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Abstract

A large amount of data for inconspicuous taxa is stored in natural history col-

lections; however, this information is often neglected for biodiversity patterns

studies. Here, we evaluate the performance of direct interpolation of museum

collections data, equivalent to the traditional approach used in bryophyte con-

servation planning, and stacked species distribution models (S-SDMs) to pro-

duce reliable reconstructions of species richness patterns, given that differences

between these methods have been insufficiently evaluated for inconspicuous

taxa. Our objective was to contrast if species distribution models produce better

inferences of diversity richness than simply selecting areas with the higher spe-

cies numbers. As model species, we selected Iberian species of the genus Grim-

mia (Bryophyta), and we used four well-collected areas to compare and validate

the following models: 1) four Maxent richness models, each generated without

the data from one of the four areas, and a reference model created using all of

the data and 2) four richness models obtained through direct spatial interpola-

tion, each generated without the data from one area, and a reference model cre-

ated with all of the data. The correlations between the partial and reference

Maxent models were higher in all cases (0.45 to 0.99), whereas the correlations

between the spatial interpolation models were negative and weak (�0.3 to

�0.06). Our results demonstrate for the first time that S-SDMs offer a useful

tool for identifying detailed richness patterns for inconspicuous taxa such as

bryophytes and improving incomplete distributions by assessing the potential

richness of under-surveyed areas, filling major gaps in the available data. In

addition, the proposed strategy would enhance the value of the vast number of

specimens housed in biological collections.

Introduction

Cryptogams, invertebrates, and other inconspicuous

groups are of great importance in the functioning of

ecosystems (Hafernik 1992; Vanderpoorten and Goffinet

2009). But, they have not received as much attention as

charismatic taxonomic groups, such as flowering plants,

mammals, or birds, for the establishment of conservation

measures or the study of biodiversity patterns (Oliver and

Beattie 1993; Hunter and Webb 2002). Due to the increas-

ing pressure on the natural environment, many individual

species and sites that are important for biodiversity con-

servation now face increasing threats (Brooks et al. 2002;

Butchart et al. 2010). The estimation of species richness

distribution is necessary to understand spatial patterns of

biodiversity (Ricklefs 2004), to establish conservation

strategies (Bombi et al. 2011), or to predict future patterns

of biodiversity under global change (Algar et al. 2009).

However, information on species richness is often

incomplete, especially for inconspicuous organisms due to
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several reasons, including insufficient field surveys for

most geographic areas, strong spatial biases in the survey

data (S�ergio and Draper 2002; Wilson et al. 2005), or a

lack of taxonomic knowledge about such “forgotten”

groups (the “taxonomic impediment”) (Carvalho et al.

2007). Also, this is in part because the inclusion of inver-

tebrates and nonflowering plants is perceived as being too

time-consuming, costly, and difficult because of the short-

age of specialists (Oliver and Beattie 1993). Finally,

records of vertebrates or vascular plants are recurrently

used as surrogates for estimates of total biodiversity. But,

for example, bryophytes are characterized by high disper-

sal capacities (Mu~noz et al. 2004) and strikingly different

ecophysiological strategies as compared to flowering

plants (Vanderpoorten and Goffinet 2009). As a result,

the existence of a spatial congruence in species richness

distribution patterns between flowering plants and bryo-

phytes has been questioned (Shaw et al. 2005; Heden€as

2007; Geffert et al. 2013). So, the use of charismatic taxo-

nomic groups as indicators of total biodiversity should be

revised and new techniques should be applied to know

the richness patterns of inconspicuous groups. To over-

come the lack of planned data sampling, natural history

collections (NHCs) represent a useful solution. These

sources of data have some advantages, including quantity,

accessibility, taxonomic confidence, frequent updating,

and wide temporal and geographic scales (Graham et al.

2004; Garcill�an and Ezcurra 2011) and therefore are

useful for conservation purposes (Loiselle et al. 2003;

Gaubert et al. 2006; S�ergio et al. 2007b; Newbold 2010).

