂ and organic matter derived-CO₂ due to the residence times of organic matter in the soil. We demonstrate that a mean ¹⁴C groundwater age based purely on the ¹⁴C atmospheric data may lead to significant biases [2]. For example, a measured $A^{14}C$ of 110 pMC in 1980 corresponds to a mean age of 50±5 or 80±2 y depending on the choice of the input function (Fig. 1). Moreover, the analytical $\delta^{13}C$ of soil CO₂ showed large seasonal variations. Therefore, for dating modern groundwater, a systematic sampling of soil CO₂ has to be integrated into numerical simulations to define ¹³C-¹⁴C content at the water table [4].

Fontes (1992) Radiocarbon After Four Decades, 242-261; [2]
Gillon et al. (2009), Geochim. Cosmochim. Acta 73, 6488-6501;
Gillon et al., geoderma, in revision; [4] Gillon (2008), Ph. D.
Thesis, Paris Sud XI Univ., France.