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ABSTRACT 1 

 Blood glucose homeostasis requires a constant communication between insulin-secreting 2 

and insulin-sensitive cells. A wide variety of circulating factors, including hormones, cytokines 3 

and chemokines work together to orchestrate the systemic response of metabolic organs to changes 4 

in the nutritional state. Failure in the coordination between these organs can lead to a rise in blood 5 

glucose levels and to the appearance of metabolic disorders such as diabetes mellitus. Exosomes 6 

are small extracellular vesicles that are produced via the endosomal pathway and are released from 7 

the cells upon fusion of multivesicular bodies with the plasma membrane. There is emerging 8 

evidence indicating that these extracellular vesicles play a central role in cell-to-cell 9 

communication. The interest in exosomes exploded when they were found to transport bioactive 10 

proteins, mRNAs and miRNAs that can be transferred in active form to adjacent cells or to distant 11 

organs. In this review, we will first outline the mechanisms governing the biogenesis, the cargo 12 

upload and the release of exosomes by donor cells as well as the uptake by recipient cells. We will 13 

then summarize the studies that support the novel concept that miRNAs and other exosomal cargo 14 

components are new important vehicles for metabolic organ cross-talk.  15 

 16 
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INTRODUCTION 1 

In modern societies, the combination of sedentary lifestyles with excessive caloric intake has 2 

resulted in a dramatic rise in the incidence of chronic metabolic diseases and in the associated 3 

premature deaths. Thus, it is becoming urgent to find novel strategies to cure or prevent the 4 

development of these diseases and to stop their epidemic progression. To achieve this goal, we 5 

need to improve our basic knowledge of the biological mechanisms governing the maintenance of 6 

glucose homeostasis.  7 

 Several organs contribute to the regulation of blood glucose levels and the communication 8 

between them is vital to achieve this goal. Different circulating factors including hormones, 9 

cytokines, chemokines and growth factors are known to play an important role in inter-organ 10 

crosstalk. However, recently the existence of a new cell communication mode has emerged. This 11 

new signaling mechanism is mediated by exosomes, small extracellular vesicles that are produced 12 

via the multivesicular endosomal pathway and are released by almost all cells [1-3]. Several studies 13 

performed in vitro, but most recently also in vivo, have now demonstrated that exosomes can 14 

transfer genetic material between different organs, resulting in functional changes in the receiving 15 

cells. In this review, we will discuss this novel cell-to-cell communication mode putting a particular 16 

focus on the implication of exosomal miRNA transfer in metabolic organ cross-talk.    17 

 18 

EXOSOMES 19 

Exosomes were identified more than 30 years ago in reticulocytes [4] and were first thought to 20 

participate in the selective removal of unwanted cell components. However, the interest in these 21 

extracellular vesicles exploded the last decade, when they were found to transport bioactive 22 
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molecules, including proteins and nucleic acids, which can be transferred in active form to recipient 1 

cells [5, 6]. Exosomes are now seen as vehicles of a new cell-to-cell signaling pathway whose rules 2 

and limitations remain to be fully established. Also, a consensus is still lacking about the 3 

nomenclature and the most appropriate isolation method of exosomes and other types of 4 

microvesicles released by the cells. Typically, the term “exosome” is used to designate extracellular 5 

vesicles (EVs) with a diameters of 50-150nm that originate from the late endosomal pathway and 6 

are released in the extracellular space upon fusion of multivesicular bodies (MVBs) with the plasma 7 

membrane [2]. Larger EVs with a diameter of up to 1000nm are generally formed by direct budding 8 

of the plasma membrane and include a wide range of membrane-enclosed entities such as 9 

ectosomes, microparticles and microvesicles. Different methods are currently used to isolate 10 

exosomes from the culture media or from serum/plasma samples. These methods discriminate the 11 

EVs based on their size, density or by the presence of specific protein components and are therefore 12 

yielding preparations with different purities and microvesicle composition. Pro and cons for each 13 

method have been extensively reviewed elsewhere [7]. The most common strategy used to isolate 14 

exosomes remains differential centrifugation. Therefore, unless specified, in this review we will 15 

focus mainly on studies on exosomes (also called exosome-like microvesicles or small EVs) that 16 

were isolated by high speed ultra-centrifugation.  17 

Exosome biogenesis 18 

The biogenesis of exosomes is tightly coupled to the formation of MVBs by the endocytic pathway 19 

[1, 8] (Fig.1). In brief, internalization of extracellular ligands or cellular components are processed 20 

through the endosomal pathway for their recycling to the membrane surface or for their 21 

degradation. During the endosome maturation process, several small vesicles are formed by inward 22 

budding of the early endosomal membrane, sequestering proteins, lipids and cytosolic components 23 



5 
 

that are specifically sorted. These vesicle-containing organelles are called MVBs. The main fate of 1 