The simplest modeling process that can be applied to a

collection of observations is based on interpolation of

known locations and expert knowledge (Boitani et al.

2011). A number of studies have directly used raw species

distribution data or distribution maps derived from sim-

ple forms of spatial interpolation that estimate unknown

data from neighbor values (i.e., direct interpolation of

data) to evaluate patterns of biodiversity for conservation

assessment (Ferrier 2002; Graham and Hijmans 2006;

Hernandez-Stefanoni and Ponce-Hernandez 2006; S�ergio

et al. 2012; Geffert et al. 2013). Historically, atlas works,

which aim at mapping species distributions at large spa-

tial scales, have been based on the collection of observa-

tions and their representation on a continuous spatial

grid through interpolation techniques (Franklin and

Miller 2009). This intuitive and simple approach that

consists on aggregating the NHCs data and transferring

the resulting information to a geographic space may be

useful for coarse-scaled conservation assessments, and it

appears as reasonable if data are spatially well distributed

and the density of locations high (Ferrier 2002).

As the recording effort cannot be increased very much

in most cases (Vanderpoorten et al. 2005), an alternative

is to use the available NHCs to generate species distribu-

tion models (SDMs). Such tools integrate the relation-

ships between data on species distributions available in

NHCs and meaningful environmental variables to build

the habitat suitability of the species (Mateo et al. 2011).

The approach of stacking individual species distribution

models (S-SDMs) to generate maps of potential richness

(Guisan and Rahbek 2011) has become widely used in

conservation planning and the design of reserve networks,

for example, if the final aim is preserving the most

unique and biodiverse areas (Margules and Pressey 2000;

Myers et al. 2000; Mateo et al. 2013a), or the identifica-

tion of suitable areas for threatened or otherwise rare spe-

cies (Austin et al. 1996; Thomas et al. 2004; Graham and

Hijmans 2006; Jeschke and Strayer 2008), and could be a

useful tool to integrate poorly known and inconspicuous

groups into the process of designing priority areas. The

S-SDM approach considers a simple stacking of individ-

ual species responses to the environment and therefore

does not explicitly integrate any potential constraint on

the maximum number of species that can co-occur in a

given area (e.g., available energy, heterogeneity within the

modeled unit, or biotic interactions) (Guisan and Rahbek

2011). Few examples of SDMs applied to bryophytes can

be found in the bibliography (Kruijer et al. 2010; S�ergio

et al. 2011; D�esamor�e et al. 2012; Roux et al. 2012; Mateo

et al. 2013b) in comparison with other organisms (e.g.,

vascular plants, birds, and mammals), and none of these

studies has been applied yet to investigate species richness

patterns.

The conservation of bryophytes is behind that of flow-

ering plants (Schumacker and Martiny 1995; Vander-

poorten et al. 2005), although they are subject to many

of the threats that flowering plants face. There are a

number of programs which aim is to identify and pro-

tect a network of the best sites for biodiversity conserva-

tion (e.g., http://www.cbd.int; http://www.natura.org),

based on biodiversity richness. One of them is the

Important Plant Areas (IPA) program (http://www.

plantlife.org.uk), focused on the identification of priority

areas for wild plants, fungi, and their habitats around

the world and to ensure their long-term survival. It

offers guidelines to identify and protect regions with

high diversity in habitats and species based on consistent

criteria (Anderson 2002). Connected with the IPA pro-

ject, some others programs have been developed, as the

Important Bryophyte Areas or “IbrA” (Papp 2008).

These programs offer the possibility to protect and prop-

erly manage the priority conservation sites, but one of

the basic requirements is that the design of such net-

works must be based on sound knowledge on species’

distributions and typically uses species distribution maps

based on raw occurrence data. Overall, the traditional
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approach on bryophyte conservation planning is to col-

lect all the available data, generally based on NHC, and

after an implicit spatial interpolation process, to propose

the richest areas as priority areas for conservation

(Infante and Heras 2012; S�ergio et al. 2012).

In this article, we compare the traditional method used

in bryophyte conservation planning to estimate richness

patterns that aggregates raw distribution data and trans-

fers the resulting information to a geographic space, and

the widely method of generating SDMs that is being used

in conservation planning and the design of reserve net-

works, by integrating the relationships between data on

species distributions available in NHCs and meaningful

environmental variables to build the habitat suitability of

the species. We evaluate these two alternative approaches

with different complexity to estimate species richness pat-

terns (direct interpolation of data vs. S-SDMs) using

museum collections data, given that differences between

these methods have been insufficiently evaluated for

inconspicuous taxa. Here, we use a spatial interpolation

model as an equivalent approach to the traditional

method commonly used in bryophyte conservation plan-

ning which consists on aggregating the NHC data and

transferring the resulting information to a geographic

space. Specifically, we investigate how these approaches

can influence richness patterns, how much are affected by

the data, and how this variation influences inferences

drawn from these richness maps. Here, we also assess

whether accurate predictions of potential richness can be

achieved for bryophytes using S-SDMs, as little is known

about the performance of S-SDMs in inconspicuous

groups. In bryophytes, climatic filters and long-distance

dispersal have indeed been traditionally assumed to shape

species composition at the continental scale (Mu~noz et al.

2004), so that macroclimatic factors proved excellent pre-

dictors of bryophyte-dominated ecosystems and bryo-

phyte species distributions. Therefore, they are a good

subject of study for SDMs (S�ergio et al. 2011; Mateo

et al. 2013b). To perform this study, we used the genus

Grimmia as models species because the taxonomy of this

genus is well known, and thus, we can avoid the “taxo-

nomic impediment” mentioned above. Moreover, the

group has been relatively well collected in the Iberian

Peninsula. This combination of factors makes the group

ideal for testing our hypothesis: When species richness

patterns are derived from direct interpolation of distribu-

tional data on inconspicuous taxa housed in NHCs, these

data by themselves are not sufficiently informative to

derive richness patterns. To test our hypothesis, we

sought answer to several questions. Do S-SDMs generated

from NHCs produce the same outcome, in terms of rich-

ness, as direct interpolation models of the information

contained in the NHCs for inconspicuous taxa, namely

bryophytes? Do S-SDMs generated from NHCs produce

reliable results for inconspicuous taxa?

Materials and Methods

Study area and species data

The genus Grimmia is an important component of the

Iberian Peninsula bryoflora with regard to both the num-

ber of species and their distribution and ecological signifi-

cance. The group was revised for several geographic areas

by one of the authors (JM) who has studied most of the

Iberian specimens deposited in herbaria worldwide. The

genus includes 31 species from the Iberian Peninsula

(Mu~noz and Pando 2000; Casas et al. 2006; Mu~noz et al.

2009). Thirteen species of the genus are known from

fewer than five Iberian localities and have been excluded

from this study (G. anomala, G. arenaria, G. atrata,

G. capillata, G. crinitoleucophaea, G. elatior, G. elongata,

G. horrida, G. incurva, G. longirostris, G. mollis,

G. muehlenbeckii, and G. unicolor). The taxonomic status

of G. dissimulata and G. meridionalis is currently under

study using molecular methods, and these two species are

not discussed further in this study.

Information is available about the conservation status

of the species included in this study at different scales

and in different areas. G. caespiticia (Brid.) Jur. and

G. atrata Hornsch. are considered rare in Europe (Schu-

macker and Martiny 1995). At the scale of the Iberian

Peninsula, G. arenaria Hampe, G. crinitoleucophaea

Cardot, G. mollis Bruch & Schimp., G. muehlenbeckii

Schimp., and G. unicolor Hook. are considered vulnerable.

Grimmia capillata De Not. is data deficient-new,

G. incurva Schw€agr. is near threatened, and the remaining

species are included in the list of species of least concern

and attention (S�ergio et al. 2007a).