MVBs is to fuse to lysosomes for degradation, but a subset of MVBs can merge with the plasma 2 

membrane, resulting in the release of the intraluminal vesicles, including exosomes, in the 3 

extracellular space (Fig.1). The mechanisms controlling the fate of MVBs are still not well 4 

understood. Specific stimuli that promote autophagy such as starvation or the inhibition of the 5 

mTOR pathway, favor the fusion of MVB with lysosomes, resulting in a decrease in exosome 6 

release [9]. ISGylation, an ubiquitin-like modification driven by ISG15 conjugation, is also 7 

involved in this process. Indeed, ISGylation of the MVB protein TSG101 induces its aggregation, 8 

favoring its lysosomal degradation and the  inhibition of exosome release [10].  9 

Exosome secretion 10 

 The best-described mechanism for the formation of intraluminal vesicles inside MVBs and 11 

for the release of exosomes involves the Endosomal Sorting Complexes Required for Transport 12 

(ESCRT) proteins. Thirty different ESCRT proteins assemble in four complexes which bind to the 13 

outer membrane of endosomes during the formation of the MVBs [1]. Their involvement in 14 

exosome formation was first suggested by proteomic studies where two ESCRT proteins, namely 15 

Alix and TSG101, were detected in exosomes of different cell types [11]. Reduction of Alix 16 

expression in tumor cells or depletion of TSG101 in HeLa or dendritic cells were found to impair 17 

exosome release [12, 13]. In other cell types, ESCRT-independent mechanisms were also observed. 18 

Inhibition of the enzyme neutral sphingomyelinase in oligodendroglial or in tumor cell lines 19 

reduced exosome secretion [5, 14], whereas in human melanoma cells, exosome release was linked 20 

to the tetraspanin protein CD-63 [15]. The fibroblasts from patients affected by the Charcot-Marie-21 

Tooth disease have been shown to express a mutant form of the membrane protein SIMPLE and to 22 

secrete less exosomes containing CD-63 and ALIX [16]. Other regulatory molecules have also 23 
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been reported to be involved in the release of exosomes, including the Rab GTPases Rab27a and 1 

Rab27b [17] and the tumor suppressor protein p53 [18]. Thus, at present it is still unclear if a 2 

common regulatory network controls the release of exosomes in all cell types or if specific sets of 3 

molecules regulate exocytosis of different subset of exosomes depending on their formation and/or 4 

composition.  5 

Exosome composition and miRNA cargo 6 

 Numerous studies have analyzed the protein, lipid and nucleic acid content of exosomes 7 

released by a variety of cells. The plethora of information obtained led to the creation of databases 8 

that provide catalogues of the EV content in different cell types: EVpedia [19], Vesiclepedia [20] 9 

or Exocarta [21]. The last version of Vesiclepedia (September 2015) includes data from 538 studies 10 

covering 33 species.  11 

The mechanisms responsible for the upload of the exosomal cargo remain largely unknown. 12 

Part of the exosome content is directly reflecting their biogenesis and includes tetraspanin (CD9, 13 

CD63, CD81) and ESCRT proteins (TSG101, ALIX). Post-translational modifications including 14 

ubiquitination and sumoylation were also suggested to contribute to the sorting of specific proteins 15 

in exosomes [22-24]. Other exosome components, such as mRNAs and miRNAs, appear to be 16 

selectively sorted to exosomes [25]. Several studies have shown that the pool of miRNAs present 17 

in exosomes does not merely reflect their cellular abundance [26, 27]. Some miRNAs seem to be 18 

preferentially directed to exosomes whereas others appear to be retained in parental cells [28]. 19 

Moreover, the exosomal miRNA cargo can be modified in response to environmental stressors, 20 

suggesting an active sorting mechanism.  21 
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 Different pathways, RNA motifs and molecules have been reported to contribute to the 1 

sorting of miRNAs in exosomes. Among them, miRNA target genes have been suggested to 2 

influence the loading of these small non-coding RNAs inside the vesicles. For example in 3 

macrophages, an inverse correlation was observed between the amount of miRNAs released in 4 

exosomes and the abundance of their target transcripts present in the cells [29]. Changes in the 5 

balance between miRNAs and their targets influence the shuttling of the non-coding RNAs from 6 

the cytoplasm/P-bodies, where the miRNAs are active, and the MVBs, where exosomes are formed 7 

[29]. In glioblastoma cells, mRNAs enriched in exosomes were found to include in their 3’UTR a 8 

“zipcode” sequence of 25 nucleotides, containing a CUGCC core and a miRNA-binding site for 9 

miR-1289.  Therefore, a dynamic mRNA/miRNA mechanism may exist to tag genomic material 10 

to exosomes [30].  11 

 Some miRNAs bearing a specific sequence were also found to be enriched in exosomes. 12 

Villarroya-Beltri et al. analyzed the sequences of miRNAs accumulating in exosomes from T 13 

lymphocytes and observed an enrichment of the GGAG motif [23]. The authors found that 14 

sumoylation of the ribonucleoprotein hnRNPA2B1 favors it’s binding to miRNAs containing the 15 