We mapped the collections on a 0.01° (~0.72 km2 in

the study area) grid, the spatial resolution used for the

study. At this spatial resolution, certain specimens col-

lected in close proximity coincide in the same pixel and

represent a single presence. The collection localities were

resampled at a pixel size of 10 9 10 km to avoid the

overrepresentation of very low numbers in the interpola-

tion analyses (Fig. 1A). We employed two different data

sets, the white dots in Figure 1A represent opportunistic

sampling localities, whereas the black dots indicate sys-

tematically sampled localities, corresponding to the fol-

lowing data sets: (1) Creu Casas’ extensive and intensive

collections across the Pyrenees and Francisco Lloret’s PhD

dissertation; (2) the PhD thesis data of Helena Hespanhol

(NW Portugal); (3) the PhD thesis data of Katia Cez�on

(Castilla-La Mancha); and (4) the PhD thesis data of Sus-

ana Rams (Sierra Nevada).
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Interpolation model

We generated direct interpolation models to predict

potential richness and to be compared with S-SDMs,

using the inverse distance weighting (IDW) technique in

ArcGIS 9.3 (ESRI, Redlands, California, USA). Only one

or two species had been collected from most of the col-

lection localities, irrespective of the number of speci-

mens, which may reflect the fact that most of the

collections were opportunistic and only detected the

most common and conspicuous species (Fig. 2). For

this reason and to avoid the overrepresentation of very

low numbers in the interpolation analyses, we defined a

fishnet of a 10 9 10 km cell size over the Iberian

Peninsula and counted the number of different species

occurring in each cell. This aggregated data set was

interpolated using IDW with a radius of 12 and a

power of 1.6 to reduce the influence of the closest

points, thus producing a smoother final surface

(Fig. 1B).

Stacked species distribution models
(S-SDMs)

To generate the different SDMs described below, we used

Maxent, one of the modeling technique most used in the

literature, as it provides consistently reliable results in the

work performed on the comparison of other modeling

techniques (Elith et al. 2006). It is a machine-learning tech-

nique based on the principle of maximum entropy (Phillips

et al. 2006; Phillips and Dud�ık 2008; Elith et al. 2011). This

technique seeks a marginal suitability function for each

variable that matches the empirical data, is maximally unin-

formative (close to the uniform distribution) elsewhere,

and has a mean equal to that of the empirical data (Warren

and Seifert 2011). Because the requirement of equal means

can produce the undesirable result of overfitting the data

used to train the model, Maxent has a regularization multi-

plier (b) that can tune the model to avoid such overfitting.

In this study, we used Maxent 3.3.3e (MAXENT; Phillips et

al. 2006, software available at https://www.cs.princeton.

edu/~schapire/maxent/) with only the convergence thresh-

old (0.00001) and the number of background points

(10,000) set to their default values. To avoid overfitting, we

increased the regularization multiplier (b = 2). This choice

produced less open-ended response curves.

The nineteen Worldclim 1.4 bioclimatic variables at

spatial resolution of about 1 9 1 km2 (http://www.world-

clim.org) were used as independent variables. These bio-

climatic variables result from the global land area

interpolation of the climate point data for the period

1950–2000 (Hijmans et al. 2005). They were intersected

with the presence data and with 10,000 points selected at

random and used as the background data set. To avoid

multicollinearity, we performed a correlation analysis on

the background data set and eliminated one of the vari-

ables in each pair that showed a Pearson correlation value

>0.8. The final data sets included Isothermality (bio_03),

Temperature Annual Range (bio_07), Mean Temperature

of Warmest Quarter (bio_10), Mean Temperature of

Coldest Quarter (bio_11), Precipitation Seasonality

(bio_15, coefficient of variation), Precipitation of Wettest

Quarter (bio_16), and Precipitation of Driest Quarter

(bio_17). Because Grimmia species are sensitive to the

chemical characteristics of the rocks on which they grow,

we also included a soil acidity/alkalinity categorical vari-

(A) (B)

Figure 2. Percentage of collection localities (100 km2 pixels) by Grimmia species count for (A) opportunistic sampling localities and (B)

systematically sampled localities.

Figure 1. Collection localities resampled at 10 9 10 km pixel size. 1 – Creu Casas’ extensive and intensive collections across the Pyrenees and

Francisco Lloret’s PhD; 2 – PhD thesis data of Helena Hespanhol (NW Portugal); 3 – PhD thesis data of Katia Cez�on (Castilla-La Mancha); 4 – PhD

thesis data of Susana Rams (Sierra Nevada). (A) The background represents the digital elevation model, white dots opportunistic sampling

localities, and black dots systematically sampled areas. (B) The background represents the number of Grimmia species according to an Inverse

Distance Weighting (IDW) interpolation using information from all of the collection localities. The number of different Grimmia species per

collection locality is represented by graduated circles.
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able that was derived from the European Soil Database

v2.0 (Data S1).

The performance of the Maxent models was evaluated

using the area under the curve (AUC) of the receiver

operating characteristic (ROC) curve. Although the valid-

ity of this statistic as a technique for evaluating models

has recently been challenged (Lobo et al. 2008; Peterson

et al. 2008), particularly for presence-only data, its use in

contexts similar to the present study has also been justi-

fied (Phillips et al. 2006; Anderson and Gonzalez 2011).

For each species, the AUC was calculated through

cross-validation based on 10 replicates, and the final

model was the average of the replicates.

There are many ways to generate richness maps from

original models (Ferrier and Guisan 2006). Following Cal-

abrese et al. (2014), we summed the original values

obtained for each individual taxon without reclassification

for presence/absence. The resulting richness model can be

considered as an estimate of the potential number of

species that could be present in each particular pixel

(Gelfand et al. 2005; Wilson et al. 2005).

Validation and comparison of the richness
models

We used IDW to create four partial richness models for

the entire Iberian Peninsula. Each partial model excluded

one of the four systematically sampled data sets (Fig. 1B).

We also used IDW to create a reference model using all

of the available presence data. In addition, we generated

four partial S-SDMs, each of which excluded the data for

one of those four systematically sampled data sets, and

we generated a reference model using all of the available

presence data. For the partial models, the number of

unique presences is indicated in Table 1; duplicate

presences were removed in all cases. Partial models were

generated with the aim to test the predictive power of the

models (IDW and S-SDMs) in each of the four systemati-

cally sampled areas. Following Hernandez et al. (2006),

the four partial models were compared with the reference

model, considered to be the most representative of the

true distribution of the species given the limitations of

the modeling method, the species occurrence, and envi-

ronmental data available. Lastly, for each of the four sys-

tematically sampled areas (i.e., setting the analysis

window to only that area) and separately for IDW and S-

SDMs, we calculated the Pearson correlation coefficient

between the reference model and the partial model gener-

ated excluding the area being tested.

Results

Species data

Although Grimmia mosses grow on the tops of rocks, pri-

marily in open areas, and are relatively conspicuous to

nonspecialists, collections of Grimmia exist only for 557 of

the ~8,100,100 km2 cells covering the Iberian Peninsula.

For opportunistic sampling localities (Fig. 2A), 86.3% of

the collection localities have one or two species, 13.12%

have three or four species, and the remaining 0.58% have

five or six species. In the systematically sampled localities

(Fig. 2B), 44.39% of the localities have one or two species

of Grimmia, 42.44% have three or four species, and the

remaining 13.18% have from five to eight species.

Richness models

As expected, the reference IDW interpolation model is

biased toward those areas that have been systematically

collected (Fig. 1B), even though we reduced the power

parameter to increase the smoothness of the model. The

final surface is highly heterogeneous, a result that may

reflect the lack of appropriate surveys for most of the

Iberian Peninsula.

The reference S-SDM for the genus is shown as the

background in Figure 3. The more oceanic areas of the

northwestern Iberian Peninsula and the mountain ranges

in the interior exhibit conditions that support higher

numbers of species. This result coincides with the

expected richness pattern based on expert knowledge and

the ecology of the resident species (Casas et al. 2006).