GGAG motif and promotes their sorting into exosomes. Santangelo et al. identified another motif 16 

(GGCU) in the 3’ region of miRNAs present in hepatocyte exosomes [31]. This sequence was 17 

found to permit the interaction with the RNA-binding protein SYNCRIP that is part of the 18 

exosomal machinery. Downregulation of SYNCRIP led to an impairment in the sorting of miRNAs 19 

to exosomes. Another mechanism affecting the accumulation of miRNAs in exosomes relies on 20 

the addition of a nucleotide at the 3’end of the non-coding RNA. Indeed, Koppers-Lalilc and 21 

colleagues observed in B cell lymphoma cell lines that the isoforms of miRNAs adenylated at the 22 
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3’end are mainly retained in the cells whereas those that are uridylated are enriched in exosomes 1 

[32].  2 

 Proteins important for miRNA-mediated translational repression, such as Ago2 and 3 

GW182, are also present in exosomes [33]. In colon cancer cell lines, activation of the KRAS-4 

MEK-ERK signaling pathway, but not of AKT, inhibits the shuttling of Ago2 in exosomes and 5 

concomitantly reduces the amount of Ago2-dependant miRNAs in extracellular vesicles [34]. 6 

Interestingly, phosphorylation of Ago2 decreased its interaction with multivesicular endosomes 7 

and reduced the secretion of this protein inside exosomes. These data suggest that proteins 8 

interacting with miRNAs may influence their transfer inside exosomes. 9 

Exosome uptake 10 

 After their release in the extracellular space, exosomes can diffuse in the bloodstream and 11 

in other body fluids. The exosome cargo is protected from degradation and is rapidly taken up by 12 

different organs, such as liver, lung and spleen. The half-life of circulating exosomes has been 13 

evaluated to be around 2 minutes for labelled exosomes injected intravenously in mice but some 14 

exosomes were still detectable in the circulation hours after injection [35, 36]. It is still unclear 15 

how, or even if, exosomes are specifically targeted to recipient cells and how they can deliver their 16 

cargo inside the cells. However, the mechanisms governing the entry of exosomes in recipient cells 17 

are beginning to be unveiled. So far, three main routes have been described (Figure 1): 1) direct 18 

interaction of the exosome component with a membrane receptor [37, 38], 2) fusion of the 19 

exosomes with the plasma membrane of the receiving cell [39] and 3) internalization of the 20 

exosomes by the recipient cells by phagocytosis, or by clathrin-, caveolin-mediated endocytosis 21 

[40]. Tian and colleagues performed real-time fluorescence microscopy and single particle tracking 22 

to follow the internalization of exosomes by PC12 cells [41]. After 30 minutes of incubation, they 23 
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observed that the labelled exosomes were slowly moving at the cell surface in a drifted mode, 1 

probably as a result of the lateral diffusion of the receptors bound to the exosomes. Few hours later, 2 

a large number exosomes were internalized and most of them were trapped in endocytic-derived 3 

vesicles, suggesting that in PC12 cells most of them enter by endocytosis. Similar findings were 4 

reported by Heusermann et al. [42]. Using single-vesicle dye tracing, the majority of the exosomes 5 

from HEK293 cells were found to enter recipient cells as intact vesicles primarily via filopodia, to 6 

be sorted in endocytic vesicles and to scan the endoplasmic reticulum before being targeted to 7 

lysosomes. A small fraction (10 to 20%) of the labelled exosomes were found to remain at the 8 

plasma membrane. Finally, fusion of labelled exosomes with plasma membrane was observed in 9 

melanoma and dendritic cells using spectrofluorometry and confocal or fluorescence time-lapse 10 

microscopy [27, 39].  11 

 As discussed for the secretory mechanisms, the mechanism of uptake may differ between 12 

heterogeneous populations of exosomes or between different cell types. Further research is needed 13 

to better understand the mechanisms involved in the uptake of exosomes and the delivery of their 14 

cargoes inside the recipient cells.   15 

 16 

Transfer of nucleic acids between cells mediated by exosomes 17 

 Pioneer studies have demonstrated the shuttling of bioactive mRNAs and miRNAs between 18 

cells in vitro [5, 6]. The transfer of genetic material by exosomes has now been elegantly confirmed 19 

also in vivo using the Cre-Lox system. This approach is based on the capacity of exosomes to 20 

transfer the Cre mRNA from Cre-producing cells to receiving cells containing a floxed gene, 21 

resulting in the expression of a specific marker. Ridder et al. used transgenic mice expressing the 22 