The average test AUC over the 10 replicates is indicated

in Table 2. The AUC values are generally high, except for

those species whose main area of distribution is within

one of the testing areas. The exclusion of those presences

to train the model results in poor AUC values. For exam-

ple, G. funalis is distributed primarily in the Pyrenees

(Area 1), and, when this area is eliminated, only seven

Table 1. Correlation between the reference and partial models.1

Area tested for

correlation, data

excluded from the

model generation Presences

Reference IDW

vs. Partial IDW

Reference

Maxent vs.

Partial Maxent

Area 1 492 �0.2099 0.9888

Area 2 484 �0.0659 0.6564

Area 3 426 �0.325 0.4504

Area 4 523 �0.0558 0.9954

1The reference models were generated using all of the presence data.

For each partial model, the presences of the corresponding area were

removed, and that window area was then used for the correlation cal-

culation. The correlation between the reference IDW and Maxent mod-

els for the entire Iberian Peninsula was 0.1542. Areas as in Figure 1.
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presences remain to train the model; the sparseness of the

remaining training data affects the accuracy of the model

(Wisz et al. 2008; Mateo et al. 2010b). A more extreme

example would be G. tergestina, with 14 of 16 known

presences inside Area 3; training the model with the only

two presences outside Area 3 explains the low AUC of

the model in this area. Finally, the widespread G. tri-

chophylla has moderate AUC values, as commonly found

for generalist species (McPherson and Jetz 2007; Mateo

et al. 2010a). Additionally, preliminary molecular results

point that G. dissimulata and G. meridionalis represent

taxa independent from G. trichophylla, and the merge of

presences of taxa with different environmental require-

ments would explain the obtained AUC values.

(A)

(B) (C)

(B)

Figure. 3. Maxent richness model of Grimmia for the Iberian Peninsula. (A) Overlap between the richness model (background) and number of

species recorded per 100 km2 pixel. (B) and (C) Examples of areas in the Iberian Peninsula for which the richest areas according to the Maxent

model match (solid lines) and do not match (dotted lines) the richest areas with more taxa recorded in the natural history collections.
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Comparison of the richness models

The IDW approach produced the map with the lowest

values of species richness (mean: 1.8, max: 8 species)

while the S-SDMs approach provided the map with the

highest values of species richness (mean: 2.2, max: 10

species).

The correlation between the reference IDW and refer-

ence S-SDMs models was low (r = 0.1542), indicating

that the models differ in the information they provide

(Table 1). The partial S-SDMs (i.e., generated without

information from a given area) are good predictors of the

number of species in that area, as shown by the medium

to high correlation values (0.4504 to 0.9954). The lowest

correlation is obtained from the tests performed with

Area 3 because this area includes 19.16% of the presences.

Although the correlation is still high, eliminating this

information from the model affects the accuracy of the

reference model. In contrast, removing the information

from the IDW interpolation has a dramatic effect on the

models, as indicated by the low and negative correlation

values (�0.0558 to �0.3250).

Discussion

Potential richness models

Our results demonstrate for the first time that the combi-

nation of individual species models (i.e., S-SDMs) offers a

useful tool for identifying detailed richness patterns for

inconspicuous taxa such as bryophytes. The richness

patterns generated by S-SDMs coincide with the expected

richness pattern based on expert knowledge and therefore

are a powerful tool for basic biodiversity applications

(e.g., biogeography and conservation).

Our results confirm that S-SDMs are less affected by

collection biases than are spatial interpolation models and

that the information about the richness provided by the

S-SDMs is improved relative to the raw information con-

tained in the NHCs. In this study, we found a correlation

between the reference (i.e., created using all of the avail-

able presence data) IDW and S-SDM models of 0.1542,

confirming that the richest areas according to the SDMs

differ from the areas with more taxa recorded in the

NHCs. In the case of the S-SDMs, we found high correla-

tions between the partial models generated eliminating

important pieces of information and the model generated

using all of the available information. This result shows

that the SDMs investigated were robust and could extract

latent information from the data. In contrast, the spatial

interpolation models performed poorly and were unable

to represent the actual richness (Table 1), although, in

some cases, with a good spatial coverage, the implementa-

tion of spatial interpolation techniques may increase the

predictive accuracy of habitat models, especially for

species with loose association with environmental vari-

ables (Brotons et al. 2007).