Cre recombinase specifically in the hematopoietic lineage [43]. They found that the Cre mRNA 23 
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accumulates in blood exosomes and can be transferred to cells located in different organs, including 1 

liver, lung, intestine and brain where they induce the expression of the floxed gene. Of interest, 2 

while the number of recombination events was very low in healthy mice, it increased dramatically 3 

in response to inflammatory injuries. Zomer et al. demonstrated that Cre-expressing malignant 4 

tumor cells release EVs that induced red-to-green Cre-dependent conversion in recipient benign 5 

tumor cells [44]. The transfer of Cre mRNA between tumor cells in vivo was observed both locally 6 

and systemically. Interestingly, exosomes from malignant tumor cells favored the migratory and 7 

metastatic properties in recipient benign tumor cells [44]. Appropriate controls were performed in 8 

these two studies to exclude the possibility that the observed recombination events were resulting 9 

from an unspecific expression of Cre recombinase in recipient cells, heterotypic cell fusion and/or 10 

endogenous misexpression of the floxed gene. Taken together, these studies support a role for 11 

exosomes in inter-cellular and inter-organ communication. 12 

 13 

Metabolic organs releasing exosomes  14 

Pancreatic β-cells  15 

 Pancreatic β-cells play a central role in the regulation of glucose homeostasis by secreting 16 

insulin, the main hormone controlling the uptake and the utilization of this carbohydrate. The 17 

amount of insulin released by β-cells is continuously adjusted to the concentration of glucose, but 18 

also of other nutrients, such as amino acids and fatty acids present in the bloodstream to precisely 19 

match the organism needs. A number of studies have demonstrated the fundamental role of 20 

miRNAs in β-cell development, maturation, function and survival. Deregulation of miRNA 21 

expression has been reported in pancreatic islets from diabetes animal models and from human 22 
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diabetic donors [45-48]. More recently, miRNAs were found to be transferred between β-cells [26], 1 

adding another dimension of complexity in the miRNA-mRNA network. The exosomal miRNA 2 

cargo is not simply a mirror image of the content of the parental β-cell. Global profiling of the 3 

miRNAs present in exosomes from β-cell lines or from pancreatic islets revealed that a subset of 4 

them is preferentially released in exosomes while others are retained in the parental cells [26, 49]. 5 

Pathophysiological conditions associated with diabetes affect the composition of the exosomal 6 

cargo of β-cells [26, 50]. Indeed, incubation of non-treated recipient β-cells with exosomes released 7 

by cytokine-treated MIN6 cells induced cell death that could be prevented by silencing Ago2 in 8 

recipient cells. These data suggest that miRNAs are mediating, at least in part, the detrimental 9 

effect of exosomes on β-cell survival. Other components of the exosomal cargo could also be 10 

involved in this crosstalk between β-cells (Figure 2). Using the insulin-secreting cell line INS-1 as 11 

a model, Zhu and colleagues observed that treatment with low concentrations of pro-inflammatory 12 

cytokines favors the release of neutral ceramidase (NCDase) in exosomes, resulting in the 13 

production of sphingosine 1-phosphate (S1P) and in the activation of the S1P receptor 2 in recipient 14 

β-cells. Incubation with NCDase-containing exosomes protects the recipient β-cells against 15 

apoptosis induced by high concentrations of cytokines or palmitate [51, 52]. However, pro-16 

inflammatory cytokines have dual effects on β-cells. At high concentration, cytokines induce 17 

apoptosis whereas low concentrations of these inflammatory mediators favors the function and the 18 

survival of β-cells. Interestingly, these dual effects were also observed in recipient cells incubated 19 

with exosomes released by β-cells incubated at low or high doses of cytokines, which promoted 20 

cell survival or apoptosis, respectively [26, 52]. Of course, more studies will be required to confirm 21 

this hypothesis, but the data obtained so far suggest that exosomes contributes to achieve a 22 

concerted response of β-cells to inflammatory stimuli.  23 
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 Long non-coding RNAs (lncRNAs) are emerging as important players in the regulation of 1 

β-cell function [53, 54]. Some of these non-coding transcripts may potentially also be released in 2 

exosomes. In a previous study, we identified a group of lncRNAs that is upregulated in the islets 3 

of pre-diabetic NOD mice [55]. Some of them, lncRNA-1 (Gm5970), lncRNA-2 (Al45BIS) and 4 

lncRNA-3 (BC002288) are detectable also in exosomes of MIN6 cells (Guay, Menoud and 5 

Regazzi, unpublished observations). While incubation of MIN6 cells with pro-inflammatory 6 

cytokines promoted the expression of these lncRNAs inside the cells, the levels of lncRNA-2 and 7 

lncRNA-3 released in exosomes were not affected by this treatment. In contrast, the level of 8 

lncRNA-1 was found to increase in exosomes of MIN6 cells incubated for 48h with cytokines 9 

(Guay, Menoud and Regazzi, unpublished observations). These data suggest that lncRNAs and 10 

potentially other non-coding RNAs can be secreted in exosomes and eventually transferred to 11 

recipient cells.  12 

 Beside non-coding RNAs, exosomes released by β-cells can also carry mRNAs and 13 

proteins. Proteomics analysis have been performed on exosomes released by β-cell lines. Lee et al. 14 

[56] identified 270 proteins in exosomes released by NIT-1 insulinoma cells, including metabolic 15 

proteins, endocytosis/exocytosis related proteins, chaperones, cytoskeletal proteins, membrane 16 

transporters/ion channels, signaling molecules and nucleic acid binding proteins. Palmisano and 17 

colleagues [50] focused on membrane-associated proteins released in exosomes from NHI 6F Tu28 18 

cells and identified 191 proteins including 38 glycosylated and 15 phosphorylated proteins. 19 

Interestingly, as observed for non-coding RNAs, the protein composition of exosomes was changed 20 

in response to pro-inflammatory cytokines [50]. It is now well accepted that insulin-secreting cell 21 

lines and primary islets of mice, rats and humans release exosomes [26, 49, 50, 57], but the 22 

relevance of this process for inter-organ crosstalk is just beginning to emerge. Growing evidence 23 
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suggests that exosomes participate in the dialogue between immune cells and β-cells during type 1 1 

diabetes development (T1D). T1D is an autoimmune disease characterized by infiltration of 2 

pancreatic islets by immune cells, leading to selective elimination of the β-cells. Exosomes isolated 3 

from culture media of insulinoma or of islet cells promote the immune response by activating 4 

antigen-presenting cells (APC), autoreactive marginal zone-like B cells and T lymphocytes [57-5 

60]. Interestingly, intravenous injection of β-cell exosomes in non-obese diabetes resistant NOR 6 

mice accelerated the insulitis development [60]. Exosomes were also found to be secreted by 7 

mesenchymal stem cell (MSC)-like cells present in the islets of NOD mice. These exosomes are 8 

highly immunogenic and can activate both autoreactive B and T cells. When injected intravenously, 9 

MSC-like cell exosomes favored immune infiltration and β-cell destruction of NOD mice [61]. The 10 

exact mechanisms by which insulinoma exosomes activate the immune cells remains to be 11 

uncovered. However, exosomes from rat and human islets were found to carry GAD65, IA-2, and 12 

proinsulin autoantigens and also immunostimulatory chaperones that can favor the stimulation of 13 

APC and the activation of T-cells [57].  14 

 The cross-talk between β-cells and endothelial cells is of particular importance in the 15 

context of islet transplantation for the treatment of T1D patients. Despite important progress in the 16 

transplantation methods over the past decade, most of the patients receiving the islets fail to remain 17 

insulin-independent in the long-term [62]. The days immediately following the transplantation are 18 

crucial for islet vascularization, survival and function. Figliolini and colleagues [49] investigated 19 

if exosomes released by human islets are able to promote the migration and proliferation of islet 20 

endothelial cells (IEC) and, therefore, to favor islet vascularization and engraftment. Exosomes 21 

isolated from human islets were found to carry a subset of miRNAs called angiomiRs (miR-27b, 22 

miR-126, miR-130 and miR-296) and some mRNAs of genes associated with angiogenesis (eNOS 23 
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and VEGFa). Incubation of IEC with islet exosomes increased the migration and proliferation of 1 

recipient endothelial cells and protected them from apoptosis. Moreover, islet exosomes were 2 

observed to induce the expression of pro-angiogenic (angiopoietin1, VEGFa, VEGFR1 and 3 

VEGFR2) and anti-apoptotic factors (BCL-2) in IEC and to repress anti-angiogenic 4 

(thrombospondin1) and pro-apoptotic (BAD) molecules [49]. The dialogue between islet and 5 

endothelial cells was also investigated in the reverse direction. Cantaluppi at al. explored the effects 6 

of EVs isolated from the supernatant of human endothelial progenitor cells (EPC) on islet graft 7 

function and vascularization [63]. Incubation of human islets with EPC-exosomes favored insulin 8 

release and β-cell survival, induced islet endothelial cell proliferation and migration, and the 9 

formation of capillary-like structures. In vivo, addition of EPC-exosomes to human islets within 10 

subcutaneously xenotransplantated in SCID mice was found to enhance their vascularization. The 11 

transfer of exosomal miRNAs may participate in this vascularization process. In fact, exosomes 12 

from EPC lacking Dicer, the enzyme required for miRNA biogenesis, carry less miR-126 and miR-13 

296 and exert reduced proliferative and angiogenic effects on IEC (Figure 2).  14 

Skeletal muscles  15 

Skeletal muscles account for about 40% of the body mass and are the predominant site for 16 

insulin-dependent glucose uptake. Moreover, the insulin-resistant state of skeletal muscles is 17 

considered the primary defect leading type 2 diabetes development [64]. Muscles secrete a large 18 

number of proteins and cytokine signaling molecules like myokines known to be important in the 19 

regulation of nutrient homeostasis [65]. Recently, skeletal muscles were found to secrete also 20 

exosomes containing proteins and miRNAs that can be transferred to adjacent muscle cells [66-21 