However, SDMs are not free of uncertainty when

applied to conservation programs (Rondinini et al. 2006;

Carvalho et al. 2010; Underwood et al. 2010; Aranda

and Lobo 2011; Mateo et al. 2013a). For example, they

may not include all environmental, ecological, and his-

Table 2. Maxent test AUC obtained by 10-fold cross-validation.1

Species Unique presences Area 1 Area 2 Area 3 Area 4 Reference model

G. alpestris 23 0.9927 0.9934 0.9939 0.9929 0.994

G. anodon 8 0.8983 0.9033 0.9033 0.8576 0.9033

G. caespiticia 20 0.9818 0.9858 0.9855 0.985 0.9859

G. crinita 25 0.9655 0.965 0.9713 0.9703 0.9705

G. decipiens 203 0.8585 0.8106 0.8704 0.8592 0.8596

G. funalis 19 0.7555 0.9522 0.9539 0.9559 0.9528

G. hartmanii 41 0.9426 0.8927 0.9419 0.945 0.9492

G. laevigata 130 0.8617 0.7767 0.8751 0.8591 0.8526

G. lisae 74 0.8213 0.8396 0.7792 0.8238 0.8165

G. montana 178 0.9287 0.8829 0.9364 0.9257 0.9312

G. orbicularis 149 0.8695 0.8769 0.8924 0.8611 0.8627

G. ovalis 28 0.7952 0.8442 0.8425 0.831 0.8421

G. pulvinata 229 0.8176 0.81 0.8552 0.8103 0.806

G. ramondii 12 0.963 0.9774 0.9615 0.954 0.9477

G. reflexidens 9 0.9778 0.9883 0.9883 0.9621 0.9883

G. tergestina 16 0.8135 0.8858 0.5898 0.8589 0.8375

G. torquata 9 0.9007 0.9104 0.9617 0.8726 0.9007

G. trichophylla 180 0.7447 0.7135 0.752 0.7386 0.7397

1Areas as in Figure 1.
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torical factors that affect species distributions (Guisan

and Zimmermann 2000). The main caveat of using S-

SDMs to generate species richness patterns is that it

tends to overestimate actual species richness (Trotta-

Moreu and Lobo 2010; Dubuis et al. 2011; Mateo et al.

2012). A suggested solution to this problem has been to

use macroecological models of species richness to con-

strain S-SDMs (see Dubuis et al. 2011; Guisan and Rah-

bek 2011). Other alternative, “hybrid” models that

include basic mechanisms, such as dispersal and demog-

raphy into SDMs (Boulangeat et al. 2012; Dullinger

et al. 2012), have provided more realism and better pre-

dictive performance than traditional models (Thuiller

et al. 2013). On the other hand, little is known about

the performance of S-SDMs in inconspicuous groups.

These results suggest that this distributional proposal

should be considered as a preliminary step and that a

higher number of database records are needed for the

insufficiently surveyed cells.

Considerations for conservation strategies

Two main types of distribution data are frequently used

in conservation planning to obtain distribution maps:

observed and predicted data (Rondinini et al. 2006).

Additionally, previous studies have discussed the advan-

tages and drawbacks of different approaches that are used

to generate species richness patterns as the basis for sub-

sequent conservation measures (Freitag and Jaarsveld

1998; Bombi et al. 2011). Currently, one of the criteria

employed in spatial conservation networks is to focus

logistic and economic efforts in richness areas (Prender-

gast et al. 1999; Margules and Pressey 2000; Myers et al.