69]. Moreover, exosomes secreted by muscle cells exposed to fatty acids induced the expression 22 

of genes involved in cell cycle and in muscle differentiation of recipient myotubes and favored 23 
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myoblast proliferation [66]. There is emerging evidence indicating that muscle exosomes may also 1 

be part of the inter-organ network governing glucose homeostasis. Intravenous or intramuscular 2 

injection of mice with labelled-exosomes from muscle cells led to their accumulation in various 3 

metabolic tissues including pancreas, liver, gastro-intestinal tract and distal muscles [66, 70]. In 4 

vitro, exosomes from muscle cells were taken up by the β-cell line MIN6 and resulted in an increase 5 

in the level of the muscle-specific miR-206, confirming the possible crosstalk between insulin-6 

sensitive and insulin-releasing cells [70]. The authors next investigated if exosomes released by 7 

skeletal muscles under insulin-resistant state can affect the functions of β-cells. For this purpose, 8 

prior to skeletal muscle isolation and exosome collection, the mice were fed either a standard chow 9 

diet or a lipid-enriched diet for 16 weeks. Interestingly, incubation of MIN6 cells with muscle 10 

exosomes from mice fed with the lipid-rich diet resulted in an increased proliferation of the insulin-11 

secreting cells. This was attributed to the horizontal transfer of miR-16 and the consequent 12 

downregulation of its target gene Ptch1. The transfer of miRNAs from muscle exosomes to β-cells 13 

may account, at least in part, for the increased size of the islets observed in mice fed on a lipid-rich 14 

diet to compensate for the insulin resistant state [70] (Figure 2). More experiments will be needed 15 

to precisely understand the mechanisms governing the exosome-mediated crosstalk between 16 

skeletal muscles and β-cells under physiological and pathological conditions.  17 

In addition to their contribution to whole-body metabolism and energy homeostasis, 18 

skeletal muscles are of course necessary for body locomotion. Endurance exercise produces 19 

multisystemic benefits on human health and protects against obesity and diabetes development. 20 

Interestingly, the amount of circulating exosomes, and also circulating miRNAs, was found to be 21 

increased in an intensity-dependent manner in response to endurance exercise. Exosomes released 22 

by skeletal muscles, but also from other tissues, may potentially participate to the autocrine and 23 
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paracrine signals leading to the systemic benefits of exercise [71]. However, the precise 1 

mechanisms through which they could exert such effects remain to be uncovered.  2 

 3 

Adipose tissue  4 

 The adipose tissue is a major player in energy homeostasis, but was for a long time 5 

considered only as an inert organ responsible for lipid storage. We now known that the adipose 6 

tissue regulates whole-body metabolism and releases several hormones and cytokines called 7 

adipokines. Under inflammatory condition associated with obesity, the adipose tissue releases the 8 

adipokines TNFα, IL-6 and retinol-binding protein-4 (RBP-4) that favor the development of 9 

systemic insulin resistance [72]. Exosomes may represent additional vehicles for the 10 

communication between the adipose tissue and other metabolic organs to regulate blood glucose 11 

homeostasis. Adipocytes and adipose stromal cells have been reported to release exosomes in their 12 

culture media [73]. Dheng and colleagues observed that the adipose tissue of mice fed a high fat 13 

diet or of ob/ob mice release more exosomes than the adipose tissue from control lean animals [74]. 14 

When injected in control mice, labelled-exosomes from the adipose tissue of ob/ob mice were taken 15 

up by monocytes favoring their differentiation into macrophages, the production of the IL-6 and 16 

TNFα and the development of an insulin resistance state. These effects were not observed in mice 17 

injected with exosomes from adipose tissue of lean animals. The exosomes released by the adipose 18 

tissue of ob/ob mice were found to contain higher levels of the RBP4 protein, to activate the 19 

TLR4/NFκB pathway and to promote the release of IL-6 and TNFα by macrophages (Figure 2). 20 

Finally, exposure of myocytes to conditioned media of macrophages incubated with exosomes 21 

from ob/ob adipocytes resulted in a lowering of AKT phosphorylation in response to insulin and 22 

reduced basal and insulin-stimulated glucose transport. Similar results were obtained with 23 
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exosomes isolated from human subcutaneous and omental adipose tissue cultured ex vivo [75]. 1 

Incubation of human adipocytes with conditioned media of macrophages treated with adipose 2 

tissue-exosomes led to a reduction of AKT phosphorylation in response to insulin. Exosomes from 3 

adipose tissue were also found to interfere with the insulin signaling in liver and muscle cells [75, 4 

76]. Finally, a correlation was observed between the number of exosomes released by omental 5 

adipose tissue and the HOMA insulin resistance index. Taken together these findings suggest that 6 

under obesity conditions the release of exosomes by the adipose tissue promotes the inflammatory 7 

state associated with the development of insulin resistance.  8 

 In a recent paper, Thomou et al. investigated if the miRNAs released in exosomes produced 9 

by different types of fat can regulate gene expression in distant metabolic organs [77]. They first 10 

observed a strong reduction in the level of serum miRNAs in mice lacking the miRNA-processing 11 

enzyme Dicer specifically in adipocytes (ADicerKO). A similar reduction in circulating exosomal 12 

miRNAs was measured in human patients with congenital or HIV-associated lipodystrophy. These 13 

patients suffer from a generalized loss of adipose tissue or have a marked reduction in the level of 14 

Dicer in fat, respectively. Interestingly, a set of 30 miRNAs were found to be decreased in the two 15 

human cohorts and in ADicerKO mice. The level of circulating exosomal miRNAs could be 16 

restored, to about 50% of the normal levels, by transplanting different fat depot from wild type 17 

mice. Interestingly, the impaired glucose tolerance observed in ADicerKO mice was significantly 18 

improved by transplantation of brown, but not white, adipose tissue, with a trend to improve also 19 

insulin sensitivity. Looking at the mechanism potentially linking the release of miRNAs from 20 

brown adipose tissue to insulin resistance, the authors demonstrated both in vitro and in vivo that 21 

at least part of the effect was mediated by the transfer of miR-99b from the adipose tissue to the 22 

liver and the consequent inhibition of Fibroblast Growth Factor 21 (FGF21) expression (Figure 2). 23 
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As a proof-of-concept and to further substantiate the possibility of a crosstalk between the two 1 

tissues, the authors used two cohorts of mice. In a first cohort, the mice were engineered to express 2 

hsa-miR-302f in brown adipose tissue, whereas in the second cohort, the mice were expressing a 3 

3’UTR-hsa-miR302f reporter in the liver. When exosomes isolated from the first cohort of mice 4 

were injected in the second cohort, the luciferase activity of the reporter was massively 5 

downregulated, demonstrating that exosomes from adipose tissue can indeed transfer bioactive 6 

miRNAs to the liver.  7 

 The miRNAs released by the adipose tissue might also affect other metabolic organs or 8 

favor the occurrence of complications related to diabetes. Circulating levels of miR-130b were 9 

found to be increased in serum of obese mice and humans and to positively correlate with the body 10 

mass index. Mechanistically, increased levels of TGF-β in obese mice favor the release of miR-11 

130b by adipocytes. Incubation with adipocyte conditioned media led to a rise of miR-130b in 12 

C2C12 myotubes where it affected the expression of target genes such as PGC-1α. The role of 13 

exosomes was not directly investigated in this study, but inhibition of neutral sphingomyelinase 2, 14 

an enzyme involved in exosome secretion, reduced the release of miR-130b by adipocytes [78]. In 15 

another study, Fang et al. investigated the mechanism linking rosiglitazone, an insulin-sensitizing 16 

agent and PPARγ agonist, to cardiac hypertrophy [79]. They observed that in vivo ablation of 17 

PPARγ in adipocytes prevents cardiac hypertrophy elicited by rosiglitazone. They further 18 

discovered that activation of PPARγ signaling in adipocytes increases the expression and secretion 19 

of miR-200a that is then transferred via exosomes to cardiomyocytes. Following its transfer, miR-20 

200a blocks TCS1 expression, promotes mTOR phosphorylation and favors cardiomyocyte 21 

hypertrophy.  22 

 23 
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Liver 1 

 Exosomes released by hepatocytes and different liver cell lines have been suggested to 2 

impact on diverse liver functions and to be involved in liver diseases [80, 81]. The increased 3 

prevalence of obesity and metabolic syndrome favors the development of liver steatosis that can 4 

progress to non-alcoholic fatty liver disease (NAFLD) and in nonalcoholic steatohepatitis (NASH). 5 

Hirosva and colleagues investigated whether exosomes released by hepatocytes may be part of the 6 

mechanisms that activate the macrophages and promote inflammation in liver diseases [82]. They 7 

observed that mouse, rat and human hepatocytes release increased amounts of microvesicles in 8 

response to the saturated fatty acid palmitate, but not following incubation with the unsaturated 9 

fatty acid oleate. Inhibition of two component of exosome biogenesis and secretion, neutral 10 

sphingomyelinase and Rab27, did not prevent this effect in Huh7 hepatocyte cells suggesting that 11 

the secreted vesicles are not exosomes. Nonetheless, lipotoxic conditions induced the released of 12 

the protein TRAIL in hepatocyte microvesicles that favored the activation of macrophages and the 13 

release of pro-inflammatory cytokines in a RIP1 and NFκB-dependent manner. An increase in liver 14 

microvesicles was also observed in serum of mice fed with a diet containing high amounts of 15 

saturated fat, fructose, and cholesterol. Interestingly, blockade of microvesicle release for 2 weeks 16 

obtained by injecting mice with fasudil decreased macrophage activation and hepatocyte 17 

inflammation of mice fed with this diet. This study highlight a possible role for microvesicles in 18 