2000). The most intuitive and simple approach for reserve

design is aggregating the NHC data and transferring the

resulting information to a geographic space (equivalent to

the spatial interpolation model used here). However, the

results of this study show that such networks may be

strongly biased toward those areas with higher numbers

of collections and would not necessarily represent the

richest areas. However, it is rarely the case that the areas

of interest are sufficiently surveyed, and the existing sur-

veys are certainly not adequate for this purpose in the

case of small and inconspicuous organisms and for most

geographic areas, including the megadiverse tropics

(Cayuela et al. 2009). But, see the limitations described in

the first part of this discussion.

Reserve selection is sensitive to the type of distribution

data used for the selection (Freitag and Jaarsveld 1998;

Wilson et al. 2005; Rondinini et al. 2006). For areas in

which detailed surveys have been performed, the richest

areas according to the S-SDM match those with more

taxa in the NHCs (Fig. 3B and C, solid lines), whereas

such agreement does not occur in the areas for which

only opportunistic samples are available (Fig. 3B and C,

dashed lines). In general, the richest areas identified by

spatial interpolation models coincide with the best-sur-

veyed areas, indicating that such models represent a

restricted approach that excludes poorly sampled areas. In

contrast, the S-SDMs show a richness pattern that is inde-

pendent of the collection effort and is, therefore, more

appropriate for biodiversity patterns studies.

There is a consensus that SDMs are an appropriate tool

for management and conservation programs and for the

identification of suitable areas for threatened or otherwise

rare species (Parviainen et al. 2008, 2009; Williams et al.

2009). Our results show that the S-SDMs derived from

natural history collections improve the incomplete infor-

mation inherent in the scattered nature of sampling dis-

tributions, particularly in the case of opportunistic

sampling, by assessing the potential richness of clearly

under-surveyed sites. Therefore, these models contribute

additional information that is not obvious from the lim-

ited presence data.

We consider that S-SDMs should be used to produce

potential maps of species richness when information is

limited and different types of distribution data are avail-

able (opportunistically sampled vs. systematically sampled

localities). Consequently, S-SDMs could be highly useful

for reserve design at the national scale. This conclusion is

in agreement with several studies that stressed that pre-

dictive models can effectively address the problem of

insufficient field survey and museum data (Loiselle et al.

2003; Maes et al. 2005; Rodr�ıguez et al. 2007; S�ergio et al.

2007b; Braunisch and Suchant 2010; Costa et al. 2010;

Mateo et al. 2013a) and offer benefits for conservation

prioritization (Elith and Leathwick 2009). Using models

to predict distributions is also likely to become increas-

ingly important as climate change and other dynamic

processes are incorporated into conservation planning

efforts (Rondinini et al. 2006; Underwood et al. 2010).

Although the S-SDMS seems to outperform the IDW

approach, both approaches combined may provide

improved information for directing future efforts to con-

serve these inconspicuous taxa and targeting areas for

monitoring and management. S�anchez-Fern�andez et al.

(2011) demonstrated that species distribution models,

combined with a survey effort map, might be used to

select the location of future surveys by prioritizing those

species-rich areas with a low level of sampling effort.

Here, the IDW output could be seen as a proposal of a

survey effort map which overlaid with the S-SDM output

could allow us to locate those areas where more sampling

effort is necessary. Another possibility is the combination

of S-SDMs with macroecological models (Guisan and

Rahbek 2011).
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Conclusions

From our study, we can conclude that (1) using a model-

ing approach based on the combination of individual

species models (stacking species distribution models)

allowed the identification of detailed richness patterns for

inconspicuous taxa such as bryophytes. (2) Stacking spe-

cies distribution models are less affected by collection

biases or types of distribution data than are spatial inter-

polation models (traditional approach) and therefore

could be highly useful for conservation purposes. (3) Spa-

tial interpolation models may provide a complementary

view to the modeling approach.

For the Iberian Peninsula, further studies should aim at

refining this modeling approach with more taxonomic

groups within bryophytes, and also with additional

geographic information that would inform about new

areas for conservation for inconspicuous groups such as

bryophytes.
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