NASH disease [82]. However, other investigations are needed to determine if exosomes play also 19 

a role in liver disorders associated with metabolic syndrome and if the cargo of liver exosomes can 20 

also be transferred to other organs.  21 

 22 

 23 
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Perspectives  1 

  The capacity of exosomes to transfer proteins and miRNAs to distantly located cells opens 2 

the possibility of their utilization as novel drug vehicles. RNA interference (RNAi)-based therapy 3 

is using small interfering RNA (siRNA) or miRNAs to specifically silence a gene of interest. This 4 

strategy is very promising but so far only few clinical trials have been performed. Conventional 5 

routes of oligonucleotide delivery have to face rapid degradation, poor bioavailability, unspecific 6 

organ targeting and the inability to cross the blood-brain barrier [83]. The utilization of exosome-7 

like vesicles as vehicles for the transport of siRNA/miRNA may open the way to new strategies to 8 

specifically and efficiently deliver them to the target cells.  9 

  Exosomal carriers provide advantages of both cell-based drug delivery and 10 

nanotechnology. They can travel from one cell type to another, they deliver their content across the 11 

plasma membrane in active form and they can pass the blood-brain barrier [84]. Two different 12 

approaches have been described for oligonucleotide loading into exosomes. The first, developed 13 

by Alvarez-Erviti and colleagues, uses electroporation for incorporating siRNAs in dendritic cell-14 

derived exosomes [85]. A similar strategy can be applied to load up to 3000 miRNA molecules in 15 

exosomes [86]. However, the efficiency of exosome electroporation varies according to the 16 

experimental conditions [84]. The second approach, takes advantage of the release by parental cells 17 

of part of their cellular components in exosomes. Indeed, the fusion of an antigen with a protein 18 

known to be targeted to exosomes was shown to result in its loading in the vesicles and its 19 

extracellular release [87]. An analogous strategy could potentially be envisaged to tag and load the 20 

miRNAs of interest in exosomes.  21 

 Few studies have already demonstrated the efficiency of exosome-mediated delivery of 22 

siRNAs to recipient cells [84]. For example, exosomal delivery of the antimiR-150 in mice 23 
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neutralized miR-150, diminished VEGF levels and attenuated angiogenesis [88]. Finally, Alvarez-1 

Erviti et al. reported that genetic modifications of parental cells could be used to target exosomes 2 

to the disease site [85]. They succeeded in engineering exosomes containing a siRNA directed 3 

against GADPH and the neuron-specific peptide RVG. When injected in mice, a specific gene 4 

knockdown was observed in neurons, microglia and oligodendrocytes, demonstrating the 5 

therapeutic potential of exosomes-mediated siRNA delivery. 6 

 7 

CONCLUSION 8 

The number of studies supporting a role for exosomes in metabolic organ cross-talk is rapidly 9 

growing. Several aspects of this new communication mode remain however to be elucidated. For 10 

example, it is still unclear how miRNAs, mRNAs and proteins are selectively loaded in exosomes 11 

and how exosomes can be targeted to specific cell types. Moreover, we still don’t know whether a 12 

given cell can secrete subpopulations of exosomes with different cargo composition and function. 13 

Additional studies will be needed to determine the potential and the limitations of exosomes and 14 

their miRNA cargo in intercellular communication but they promise to open an entirely new 15 

perspective in our understanding of inter-organ crosstalk.  16 

CALLOUTS (25-40 words each, 3-5) 17 

1) Exosomes are small extracellular vesicles that transport proteins and nucleic acids, which can 18 

be transferred in active form to nearby cells or to distant organs.  19 

2) miRNAs are important regulators of gene expression by. acting inside the cells producing them 20 

but also in distant cells after their transfer by exosomes. 21 
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3) Islet exosomes can act in an? autocrine manner to favor a concerted response of the β-cells, or 1 

in paracrine manner to communicate with surrounding endothelial or immune cells. 2 

4) In a mouse model of diet-induced obesity, skeletal muscles were found to release in exosomes 3 

miRNAs capable of promoting β-cell proliferation to compensate for insulin resistance.  4 

5) miRNAs, including miR-99b, released by the brown adipose tissue are transported to the liver 5 

by exosomes where they can inhibit their target genes.  6 
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FIGURE LEGENDS 1 

 2 

Figure 1: Schematic model of exosomal miRNA transfer. miRNAs produced by donor cells can be 3 

sorted to exosomes during multivesicular bodies (MVB) formation (1). Exosomes are released in 4 

the extracellular space upon fusion of the MVB with the plasma membrane (2). The exosomal 5 

miRNAs can then be delivered to recipient cells by endocytosis (3) or by fusion of the exosomes 6 

with the plasma membrane (4). Exosomes may also bind to a receptor and activate specific 7 

signaling pathways (5).   8 

 9 

Figure 2: Schematic representation of the involvement of exosomes in inter-organ cross-talk. 10 

Insulin-secreting β-cells and insulin-sensitive tissues release in exosomes containing proteins and 11 

miRNAs that can be transferred to other metabolic organs, or to immune or endothelial cells. 12 

Exosomes are acting in both autocrine and paracrine manners to favor the maintenance of glucose 13 

homeostasis or to aggravate insulin resistance.   14 
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